repo init
[linux-rt-nao.git] / mm / page_alloc.c
blobf13377c199cf017f4739907fdc9ad863537ae0e5
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
56 * Array of node states.
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
69 EXPORT_SYMBOL(node_states);
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
80 static void __free_pages_ok(struct page *page, unsigned int order);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
102 #endif
106 EXPORT_SYMBOL(totalram_pages);
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
122 int min_free_kbytes = 1024;
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
154 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
155 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
156 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
157 static unsigned long __initdata required_kernelcore;
158 static unsigned long __initdata required_movablecore;
159 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
161 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 int movable_zone;
163 EXPORT_SYMBOL(movable_zone);
164 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 #ifdef CONFIG_PREEMPT_RT
167 static DEFINE_PER_CPU_LOCKED(int, pcp_locks);
168 #endif
170 static inline void __lock_cpu_pcp(unsigned long *flags, int cpu)
172 #ifdef CONFIG_PREEMPT_RT
173 spin_lock(&__get_cpu_lock(pcp_locks, cpu));
174 flags = 0;
175 #else
176 local_irq_save(*flags);
177 #endif
180 static inline void lock_cpu_pcp(unsigned long *flags, int *this_cpu)
182 #ifdef CONFIG_PREEMPT_RT
183 (void)get_cpu_var_locked(pcp_locks, this_cpu);
184 flags = 0;
185 #else
186 local_irq_save(*flags);
187 *this_cpu = smp_processor_id();
188 #endif
191 static inline void unlock_cpu_pcp(unsigned long flags, int this_cpu)
193 #ifdef CONFIG_PREEMPT_RT
194 put_cpu_var_locked(pcp_locks, this_cpu);
195 #else
196 local_irq_restore(flags);
197 #endif
200 static struct per_cpu_pageset *
201 get_zone_pcp(struct zone *zone, unsigned long *flags, int *this_cpu)
203 lock_cpu_pcp(flags, this_cpu);
204 return zone_pcp(zone, *this_cpu);
207 static void
208 put_zone_pcp(struct zone *zone, unsigned long flags, int this_cpu)
210 unlock_cpu_pcp(flags, this_cpu);
213 #if MAX_NUMNODES > 1
214 int nr_node_ids __read_mostly = MAX_NUMNODES;
215 EXPORT_SYMBOL(nr_node_ids);
216 #endif
218 int page_group_by_mobility_disabled __read_mostly;
220 static void set_pageblock_migratetype(struct page *page, int migratetype)
222 set_pageblock_flags_group(page, (unsigned long)migratetype,
223 PB_migrate, PB_migrate_end);
226 #ifdef CONFIG_DEBUG_VM
227 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
229 int ret = 0;
230 unsigned seq;
231 unsigned long pfn = page_to_pfn(page);
233 do {
234 seq = zone_span_seqbegin(zone);
235 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
236 ret = 1;
237 else if (pfn < zone->zone_start_pfn)
238 ret = 1;
239 } while (zone_span_seqretry(zone, seq));
241 return ret;
244 static int page_is_consistent(struct zone *zone, struct page *page)
246 if (!pfn_valid_within(page_to_pfn(page)))
247 return 0;
248 if (zone != page_zone(page))
249 return 0;
251 return 1;
254 * Temporary debugging check for pages not lying within a given zone.
256 static int bad_range(struct zone *zone, struct page *page)
258 if (page_outside_zone_boundaries(zone, page))
259 return 1;
260 if (!page_is_consistent(zone, page))
261 return 1;
263 return 0;
265 #else
266 static inline int bad_range(struct zone *zone, struct page *page)
268 return 0;
270 #endif
272 static void bad_page(struct page *page)
274 static unsigned long resume;
275 static unsigned long nr_shown;
276 static unsigned long nr_unshown;
279 * Allow a burst of 60 reports, then keep quiet for that minute;
280 * or allow a steady drip of one report per second.
282 if (nr_shown == 60) {
283 if (time_before(jiffies, resume)) {
284 nr_unshown++;
285 goto out;
287 if (nr_unshown) {
288 printk(KERN_ALERT
289 "BUG: Bad page state: %lu messages suppressed\n",
290 nr_unshown);
291 nr_unshown = 0;
293 nr_shown = 0;
295 if (nr_shown++ == 0)
296 resume = jiffies + 60 * HZ;
298 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
299 current->comm, page_to_pfn(page));
300 printk(KERN_ALERT
301 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
302 page, (void *)page->flags, page_count(page),
303 page_mapcount(page), page->mapping, page->index);
305 dump_stack();
306 out:
307 /* Leave bad fields for debug, except PageBuddy could make trouble */
308 __ClearPageBuddy(page);
309 add_taint(TAINT_BAD_PAGE);
313 * Higher-order pages are called "compound pages". They are structured thusly:
315 * The first PAGE_SIZE page is called the "head page".
317 * The remaining PAGE_SIZE pages are called "tail pages".
319 * All pages have PG_compound set. All pages have their ->private pointing at
320 * the head page (even the head page has this).
322 * The first tail page's ->lru.next holds the address of the compound page's
323 * put_page() function. Its ->lru.prev holds the order of allocation.
324 * This usage means that zero-order pages may not be compound.
327 static void free_compound_page(struct page *page)
329 __free_pages_ok(page, compound_order(page));
332 void prep_compound_page(struct page *page, unsigned long order)
334 int i;
335 int nr_pages = 1 << order;
337 set_compound_page_dtor(page, free_compound_page);
338 set_compound_order(page, order);
339 __SetPageHead(page);
340 for (i = 1; i < nr_pages; i++) {
341 struct page *p = page + i;
343 __SetPageTail(p);
344 p->first_page = page;
348 #ifdef CONFIG_HUGETLBFS
349 void prep_compound_gigantic_page(struct page *page, unsigned long order)
351 int i;
352 int nr_pages = 1 << order;
353 struct page *p = page + 1;
355 set_compound_page_dtor(page, free_compound_page);
356 set_compound_order(page, order);
357 __SetPageHead(page);
358 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
359 __SetPageTail(p);
360 p->first_page = page;
363 #endif
365 static int destroy_compound_page(struct page *page, unsigned long order)
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
377 __ClearPageHead(page);
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
382 if (unlikely(!PageTail(p) | (p->first_page != page))) {
383 bad_page(page);
384 bad++;
386 __ClearPageTail(p);
389 return bad;
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
394 int i;
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
405 static inline void set_page_order(struct page *page, int order)
407 set_page_private(page, order);
408 __SetPageBuddy(page);
411 static inline void rmv_page_order(struct page *page)
413 __ClearPageBuddy(page);
414 set_page_private(page, 0);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 * B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 * P = B & ~(1 << O)
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 static inline struct page *
435 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
437 unsigned long buddy_idx = page_idx ^ (1 << order);
439 return page + (buddy_idx - page_idx);
442 static inline unsigned long
443 __find_combined_index(unsigned long page_idx, unsigned int order)
445 return (page_idx & ~(1 << order));
449 * This function checks whether a page is free && is the buddy
450 * we can do coalesce a page and its buddy if
451 * (a) the buddy is not in a hole &&
452 * (b) the buddy is in the buddy system &&
453 * (c) a page and its buddy have the same order &&
454 * (d) a page and its buddy are in the same zone.
456 * For recording whether a page is in the buddy system, we use PG_buddy.
457 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
459 * For recording page's order, we use page_private(page).
461 static inline int page_is_buddy(struct page *page, struct page *buddy,
462 int order)
464 if (!pfn_valid_within(page_to_pfn(buddy)))
465 return 0;
467 if (page_zone_id(page) != page_zone_id(buddy))
468 return 0;
470 if (PageBuddy(buddy) && page_order(buddy) == order) {
471 BUG_ON(page_count(buddy) != 0);
472 return 1;
474 return 0;
478 * Freeing function for a buddy system allocator.
480 * The concept of a buddy system is to maintain direct-mapped table
481 * (containing bit values) for memory blocks of various "orders".
482 * The bottom level table contains the map for the smallest allocatable
483 * units of memory (here, pages), and each level above it describes
484 * pairs of units from the levels below, hence, "buddies".
485 * At a high level, all that happens here is marking the table entry
486 * at the bottom level available, and propagating the changes upward
487 * as necessary, plus some accounting needed to play nicely with other
488 * parts of the VM system.
489 * At each level, we keep a list of pages, which are heads of continuous
490 * free pages of length of (1 << order) and marked with PG_buddy. Page's
491 * order is recorded in page_private(page) field.
492 * So when we are allocating or freeing one, we can derive the state of the
493 * other. That is, if we allocate a small block, and both were
494 * free, the remainder of the region must be split into blocks.
495 * If a block is freed, and its buddy is also free, then this
496 * triggers coalescing into a block of larger size.
498 * -- wli
501 static inline void __free_one_page(struct page *page,
502 struct zone *zone, unsigned int order)
504 unsigned long page_idx;
505 int order_size = 1 << order;
506 int migratetype = get_pageblock_migratetype(page);
508 if (unlikely(PageCompound(page)))
509 if (unlikely(destroy_compound_page(page, order)))
510 return;
512 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
514 VM_BUG_ON(page_idx & (order_size - 1));
515 VM_BUG_ON(bad_range(zone, page));
517 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
518 while (order < MAX_ORDER-1) {
519 unsigned long combined_idx;
520 struct page *buddy;
522 buddy = __page_find_buddy(page, page_idx, order);
523 if (!page_is_buddy(page, buddy, order))
524 break;
526 /* Our buddy is free, merge with it and move up one order. */
527 list_del(&buddy->lru);
528 zone->free_area[order].nr_free--;
529 rmv_page_order(buddy);
530 combined_idx = __find_combined_index(page_idx, order);
531 page = page + (combined_idx - page_idx);
532 page_idx = combined_idx;
533 order++;
535 set_page_order(page, order);
536 list_add(&page->lru,
537 &zone->free_area[order].free_list[migratetype]);
538 zone->free_area[order].nr_free++;
541 static inline int free_pages_check(struct page *page)
543 free_page_mlock(page);
544 if (unlikely(page_mapcount(page) |
545 (page->mapping != NULL) |
546 (page_count(page) != 0) |
547 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
548 bad_page(page);
549 return 1;
551 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
552 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
553 return 0;
557 * Frees a list of pages.
558 * Assumes all pages on list are in same zone, and of same order.
559 * count is the number of pages to free.
561 * If the zone was previously in an "all pages pinned" state then look to
562 * see if this freeing clears that state.
564 * And clear the zone's pages_scanned counter, to hold off the "all pages are
565 * pinned" detection logic.
567 static void
568 free_pages_bulk(struct zone *zone, struct list_head *list, int order)
570 unsigned long flags;
572 spin_lock_irqsave(&zone->lock, flags);
573 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
574 zone->pages_scanned = 0;
576 while (!list_empty(list)) {
577 struct page *page = list_first_entry(list, struct page, lru);
579 list_del(&page->lru);
580 __free_one_page(page, zone, order);
581 #ifdef CONFIG_PREEMPT_RT
582 cond_resched_lock(&zone->lock);
583 #endif
585 spin_unlock_irqrestore(&zone->lock, flags);
588 static void free_one_page(struct zone *zone, struct page *page, int order)
590 unsigned long flags;
592 spin_lock_irqsave(&zone->lock, flags);
594 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
595 zone->pages_scanned = 0;
596 __free_one_page(page, zone, order);
597 spin_unlock_irqrestore(&zone->lock, flags);
600 static void __free_pages_ok(struct page *page, unsigned int order)
602 unsigned long flags;
603 int i, this_cpu, bad = 0;
605 kmemcheck_free_shadow(page, order);
607 for (i = 0 ; i < (1 << order) ; ++i)
608 bad += free_pages_check(page + i);
609 if (bad)
610 return;
612 if (!PageHighMem(page)) {
613 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
614 debug_check_no_obj_freed(page_address(page),
615 PAGE_SIZE << order);
617 arch_free_page(page, order);
618 kernel_map_pages(page, 1 << order, 0);
620 lock_cpu_pcp(&flags, &this_cpu);
621 count_vm_events(PGFREE, 1 << order);
622 unlock_cpu_pcp(flags, this_cpu);
623 free_one_page(page_zone(page), page, order);
627 * permit the bootmem allocator to evade page validation on high-order frees
629 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
631 if (order == 0) {
632 __ClearPageReserved(page);
633 set_page_count(page, 0);
634 set_page_refcounted(page);
635 __free_page(page);
636 } else {
637 int loop;
639 prefetchw(page);
640 for (loop = 0; loop < BITS_PER_LONG; loop++) {
641 struct page *p = &page[loop];
643 if (loop + 1 < BITS_PER_LONG)
644 prefetchw(p + 1);
645 __ClearPageReserved(p);
646 set_page_count(p, 0);
649 set_page_refcounted(page);
650 __free_pages(page, order);
656 * The order of subdivision here is critical for the IO subsystem.
