repo init
[linux-rt-nao.git] / mm / nommu.c
blobee955bc2784566ba2e0a98077adec25c1f0b533e
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include "internal.h"
38 static inline __attribute__((format(printf, 1, 2)))
39 void no_printk(const char *fmt, ...)
43 #if 0
44 #define kenter(FMT, ...) \
45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50 #else
51 #define kenter(FMT, ...) \
52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 #endif
59 #include "internal.h"
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long num_physpages;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = 1; /* page trimming behaviour */
70 int heap_stack_gap = 0;
72 atomic_t mmap_pages_allocated;
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
82 struct vm_operations_struct generic_file_vm_ops = {
86 * Handle all mappings that got truncated by a "truncate()"
87 * system call.
89 * NOTE! We have to be ready to update the memory sharing
90 * between the file and the memory map for a potential last
91 * incomplete page. Ugly, but necessary.
93 int vmtruncate(struct inode *inode, loff_t offset)
95 struct address_space *mapping = inode->i_mapping;
96 unsigned long limit;
98 if (inode->i_size < offset)
99 goto do_expand;
100 i_size_write(inode, offset);
102 truncate_inode_pages(mapping, offset);
103 goto out_truncate;
105 do_expand:
106 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107 if (limit != RLIM_INFINITY && offset > limit)
108 goto out_sig;
109 if (offset > inode->i_sb->s_maxbytes)
110 goto out;
111 i_size_write(inode, offset);
113 out_truncate:
114 if (inode->i_op->truncate)
115 inode->i_op->truncate(inode);
116 return 0;
117 out_sig:
118 send_sig(SIGXFSZ, current, 0);
119 out:
120 return -EFBIG;
123 EXPORT_SYMBOL(vmtruncate);
126 * Return the total memory allocated for this pointer, not
127 * just what the caller asked for.
129 * Doesn't have to be accurate, i.e. may have races.
131 unsigned int kobjsize(const void *objp)
133 struct page *page;
136 * If the object we have should not have ksize performed on it,
137 * return size of 0
139 if (!objp || !virt_addr_valid(objp))
140 return 0;
142 page = virt_to_head_page(objp);
145 * If the allocator sets PageSlab, we know the pointer came from
146 * kmalloc().
148 if (PageSlab(page))
149 return ksize(objp);
152 * If it's not a compound page, see if we have a matching VMA
153 * region. This test is intentionally done in reverse order,
154 * so if there's no VMA, we still fall through and hand back
155 * PAGE_SIZE for 0-order pages.
157 if (!PageCompound(page)) {
158 struct vm_area_struct *vma;
160 vma = find_vma(current->mm, (unsigned long)objp);
161 if (vma)
162 return vma->vm_end - vma->vm_start;
166 * The ksize() function is only guaranteed to work for pointers
167 * returned by kmalloc(). So handle arbitrary pointers here.
169 return PAGE_SIZE << compound_order(page);
172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173 unsigned long start, int len, int flags,
174 struct page **pages, struct vm_area_struct **vmas)
176 struct vm_area_struct *vma;
177 unsigned long vm_flags;
178 int i;
179 int write = !!(flags & GUP_FLAGS_WRITE);
180 int force = !!(flags & GUP_FLAGS_FORCE);
181 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
183 /* calculate required read or write permissions.
184 * - if 'force' is set, we only require the "MAY" flags.
186 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
187 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
189 for (i = 0; i < len; i++) {
190 vma = find_vma(mm, start);
191 if (!vma)
192 goto finish_or_fault;
194 /* protect what we can, including chardevs */
195 if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
196 (!ignore && !(vm_flags & vma->vm_flags)))
197 goto finish_or_fault;
199 if (pages) {
200 pages[i] = virt_to_page(start);
201 if (pages[i])
202 page_cache_get(pages[i]);
204 if (vmas)
205 vmas[i] = vma;
206 start += PAGE_SIZE;
209 return i;
211 finish_or_fault:
212 return i ? : -EFAULT;
217 * get a list of pages in an address range belonging to the specified process
218 * and indicate the VMA that covers each page
219 * - this is potentially dodgy as we may end incrementing the page count of a
220 * slab page or a secondary page from a compound page
221 * - don't permit access to VMAs that don't support it, such as I/O mappings
223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
224 unsigned long start, int len, int write, int force,
225 struct page **pages, struct vm_area_struct **vmas)
227 int flags = 0;
229 if (write)
230 flags |= GUP_FLAGS_WRITE;
231 if (force)
232 flags |= GUP_FLAGS_FORCE;
234 return __get_user_pages(tsk, mm,
235 start, len, flags,
236 pages, vmas);
238 EXPORT_SYMBOL(get_user_pages);
240 DEFINE_RWLOCK(vmlist_lock);
241 struct vm_struct *vmlist;
243 void vfree(const void *addr)
245 kfree(addr);
247 EXPORT_SYMBOL(vfree);
249 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
252 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
253 * returns only a logical address.
255 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
257 EXPORT_SYMBOL(__vmalloc);
259 void *vmalloc_user(unsigned long size)
261 void *ret;
263 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
264 PAGE_KERNEL);
265 if (ret) {
266 struct vm_area_struct *vma;
268 down_write(&current->mm->mmap_sem);
269 vma = find_vma(current->mm, (unsigned long)ret);
270 if (vma)
271 vma->vm_flags |= VM_USERMAP;
272 up_write(&current->mm->mmap_sem);
275 return ret;
277 EXPORT_SYMBOL(vmalloc_user);
279 struct page *vmalloc_to_page(const void *addr)
281 return virt_to_page(addr);
283 EXPORT_SYMBOL(vmalloc_to_page);
285 unsigned long vmalloc_to_pfn(const void *addr)
287 return page_to_pfn(virt_to_page(addr));
289 EXPORT_SYMBOL(vmalloc_to_pfn);
291 long vread(char *buf, char *addr, unsigned long count)
293 memcpy(buf, addr, count);
294 return count;
297 long vwrite(char *buf, char *addr, unsigned long count)
299 /* Don't allow overflow */
300 if ((unsigned long) addr + count < count)
301 count = -(unsigned long) addr;
303 memcpy(addr, buf, count);
304 return(count);
308 * vmalloc - allocate virtually continguos memory
310 * @size: allocation size
312 * Allocate enough pages to cover @size from the page level
313 * allocator and map them into continguos kernel virtual space.