657 * Please do not alter this order without good reasons and regression
658 * testing. Specifically, as large blocks of memory are subdivided,
659 * the order in which smaller blocks are delivered depends on the order
660 * they're subdivided in this function. This is the primary factor
661 * influencing the order in which pages are delivered to the IO
662 * subsystem according to empirical testing, and this is also justified
663 * by considering the behavior of a buddy system containing a single
664 * large block of memory acted on by a series of small allocations.
665 * This behavior is a critical factor in sglist merging's success.
667 * -- wli
669 static inline void expand(struct zone *zone, struct page *page,
670 int low, int high, struct free_area *area,
671 int migratetype)
673 unsigned long size = 1 << high;
675 while (high > low) {
676 area--;
677 high--;
678 size >>= 1;
679 VM_BUG_ON(bad_range(zone, &page[size]));
680 list_add(&page[size].lru, &area->free_list[migratetype]);
681 area->nr_free++;
682 set_page_order(&page[size], high);
687 * This page is about to be returned from the page allocator
689 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
691 if (unlikely(page_mapcount(page) |
692 (page->mapping != NULL) |
693 (page_count(page) != 0) |
694 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
695 bad_page(page);
696 return 1;
699 set_page_private(page, 0);
700 set_page_refcounted(page);
702 arch_alloc_page(page, order);
703 kernel_map_pages(page, 1 << order, 1);
705 if (gfp_flags & __GFP_ZERO)
706 prep_zero_page(page, order, gfp_flags);
708 if (order && (gfp_flags & __GFP_COMP))
709 prep_compound_page(page, order);
711 return 0;
715 * Go through the free lists for the given migratetype and remove
716 * the smallest available page from the freelists
718 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
719 int migratetype)
721 unsigned int current_order;
722 struct free_area * area;
723 struct page *page;
725 /* Find a page of the appropriate size in the preferred list */
726 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
727 area = &(zone->free_area[current_order]);
728 if (list_empty(&area->free_list[migratetype]))
729 continue;
731 page = list_entry(area->free_list[migratetype].next,
732 struct page, lru);
733 list_del(&page->lru);
734 rmv_page_order(page);
735 area->nr_free--;
736 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
737 expand(zone, page, order, current_order, area, migratetype);
738 return page;
741 return NULL;
746 * This array describes the order lists are fallen back to when
747 * the free lists for the desirable migrate type are depleted
749 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
750 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
751 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
752 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
753 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
757 * Move the free pages in a range to the free lists of the requested type.
758 * Note that start_page and end_pages are not aligned on a pageblock
759 * boundary. If alignment is required, use move_freepages_block()
761 static int move_freepages(struct zone *zone,
762 struct page *start_page, struct page *end_page,
763 int migratetype)
765 struct page *page;
766 unsigned long order;
767 int pages_moved = 0;
769 #ifndef CONFIG_HOLES_IN_ZONE
771 * page_zone is not safe to call in this context when
772 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
773 * anyway as we check zone boundaries in move_freepages_block().
774 * Remove at a later date when no bug reports exist related to
775 * grouping pages by mobility
777 BUG_ON(page_zone(start_page) != page_zone(end_page));
778 #endif
780 for (page = start_page; page <= end_page;) {
781 /* Make sure we are not inadvertently changing nodes */
782 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
784 if (!pfn_valid_within(page_to_pfn(page))) {
785 page++;
786 continue;
789 if (!PageBuddy(page)) {
790 page++;
791 continue;
794 order = page_order(page);
795 list_del(&page->lru);
796 list_add(&page->lru,
797 &zone->free_area[order].free_list[migratetype]);
798 page += 1 << order;
799 pages_moved += 1 << order;
802 return pages_moved;
805 static int move_freepages_block(struct zone *zone, struct page *page,
806 int migratetype)
808 unsigned long start_pfn, end_pfn;
809 struct page *start_page, *end_page;
811 start_pfn = page_to_pfn(page);
812 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
813 start_page = pfn_to_page(start_pfn);
814 end_page = start_page + pageblock_nr_pages - 1;
815 end_pfn = start_pfn + pageblock_nr_pages - 1;
817 /* Do not cross zone boundaries */
818 if (start_pfn < zone->zone_start_pfn)
819 start_page = page;
820 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
821 return 0;
823 return move_freepages(zone, start_page, end_page, migratetype);
826 /* Remove an element from the buddy allocator from the fallback list */
827 static struct page *__rmqueue_fallback(struct zone *zone, int order,
828 int start_migratetype)
830 struct free_area * area;
831 int current_order;
832 struct page *page;
833 int migratetype, i;
835 /* Find the largest possible block of pages in the other list */
836 for (current_order = MAX_ORDER-1; current_order >= order;
837 --current_order) {
838 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
839 migratetype = fallbacks[start_migratetype][i];
841 /* MIGRATE_RESERVE handled later if necessary */
842 if (migratetype == MIGRATE_RESERVE)
843 continue;
845 area = &(zone->free_area[current_order]);
846 if (list_empty(&area->free_list[migratetype]))
847 continue;
849 page = list_entry(area->free_list[migratetype].next,
850 struct page, lru);
851 area->nr_free--;
854 * If breaking a large block of pages, move all free
855 * pages to the preferred allocation list. If falling
856 * back for a reclaimable kernel allocation, be more
857 * agressive about taking ownership of free pages
859 if (unlikely(current_order >= (pageblock_order >> 1)) ||
860 start_migratetype == MIGRATE_RECLAIMABLE) {
861 unsigned long pages;
862 pages = move_freepages_block(zone, page,
863 start_migratetype);
865 /* Claim the whole block if over half of it is free */
866 if (pages >= (1 << (pageblock_order-1)))
867 set_pageblock_migratetype(page,
868 start_migratetype);
870 migratetype = start_migratetype;
873 /* Remove the page from the freelists */
874 list_del(&page->lru);
875 rmv_page_order(page);
876 __mod_zone_page_state(zone, NR_FREE_PAGES,
877 -(1UL << order));
879 if (current_order == pageblock_order)
880 set_pageblock_migratetype(page,
881 start_migratetype);
883 expand(zone, page, order, current_order, area, migratetype);
884 return page;
888 /* Use MIGRATE_RESERVE rather than fail an allocation */
889 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
893 * Do the hard work of removing an element from the buddy allocator.
894 * Call me with the zone->lock already held.
896 static struct page *__rmqueue(struct zone *zone, unsigned int order,
897 int migratetype)
899 struct page *page;
901 page = __rmqueue_smallest(zone, order, migratetype);
903 if (unlikely(!page))
904 page = __rmqueue_fallback(zone, order, migratetype);
906 return page;
910 * Obtain a specified number of elements from the buddy allocator, all under
911 * a single hold of the lock, for efficiency. Add them to the supplied list.
912 * Returns the number of new pages which were placed at *list.
914 static int rmqueue_bulk(struct zone *zone, unsigned int order,
915 unsigned long count, struct list_head *list,
916 int migratetype)
918 int i;
920 spin_lock(&zone->lock);
921 for (i = 0; i < count; ++i) {
922 struct page *page = __rmqueue(zone, order, migratetype);
923 if (unlikely(page == NULL))
924 break;
927 * Split buddy pages returned by expand() are received here
928 * in physical page order. The page is added to the callers and
929 * list and the list head then moves forward. From the callers
930 * perspective, the linked list is ordered by page number in
931 * some conditions. This is useful for IO devices that can
932 * merge IO requests if the physical pages are ordered
933 * properly.
935 list_add(&page->lru, list);
936 set_page_private(page, migratetype);
937 list = &page->lru;
939 spin_unlock(&zone->lock);
940 return i;
943 static void
944 isolate_pcp_pages(int count, struct list_head *src, struct list_head *dst)
946 while (count--) {
947 struct page *page = list_last_entry(src, struct page, lru);
948 list_move(&page->lru, dst);
953 #ifdef CONFIG_NUMA
955 * Called from the vmstat counter updater to drain pagesets of this
956 * currently executing processor on remote nodes after they have
957 * expired.
959 * Note that this function must be called with the thread pinned to
960 * a single processor.
962 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
964 LIST_HEAD(free_list);
965 unsigned long flags;
966 int to_drain;
967 int this_cpu;
969 lock_cpu_pcp(&flags, &this_cpu);
970 if (pcp->count >= pcp->batch)
971 to_drain = pcp->batch;
972 else
973 to_drain = pcp->count;
974 isolate_pcp_pages(to_drain, &pcp->list, &free_list);
975 pcp->count -= to_drain;
976 unlock_cpu_pcp(flags, this_cpu);
977 free_pages_bulk(zone, &free_list, 0);
979 #endif
982 * Drain pages of the indicated processor.
984 * The processor must either be the current processor and the
985 * thread pinned to the current processor or a processor that
986 * is not online.
988 static void drain_pages(unsigned int cpu)
990 unsigned long flags;
991 struct zone *zone;
993 for_each_zone(zone) {
994 struct per_cpu_pageset *pset;
995 struct per_cpu_pages *pcp;
996 LIST_HEAD(free_list);
998 if (!populated_zone(zone))
999 continue;
1001 __lock_cpu_pcp(&flags, cpu);
1002 pset = zone_pcp(zone, cpu);
1003 if (!pset) {
1004 unlock_cpu_pcp(flags, cpu);
1005 WARN_ON(1);
1006 continue;
1008 pcp = &pset->pcp;
1009 isolate_pcp_pages(pcp->count, &pcp->list, &free_list);
1010 pcp->count = 0;
1011 unlock_cpu_pcp(flags, cpu);
1012 free_pages_bulk(zone, &free_list, 0);
1017 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1019 void drain_local_pages(void *arg)
1021 drain_pages(smp_processor_id());
1024 #ifdef CONFIG_PREEMPT_RT
1025 static void drain_local_pages_work(struct work_struct *wrk)
1027 drain_pages(smp_processor_id());
1029 #endif
1032 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1034 void drain_all_pages(void)
1036 #ifdef CONFIG_PREEMPT_RT
1038 * HACK!!!!!
1039 * For RT we can't use IPIs to run drain_local_pages, since
1040 * that code will call spin_locks that will now sleep.
1041 * But, schedule_on_each_cpu will call kzalloc, which will
1042 * call page_alloc which was what calls this.
1044 * Luckily, there's a condition to get here, and that is if
1045 * the order passed in to alloc_pages is greater than 0
1046 * (alloced more than a page size). The slabs only allocate
1047 * what is needed, and the allocation made by schedule_on_each_cpu
1048 * does an alloc of "sizeof(void *)*nr_cpu_ids".
1050 * So we can safely call schedule_on_each_cpu if that number
1051 * is less than a page. Otherwise don't bother. At least warn of
1052 * this issue.
1054 * And yes, this is one big hack. Please fix ;-)
1056 if (sizeof(void *)*nr_cpu_ids < PAGE_SIZE)
1057 schedule_on_each_cpu(drain_local_pages_work);
1058 else {
1059 static int once;
1060 if (!once) {
1061 printk(KERN_ERR "Can't drain all CPUS due to possible recursion\n");
1062 once = 1;
1064 drain_local_pages(NULL);
1067 #else
1068 on_each_cpu(drain_local_pages, NULL, 1);
1069 #endif
1072 #ifdef CONFIG_HIBERNATION
1074 void mark_free_pages(struct zone *zone)
1076 unsigned long pfn, max_zone_pfn;
1077 unsigned long flags;
1078 int order, t;
1079 struct list_head *curr;
1081 if (!zone->spanned_pages)
1082 return;
1084 spin_lock_irqsave(&zone->lock, flags);
1086 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1087 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1088 if (pfn_valid(pfn)) {
1089 struct page *page = pfn_to_page(pfn);
1091 if (!swsusp_page_is_forbidden(page))
1092 swsusp_unset_page_free(page);
1095 for_each_migratetype_order(order, t) {
1096 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1097 unsigned long i;
1099 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1100 for (i = 0; i < (1UL << order); i++)
1101 swsusp_set_page_free(pfn_to_page(pfn + i));
1104 spin_unlock_irqrestore(&zone->lock, flags);
1106 #endif /* CONFIG_PM */
1109 * Free a 0-order page
1111 static void free_hot_cold_page(struct page *page, int cold)
1113 struct zone *zone = page_zone(page);
1114 struct per_cpu_pageset *pset;
1115 struct per_cpu_pages *pcp;
1116 unsigned long flags;
1117 int this_cpu;
1119 kmemcheck_free_shadow(page, 0);
1121 if (PageAnon(page))
1122 page->mapping = NULL;
1123 if (free_pages_check(page))
1124 return;
1126 if (!PageHighMem(page)) {
1127 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1128 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1130 arch_free_page(page, 0);
1131 kernel_map_pages(page, 1, 0);
1133 pset = get_zone_pcp(zone, &flags, &this_cpu);
1134 pcp = &pset->pcp;
1136 count_vm_event(PGFREE);
1138 if (cold)
1139 list_add_tail(&page->lru, &pcp->list);
1140 else
1141 list_add(&page->lru, &pcp->list);
1142 set_page_private(page, get_pageblock_migratetype(page));
1143 pcp->count++;
1144 if (pcp->count >= pcp->high) {
1145 LIST_HEAD(free_list);
1147 isolate_pcp_pages(pcp->batch, &pcp->list, &free_list);
1148 pcp->count -= pcp->batch;
1149 put_zone_pcp(zone, flags, this_cpu);
1150 free_pages_bulk(zone, &free_list, 0);
1151 } else
1152 put_zone_pcp(zone, flags, this_cpu);
1155 void free_hot_page(struct page *page)
1157 free_hot_cold_page(page, 0);
1160 void free_cold_page(struct page *page)
1162 free_hot_cold_page(page, 1);
1166 * split_page takes a non-compound higher-order page, and splits it into
1167 * n (1<<order) sub-pages: page[0..n]
1168 * Each sub-page must be freed individually.