315 * For tight control over page level allocator and protection flags
316 * use __vmalloc() instead.
318 void *vmalloc(unsigned long size)
320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
322 EXPORT_SYMBOL(vmalloc);
324 void *vmalloc_node(unsigned long size, int node)
326 return vmalloc(size);
328 EXPORT_SYMBOL(vmalloc_node);
330 #ifndef PAGE_KERNEL_EXEC
331 # define PAGE_KERNEL_EXEC PAGE_KERNEL
332 #endif
335 * vmalloc_exec - allocate virtually contiguous, executable memory
336 * @size: allocation size
338 * Kernel-internal function to allocate enough pages to cover @size
339 * the page level allocator and map them into contiguous and
340 * executable kernel virtual space.
342 * For tight control over page level allocator and protection flags
343 * use __vmalloc() instead.
346 void *vmalloc_exec(unsigned long size)
348 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
352 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
353 * @size: allocation size
355 * Allocate enough 32bit PA addressable pages to cover @size from the
356 * page level allocator and map them into continguos kernel virtual space.
358 void *vmalloc_32(unsigned long size)
360 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
362 EXPORT_SYMBOL(vmalloc_32);
365 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
366 * @size: allocation size
368 * The resulting memory area is 32bit addressable and zeroed so it can be
369 * mapped to userspace without leaking data.
371 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
372 * remap_vmalloc_range() are permissible.
374 void *vmalloc_32_user(unsigned long size)
377 * We'll have to sort out the ZONE_DMA bits for 64-bit,
378 * but for now this can simply use vmalloc_user() directly.
380 return vmalloc_user(size);
382 EXPORT_SYMBOL(vmalloc_32_user);
384 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
386 BUG();
387 return NULL;
389 EXPORT_SYMBOL(vmap);
391 void vunmap(const void *addr)
393 BUG();
395 EXPORT_SYMBOL(vunmap);
397 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
399 BUG();
400 return NULL;
402 EXPORT_SYMBOL(vm_map_ram);
404 void vm_unmap_ram(const void *mem, unsigned int count)
406 BUG();
408 EXPORT_SYMBOL(vm_unmap_ram);
410 void vm_unmap_aliases(void)
413 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
416 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
417 * have one.
419 void __attribute__((weak)) vmalloc_sync_all(void)
423 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
424 struct page *page)
426 return -EINVAL;
428 EXPORT_SYMBOL(vm_insert_page);
431 * sys_brk() for the most part doesn't need the global kernel
432 * lock, except when an application is doing something nasty
433 * like trying to un-brk an area that has already been mapped
434 * to a regular file. in this case, the unmapping will need
435 * to invoke file system routines that need the global lock.
437 SYSCALL_DEFINE1(brk, unsigned long, brk)
439 struct mm_struct *mm = current->mm;
441 if (brk < mm->start_brk || brk > mm->context.end_brk)
442 return mm->brk;
444 if (mm->brk == brk)
445 return mm->brk;
448 * Always allow shrinking brk
450 if (brk <= mm->brk) {
451 mm->brk = brk;
452 return brk;
456 * Ok, looks good - let it rip.
458 return mm->brk = brk;
462 * initialise the VMA and region record slabs
464 void __init mmap_init(void)
466 int ret;
468 ret = percpu_counter_init(&vm_committed_as, 0);
469 VM_BUG_ON(ret);
470 vm_region_jar = kmem_cache_create("vm_region_jar",
471 sizeof(struct vm_region), 0,
472 SLAB_PANIC, NULL);
473 vm_area_cachep = kmem_cache_create("vm_area_struct",
474 sizeof(struct vm_area_struct), 0,
475 SLAB_PANIC, NULL);
479 * validate the region tree
480 * - the caller must hold the region lock
482 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
483 static noinline void validate_nommu_regions(void)
485 struct vm_region *region, *last;
486 struct rb_node *p, *lastp;
488 lastp = rb_first(&nommu_region_tree);
489 if (!lastp)
490 return;
492 last = rb_entry(lastp, struct vm_region, vm_rb);
493 if (unlikely(last->vm_end <= last->vm_start))
494 BUG();
495 if (unlikely(last->vm_top < last->vm_end))
496 BUG();
498 while ((p = rb_next(lastp))) {
499 region = rb_entry(p, struct vm_region, vm_rb);
500 last = rb_entry(lastp, struct vm_region, vm_rb);
502 if (unlikely(region->vm_end <= region->vm_start))
503 BUG();
504 if (unlikely(region->vm_top < region->vm_end))
505 BUG();
506 if (unlikely(region->vm_start < last->vm_top))
507 BUG();
509 lastp = p;
512 #else
513 #define validate_nommu_regions() do {} while(0)
514 #endif
517 * add a region into the global tree
519 static void add_nommu_region(struct vm_region *region)
521 struct vm_region *pregion;
522 struct rb_node **p, *parent;
524 validate_nommu_regions();
526 BUG_ON(region->vm_start & ~PAGE_MASK);
528 parent = NULL;
529 p = &nommu_region_tree.rb_node;
530 while (*p) {
531 parent = *p;
532 pregion = rb_entry(parent, struct vm_region, vm_rb);
533 if (region->vm_start < pregion->vm_start)
534 p = &(*p)->rb_left;
535 else if (region->vm_start > pregion->vm_start)
536 p = &(*p)->rb_right;
537 else if (pregion == region)
538 return;
539 else
540 BUG();
543 rb_link_node(&region->vm_rb, parent, p);
544 rb_insert_color(&region->vm_rb, &nommu_region_tree);
546 validate_nommu_regions();
550 * delete a region from the global tree
552 static void delete_nommu_region(struct vm_region *region)
554 BUG_ON(!nommu_region_tree.rb_node);
556 validate_nommu_regions();
557 rb_erase(&region->vm_rb, &nommu_region_tree);
558 validate_nommu_regions();
562 * free a contiguous series of pages
564 static void free_page_series(unsigned long from, unsigned long to)
566 for (; from < to; from += PAGE_SIZE) {
567 struct page *page = virt_to_page(from);
569 kdebug("- free %lx", from);
570 atomic_dec(&mmap_pages_allocated);
571 if (page_count(page) != 1)
572 kdebug("free page %p [%d]", page, page_count(page));
573 put_page(page);
578 * release a reference to a region
579 * - the caller must hold the region semaphore, which this releases
580 * - the region may not have been added to the tree yet, in which case vm_top
581 * will equal vm_start
583 static void __put_nommu_region(struct vm_region *region)
584 __releases(nommu_region_sem)
586 kenter("%p{%d}", region, atomic_read(&region->vm_usage));
588 BUG_ON(!nommu_region_tree.rb_node);
590 if (atomic_dec_and_test(&region->vm_usage)) {
591 if (region->vm_top > region->vm_start)
592 delete_nommu_region(region);
593 up_write(&nommu_region_sem);
595 if (region->vm_file)
596 fput(region->vm_file);
598 /* IO memory and memory shared directly out of the pagecache
599 * from ramfs/tmpfs mustn't be released here */
600 if (region->vm_flags & VM_MAPPED_COPY) {
601 kdebug("free series");
602 free_page_series(region->vm_start, region->vm_top);
604 kmem_cache_free(vm_region_jar, region);
605 } else {
606 up_write(&nommu_region_sem);
611 * release a reference to a region
613 static void put_nommu_region(struct vm_region *region)
615 down_write(&nommu_region_sem);
616 __put_nommu_region(region);
620 * add a VMA into a process's mm_struct in the appropriate place in the list
621 * and tree and add to the address space's page tree also if not an anonymous
622 * page
623 * - should be called with mm->mmap_sem held writelocked
625 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
627 struct vm_area_struct *pvma, **pp;
628 struct address_space *mapping;
629 struct rb_node **p, *parent;
631 kenter(",%p", vma);
633 BUG_ON(!vma->vm_region);
635 mm->map_count++;
636 vma->vm_mm = mm;
638 /* add the VMA to the mapping */
639 if (vma->vm_file) {
640 mapping = vma->vm_file->f_mapping;
642 flush_dcache_mmap_lock(mapping);
643 vma_prio_tree_insert(vma, &mapping->i_mmap);
644 flush_dcache_mmap_unlock(mapping);
647 /* add the VMA to the tree */
648 parent = NULL;
649 p = &mm->mm_rb.rb_node;
650 while (*p) {
651 parent = *p;
652 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
654 /* sort by: start addr, end addr, VMA struct addr in that order
655 * (the latter is necessary as we may get identical VMAs) */
656 if (vma->vm_start < pvma->vm_start)
657 p = &(*p)->rb_left;
658 else if (vma->vm_start > pvma->vm_start)
659 p = &(*p)->rb_right;
660 else if (vma->vm_end < pvma->vm_end)
661 p = &(*p)->rb_left;
662 else if (vma->vm_end > pvma->vm_end)
663 p = &(*p)->rb_right;
664 else if (vma < pvma)
665 p = &(*p)->rb_left;
666 else if (vma > pvma)
667 p = &(*p)->rb_right;
668 else
669 BUG();
672 rb_link_node(&vma->vm_rb, parent, p);
673 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
675 /* add VMA to the VMA list also */
676 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
677 if (pvma->vm_start > vma->vm_start)
678 break;
679 if (pvma->vm_start < vma->vm_start)
680 continue;
681 if (pvma->vm_end < vma->vm_end)
682 break;
685 vma->vm_next = *pp;
686 *pp = vma;
690 * delete a VMA from its owning mm_struct and address space
692 static void delete_vma_from_mm(struct vm_area_struct *vma)
694 struct vm_area_struct **pp;
695 struct address_space *mapping;
696 struct mm_struct *mm = vma->vm_mm;
698 kenter("%p", vma);
700 mm->map_count--;
701 if (mm->mmap_cache == vma)
702 mm->mmap_cache = NULL;
704 /* remove the VMA from the mapping */
705 if (vma->vm_file) {
706 mapping = vma->vm_file->f_mapping;
708 flush_dcache_mmap_lock(mapping);
709 vma_prio_tree_remove(vma, &mapping->i_mmap);
710 flush_dcache_mmap_unlock(mapping);
713 /* remove from the MM's tree and list */
714 rb_erase(&vma->vm_rb, &mm->mm_rb);
715 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
716 if (*pp == vma) {
717 *pp = vma->vm_next;
718 break;
722 vma->vm_mm = NULL;
726 * destroy a VMA record
728 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
730 kenter("%p", vma);
731 if (vma->vm_ops && vma->vm_ops->close)
732 vma->vm_ops->close(vma);
733 if (vma->vm_file) {
734 fput(vma->vm_file);
735 if (vma->vm_flags & VM_EXECUTABLE)
736 removed_exe_file_vma(mm);
738 put_nommu_region(vma->vm_region);
739 kmem_cache_free(vm_area_cachep, vma);
743 * look up the first VMA in which addr resides, NULL if none
744 * - should be called with mm->mmap_sem at least held readlocked
746 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
748 struct vm_area_struct *vma;
749 struct rb_node *n = mm->mm_rb.rb_node;
751 /* check the cache first */
752 vma = mm->mmap_cache;
753 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
754 return vma;
756 /* trawl the tree (there may be multiple mappings in which addr
757 * resides) */
758 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
759 vma = rb_entry(n, struct vm_area_struct, vm_rb);
760 if (vma->vm_start > addr)
761 return NULL;
762 if (vma->vm_end > addr) {
763 mm->mmap_cache = vma;
764 return vma;
768 return NULL;
770 EXPORT_SYMBOL(find_vma);
773 * find a VMA
774 * - we don't extend stack VMAs under NOMMU conditions
776 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
778 return find_vma(mm, addr);
782 * expand a stack to a given address
783 * - not supported under NOMMU conditions
785 int expand_stack(struct vm_area_struct *vma, unsigned long address)
787 return -ENOMEM;
791 * look up the first VMA exactly that exactly matches addr
792 * - should be called with mm->mmap_sem at least held readlocked
794 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