1170 * Note: this is probably too low level an operation for use in drivers.
1171 * Please consult with lkml before using this in your driver.
1173 void split_page(struct page *page, unsigned int order)
1175 int i;
1177 VM_BUG_ON(PageCompound(page));
1178 VM_BUG_ON(!page_count(page));
1180 #ifdef CONFIG_KMEMCHECK
1182 * Split shadow pages too, because free(page[0]) would
1183 * otherwise free the whole shadow.
1185 if (kmemcheck_page_is_tracked(page))
1186 split_page(virt_to_page(page[0].shadow), order);
1187 #endif
1189 for (i = 1; i < (1 << order); i++)
1190 set_page_refcounted(page + i);
1194 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1195 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1196 * or two.
1198 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1199 struct zone *zone, int order, gfp_t gfp_flags)
1201 unsigned long flags;
1202 struct page *page;
1203 int cold = !!(gfp_flags & __GFP_COLD);
1204 struct per_cpu_pageset *pset;
1205 int migratetype = allocflags_to_migratetype(gfp_flags);
1206 int this_cpu;
1208 again:
1209 pset = get_zone_pcp(zone, &flags, &this_cpu);
1210 if (likely(order == 0)) {
1211 struct per_cpu_pages *pcp = &pset->pcp;
1213 if (!pcp->count) {
1214 pcp->count = rmqueue_bulk(zone, 0,
1215 pcp->batch, &pcp->list, migratetype);
1216 if (unlikely(!pcp->count))
1217 goto failed;
1220 /* Find a page of the appropriate migrate type */
1221 if (cold) {
1222 list_for_each_entry_reverse(page, &pcp->list, lru)
1223 if (page_private(page) == migratetype)
1224 break;
1225 } else {
1226 list_for_each_entry(page, &pcp->list, lru)
1227 if (page_private(page) == migratetype)
1228 break;
1231 /* Allocate more to the pcp list if necessary */
1232 if (unlikely(&page->lru == &pcp->list)) {
1233 pcp->count += rmqueue_bulk(zone, 0,
1234 pcp->batch, &pcp->list, migratetype);
1235 page = list_entry(pcp->list.next, struct page, lru);
1238 list_del(&page->lru);
1239 pcp->count--;
1240 } else {
1241 spin_lock(&zone->lock);
1242 page = __rmqueue(zone, order, migratetype);
1243 spin_unlock(&zone->lock);
1244 if (!page)
1245 goto failed;
1248 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1249 zone_statistics(preferred_zone, zone);
1250 put_zone_pcp(zone, flags, this_cpu);
1252 VM_BUG_ON(bad_range(zone, page));
1253 if (prep_new_page(page, order, gfp_flags))
1254 goto again;
1255 return page;
1257 failed:
1258 put_zone_pcp(zone, flags, this_cpu);
1259 return NULL;
1262 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1263 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1264 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1265 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1266 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1267 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1268 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1270 #ifdef CONFIG_FAIL_PAGE_ALLOC
1272 static struct fail_page_alloc_attr {
1273 struct fault_attr attr;
1275 u32 ignore_gfp_highmem;
1276 u32 ignore_gfp_wait;
1277 u32 min_order;
1279 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1281 struct dentry *ignore_gfp_highmem_file;
1282 struct dentry *ignore_gfp_wait_file;
1283 struct dentry *min_order_file;
1285 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1287 } fail_page_alloc = {
1288 .attr = FAULT_ATTR_INITIALIZER,
1289 .ignore_gfp_wait = 1,
1290 .ignore_gfp_highmem = 1,
1291 .min_order = 1,
1294 static int __init setup_fail_page_alloc(char *str)
1296 return setup_fault_attr(&fail_page_alloc.attr, str);
1298 __setup("fail_page_alloc=", setup_fail_page_alloc);
1300 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1302 if (order < fail_page_alloc.min_order)
1303 return 0;
1304 if (gfp_mask & __GFP_NOFAIL)
1305 return 0;
1306 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1307 return 0;
1308 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1309 return 0;
1311 return should_fail(&fail_page_alloc.attr, 1 << order);
1314 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1316 static int __init fail_page_alloc_debugfs(void)
1318 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1319 struct dentry *dir;
1320 int err;
1322 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1323 "fail_page_alloc");
1324 if (err)
1325 return err;
1326 dir = fail_page_alloc.attr.dentries.dir;
1328 fail_page_alloc.ignore_gfp_wait_file =
1329 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1330 &fail_page_alloc.ignore_gfp_wait);
1332 fail_page_alloc.ignore_gfp_highmem_file =
1333 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1334 &fail_page_alloc.ignore_gfp_highmem);
1335 fail_page_alloc.min_order_file =
1336 debugfs_create_u32("min-order", mode, dir,
1337 &fail_page_alloc.min_order);
1339 if (!fail_page_alloc.ignore_gfp_wait_file ||
1340 !fail_page_alloc.ignore_gfp_highmem_file ||
1341 !fail_page_alloc.min_order_file) {
1342 err = -ENOMEM;
1343 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1344 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1345 debugfs_remove(fail_page_alloc.min_order_file);
1346 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1349 return err;
1352 late_initcall(fail_page_alloc_debugfs);
1354 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1356 #else /* CONFIG_FAIL_PAGE_ALLOC */
1358 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1360 return 0;
1363 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1366 * Return 1 if free pages are above 'mark'. This takes into account the order
1367 * of the allocation.
1369 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1370 int classzone_idx, int alloc_flags)
1372 /* free_pages my go negative - that's OK */
1373 long min = mark;
1374 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1375 int o;
1377 if (alloc_flags & ALLOC_HIGH)
1378 min -= min / 2;
1379 if (alloc_flags & ALLOC_HARDER)
1380 min -= min / 4;
1382 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1383 return 0;
1384 for (o = 0; o < order; o++) {
1385 /* At the next order, this order's pages become unavailable */
1386 free_pages -= z->free_area[o].nr_free << o;
1388 /* Require fewer higher order pages to be free */
1389 min >>= 1;
1391 if (free_pages <= min)
1392 return 0;
1394 return 1;
1397 #ifdef CONFIG_NUMA
1399 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1400 * skip over zones that are not allowed by the cpuset, or that have
1401 * been recently (in last second) found to be nearly full. See further
1402 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1403 * that have to skip over a lot of full or unallowed zones.
1405 * If the zonelist cache is present in the passed in zonelist, then
1406 * returns a pointer to the allowed node mask (either the current
1407 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1409 * If the zonelist cache is not available for this zonelist, does
1410 * nothing and returns NULL.
1412 * If the fullzones BITMAP in the zonelist cache is stale (more than
1413 * a second since last zap'd) then we zap it out (clear its bits.)
1415 * We hold off even calling zlc_setup, until after we've checked the
1416 * first zone in the zonelist, on the theory that most allocations will
1417 * be satisfied from that first zone, so best to examine that zone as
1418 * quickly as we can.
1420 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1422 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1423 nodemask_t *allowednodes; /* zonelist_cache approximation */
1425 zlc = zonelist->zlcache_ptr;
1426 if (!zlc)
1427 return NULL;
1429 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1430 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1431 zlc->last_full_zap = jiffies;
1434 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1435 &cpuset_current_mems_allowed :
1436 &node_states[N_HIGH_MEMORY];
1437 return allowednodes;
1441 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1442 * if it is worth looking at further for free memory:
1443 * 1) Check that the zone isn't thought to be full (doesn't have its
1444 * bit set in the zonelist_cache fullzones BITMAP).
1445 * 2) Check that the zones node (obtained from the zonelist_cache
1446 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1447 * Return true (non-zero) if zone is worth looking at further, or
1448 * else return false (zero) if it is not.
1450 * This check -ignores- the distinction between various watermarks,
1451 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1452 * found to be full for any variation of these watermarks, it will
1453 * be considered full for up to one second by all requests, unless
1454 * we are so low on memory on all allowed nodes that we are forced
1455 * into the second scan of the zonelist.
1457 * In the second scan we ignore this zonelist cache and exactly
1458 * apply the watermarks to all zones, even it is slower to do so.
1459 * We are low on memory in the second scan, and should leave no stone
1460 * unturned looking for a free page.
1462 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1463 nodemask_t *allowednodes)
1465 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1466 int i; /* index of *z in zonelist zones */
1467 int n; /* node that zone *z is on */
1469 zlc = zonelist->zlcache_ptr;
1470 if (!zlc)
1471 return 1;
1473 i = z - zonelist->_zonerefs;
1474 n = zlc->z_to_n[i];
1476 /* This zone is worth trying if it is allowed but not full */
1477 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1481 * Given 'z' scanning a zonelist, set the corresponding bit in
1482 * zlc->fullzones, so that subsequent attempts to allocate a page
1483 * from that zone don't waste time re-examining it.
1485 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1487 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1488 int i; /* index of *z in zonelist zones */
1490 zlc = zonelist->zlcache_ptr;
1491 if (!zlc)
1492 return;
1494 i = z - zonelist->_zonerefs;
1496 set_bit(i, zlc->fullzones);
1499 #else /* CONFIG_NUMA */
1501 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1503 return NULL;
1506 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1507 nodemask_t *allowednodes)
1509 return 1;
1512 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1515 #endif /* CONFIG_NUMA */
1518 * get_page_from_freelist goes through the zonelist trying to allocate
1519 * a page.
1521 static struct page *
1522 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1523 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1525 struct zoneref *z;
1526 struct page *page = NULL;
1527 int classzone_idx;
1528 struct zone *zone, *preferred_zone;
1529 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1530 int zlc_active = 0; /* set if using zonelist_cache */
1531 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1533 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1534 &preferred_zone);
1535 if (!preferred_zone)
1536 return NULL;
1538 classzone_idx = zone_idx(preferred_zone);
1540 zonelist_scan:
1542 * Scan zonelist, looking for a zone with enough free.
1543 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1545 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1546 high_zoneidx, nodemask) {
1547 if (NUMA_BUILD && zlc_active &&
1548 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1549 continue;
1550 if ((alloc_flags & ALLOC_CPUSET) &&
1551 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1552 goto try_next_zone;
1554 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1555 unsigned long mark;
1556 if (alloc_flags & ALLOC_WMARK_MIN)
1557 mark = zone->pages_min;
1558 else if (alloc_flags & ALLOC_WMARK_LOW)
1559 mark = zone->pages_low;
1560 else
1561 mark = zone->pages_high;
1562 if (!zone_watermark_ok(zone, order, mark,
1563 classzone_idx, alloc_flags)) {
1564 if (!zone_reclaim_mode ||
1565 !zone_reclaim(zone, gfp_mask, order))
1566 goto this_zone_full;
1570 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1571 if (page)
1572 break;
1573 this_zone_full:
1574 if (NUMA_BUILD)
1575 zlc_mark_zone_full(zonelist, z);
1576 try_next_zone:
1577 if (NUMA_BUILD && !did_zlc_setup) {
1578 /* we do zlc_setup after the first zone is tried */
1579 allowednodes = zlc_setup(zonelist, alloc_flags);
1580 zlc_active = 1;
1581 did_zlc_setup = 1;
1585 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1586 /* Disable zlc cache for second zonelist scan */
1587 zlc_active = 0;
1588 goto zonelist_scan;
1590 return page;
1594 * This is the 'heart' of the zoned buddy allocator.