795 unsigned long addr,
796 unsigned long len)
798 struct vm_area_struct *vma;
799 struct rb_node *n = mm->mm_rb.rb_node;
800 unsigned long end = addr + len;
802 /* check the cache first */
803 vma = mm->mmap_cache;
804 if (vma && vma->vm_start == addr && vma->vm_end == end)
805 return vma;
807 /* trawl the tree (there may be multiple mappings in which addr
808 * resides) */
809 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
810 vma = rb_entry(n, struct vm_area_struct, vm_rb);
811 if (vma->vm_start < addr)
812 continue;
813 if (vma->vm_start > addr)
814 return NULL;
815 if (vma->vm_end == end) {
816 mm->mmap_cache = vma;
817 return vma;
821 return NULL;
825 * determine whether a mapping should be permitted and, if so, what sort of
826 * mapping we're capable of supporting
828 static int validate_mmap_request(struct file *file,
829 unsigned long addr,
830 unsigned long len,
831 unsigned long prot,
832 unsigned long flags,
833 unsigned long pgoff,
834 unsigned long *_capabilities)
836 unsigned long capabilities, rlen;
837 unsigned long reqprot = prot;
838 int ret;
840 /* do the simple checks first */
841 if (flags & MAP_FIXED || addr) {
842 printk(KERN_DEBUG
843 "%d: Can't do fixed-address/overlay mmap of RAM\n",
844 current->pid);
845 return -EINVAL;
848 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
849 (flags & MAP_TYPE) != MAP_SHARED)
850 return -EINVAL;
852 if (!len)
853 return -EINVAL;
855 /* Careful about overflows.. */
856 rlen = PAGE_ALIGN(len);
857 if (!rlen || rlen > TASK_SIZE)
858 return -ENOMEM;
860 /* offset overflow? */
861 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
862 return -EOVERFLOW;
864 if (file) {
865 /* validate file mapping requests */
866 struct address_space *mapping;
868 /* files must support mmap */
869 if (!file->f_op || !file->f_op->mmap)
870 return -ENODEV;
872 /* work out if what we've got could possibly be shared
873 * - we support chardevs that provide their own "memory"
874 * - we support files/blockdevs that are memory backed
876 mapping = file->f_mapping;
877 if (!mapping)
878 mapping = file->f_path.dentry->d_inode->i_mapping;
880 capabilities = 0;
881 if (mapping && mapping->backing_dev_info)
882 capabilities = mapping->backing_dev_info->capabilities;
884 if (!capabilities) {
885 /* no explicit capabilities set, so assume some
886 * defaults */
887 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
888 case S_IFREG:
889 case S_IFBLK:
890 capabilities = BDI_CAP_MAP_COPY;
891 break;
893 case S_IFCHR:
894 capabilities =
895 BDI_CAP_MAP_DIRECT |
896 BDI_CAP_READ_MAP |
897 BDI_CAP_WRITE_MAP;
898 break;
900 default:
901 return -EINVAL;
905 /* eliminate any capabilities that we can't support on this
906 * device */
907 if (!file->f_op->get_unmapped_area)
908 capabilities &= ~BDI_CAP_MAP_DIRECT;
909 if (!file->f_op->read)
910 capabilities &= ~BDI_CAP_MAP_COPY;
912 if (flags & MAP_SHARED) {
913 /* do checks for writing, appending and locking */
914 if ((prot & PROT_WRITE) &&
915 !(file->f_mode & FMODE_WRITE))
916 return -EACCES;
918 if (IS_APPEND(file->f_path.dentry->d_inode) &&
919 (file->f_mode & FMODE_WRITE))
920 return -EACCES;
922 if (locks_verify_locked(file->f_path.dentry->d_inode))
923 return -EAGAIN;
925 if (!(capabilities & BDI_CAP_MAP_DIRECT))
926 return -ENODEV;
928 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
929 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
930 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
932 printk("MAP_SHARED not completely supported on !MMU\n");
933 return -EINVAL;
936 /* we mustn't privatise shared mappings */
937 capabilities &= ~BDI_CAP_MAP_COPY;
939 else {
940 /* we're going to read the file into private memory we
941 * allocate */
942 if (!(capabilities & BDI_CAP_MAP_COPY))
943 return -ENODEV;
945 /* we don't permit a private writable mapping to be
946 * shared with the backing device */
947 if (prot & PROT_WRITE)
948 capabilities &= ~BDI_CAP_MAP_DIRECT;
951 /* handle executable mappings and implied executable
952 * mappings */
953 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
954 if (prot & PROT_EXEC)
955 return -EPERM;
957 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
958 /* handle implication of PROT_EXEC by PROT_READ */
959 if (current->personality & READ_IMPLIES_EXEC) {
960 if (capabilities & BDI_CAP_EXEC_MAP)
961 prot |= PROT_EXEC;
964 else if ((prot & PROT_READ) &&
965 (prot & PROT_EXEC) &&
966 !(capabilities & BDI_CAP_EXEC_MAP)
968 /* backing file is not executable, try to copy */
969 capabilities &= ~BDI_CAP_MAP_DIRECT;
972 else {
973 /* anonymous mappings are always memory backed and can be
974 * privately mapped
976 capabilities = BDI_CAP_MAP_COPY;
978 /* handle PROT_EXEC implication by PROT_READ */
979 if ((prot & PROT_READ) &&
980 (current->personality & READ_IMPLIES_EXEC))
981 prot |= PROT_EXEC;
984 /* allow the security API to have its say */
985 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
986 if (ret < 0)
987 return ret;
989 /* looks okay */
990 *_capabilities = capabilities;
991 return 0;
995 * we've determined that we can make the mapping, now translate what we
996 * now know into VMA flags
998 static unsigned long determine_vm_flags(struct file *file,
999 unsigned long prot,
1000 unsigned long flags,
1001 unsigned long capabilities)
1003 unsigned long vm_flags;
1005 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1006 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1007 /* vm_flags |= mm->def_flags; */
1009 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1010 /* attempt to share read-only copies of mapped file chunks */
1011 if (file && !(prot & PROT_WRITE))
1012 vm_flags |= VM_MAYSHARE;
1014 else {
1015 /* overlay a shareable mapping on the backing device or inode
1016 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1017 * romfs/cramfs */
1018 if (flags & MAP_SHARED)
1019 vm_flags |= VM_MAYSHARE | VM_SHARED;
1020 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1021 vm_flags |= VM_MAYSHARE;
1024 /* refuse to let anyone share private mappings with this process if
1025 * it's being traced - otherwise breakpoints set in it may interfere
1026 * with another untraced process
1028 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1029 vm_flags &= ~VM_MAYSHARE;
1031 return vm_flags;
1035 * set up a shared mapping on a file (the driver or filesystem provides and
1036 * pins the storage)
1038 static int do_mmap_shared_file(struct vm_area_struct *vma)
1040 int ret;
1042 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1043 if (ret == 0) {
1044 vma->vm_region->vm_top = vma->vm_region->vm_end;
1045 return ret;
1047 if (ret != -ENOSYS)
1048 return ret;
1050 /* getting an ENOSYS error indicates that direct mmap isn't
1051 * possible (as opposed to tried but failed) so we'll fall
1052 * through to making a private copy of the data and mapping
1053 * that if we can */
1054 return -ENODEV;
1058 * set up a private mapping or an anonymous shared mapping
1060 static int do_mmap_private(struct vm_area_struct *vma,
1061 struct vm_region *region,
1062 unsigned long len)
1064 struct page *pages;
1065 unsigned long total, point, n, rlen;
1066 void *base;
1067 int ret, order;
1069 /* invoke the file's mapping function so that it can keep track of
1070 * shared mappings on devices or memory
1071 * - VM_MAYSHARE will be set if it may attempt to share
1073 if (vma->vm_file) {
1074 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1075 if (ret == 0) {
1076 /* shouldn't return success if we're not sharing */
1077 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1078 vma->vm_region->vm_top = vma->vm_region->vm_end;
1079 return ret;
1081 if (ret != -ENOSYS)
1082 return ret;
1084 /* getting an ENOSYS error indicates that direct mmap isn't
1085 * possible (as opposed to tried but failed) so we'll try to
1086 * make a private copy of the data and map that instead */
1089 rlen = PAGE_ALIGN(len);
1091 /* allocate some memory to hold the mapping
1092 * - note that this may not return a page-aligned address if the object
1093 * we're allocating is smaller than a page
1095 order = get_order(rlen);
1096 kdebug("alloc order %d for %lx", order, len);
1098 pages = alloc_pages(GFP_KERNEL, order);
1099 if (!pages)
1100 goto enomem;
1102 total = 1 << order;
1103 atomic_add(total, &mmap_pages_allocated);
1105 point = rlen >> PAGE_SHIFT;
1107 /* we allocated a power-of-2 sized page set, so we may want to trim off
1108 * the excess */
1109 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1110 while (total > point) {
1111 order = ilog2(total - point);
1112 n = 1 << order;
1113 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1114 atomic_sub(n, &mmap_pages_allocated);
1115 total -= n;
1116 set_page_refcounted(pages + total);
1117 __free_pages(pages + total, order);
1121 for (point = 1; point < total; point++)
1122 set_page_refcounted(&pages[point]);
1124 base = page_address(pages);
1125 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1126 region->vm_start = (unsigned long) base;
1127 region->vm_end = region->vm_start + rlen;
1128 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1130 vma->vm_start = region->vm_start;
1131 vma->vm_end = region->vm_start + len;
1133 if (vma->vm_file) {
1134 /* read the contents of a file into the copy */
1135 mm_segment_t old_fs;
1136 loff_t fpos;
1138 fpos = vma->vm_pgoff;
1139 fpos <<= PAGE_SHIFT;
1141 old_fs = get_fs();
1142 set_fs(KERNEL_DS);
1143 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1144 set_fs(old_fs);
1146 if (ret < 0)
1147 goto error_free;
1149 /* clear the last little bit */
1150 if (ret < rlen)
1151 memset(base + ret, 0, rlen - ret);
1153 } else {
1154 /* if it's an anonymous mapping, then just clear it */
1155 memset(base, 0, rlen);
1158 return 0;
1160 error_free:
1161 free_page_series(region->vm_start, region->vm_end);
1162 region->vm_start = vma->vm_start = 0;
1163 region->vm_end = vma->vm_end = 0;
1164 region->vm_top = 0;
1165 return ret;
1167 enomem:
1168 printk("Allocation of length %lu from process %d (%s) failed\n",
1169 len, current->pid, current->comm);
1170 show_free_areas();
1171 return -ENOMEM;
1175 * handle mapping creation for uClinux
1177 unsigned long do_mmap_pgoff(struct file *file,
1178 unsigned long addr,
1179 unsigned long len,
1180 unsigned long prot,
1181 unsigned long flags,
1182 unsigned long pgoff)
1184 struct vm_area_struct *vma;
1185 struct vm_region *region;
1186 struct rb_node *rb;
1187 unsigned long capabilities, vm_flags, result;
1188 int ret;
1190 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1192 if (!(flags & MAP_FIXED))
1193 addr = round_hint_to_min(addr);
1195 /* decide whether we should attempt the mapping, and if so what sort of
1196 * mapping */
1197 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1198 &capabilities);
1199 if (ret < 0) {
1200 kleave(" = %d [val]", ret);
1201 return ret;
1204 /* we've determined that we can make the mapping, now translate what we
1205 * now know into VMA flags */
1206 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1208 /* we're going to need to record the mapping */
1209 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1210 if (!region)
1211 goto error_getting_region;
1213 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1214 if (!vma)