1596 struct page *
1597 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1598 struct zonelist *zonelist, nodemask_t *nodemask)
1600 const gfp_t wait = gfp_mask & __GFP_WAIT;
1601 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1602 struct zoneref *z;
1603 struct zone *zone;
1604 struct page *page;
1605 struct reclaim_state reclaim_state;
1606 struct task_struct *p = current;
1607 int do_retry;
1608 int alloc_flags;
1609 unsigned long did_some_progress;
1610 unsigned long pages_reclaimed = 0;
1612 lockdep_trace_alloc(gfp_mask);
1614 might_sleep_if(wait);
1616 if (should_fail_alloc_page(gfp_mask, order))
1617 return NULL;
1619 restart:
1620 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1622 if (unlikely(!z->zone)) {
1624 * Happens if we have an empty zonelist as a result of
1625 * GFP_THISNODE being used on a memoryless node
1627 return NULL;
1630 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1631 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1632 if (page)
1633 goto got_pg;
1636 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1637 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1638 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1639 * using a larger set of nodes after it has established that the
1640 * allowed per node queues are empty and that nodes are
1641 * over allocated.
1643 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1644 goto nopage;
1646 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1647 wakeup_kswapd(zone, order);
1650 * OK, we're below the kswapd watermark and have kicked background
1651 * reclaim. Now things get more complex, so set up alloc_flags according
1652 * to how we want to proceed.
1654 * The caller may dip into page reserves a bit more if the caller
1655 * cannot run direct reclaim, or if the caller has realtime scheduling
1656 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1657 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1659 alloc_flags = ALLOC_WMARK_MIN;
1660 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1661 alloc_flags |= ALLOC_HARDER;
1662 if (gfp_mask & __GFP_HIGH)
1663 alloc_flags |= ALLOC_HIGH;
1664 if (wait)
1665 alloc_flags |= ALLOC_CPUSET;
1668 * Go through the zonelist again. Let __GFP_HIGH and allocations
1669 * coming from realtime tasks go deeper into reserves.
1671 * This is the last chance, in general, before the goto nopage.
1672 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1673 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1675 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1676 high_zoneidx, alloc_flags);
1677 if (page)
1678 goto got_pg;
1680 /* This allocation should allow future memory freeing. */
1682 rebalance:
1683 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1684 && !in_interrupt()) {
1685 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1686 nofail_alloc:
1687 /* go through the zonelist yet again, ignoring mins */
1688 page = get_page_from_freelist(gfp_mask, nodemask, order,
1689 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1690 if (page)
1691 goto got_pg;
1692 if (gfp_mask & __GFP_NOFAIL) {
1693 congestion_wait(WRITE, HZ/50);
1694 goto nofail_alloc;
1697 goto nopage;
1700 /* Atomic allocations - we can't balance anything */
1701 if (!wait)
1702 goto nopage;
1704 cond_resched();
1706 /* We now go into synchronous reclaim */
1707 cpuset_memory_pressure_bump();
1709 * The task's cpuset might have expanded its set of allowable nodes
1711 cpuset_update_task_memory_state();
1712 p->flags |= PF_MEMALLOC;
1714 lockdep_set_current_reclaim_state(gfp_mask);
1715 reclaim_state.reclaimed_slab = 0;
1716 p->reclaim_state = &reclaim_state;
1718 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1720 p->reclaim_state = NULL;
1721 lockdep_clear_current_reclaim_state();
1722 p->flags &= ~PF_MEMALLOC;
1724 cond_resched();
1726 if (order != 0)
1727 drain_all_pages();
1729 if (likely(did_some_progress)) {
1730 page = get_page_from_freelist(gfp_mask, nodemask, order,
1731 zonelist, high_zoneidx, alloc_flags);
1732 if (page)
1733 goto got_pg;
1734 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1735 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1736 schedule_timeout_uninterruptible(1);
1737 goto restart;
1741 * Go through the zonelist yet one more time, keep
1742 * very high watermark here, this is only to catch
1743 * a parallel oom killing, we must fail if we're still
1744 * under heavy pressure.
1746 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1747 order, zonelist, high_zoneidx,
1748 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1749 if (page) {
1750 clear_zonelist_oom(zonelist, gfp_mask);
1751 goto got_pg;
1754 /* The OOM killer will not help higher order allocs so fail */
1755 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1756 clear_zonelist_oom(zonelist, gfp_mask);
1757 goto nopage;
1760 out_of_memory(zonelist, gfp_mask, order);
1761 clear_zonelist_oom(zonelist, gfp_mask);
1762 goto restart;
1766 * Don't let big-order allocations loop unless the caller explicitly
1767 * requests that. Wait for some write requests to complete then retry.
1769 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1770 * means __GFP_NOFAIL, but that may not be true in other
1771 * implementations.
1773 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1774 * specified, then we retry until we no longer reclaim any pages
1775 * (above), or we've reclaimed an order of pages at least as
1776 * large as the allocation's order. In both cases, if the
1777 * allocation still fails, we stop retrying.
1779 pages_reclaimed += did_some_progress;
1780 do_retry = 0;
1781 if (!(gfp_mask & __GFP_NORETRY)) {
1782 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1783 do_retry = 1;
1784 } else {
1785 if (gfp_mask & __GFP_REPEAT &&
1786 pages_reclaimed < (1 << order))
1787 do_retry = 1;
1789 if (gfp_mask & __GFP_NOFAIL)
1790 do_retry = 1;
1792 if (do_retry) {
1793 congestion_wait(WRITE, HZ/50);
1794 goto rebalance;
1797 nopage:
1798 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1799 printk(KERN_WARNING "%s: page allocation failure."
1800 " order:%d, mode:0x%x\n",
1801 p->comm, order, gfp_mask);
1802 dump_stack();
1803 show_mem();
1805 return page;
1806 got_pg:
1807 if (kmemcheck_enabled)
1808 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1809 return page;
1811 EXPORT_SYMBOL(__alloc_pages_internal);
1814 * Common helper functions.
1816 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1818 struct page * page;
1819 page = alloc_pages(gfp_mask, order);
1820 if (!page)
1821 return 0;
1822 return (unsigned long) page_address(page);
1825 EXPORT_SYMBOL(__get_free_pages);
1827 unsigned long get_zeroed_page(gfp_t gfp_mask)
1829 struct page * page;
1832 * get_zeroed_page() returns a 32-bit address, which cannot represent
1833 * a highmem page
1835 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1837 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1838 if (page)
1839 return (unsigned long) page_address(page);
1840 return 0;
1843 EXPORT_SYMBOL(get_zeroed_page);
1845 void __pagevec_free(struct pagevec *pvec)
1847 int i = pagevec_count(pvec);
1849 while (--i >= 0)
1850 free_hot_cold_page(pvec->pages[i], pvec->cold);
1853 void __free_pages(struct page *page, unsigned int order)
1855 if (put_page_testzero(page)) {
1856 if (order == 0)
1857 free_hot_page(page);
1858 else
1859 __free_pages_ok(page, order);
1863 EXPORT_SYMBOL(__free_pages);
1865 void free_pages(unsigned long addr, unsigned int order)
1867 if (addr != 0) {
1868 VM_BUG_ON(!virt_addr_valid((void *)addr));
1869 __free_pages(virt_to_page((void *)addr), order);
1873 EXPORT_SYMBOL(free_pages);
1876 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1877 * @size: the number of bytes to allocate
1878 * @gfp_mask: GFP flags for the allocation
1880 * This function is similar to alloc_pages(), except that it allocates the
1881 * minimum number of pages to satisfy the request. alloc_pages() can only
1882 * allocate memory in power-of-two pages.
1884 * This function is also limited by MAX_ORDER.
1886 * Memory allocated by this function must be released by free_pages_exact().
1888 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1890 unsigned int order = get_order(size);
1891 unsigned long addr;
1893 addr = __get_free_pages(gfp_mask, order);
1894 if (addr) {
1895 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1896 unsigned long used = addr + PAGE_ALIGN(size);
1898 split_page(virt_to_page(addr), order);
1899 while (used < alloc_end) {
1900 free_page(used);
1901 used += PAGE_SIZE;
1905 return (void *)addr;
1907 EXPORT_SYMBOL(alloc_pages_exact);
1910 * free_pages_exact - release memory allocated via alloc_pages_exact()
1911 * @virt: the value returned by alloc_pages_exact.
1912 * @size: size of allocation, same value as passed to alloc_pages_exact().
1914 * Release the memory allocated by a previous call to alloc_pages_exact.
1916 void free_pages_exact(void *virt, size_t size)
1918 unsigned long addr = (unsigned long)virt;
1919 unsigned long end = addr + PAGE_ALIGN(size);
1921 while (addr < end) {
1922 free_page(addr);
1923 addr += PAGE_SIZE;
1926 EXPORT_SYMBOL(free_pages_exact);
1928 static unsigned int nr_free_zone_pages(int offset)
1930 struct zoneref *z;
1931 struct zone *zone;
1933 /* Just pick one node, since fallback list is circular */
1934 unsigned int sum = 0;
1936 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1938 for_each_zone_zonelist(zone, z, zonelist, offset) {
1939 unsigned long size = zone->present_pages;
1940 unsigned long high = zone->pages_high;
1941 if (size > high)
1942 sum += size - high;
1945 return sum;
1949 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1951 unsigned int nr_free_buffer_pages(void)
1953 return nr_free_zone_pages(gfp_zone(GFP_USER));
1955 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1958 * Amount of free RAM allocatable within all zones
1960 unsigned int nr_free_pagecache_pages(void)
1962 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1965 static inline void show_node(struct zone *zone)
1967 if (NUMA_BUILD)
1968 printk("Node %d ", zone_to_nid(zone));
1971 void si_meminfo(struct sysinfo *val)
1973 val->totalram = totalram_pages;
1974 val->sharedram = 0;
1975 val->freeram = global_page_state(NR_FREE_PAGES);
1976 val->bufferram = nr_blockdev_pages();
1977 val->totalhigh = totalhigh_pages;
1978 val->freehigh = nr_free_highpages();
1979 val->mem_unit = PAGE_SIZE;
1982 EXPORT_SYMBOL(si_meminfo);
1984 #ifdef CONFIG_NUMA
1985 void si_meminfo_node(struct sysinfo *val, int nid)
1987 pg_data_t *pgdat = NODE_DATA(nid);
1989 val->totalram = pgdat->node_present_pages;
1990 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1991 #ifdef CONFIG_HIGHMEM
1992 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1993 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1994 NR_FREE_PAGES);
1995 #else
1996 val->totalhigh = 0;
1997 val->freehigh = 0;
1998 #endif
1999 val->mem_unit = PAGE_SIZE;
2001 #endif
2003 #define K(x) ((x) << (PAGE_SHIFT-10))
2006 * Show free area list (used inside shift_scroll-lock stuff)
2007 * We also calculate the percentage fragmentation. We do this by counting the
2008 * memory on each free list with the exception of the first item on the list.
2010 void show_free_areas(void)
2012 int cpu;
2013 struct zone *zone;
2015 for_each_zone(zone) {
2016 if (!populated_zone(zone))
2017 continue;
2019 show_node(zone);
2020 printk("%s per-cpu:\n", zone->name);
2022 for_each_online_cpu(cpu) {
2023 struct per_cpu_pageset *pageset;
2025 pageset = zone_pcp(zone, cpu);
2027 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2028 cpu, pageset->pcp.high,
2029 pageset->pcp.batch, pageset->pcp.count);
2033 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2034 " inactive_file:%lu"
2035 //TODO: check/adjust line lengths
2036 #ifdef CONFIG_UNEVICTABLE_LRU
2037 " unevictable:%lu"
2038 #endif
2039 " dirty:%lu writeback:%lu unstable:%lu\n"
2040 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2041 global_page_state(NR_ACTIVE_ANON),
2042 global_page_state(NR_ACTIVE_FILE),
2043 global_page_state(NR_INACTIVE_ANON),
2044 global_page_state(NR_INACTIVE_FILE),
2045 #ifdef CONFIG_UNEVICTABLE_LRU
2046 global_page_state(NR_UNEVICTABLE),
2047 #endif
2048 global_page_state(NR_FILE_DIRTY),
2049 global_page_state(NR_WRITEBACK),
2050 global_page_state(NR_UNSTABLE_NFS),
2051 global_page_state(NR_FREE_PAGES),
2052 global_page_state(NR_SLAB_RECLAIMABLE) +
2053 global_page_state(NR_SLAB_UNRECLAIMABLE),
2054 global_page_state(NR_FILE_MAPPED),
2055 global_page_state(NR_PAGETABLE),
2056 global_page_state(NR_BOUNCE));
2058 for_each_zone(zone) {
2059 int i;
2061 if (!populated_zone(zone))
2062 continue;
2064 show_node(zone);
2065 printk("%s"
2066 " free:%lukB"
2067 " min:%lukB"
2068 " low:%lukB"
2069 " high:%lukB"
2070 " active_anon:%lukB"
2071 " inactive_anon:%lukB"
2072 " active_file:%lukB"
2073 " inactive_file:%lukB"
2074 #ifdef CONFIG_UNEVICTABLE_LRU
2075 " unevictable:%lukB"
2076 #endif
2077 " present:%lukB"
2078 " pages_scanned:%lu"
2079 " all_unreclaimable? %s"
2080 "\n",
2081 zone->name,
2082 K(zone_page_state(zone, NR_FREE_PAGES)),
2083 K(zone->pages_min),
2084 K(zone->pages_low),
2085 K(zone->pages_high),
2086 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2087 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2088 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2089 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2090 #ifdef CONFIG_UNEVICTABLE_LRU
2091 K(zone_page_state(zone, NR_UNEVICTABLE)),
2092 #endif
2093 K(zone->present_pages),
2094 zone->pages_scanned,
2095 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2097 printk("lowmem_reserve[]:");
2098 for (i = 0; i < MAX_NR_ZONES; i++)
2099 printk(" %lu", zone->lowmem_reserve[i]);
2100 printk("\n");
2103 for_each_zone(zone) {
2104 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2106 if (!populated_zone(zone))
2107 continue;
2109 show_node(zone);
2110 printk("%s: ", zone->name);
2112 spin_lock_irqsave(&zone->lock, flags);
2113 for (order = 0; order < MAX_ORDER; order++) {
2114 nr[order] = zone->free_area[order].nr_free;
2115 total += nr[order] << order;
2117 spin_unlock_irqrestore(&zone->lock, flags);
2118 for (order = 0; order < MAX_ORDER; order++)
2119 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2120 printk("= %lukB\n", K(total));
2123 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2125 show_swap_cache_info();
2128 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2130 zoneref->zone = zone;
2131 zoneref->zone_idx = zone_idx(zone);
2135 * Builds allocation fallback zone lists.
2137 * Add all populated zones of a node to the zonelist.
2139 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2140 int nr_zones, enum zone_type zone_type)
2142 struct zone *zone;
2144 BUG_ON(zone_type >= MAX_NR_ZONES);
2145 zone_type++;
2147 do {
2148 zone_type--;
2149 zone = pgdat->node_zones + zone_type;
2150 if (populated_zone(zone)) {
2151 zoneref_set_zone(zone,
2152 &zonelist->_zonerefs[nr_zones++]);
2153 check_highest_zone(zone_type);
2156 } while (zone_type);
2157 return nr_zones;
2162 * zonelist_order:
2163 * 0 = automatic detection of better ordering.
2164 * 1 = order by ([node] distance, -zonetype)
2165 * 2 = order by (-zonetype, [node] distance)
2167 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2168 * the same zonelist. So only NUMA can configure this param.
2170 #define ZONELIST_ORDER_DEFAULT 0
2171 #define ZONELIST_ORDER_NODE 1
2172 #define ZONELIST_ORDER_ZONE 2
2174 /* zonelist order in the kernel.
2175 * set_zonelist_order() will set this to NODE or ZONE.
2177 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2178 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2181 #ifdef CONFIG_NUMA
2182 /* The value user specified ....changed by config */
2183 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2184 /* string for sysctl */
2185 #define NUMA_ZONELIST_ORDER_LEN 16
2186 char numa_zonelist_order[16] = "default";
2189 * interface for configure zonelist ordering.
2190 * command line option "numa_zonelist_order"
2191 * = "[dD]efault - default, automatic configuration.
2192 * = "[nN]ode - order by node locality, then by zone within node
2193 * = "[zZ]one - order by zone, then by locality within zone
2196 static int __parse_numa_zonelist_order(char *s)
2198 if (*s == 'd' || *s == 'D') {
2199 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2200 } else if (*s == 'n' || *s == 'N') {
2201 user_zonelist_order = ZONELIST_ORDER_NODE;
2202 } else if (*s == 'z' || *s == 'Z') {
2203 user_zonelist_order = ZONELIST_ORDER_ZONE;
2204 } else {
2205 printk(KERN_WARNING
2206 "Ignoring invalid numa_zonelist_order value: "
2207 "%s\n", s);
2208 return -EINVAL;
2210 return 0;
2213 static __init int setup_numa_zonelist_order(char *s)
2215 if (s)
2216 return __parse_numa_zonelist_order(s);
2217 return 0;
2219 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2222 * sysctl handler for numa_zonelist_order
2224 int numa_zonelist_order_handler(ctl_table *table, int write,
2225 struct file *file, void __user *buffer, size_t *length,
2226 loff_t *ppos)
2228 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2229 int ret;
2231 if (write)
2232 strncpy(saved_string, (char*)table->data,
2233 NUMA_ZONELIST_ORDER_LEN);
2234 ret = proc_dostring(table, write, file, buffer, length, ppos);
2235 if (ret)
2236 return ret;
2237 if (write) {
2238 int oldval = user_zonelist_order;
2239 if (__parse_numa_zonelist_order((char*)table->data)) {
2241 * bogus value. restore saved string
2243 strncpy((char*)table->data, saved_string,
2244 NUMA_ZONELIST_ORDER_LEN);
2245 user_zonelist_order = oldval;
2246 } else if (oldval != user_zonelist_order)
2247 build_all_zonelists();
2249 return 0;
2253 #define MAX_NODE_LOAD (num_online_nodes())
2254 static int node_load[MAX_NUMNODES];
2257 * find_next_best_node - find the next node that should appear in a given node's fallback list
2258 * @node: node whose fallback list we're appending
2259 * @used_node_mask: nodemask_t of already used nodes
2261 * We use a number of factors to determine which is the next node that should
2262 * appear on a given node's fallback list. The node should not have appeared
2263 * already in @node's fallback list, and it should be the next closest node
2264 * according to the distance array (which contains arbitrary distance values
2265 * from each node to each node in the system), and should also prefer nodes
2266 * with no CPUs, since presumably they'll have very little allocation pressure
2267 * on them otherwise.
2268 * It returns -1 if no node is found.
2270 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2272 int n, val;
2273 int min_val = INT_MAX;
2274 int best_node = -1;
2275 const struct cpumask *tmp = cpumask_of_node(0);
2277 /* Use the local node if we haven't already */
2278 if (!node_isset(node, *used_node_mask)) {
2279 node_set(node, *used_node_mask);
2280 return node;
2283 for_each_node_state(n, N_HIGH_MEMORY) {
2285 /* Don't want a node to appear more than once */
2286 if (node_isset(n, *used_node_mask))
2287 continue;
2289 /* Use the distance array to find the distance */
2290 val = node_distance(node, n);
2292 /* Penalize nodes under us ("prefer the next node") */
2293 val += (n < node);
2295 /* Give preference to headless and unused nodes */
2296 tmp = cpumask_of_node(n);
2297 if (!cpumask_empty(tmp))
2298 val += PENALTY_FOR_NODE_WITH_CPUS;
2300 /* Slight preference for less loaded node */
2301 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2302 val += node_load[n];
2304 if (val < min_val) {
2305 min_val = val;
2306 best_node = n;
2310 if (best_node >= 0)
2311 node_set(best_node, *used_node_mask);
2313 return best_node;
2318 * Build zonelists ordered by node and zones within node.
2319 * This results in maximum locality--normal zone overflows into local
2320 * DMA zone, if any--but risks exhausting DMA zone.
2322 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2324 int j;
2325 struct zonelist *zonelist;
2327 zonelist = &pgdat->node_zonelists[0];
2328 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2330 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2331 MAX_NR_ZONES - 1);
2332 zonelist->_zonerefs[j].zone = NULL;
2333 zonelist->_zonerefs[j].zone_idx = 0;
2337 * Build gfp_thisnode zonelists
2339 static void build_thisnode_zonelists(pg_data_t *pgdat)
2341 int j;
2342 struct zonelist *zonelist;
2344 zonelist = &pgdat->node_zonelists[1];
2345 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2346 zonelist->_zonerefs[j].zone = NULL;
2347 zonelist->_zonerefs[j].zone_idx = 0;
2351 * Build zonelists ordered by zone and nodes within zones.
2352 * This results in conserving DMA zone[s] until all Normal memory is
2353 * exhausted, but results in overflowing to remote node while memory
2354 * may still exist in local DMA zone.
2356 static int node_order[MAX_NUMNODES];
2358 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2360 int pos, j, node;
2361 int zone_type; /* needs to be signed */
2362 struct zone *z;
2363 struct zonelist *zonelist;
2365 zonelist = &pgdat->node_zonelists[0];
2366 pos = 0;
2367 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2368 for (j = 0; j < nr_nodes; j++) {
2369 node = node_order[j];
2370 z = &NODE_DATA(node)->node_zones[zone_type];
2371 if (populated_zone(z)) {
2372 zoneref_set_zone(z,
2373 &zonelist->_zonerefs[pos++]);
2374 check_highest_zone(zone_type);
2378 zonelist->_zonerefs[pos].zone = NULL;
2379 zonelist->_zonerefs[pos].zone_idx = 0;
2382 static int default_zonelist_order(void)
2384 int nid, zone_type;
2385 unsigned long low_kmem_size,total_size;
2386 struct zone *z;
2387 int average_size;
2389 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2390 * If they are really small and used heavily, the system can fall
2391 * into OOM very easily.
2392 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2394 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2395 low_kmem_size = 0;
2396 total_size = 0;
2397 for_each_online_node(nid) {
2398 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2399 z = &NODE_DATA(nid)->node_zones[zone_type];
2400 if (populated_zone(z)) {
2401 if (zone_type < ZONE_NORMAL)
2402 low_kmem_size += z->present_pages;
2403 total_size += z->present_pages;
2407 if (!low_kmem_size || /* there are no DMA area. */
2408 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2409 return ZONELIST_ORDER_NODE;
2411 * look into each node's config.
2412 * If there is a node whose DMA/DMA32 memory is very big area on
2413 * local memory, NODE_ORDER may be suitable.
2415 average_size = total_size /
2416 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2417 for_each_online_node(nid) {
2418 low_kmem_size = 0;
2419 total_size = 0;
2420 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2421 z = &NODE_DATA(nid)->node_zones[zone_type];
2422 if (populated_zone(z)) {
2423 if (zone_type < ZONE_NORMAL)
2424 low_kmem_size += z->present_pages;
2425 total_size += z->present_pages;
2428 if (low_kmem_size &&
2429 total_size > average_size && /* ignore small node */
2430 low_kmem_size > total_size * 70/100)
2431 return ZONELIST_ORDER_NODE;
2433 return ZONELIST_ORDER_ZONE;
2436 static void set_zonelist_order(void)
2438 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2439 current_zonelist_order = default_zonelist_order();
2440 else
2441 current_zonelist_order = user_zonelist_order;
2444 static void build_zonelists(pg_data_t *pgdat)
2446 int j, node, load;
2447 enum zone_type i;
2448 nodemask_t used_mask;
2449 int local_node, prev_node;
2450 struct zonelist *zonelist;
2451 int order = current_zonelist_order;
2453 /* initialize zonelists */
2454 for (i = 0; i < MAX_ZONELISTS; i++) {
2455 zonelist = pgdat->node_zonelists + i;
2456 zonelist->_zonerefs[0].zone = NULL;
2457 zonelist->_zonerefs[0].zone_idx = 0;
2460 /* NUMA-aware ordering of nodes */
2461 local_node = pgdat->node_id;
2462 load = num_online_nodes();
2463 prev_node = local_node;
2464 nodes_clear(used_mask);
2466 memset(node_load, 0, sizeof(node_load));
2467 memset(node_order, 0, sizeof(node_order));
2468 j = 0;
2470 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2471 int distance = node_distance(local_node, node);
2474 * If another node is sufficiently far away then it is better
2475 * to reclaim pages in a zone before going off node.
2477 if (distance > RECLAIM_DISTANCE)
2478 zone_reclaim_mode = 1;
2481 * We don't want to pressure a particular node.
2482 * So adding penalty to the first node in same
2483 * distance group to make it round-robin.
2485 if (distance != node_distance(local_node, prev_node))
2486 node_load[node] = load;
2488 prev_node = node;
2489 load--;
2490 if (order == ZONELIST_ORDER_NODE)
2491 build_zonelists_in_node_order(pgdat, node);
2492 else
2493 node_order[j++] = node; /* remember order */
2496 if (order == ZONELIST_ORDER_ZONE) {
2497 /* calculate node order -- i.e., DMA last! */
2498 build_zonelists_in_zone_order(pgdat, j);
2501 build_thisnode_zonelists(pgdat);
2504 /* Construct the zonelist performance cache - see further mmzone.h */
2505 static void build_zonelist_cache(pg_data_t *pgdat)
2507 struct zonelist *zonelist;
2508 struct zonelist_cache *zlc;
2509 struct zoneref *z;
2511 zonelist = &pgdat->node_zonelists[0];
2512 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2513 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2514 for (z = zonelist->_zonerefs; z->zone; z++)
2515 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2519 #else /* CONFIG_NUMA */
2521 static void set_zonelist_order(void)
2523 current_zonelist_order = ZONELIST_ORDER_ZONE;
2526 static void build_zonelists(pg_data_t *pgdat)
2528 int node, local_node;
2529 enum zone_type j;
2530 struct zonelist *zonelist;
2532 local_node = pgdat->node_id;
2534 zonelist = &pgdat->node_zonelists[0];
2535 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2538 * Now we build the zonelist so that it contains the zones
2539 * of all the other nodes.