1215 goto error_getting_vma;
1217 atomic_set(&region->vm_usage, 1);
1218 region->vm_flags = vm_flags;
1219 region->vm_pgoff = pgoff;
1221 INIT_LIST_HEAD(&vma->anon_vma_node);
1222 vma->vm_flags = vm_flags;
1223 vma->vm_pgoff = pgoff;
1225 if (file) {
1226 region->vm_file = file;
1227 get_file(file);
1228 vma->vm_file = file;
1229 get_file(file);
1230 if (vm_flags & VM_EXECUTABLE) {
1231 added_exe_file_vma(current->mm);
1232 vma->vm_mm = current->mm;
1236 down_write(&nommu_region_sem);
1238 /* if we want to share, we need to check for regions created by other
1239 * mmap() calls that overlap with our proposed mapping
1240 * - we can only share with a superset match on most regular files
1241 * - shared mappings on character devices and memory backed files are
1242 * permitted to overlap inexactly as far as we are concerned for in
1243 * these cases, sharing is handled in the driver or filesystem rather
1244 * than here
1246 if (vm_flags & VM_MAYSHARE) {
1247 struct vm_region *pregion;
1248 unsigned long pglen, rpglen, pgend, rpgend, start;
1250 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1251 pgend = pgoff + pglen;
1253 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1254 pregion = rb_entry(rb, struct vm_region, vm_rb);
1256 if (!(pregion->vm_flags & VM_MAYSHARE))
1257 continue;
1259 /* search for overlapping mappings on the same file */
1260 if (pregion->vm_file->f_path.dentry->d_inode !=
1261 file->f_path.dentry->d_inode)
1262 continue;
1264 if (pregion->vm_pgoff >= pgend)
1265 continue;
1267 rpglen = pregion->vm_end - pregion->vm_start;
1268 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1269 rpgend = pregion->vm_pgoff + rpglen;
1270 if (pgoff >= rpgend)
1271 continue;
1273 /* handle inexactly overlapping matches between
1274 * mappings */
1275 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1276 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1277 /* new mapping is not a subset of the region */
1278 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1279 goto sharing_violation;
1280 continue;
1283 /* we've found a region we can share */
1284 atomic_inc(&pregion->vm_usage);
1285 vma->vm_region = pregion;
1286 start = pregion->vm_start;
1287 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1288 vma->vm_start = start;
1289 vma->vm_end = start + len;
1291 if (pregion->vm_flags & VM_MAPPED_COPY) {
1292 kdebug("share copy");
1293 vma->vm_flags |= VM_MAPPED_COPY;
1294 } else {
1295 kdebug("share mmap");
1296 ret = do_mmap_shared_file(vma);
1297 if (ret < 0) {
1298 vma->vm_region = NULL;
1299 vma->vm_start = 0;
1300 vma->vm_end = 0;
1301 atomic_dec(&pregion->vm_usage);
1302 pregion = NULL;
1303 goto error_just_free;
1306 fput(region->vm_file);
1307 kmem_cache_free(vm_region_jar, region);
1308 region = pregion;
1309 result = start;
1310 goto share;
1313 /* obtain the address at which to make a shared mapping
1314 * - this is the hook for quasi-memory character devices to
1315 * tell us the location of a shared mapping
1317 if (file && file->f_op->get_unmapped_area) {
1318 addr = file->f_op->get_unmapped_area(file, addr, len,
1319 pgoff, flags);
1320 if (IS_ERR((void *) addr)) {
1321 ret = addr;
1322 if (ret != (unsigned long) -ENOSYS)
1323 goto error_just_free;
1325 /* the driver refused to tell us where to site
1326 * the mapping so we'll have to attempt to copy
1327 * it */
1328 ret = (unsigned long) -ENODEV;
1329 if (!(capabilities & BDI_CAP_MAP_COPY))
1330 goto error_just_free;
1332 capabilities &= ~BDI_CAP_MAP_DIRECT;
1333 } else {
1334 vma->vm_start = region->vm_start = addr;
1335 vma->vm_end = region->vm_end = addr + len;
1340 vma->vm_region = region;
1342 /* set up the mapping */
1343 if (file && vma->vm_flags & VM_SHARED)
1344 ret = do_mmap_shared_file(vma);
1345 else
1346 ret = do_mmap_private(vma, region, len);
1347 if (ret < 0)
1348 goto error_put_region;
1350 add_nommu_region(region);
1352 /* okay... we have a mapping; now we have to register it */
1353 result = vma->vm_start;
1355 current->mm->total_vm += len >> PAGE_SHIFT;
1357 share:
1358 add_vma_to_mm(current->mm, vma);
1360 up_write(&nommu_region_sem);
1362 if (prot & PROT_EXEC)
1363 flush_icache_range(result, result + len);
1365 kleave(" = %lx", result);
1366 return result;
1368 error_put_region:
1369 __put_nommu_region(region);
1370 if (vma) {
1371 if (vma->vm_file) {
1372 fput(vma->vm_file);
1373 if (vma->vm_flags & VM_EXECUTABLE)
1374 removed_exe_file_vma(vma->vm_mm);
1376 kmem_cache_free(vm_area_cachep, vma);
1378 kleave(" = %d [pr]", ret);
1379 return ret;
1381 error_just_free:
1382 up_write(&nommu_region_sem);
1383 error:
1384 fput(region->vm_file);
1385 kmem_cache_free(vm_region_jar, region);
1386 fput(vma->vm_file);
1387 if (vma->vm_flags & VM_EXECUTABLE)
1388 removed_exe_file_vma(vma->vm_mm);
1389 kmem_cache_free(vm_area_cachep, vma);
1390 kleave(" = %d", ret);
1391 return ret;
1393 sharing_violation:
1394 up_write(&nommu_region_sem);
1395 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1396 ret = -EINVAL;
1397 goto error;
1399 error_getting_vma:
1400 kmem_cache_free(vm_region_jar, region);
1401 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1402 " from process %d failed\n",
1403 len, current->pid);
1404 show_free_areas();
1405 return -ENOMEM;
1407 error_getting_region:
1408 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1409 " from process %d failed\n",
1410 len, current->pid);
1411 show_free_areas();
1412 return -ENOMEM;
1414 EXPORT_SYMBOL(do_mmap_pgoff);
1417 * split a vma into two pieces at address 'addr', a new vma is allocated either
1418 * for the first part or the tail.
1420 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1421 unsigned long addr, int new_below)
1423 struct vm_area_struct *new;
1424 struct vm_region *region;
1425 unsigned long npages;
1427 kenter("");
1429 /* we're only permitted to split anonymous regions that have a single
1430 * owner */
1431 if (vma->vm_file ||
1432 atomic_read(&vma->vm_region->vm_usage) != 1)
1433 return -ENOMEM;
1435 if (mm->map_count >= sysctl_max_map_count)
1436 return -ENOMEM;
1438 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1439 if (!region)
1440 return -ENOMEM;
1442 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1443 if (!new) {
1444 kmem_cache_free(vm_region_jar, region);
1445 return -ENOMEM;
1448 /* most fields are the same, copy all, and then fixup */
1449 *new = *vma;
1450 *region = *vma->vm_region;
1451 new->vm_region = region;
1453 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1455 if (new_below) {
1456 region->vm_top = region->vm_end = new->vm_end = addr;
1457 } else {
1458 region->vm_start = new->vm_start = addr;
1459 region->vm_pgoff = new->vm_pgoff += npages;
1462 if (new->vm_ops && new->vm_ops->open)
1463 new->vm_ops->open(new);
1465 delete_vma_from_mm(vma);
1466 down_write(&nommu_region_sem);
1467 delete_nommu_region(vma->vm_region);
1468 if (new_below) {
1469 vma->vm_region->vm_start = vma->vm_start = addr;
1470 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1471 } else {
1472 vma->vm_region->vm_end = vma->vm_end = addr;
1473 vma->vm_region->vm_top = addr;
1475 add_nommu_region(vma->vm_region);
1476 add_nommu_region(new->vm_region);
1477 up_write(&nommu_region_sem);
1478 add_vma_to_mm(mm, vma);
1479 add_vma_to_mm(mm, new);
1480 return 0;
1484 * shrink a VMA by removing the specified chunk from either the beginning or
1485 * the end
1487 static int shrink_vma(struct mm_struct *mm,
1488 struct vm_area_struct *vma,
1489 unsigned long from, unsigned long to)
1491 struct vm_region *region;
1493 kenter("");
1495 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1496 * and list */
1497 delete_vma_from_mm(vma);
1498 if (from > vma->vm_start)
1499 vma->vm_end = from;
1500 else
1501 vma->vm_start = to;
1502 add_vma_to_mm(mm, vma);
1504 /* cut the backing region down to size */
1505 region = vma->vm_region;
1506 BUG_ON(atomic_read(&region->vm_usage) != 1);
1508 down_write(&nommu_region_sem);
1509 delete_nommu_region(region);
1510 if (from > region->vm_start) {
1511 to = region->vm_top;
1512 region->vm_top = region->vm_end = from;
1513 } else {
1514 region->vm_start = to;
1516 add_nommu_region(region);
1517 up_write(&nommu_region_sem);
1519 free_page_series(from, to);
1520 return 0;
1524 * release a mapping
1525 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1526 * VMA, though it need not cover the whole VMA
1528 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1530 struct vm_area_struct *vma;
1531 struct rb_node *rb;
1532 unsigned long end = start + len;
1533 int ret;
1535 kenter(",%lx,%zx", start, len);
1537 if (len == 0)
1538 return -EINVAL;
1540 /* find the first potentially overlapping VMA */
1541 vma = find_vma(mm, start);
1542 if (!vma) {
1543 printk(KERN_WARNING
1544 "munmap of memory not mmapped by process %d (%s):"
1545 " 0x%lx-0x%lx\n",
1546 current->pid, current->comm, start, start + len - 1);
1547 return -EINVAL;
1550 /* we're allowed to split an anonymous VMA but not a file-backed one */
1551 if (vma->vm_file) {
1552 do {
1553 if (start > vma->vm_start) {
1554 kleave(" = -EINVAL [miss]");
1555 return -EINVAL;
1557 if (end == vma->vm_end)
1558 goto erase_whole_vma;
1559 rb = rb_next(&vma->vm_rb);
1560 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1561 } while (rb);
1562 kleave(" = -EINVAL [split file]");
1563 return -EINVAL;
1564 } else {
1565 /* the chunk must be a subset of the VMA found */
1566 if (start == vma->vm_start && end == vma->vm_end)
1567 goto erase_whole_vma;
1568 if (start < vma->vm_start || end > vma->vm_end) {
1569 kleave(" = -EINVAL [superset]");
1570 return -EINVAL;
1572 if (start & ~PAGE_MASK) {
1573 kleave(" = -EINVAL [unaligned start]");
1574 return -EINVAL;
1576 if (end != vma->vm_end && end & ~PAGE_MASK) {
1577 kleave(" = -EINVAL [unaligned split]");
1578 return -EINVAL;
1580 if (start != vma->vm_start && end != vma->vm_end) {
1581 ret = split_vma(mm, vma, start, 1);
1582 if (ret < 0) {
1583 kleave(" = %d [split]", ret);
1584 return ret;
1587 return shrink_vma(mm, vma, start, end);
1590 erase_whole_vma:
1591 delete_vma_from_mm(vma);
1592 delete_vma(mm, vma);
1593 kleave(" = 0");
1594 return 0;
1596 EXPORT_SYMBOL(do_munmap);
1598 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1600 int ret;
1601 struct mm_struct *mm = current->mm;
1603 down_write(&mm->mmap_sem);
1604 ret = do_munmap(mm, addr, len);
1605 up_write(&mm->mmap_sem);
1606 return ret;
1610 * release all the mappings made in a process's VM space
1612 void exit_mmap(struct mm_struct *mm)
1614 struct vm_area_struct *vma;
1616 if (!mm)
1617 return;
1619 kenter("");
1621 mm->total_vm = 0;
1623 while ((vma = mm->mmap)) {
1624 mm->mmap = vma->vm_next;
1625 delete_vma_from_mm(vma);
1626 delete_vma(mm, vma);
1629 kleave("");
1632 unsigned long do_brk(unsigned long addr, unsigned long len)
1634 return -ENOMEM;
1638 * expand (or shrink) an existing mapping, potentially moving it at the same
1639 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1641 * under NOMMU conditions, we only permit changing a mapping's size, and only
1642 * as long as it stays within the region allocated by do_mmap_private() and the
1643 * block is not shareable
1645 * MREMAP_FIXED is not supported under NOMMU conditions
1647 unsigned long do_mremap(unsigned long addr,
1648 unsigned long old_len, unsigned long new_len,
1649 unsigned long flags, unsigned long new_addr)
1651 struct vm_area_struct *vma;
1653 /* insanity checks first */
1654 if (old_len == 0 || new_len == 0)
1655 return (unsigned long) -EINVAL;
1657 if (addr & ~PAGE_MASK)
1658 return -EINVAL;
1660 if (flags & MREMAP_FIXED && new_addr != addr)