2540 * We don't want to pressure a particular node, so when
2541 * building the zones for node N, we make sure that the
2542 * zones coming right after the local ones are those from
2543 * node N+1 (modulo N)
2545 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2546 if (!node_online(node))
2547 continue;
2548 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2549 MAX_NR_ZONES - 1);
2551 for (node = 0; node < local_node; node++) {
2552 if (!node_online(node))
2553 continue;
2554 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2555 MAX_NR_ZONES - 1);
2558 zonelist->_zonerefs[j].zone = NULL;
2559 zonelist->_zonerefs[j].zone_idx = 0;
2562 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2563 static void build_zonelist_cache(pg_data_t *pgdat)
2565 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2568 #endif /* CONFIG_NUMA */
2570 /* return values int ....just for stop_machine() */
2571 static int __build_all_zonelists(void *dummy)
2573 int nid;
2575 for_each_online_node(nid) {
2576 pg_data_t *pgdat = NODE_DATA(nid);
2578 build_zonelists(pgdat);
2579 build_zonelist_cache(pgdat);
2581 return 0;
2584 void build_all_zonelists(void)
2586 set_zonelist_order();
2588 if (system_state == SYSTEM_BOOTING) {
2589 __build_all_zonelists(NULL);
2590 mminit_verify_zonelist();
2591 cpuset_init_current_mems_allowed();
2592 } else {
2593 /* we have to stop all cpus to guarantee there is no user
2594 of zonelist */
2595 stop_machine(__build_all_zonelists, NULL, NULL);
2596 /* cpuset refresh routine should be here */
2598 vm_total_pages = nr_free_pagecache_pages();
2600 * Disable grouping by mobility if the number of pages in the
2601 * system is too low to allow the mechanism to work. It would be
2602 * more accurate, but expensive to check per-zone. This check is
2603 * made on memory-hotadd so a system can start with mobility
2604 * disabled and enable it later
2606 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2607 page_group_by_mobility_disabled = 1;
2608 else
2609 page_group_by_mobility_disabled = 0;
2611 printk("Built %i zonelists in %s order, mobility grouping %s. "
2612 "Total pages: %ld\n",
2613 num_online_nodes(),
2614 zonelist_order_name[current_zonelist_order],
2615 page_group_by_mobility_disabled ? "off" : "on",
2616 vm_total_pages);
2617 #ifdef CONFIG_NUMA
2618 printk("Policy zone: %s\n", zone_names[policy_zone]);
2619 #endif
2623 * Helper functions to size the waitqueue hash table.
2624 * Essentially these want to choose hash table sizes sufficiently
2625 * large so that collisions trying to wait on pages are rare.
2626 * But in fact, the number of active page waitqueues on typical
2627 * systems is ridiculously low, less than 200. So this is even
2628 * conservative, even though it seems large.
2630 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2631 * waitqueues, i.e. the size of the waitq table given the number of pages.
2633 #define PAGES_PER_WAITQUEUE 256
2635 #ifndef CONFIG_MEMORY_HOTPLUG
2636 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2638 unsigned long size = 1;
2640 pages /= PAGES_PER_WAITQUEUE;
2642 while (size < pages)
2643 size <<= 1;
2646 * Once we have dozens or even hundreds of threads sleeping
2647 * on IO we've got bigger problems than wait queue collision.
2648 * Limit the size of the wait table to a reasonable size.
2650 size = min(size, 4096UL);
2652 return max(size, 4UL);
2654 #else
2656 * A zone's size might be changed by hot-add, so it is not possible to determine
2657 * a suitable size for its wait_table. So we use the maximum size now.
2659 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2661 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2662 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2663 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2665 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2666 * or more by the traditional way. (See above). It equals:
2668 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2669 * ia64(16K page size) : = ( 8G + 4M)byte.
2670 * powerpc (64K page size) : = (32G +16M)byte.
2672 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2674 return 4096UL;
2676 #endif
2679 * This is an integer logarithm so that shifts can be used later
2680 * to extract the more random high bits from the multiplicative
2681 * hash function before the remainder is taken.
2683 static inline unsigned long wait_table_bits(unsigned long size)
2685 return ffz(~size);
2688 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2691 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2692 * of blocks reserved is based on zone->pages_min. The memory within the
2693 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2694 * higher will lead to a bigger reserve which will get freed as contiguous
2695 * blocks as reclaim kicks in
2697 static void setup_zone_migrate_reserve(struct zone *zone)
2699 unsigned long start_pfn, pfn, end_pfn;
2700 struct page *page;
2701 unsigned long reserve, block_migratetype;
2703 /* Get the start pfn, end pfn and the number of blocks to reserve */
2704 start_pfn = zone->zone_start_pfn;
2705 end_pfn = start_pfn + zone->spanned_pages;
2706 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2707 pageblock_order;
2709 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2710 if (!pfn_valid(pfn))
2711 continue;
2712 page = pfn_to_page(pfn);
2714 /* Watch out for overlapping nodes */
2715 if (page_to_nid(page) != zone_to_nid(zone))
2716 continue;
2718 /* Blocks with reserved pages will never free, skip them. */
2719 if (PageReserved(page))
2720 continue;
2722 block_migratetype = get_pageblock_migratetype(page);
2724 /* If this block is reserved, account for it */
2725 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2726 reserve--;
2727 continue;
2730 /* Suitable for reserving if this block is movable */
2731 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2732 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2733 move_freepages_block(zone, page, MIGRATE_RESERVE);
2734 reserve--;
2735 continue;
2739 * If the reserve is met and this is a previous reserved block,
2740 * take it back
2742 if (block_migratetype == MIGRATE_RESERVE) {
2743 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2744 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2750 * Initially all pages are reserved - free ones are freed
2751 * up by free_all_bootmem() once the early boot process is
2752 * done. Non-atomic initialization, single-pass.
2754 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2755 unsigned long start_pfn, enum memmap_context context)
2757 struct page *page;
2758 unsigned long end_pfn = start_pfn + size;
2759 unsigned long pfn;
2760 struct zone *z;
2762 if (highest_memmap_pfn < end_pfn - 1)
2763 highest_memmap_pfn = end_pfn - 1;
2765 z = &NODE_DATA(nid)->node_zones[zone];
2766 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2768 * There can be holes in boot-time mem_map[]s
2769 * handed to this function. They do not
2770 * exist on hotplugged memory.
2772 if (context == MEMMAP_EARLY) {
2773 if (!early_pfn_valid(pfn))
2774 continue;
2775 if (!early_pfn_in_nid(pfn, nid))
2776 continue;
2778 page = pfn_to_page(pfn);
2779 set_page_links(page, zone, nid, pfn);
2780 mminit_verify_page_links(page, zone, nid, pfn);
2781 init_page_count(page);
2782 reset_page_mapcount(page);
2783 SetPageReserved(page);
2785 * Mark the block movable so that blocks are reserved for
2786 * movable at startup. This will force kernel allocations
2787 * to reserve their blocks rather than leaking throughout
2788 * the address space during boot when many long-lived
2789 * kernel allocations are made. Later some blocks near
2790 * the start are marked MIGRATE_RESERVE by
2791 * setup_zone_migrate_reserve()
2793 * bitmap is created for zone's valid pfn range. but memmap
2794 * can be created for invalid pages (for alignment)
2795 * check here not to call set_pageblock_migratetype() against
2796 * pfn out of zone.
2798 if ((z->zone_start_pfn <= pfn)
2799 && (pfn < z->zone_start_pfn + z->spanned_pages)
2800 && !(pfn & (pageblock_nr_pages - 1)))
2801 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2803 INIT_LIST_HEAD(&page->lru);
2804 #ifdef WANT_PAGE_VIRTUAL
2805 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2806 if (!is_highmem_idx(zone))
2807 set_page_address(page, __va(pfn << PAGE_SHIFT));
2808 #endif
2812 static void __meminit zone_init_free_lists(struct zone *zone)
2814 int order, t;
2815 for_each_migratetype_order(order, t) {
2816 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2817 zone->free_area[order].nr_free = 0;
2821 #ifndef __HAVE_ARCH_MEMMAP_INIT
2822 #define memmap_init(size, nid, zone, start_pfn) \
2823 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2824 #endif
2826 static int zone_batchsize(struct zone *zone)
2828 int batch;
2831 * The per-cpu-pages pools are set to around 1000th of the
2832 * size of the zone. But no more than 1/2 of a meg.
2834 * OK, so we don't know how big the cache is. So guess.
2836 batch = zone->present_pages / 1024;
2837 if (batch * PAGE_SIZE > 512 * 1024)
2838 batch = (512 * 1024) / PAGE_SIZE;
2839 batch /= 4; /* We effectively *= 4 below */
2840 if (batch < 1)
2841 batch = 1;
2844 * Clamp the batch to a 2^n - 1 value. Having a power
2845 * of 2 value was found to be more likely to have
2846 * suboptimal cache aliasing properties in some cases.
2848 * For example if 2 tasks are alternately allocating
2849 * batches of pages, one task can end up with a lot
2850 * of pages of one half of the possible page colors
2851 * and the other with pages of the other colors.
2853 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2855 return batch;
2858 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2860 struct per_cpu_pages *pcp;
2862 memset(p, 0, sizeof(*p));
2864 pcp = &p->pcp;
2865 pcp->count = 0;
2866 pcp->high = 6 * batch;
2867 pcp->batch = max(1UL, 1 * batch);
2868 INIT_LIST_HEAD(&pcp->list);
2872 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2873 * to the value high for the pageset p.
2876 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2877 unsigned long high)
2879 struct per_cpu_pages *pcp;
2881 pcp = &p->pcp;
2882 pcp->high = high;
2883 pcp->batch = max(1UL, high/4);
2884 if ((high/4) > (PAGE_SHIFT * 8))
2885 pcp->batch = PAGE_SHIFT * 8;
2889 #ifdef CONFIG_NUMA
2891 * Boot pageset table. One per cpu which is going to be used for all
2892 * zones and all nodes. The parameters will be set in such a way
2893 * that an item put on a list will immediately be handed over to
2894 * the buddy list. This is safe since pageset manipulation is done
2895 * with interrupts disabled.
2897 * Some NUMA counter updates may also be caught by the boot pagesets.
2899 * The boot_pagesets must be kept even after bootup is complete for
2900 * unused processors and/or zones. They do play a role for bootstrapping
2901 * hotplugged processors.
2903 * zoneinfo_show() and maybe other functions do
2904 * not check if the processor is online before following the pageset pointer.
2905 * Other parts of the kernel may not check if the zone is available.
2907 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2910 * Dynamically allocate memory for the
2911 * per cpu pageset array in struct zone.
2913 static int __cpuinit process_zones(int cpu)
2915 struct zone *zone, *dzone;
2916 int node = cpu_to_node(cpu);
2918 node_set_state(node, N_CPU); /* this node has a cpu */
2920 for_each_zone(zone) {
2922 if (!populated_zone(zone))
2923 continue;
2925 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2926 GFP_KERNEL, node);
2927 if (!zone_pcp(zone, cpu))
2928 goto bad;
2930 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2932 if (percpu_pagelist_fraction)
2933 setup_pagelist_highmark(zone_pcp(zone, cpu),
2934 (zone->present_pages / percpu_pagelist_fraction));
2937 return 0;
2938 bad:
2939 for_each_zone(dzone) {
2940 if (!populated_zone(dzone))
2941 continue;
2942 if (dzone == zone)
2943 break;
2944 kfree(zone_pcp(dzone, cpu));
2945 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
2947 return -ENOMEM;
2950 static inline void free_zone_pagesets(int cpu)
2952 struct zone *zone;
2954 for_each_zone(zone) {
2955 unsigned long flags;
2956 struct per_cpu_pageset *pset;
2959 * On PREEMPT_RT the allocator is preemptible, therefore
2960 * kstopmachine can preempt a process in the middle of an
2961 * allocation, freeing the pset underneath such a process
2962 * isn't a good idea.
2964 * Take the per-cpu pcp lock to allow the task to complete
2965 * before we free it. New tasks will be held off by the
2966 * cpu_online() check in get_cpu_var_locked().