1661 return (unsigned long) -EINVAL;
1663 vma = find_vma_exact(current->mm, addr, old_len);
1664 if (!vma)
1665 return (unsigned long) -EINVAL;
1667 if (vma->vm_end != vma->vm_start + old_len)
1668 return (unsigned long) -EFAULT;
1670 if (vma->vm_flags & VM_MAYSHARE)
1671 return (unsigned long) -EPERM;
1673 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1674 return (unsigned long) -ENOMEM;
1676 /* all checks complete - do it */
1677 vma->vm_end = vma->vm_start + new_len;
1678 return vma->vm_start;
1680 EXPORT_SYMBOL(do_mremap);
1682 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1683 unsigned long, new_len, unsigned long, flags,
1684 unsigned long, new_addr)
1686 unsigned long ret;
1688 down_write(&current->mm->mmap_sem);
1689 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1690 up_write(&current->mm->mmap_sem);
1691 return ret;
1694 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1695 unsigned int foll_flags)
1697 return NULL;
1700 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1701 unsigned long to, unsigned long size, pgprot_t prot)
1703 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1704 return 0;
1706 EXPORT_SYMBOL(remap_pfn_range);
1708 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1709 unsigned long pgoff)
1711 unsigned int size = vma->vm_end - vma->vm_start;
1713 if (!(vma->vm_flags & VM_USERMAP))
1714 return -EINVAL;
1716 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1717 vma->vm_end = vma->vm_start + size;
1719 return 0;
1721 EXPORT_SYMBOL(remap_vmalloc_range);
1723 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1727 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1728 unsigned long len, unsigned long pgoff, unsigned long flags)
1730 return -ENOMEM;
1733 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1737 void unmap_mapping_range(struct address_space *mapping,
1738 loff_t const holebegin, loff_t const holelen,
1739 int even_cows)
1742 EXPORT_SYMBOL(unmap_mapping_range);
1745 * ask for an unmapped area at which to create a mapping on a file
1747 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1748 unsigned long len, unsigned long pgoff,
1749 unsigned long flags)
1751 unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1752 unsigned long, unsigned long);
1754 get_area = current->mm->get_unmapped_area;
1755 if (file && file->f_op && file->f_op->get_unmapped_area)
1756 get_area = file->f_op->get_unmapped_area;
1758 if (!get_area)
1759 return -ENOSYS;
1761 return get_area(file, addr, len, pgoff, flags);
1763 EXPORT_SYMBOL(get_unmapped_area);
1766 * Check that a process has enough memory to allocate a new virtual
1767 * mapping. 0 means there is enough memory for the allocation to
1768 * succeed and -ENOMEM implies there is not.
1770 * We currently support three overcommit policies, which are set via the
1771 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1773 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1774 * Additional code 2002 Jul 20 by Robert Love.
1776 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1778 * Note this is a helper function intended to be used by LSMs which
1779 * wish to use this logic.
1781 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1783 unsigned long free, allowed;
1785 vm_acct_memory(pages);
1788 * Sometimes we want to use more memory than we have
1790 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1791 return 0;
1793 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1794 unsigned long n;
1796 free = global_page_state(NR_FILE_PAGES);
1797 free += nr_swap_pages;
1800 * Any slabs which are created with the
1801 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1802 * which are reclaimable, under pressure. The dentry
1803 * cache and most inode caches should fall into this
1805 free += global_page_state(NR_SLAB_RECLAIMABLE);
1808 * Leave the last 3% for root
1810 if (!cap_sys_admin)
1811 free -= free / 32;
1813 if (free > pages)
1814 return 0;
1817 * nr_free_pages() is very expensive on large systems,
1818 * only call if we're about to fail.
1820 n = nr_free_pages();
1823 * Leave reserved pages. The pages are not for anonymous pages.
1825 if (n <= totalreserve_pages)
1826 goto error;
1827 else
1828 n -= totalreserve_pages;
1831 * Leave the last 3% for root
1833 if (!cap_sys_admin)
1834 n -= n / 32;
1835 free += n;
1837 if (free > pages)
1838 return 0;
1840 goto error;
1843 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1845 * Leave the last 3% for root
1847 if (!cap_sys_admin)
1848 allowed -= allowed / 32;
1849 allowed += total_swap_pages;
1851 /* Don't let a single process grow too big:
1852 leave 3% of the size of this process for other processes */
1853 if (mm)
1854 allowed -= mm->total_vm / 32;
1856 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1857 return 0;
1859 error:
1860 vm_unacct_memory(pages);
1862 return -ENOMEM;
1865 int in_gate_area_no_task(unsigned long addr)
1867 return 0;
1870 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1872 BUG();
1873 return 0;
1875 EXPORT_SYMBOL(filemap_fault);
1878 * Access another process' address space.
1879 * - source/target buffer must be kernel space
1881 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1883 struct vm_area_struct *vma;
1884 struct mm_struct *mm;
1886 if (addr + len < addr)
1887 return 0;
1889 mm = get_task_mm(tsk);
1890 if (!mm)
1891 return 0;
1893 down_read(&mm->mmap_sem);
1895 /* the access must start within one of the target process's mappings */
1896 vma = find_vma(mm, addr);
1897 if (vma) {
1898 /* don't overrun this mapping */
1899 if (addr + len >= vma->vm_end)
1900 len = vma->vm_end - addr;
1902 /* only read or write mappings where it is permitted */
1903 if (write && vma->vm_flags & VM_MAYWRITE)
1904 len -= copy_to_user((void *) addr, buf, len);
1905 else if (!write && vma->vm_flags & VM_MAYREAD)
1906 len -= copy_from_user(buf, (void *) addr, len);
1907 else
1908 len = 0;
1909 } else {
1910 len = 0;
1913 up_read(&mm->mmap_sem);
1914 mmput(mm);
1915 return len;