2968 __lock_cpu_pcp(&flags, cpu);
2969 pset = zone_pcp(zone, cpu);
2970 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2971 unlock_cpu_pcp(flags, cpu);
2973 /* Free per_cpu_pageset if it is slab allocated */
2974 if (pset != &boot_pageset[cpu])
2975 kfree(pset);
2979 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2980 unsigned long action,
2981 void *hcpu)
2983 int cpu = (long)hcpu;
2984 int ret = NOTIFY_OK;
2986 switch (action) {
2987 case CPU_UP_PREPARE:
2988 case CPU_UP_PREPARE_FROZEN:
2989 if (process_zones(cpu))
2990 ret = NOTIFY_BAD;
2991 break;
2992 case CPU_UP_CANCELED:
2993 case CPU_UP_CANCELED_FROZEN:
2994 case CPU_DEAD:
2995 case CPU_DEAD_FROZEN:
2996 free_zone_pagesets(cpu);
2997 break;
2998 default:
2999 break;
3001 return ret;
3004 static struct notifier_block __cpuinitdata pageset_notifier =
3005 { &pageset_cpuup_callback, NULL, 0 };
3007 void __init setup_per_cpu_pageset(void)
3009 int err;
3011 /* Initialize per_cpu_pageset for cpu 0.
3012 * A cpuup callback will do this for every cpu
3013 * as it comes online
3015 err = process_zones(smp_processor_id());
3016 BUG_ON(err);
3017 register_cpu_notifier(&pageset_notifier);
3020 #endif
3022 static noinline __init_refok
3023 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3025 int i;
3026 struct pglist_data *pgdat = zone->zone_pgdat;
3027 size_t alloc_size;
3030 * The per-page waitqueue mechanism uses hashed waitqueues
3031 * per zone.
3033 zone->wait_table_hash_nr_entries =
3034 wait_table_hash_nr_entries(zone_size_pages);
3035 zone->wait_table_bits =
3036 wait_table_bits(zone->wait_table_hash_nr_entries);
3037 alloc_size = zone->wait_table_hash_nr_entries
3038 * sizeof(wait_queue_head_t);
3040 if (!slab_is_available()) {
3041 zone->wait_table = (wait_queue_head_t *)
3042 alloc_bootmem_node(pgdat, alloc_size);
3043 } else {
3045 * This case means that a zone whose size was 0 gets new memory
3046 * via memory hot-add.
3047 * But it may be the case that a new node was hot-added. In
3048 * this case vmalloc() will not be able to use this new node's
3049 * memory - this wait_table must be initialized to use this new
3050 * node itself as well.
3051 * To use this new node's memory, further consideration will be
3052 * necessary.
3054 zone->wait_table = vmalloc(alloc_size);
3056 if (!zone->wait_table)
3057 return -ENOMEM;
3059 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3060 init_waitqueue_head(zone->wait_table + i);
3062 return 0;
3065 static __meminit void zone_pcp_init(struct zone *zone)
3067 int cpu;
3068 unsigned long batch = zone_batchsize(zone);
3070 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3071 #ifdef CONFIG_NUMA
3072 /* Early boot. Slab allocator not functional yet */
3073 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3074 setup_pageset(&boot_pageset[cpu],0);
3075 #else
3076 setup_pageset(zone_pcp(zone,cpu), batch);
3077 #endif
3079 if (zone->present_pages)
3080 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3081 zone->name, zone->present_pages, batch);
3084 __meminit int init_currently_empty_zone(struct zone *zone,
3085 unsigned long zone_start_pfn,
3086 unsigned long size,
3087 enum memmap_context context)
3089 struct pglist_data *pgdat = zone->zone_pgdat;
3090 int ret;
3091 ret = zone_wait_table_init(zone, size);
3092 if (ret)
3093 return ret;
3094 pgdat->nr_zones = zone_idx(zone) + 1;
3096 zone->zone_start_pfn = zone_start_pfn;
3098 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3099 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3100 pgdat->node_id,
3101 (unsigned long)zone_idx(zone),
3102 zone_start_pfn, (zone_start_pfn + size));
3104 zone_init_free_lists(zone);
3106 return 0;
3109 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3111 * Basic iterator support. Return the first range of PFNs for a node
3112 * Note: nid == MAX_NUMNODES returns first region regardless of node
3114 static int __meminit first_active_region_index_in_nid(int nid)
3116 int i;
3118 for (i = 0; i < nr_nodemap_entries; i++)
3119 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3120 return i;
3122 return -1;
3126 * Basic iterator support. Return the next active range of PFNs for a node
3127 * Note: nid == MAX_NUMNODES returns next region regardless of node
3129 static int __meminit next_active_region_index_in_nid(int index, int nid)
3131 for (index = index + 1; index < nr_nodemap_entries; index++)
3132 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3133 return index;
3135 return -1;
3138 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3140 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3141 * Architectures may implement their own version but if add_active_range()
3142 * was used and there are no special requirements, this is a convenient
3143 * alternative
3145 int __meminit __early_pfn_to_nid(unsigned long pfn)
3147 int i;
3149 for (i = 0; i < nr_nodemap_entries; i++) {
3150 unsigned long start_pfn = early_node_map[i].start_pfn;
3151 unsigned long end_pfn = early_node_map[i].end_pfn;
3153 if (start_pfn <= pfn && pfn < end_pfn)
3154 return early_node_map[i].nid;
3156 /* This is a memory hole */
3157 return -1;
3159 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3161 int __meminit early_pfn_to_nid(unsigned long pfn)
3163 int nid;
3165 nid = __early_pfn_to_nid(pfn);
3166 if (nid >= 0)
3167 return nid;
3168 /* just returns 0 */
3169 return 0;
3172 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3173 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3175 int nid;
3177 nid = __early_pfn_to_nid(pfn);
3178 if (nid >= 0 && nid != node)
3179 return false;
3180 return true;
3182 #endif
3184 /* Basic iterator support to walk early_node_map[] */
3185 #define for_each_active_range_index_in_nid(i, nid) \
3186 for (i = first_active_region_index_in_nid(nid); i != -1; \
3187 i = next_active_region_index_in_nid(i, nid))
3190 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3191 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3192 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3194 * If an architecture guarantees that all ranges registered with
3195 * add_active_ranges() contain no holes and may be freed, this
3196 * this function may be used instead of calling free_bootmem() manually.
3198 void __init free_bootmem_with_active_regions(int nid,
3199 unsigned long max_low_pfn)
3201 int i;
3203 for_each_active_range_index_in_nid(i, nid) {
3204 unsigned long size_pages = 0;
3205 unsigned long end_pfn = early_node_map[i].end_pfn;
3207 if (early_node_map[i].start_pfn >= max_low_pfn)
3208 continue;
3210 if (end_pfn > max_low_pfn)
3211 end_pfn = max_low_pfn;
3213 size_pages = end_pfn - early_node_map[i].start_pfn;
3214 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3215 PFN_PHYS(early_node_map[i].start_pfn),
3216 size_pages << PAGE_SHIFT);
3220 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3222 int i;
3223 int ret;
3225 for_each_active_range_index_in_nid(i, nid) {
3226 ret = work_fn(early_node_map[i].start_pfn,
3227 early_node_map[i].end_pfn, data);
3228 if (ret)
3229 break;
3233 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3234 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3236 * If an architecture guarantees that all ranges registered with
3237 * add_active_ranges() contain no holes and may be freed, this
3238 * function may be used instead of calling memory_present() manually.
3240 void __init sparse_memory_present_with_active_regions(int nid)
3242 int i;
3244 for_each_active_range_index_in_nid(i, nid)
3245 memory_present(early_node_map[i].nid,
3246 early_node_map[i].start_pfn,
3247 early_node_map[i].end_pfn);
3251 * push_node_boundaries - Push node boundaries to at least the requested boundary
3252 * @nid: The nid of the node to push the boundary for
3253 * @start_pfn: The start pfn of the node
3254 * @end_pfn: The end pfn of the node
3256 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3257 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3258 * be hotplugged even though no physical memory exists. This function allows
3259 * an arch to push out the node boundaries so mem_map is allocated that can
3260 * be used later.
3262 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3263 void __init push_node_boundaries(unsigned int nid,
3264 unsigned long start_pfn, unsigned long end_pfn)
3266 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3267 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3268 nid, start_pfn, end_pfn);
3270 /* Initialise the boundary for this node if necessary */
3271 if (node_boundary_end_pfn[nid] == 0)
3272 node_boundary_start_pfn[nid] = -1UL;
3274 /* Update the boundaries */
3275 if (node_boundary_start_pfn[nid] > start_pfn)
3276 node_boundary_start_pfn[nid] = start_pfn;
3277 if (node_boundary_end_pfn[nid] < end_pfn)
3278 node_boundary_end_pfn[nid] = end_pfn;
3281 /* If necessary, push the node boundary out for reserve hotadd */
3282 static void __meminit account_node_boundary(unsigned int nid,
3283 unsigned long *start_pfn, unsigned long *end_pfn)
3285 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3286 "Entering account_node_boundary(%u, %lu, %lu)\n",
3287 nid, *start_pfn, *end_pfn);
3289 /* Return if boundary information has not been provided */
3290 if (node_boundary_end_pfn[nid] == 0)
3291 return;
3293 /* Check the boundaries and update if necessary */
3294 if (node_boundary_start_pfn[nid] < *start_pfn)
3295 *start_pfn = node_boundary_start_pfn[nid];
3296 if (node_boundary_end_pfn[nid] > *end_pfn)
3297 *end_pfn = node_boundary_end_pfn[nid];
3299 #else
3300 void __init push_node_boundaries(unsigned int nid,
3301 unsigned long start_pfn, unsigned long end_pfn) {}
3303 static void __meminit account_node_boundary(unsigned int nid,
3304 unsigned long *start_pfn, unsigned long *end_pfn) {}
3305 #endif
3309 * get_pfn_range_for_nid - Return the start and end page frames for a node
3310 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3311 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3312 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3314 * It returns the start and end page frame of a node based on information
3315 * provided by an arch calling add_active_range(). If called for a node
3316 * with no available memory, a warning is printed and the start and end
3317 * PFNs will be 0.
3319 void __meminit get_pfn_range_for_nid(unsigned int nid,
3320 unsigned long *start_pfn, unsigned long *end_pfn)
3322 int i;
3323 *start_pfn = -1UL;
3324 *end_pfn = 0;
3326 for_each_active_range_index_in_nid(i, nid) {
3327 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3328 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3331 if (*start_pfn == -1UL)
3332 *start_pfn = 0;
3334 /* Push the node boundaries out if requested */
3335 account_node_boundary(nid, start_pfn, end_pfn);
3339 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3340 * assumption is made that zones within a node are ordered in monotonic
3341 * increasing memory addresses so that the "highest" populated zone is used
3343 static void __init find_usable_zone_for_movable(void)
3345 int zone_index;
3346 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3347 if (zone_index == ZONE_MOVABLE)
3348 continue;
3350 if (arch_zone_highest_possible_pfn[zone_index] >
3351 arch_zone_lowest_possible_pfn[zone_index])
3352 break;
3355 VM_BUG_ON(zone_index == -1);
3356 movable_zone = zone_index;
3360 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3361 * because it is sized independant of architecture. Unlike the other zones,
3362 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3363 * in each node depending on the size of each node and how evenly kernelcore
3364 * is distributed. This helper function adjusts the zone ranges
3365 * provided by the architecture for a given node by using the end of the
3366 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3367 * zones within a node are in order of monotonic increases memory addresses
3369 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3370 unsigned long zone_type,
3371 unsigned long node_start_pfn,
3372 unsigned long node_end_pfn,
3373 unsigned long *zone_start_pfn,
3374 unsigned long *zone_end_pfn)
3376 /* Only adjust if ZONE_MOVABLE is on this node */
3377 if (zone_movable_pfn[nid]) {
3378 /* Size ZONE_MOVABLE */
3379 if (zone_type == ZONE_MOVABLE) {
3380 *zone_start_pfn = zone_movable_pfn[nid];
3381 *zone_end_pfn = min(node_end_pfn,
3382 arch_zone_highest_possible_pfn[movable_zone]);
3384 /* Adjust for ZONE_MOVABLE starting within this range */
3385 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3386 *zone_end_pfn > zone_movable_pfn[nid]) {
3387 *zone_end_pfn = zone_movable_pfn[nid];
3389 /* Check if this whole range is within ZONE_MOVABLE */
3390 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3391 *zone_start_pfn = *zone_end_pfn;
3396 * Return the number of pages a zone spans in a node, including holes
3397 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3399 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3400 unsigned long zone_type,
3401 unsigned long *ignored)
3403 unsigned long node_start_pfn, node_end_pfn;
3404 unsigned long zone_start_pfn, zone_end_pfn;
3406 /* Get the start and end of the node and zone */
3407 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3408 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3409 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3410 adjust_zone_range_for_zone_movable(nid, zone_type,
3411 node_start_pfn, node_end_pfn,
3412 &zone_start_pfn, &zone_end_pfn);
3414 /* Check that this node has pages within the zone's required range */
3415 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3416 return 0;
3418 /* Move the zone boundaries inside the node if necessary */
3419 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3420 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3422 /* Return the spanned pages */
3423 return zone_end_pfn - zone_start_pfn;
3427 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3428 * then all holes in the requested range will be accounted for.
3430 static unsigned long __meminit __absent_pages_in_range(int nid,
3431 unsigned long range_start_pfn,
3432 unsigned long range_end_pfn)
3434 int i = 0;
3435 unsigned long prev_end_pfn = 0, hole_pages = 0;
3436 unsigned long start_pfn;
3438 /* Find the end_pfn of the first active range of pfns in the node */
3439 i = first_active_region_index_in_nid(nid);
3440 if (i == -1)
3441 return 0;
3443 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3445 /* Account for ranges before physical memory on this node */
3446 if (early_node_map[i].start_pfn > range_start_pfn)
3447 hole_pages = prev_end_pfn - range_start_pfn;
3449 /* Find all holes for the zone within the node */
3450 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3452 /* No need to continue if prev_end_pfn is outside the zone */
3453 if (prev_end_pfn >= range_end_pfn)
3454 break;
3456 /* Make sure the end of the zone is not within the hole */
3457 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3458 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3460 /* Update the hole size cound and move on */
3461 if (start_pfn > range_start_pfn) {
3462 BUG_ON(prev_end_pfn > start_pfn);
3463 hole_pages += start_pfn - prev_end_pfn;
3465 prev_end_pfn = early_node_map[i].end_pfn;
3468 /* Account for ranges past physical memory on this node */
3469 if (range_end_pfn > prev_end_pfn)
3470 hole_pages += range_end_pfn -
3471 max(range_start_pfn, prev_end_pfn);
3473 return hole_pages;
3477 * absent_pages_in_range - Return number of page frames in holes within a range
3478 * @start_pfn: The start PFN to start searching for holes
3479 * @end_pfn: The end PFN to stop searching for holes
3481 * It returns the number of pages frames in memory holes within a range.
3483 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3484 unsigned long end_pfn)
3486 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3489 /* Return the number of page frames in holes in a zone on a node */
3490 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3491 unsigned long zone_type,
3492 unsigned long *ignored)
3494 unsigned long node_start_pfn, node_end_pfn;
3495 unsigned long zone_start_pfn, zone_end_pfn;
3497 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3498 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3499 node_start_pfn);
3500 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3501 node_end_pfn);
3503 adjust_zone_range_for_zone_movable(nid, zone_type,
3504 node_start_pfn, node_end_pfn,
3505 &zone_start_pfn, &zone_end_pfn);
3506 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3509 #else
3510 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3511 unsigned long zone_type,
3512 unsigned long *zones_size)
3514 return zones_size[zone_type];
3517 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3518 unsigned long zone_type,
3519 unsigned long *zholes_size)
3521 if (!zholes_size)
3522 return 0;
3524 return zholes_size[zone_type];
3527 #endif
3529 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3530 unsigned long *zones_size, unsigned long *zholes_size)
3532 unsigned long realtotalpages, totalpages = 0;
3533 enum zone_type i;
3535 for (i = 0; i < MAX_NR_ZONES; i++)
3536 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3537 zones_size);
3538 pgdat->node_spanned_pages = totalpages;
3540 realtotalpages = totalpages;
3541 for (i = 0; i < MAX_NR_ZONES; i++)
3542 realtotalpages -=
3543 zone_absent_pages_in_node(pgdat->node_id, i,
3544 zholes_size);
3545 pgdat->node_present_pages = realtotalpages;
3546 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3547 realtotalpages);
3550 #ifndef CONFIG_SPARSEMEM
3552 * Calculate the size of the zone->blockflags rounded to an unsigned long
3553 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3554 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3555 * round what is now in bits to nearest long in bits, then return it in
3556 * bytes.
3558 static unsigned long __init usemap_size(unsigned long zonesize)
3560 unsigned long usemapsize;
3562 usemapsize = roundup(zonesize, pageblock_nr_pages);
3563 usemapsize = usemapsize >> pageblock_order;
3564 usemapsize *= NR_PAGEBLOCK_BITS;
3565 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3567 return usemapsize / 8;
3570 static void __init setup_usemap(struct pglist_data *pgdat,
3571 struct zone *zone, unsigned long zonesize)
3573 unsigned long usemapsize = usemap_size(zonesize);
3574 zone->pageblock_flags = NULL;
3575 if (usemapsize)
3576 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3578 #else
3579 static void inline setup_usemap(struct pglist_data *pgdat,
3580 struct zone *zone, unsigned long zonesize) {}
3581 #endif /* CONFIG_SPARSEMEM */
3583 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3585 /* Return a sensible default order for the pageblock size. */
3586 static inline int pageblock_default_order(void)
3588 if (HPAGE_SHIFT > PAGE_SHIFT)
3589 return HUGETLB_PAGE_ORDER;
3591 return MAX_ORDER-1;
3594 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3595 static inline void __init set_pageblock_order(unsigned int order)
3597 /* Check that pageblock_nr_pages has not already been setup */
3598 if (pageblock_order)
3599 return;
3602 * Assume the largest contiguous order of interest is a huge page.
3603 * This value may be variable depending on boot parameters on IA64
3605 pageblock_order = order;
3607 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3610 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3611 * and pageblock_default_order() are unused as pageblock_order is set
3612 * at compile-time. See include/linux/pageblock-flags.h for the values of
3613 * pageblock_order based on the kernel config
3615 static inline int pageblock_default_order(unsigned int order)
3617 return MAX_ORDER-1;
3619 #define set_pageblock_order(x) do {} while (0)
3621 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3624 * Set up the zone data structures:
3625 * - mark all pages reserved
3626 * - mark all memory queues empty
3627 * - clear the memory bitmaps
3629 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3630 unsigned long *zones_size, unsigned long *zholes_size)
3632 enum zone_type j;
3633 int nid = pgdat->node_id;
3634 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3635 int ret;
3637 pgdat_resize_init(pgdat);
3638 pgdat->nr_zones = 0;
3639 init_waitqueue_head(&pgdat->kswapd_wait);
3640 pgdat->kswapd_max_order = 0;
3641 pgdat_page_cgroup_init(pgdat);
3643 for (j = 0; j < MAX_NR_ZONES; j++) {
3644 struct zone *zone = pgdat->node_zones + j;
3645 unsigned long size, realsize, memmap_pages;
3646 enum lru_list l;
3648 size = zone_spanned_pages_in_node(nid, j, zones_size);
3649 realsize = size - zone_absent_pages_in_node(nid, j,
3650 zholes_size);
3653 * Adjust realsize so that it accounts for how much memory
3654 * is used by this zone for memmap. This affects the watermark
3655 * and per-cpu initialisations
3657 memmap_pages =
3658 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3659 if (realsize >= memmap_pages) {
3660 realsize -= memmap_pages;
3661 if (memmap_pages)
3662 printk(KERN_DEBUG
3663 " %s zone: %lu pages used for memmap\n",
3664 zone_names[j], memmap_pages);
3665 } else
3666 printk(KERN_WARNING
3667 " %s zone: %lu pages exceeds realsize %lu\n",
3668 zone_names[j], memmap_pages, realsize);
3670 /* Account for reserved pages */
3671 if (j == 0 && realsize > dma_reserve) {
3672 realsize -= dma_reserve;
3673 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3674 zone_names[0], dma_reserve);
3677 if (!is_highmem_idx(j))
3678 nr_kernel_pages += realsize;
3679 nr_all_pages += realsize;
3681 zone->spanned_pages = size;
3682 zone->present_pages = realsize;
3683 #ifdef CONFIG_NUMA
3684 zone->node = nid;
3685 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3686 / 100;
3687 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3688 #endif
3689 zone->name = zone_names[j];
3690 spin_lock_init(&zone->lock);
3691 spin_lock_init(&zone->lru_lock);
3692 zone_seqlock_init(zone);
3693 zone->zone_pgdat = pgdat;
3695 zone->prev_priority = DEF_PRIORITY;
3697 zone_pcp_init(zone);
3698 for_each_lru(l) {
3699 INIT_LIST_HEAD(&zone->lru[l].list);
3700 zone->lru[l].nr_scan = 0;
3702 zone->reclaim_stat.recent_rotated[0] = 0;
3703 zone->reclaim_stat.recent_rotated[1] = 0;
3704 zone->reclaim_stat.recent_scanned[0] = 0;
3705 zone->reclaim_stat.recent_scanned[1] = 0;
3706 zap_zone_vm_stats(zone);
3707 zone->flags = 0;
3708 if (!size)
3709 continue;
3711 set_pageblock_order(pageblock_default_order());
3712 setup_usemap(pgdat, zone, size);
3713 ret = init_currently_empty_zone(zone, zone_start_pfn,
3714 size, MEMMAP_EARLY);
3715 BUG_ON(ret);
3716 memmap_init(size, nid, j, zone_start_pfn);
3717 zone_start_pfn += size;
3721 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3723 /* Skip empty nodes */
3724 if (!pgdat->node_spanned_pages)
3725 return;
3727 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3728 /* ia64 gets its own node_mem_map, before this, without bootmem */
3729 if (!pgdat->node_mem_map) {
3730 unsigned long size, start, end;
3731 struct page *map;
3734 * The zone's endpoints aren't required to be MAX_ORDER
3735 * aligned but the node_mem_map endpoints must be in order
3736 * for the buddy allocator to function correctly.
3738 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3739 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3740 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3741 size = (end - start) * sizeof(struct page);
3742 map = alloc_remap(pgdat->node_id, size);
3743 if (!map)
3744 map = alloc_bootmem_node(pgdat, size);
3745 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3747 #ifndef CONFIG_NEED_MULTIPLE_NODES
3749 * With no DISCONTIG, the global mem_map is just set as node 0's
3751 if (pgdat == NODE_DATA(0)) {
3752 mem_map = NODE_DATA(0)->node_mem_map;
3753 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3754 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3755 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3756 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3758 #endif
3759 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3762 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3763 unsigned long node_start_pfn, unsigned long *zholes_size)
3765 pg_data_t *pgdat = NODE_DATA(nid);
3767 pgdat->node_id = nid;
3768 pgdat->node_start_pfn = node_start_pfn;
3769 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3771 alloc_node_mem_map(pgdat);
3772 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3773 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3774 nid, (unsigned long)pgdat,
3775 (unsigned long)pgdat->node_mem_map);
3776 #endif
3778 free_area_init_core(pgdat, zones_size, zholes_size);
3781 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3783 #if MAX_NUMNODES > 1
3785 * Figure out the number of possible node ids.
3787 static void __init setup_nr_node_ids(void)
3789 unsigned int node;
3790 unsigned int highest = 0;
3792 for_each_node_mask(node, node_possible_map)
3793 highest = node;
3794 nr_node_ids = highest + 1;
3796 #else
3797 static inline void setup_nr_node_ids(void)
3800 #endif
3803 * add_active_range - Register a range of PFNs backed by physical memory
3804 * @nid: The node ID the range resides on
3805 * @start_pfn: The start PFN of the available physical memory
3806 * @end_pfn: The end PFN of the available physical memory
3808 * These ranges are stored in an early_node_map[] and later used by
3809 * free_area_init_nodes() to calculate zone sizes and holes. If the
3810 * range spans a memory hole, it is up to the architecture to ensure
3811 * the memory is not freed by the bootmem allocator. If possible
3812 * the range being registered will be merged with existing ranges.
3814 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3815 unsigned long end_pfn)
3817 int i;
3819 mminit_dprintk(MMINIT_TRACE, "memory_register",
3820 "Entering add_active_range(%d, %#lx, %#lx) "
3821 "%d entries of %d used\n",
3822 nid, start_pfn, end_pfn,
3823 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3825 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3827 /* Merge with existing active regions if possible */
3828 for (i = 0; i < nr_nodemap_entries; i++) {
3829 if (early_node_map[i].nid != nid)
3830 continue;
3832 /* Skip if an existing region covers this new one */
3833 if (start_pfn >= early_node_map[i].start_pfn &&
3834 end_pfn <= early_node_map[i].end_pfn)
3835 return;
3837 /* Merge forward if suitable */
3838 if (start_pfn <= early_node_map[i].end_pfn &&
3839 end_pfn > early_node_map[i].end_pfn) {
3840 early_node_map[i].end_pfn = end_pfn;
3841 return;
3844 /* Merge backward if suitable */
3845 if (start_pfn < early_node_map[i].end_pfn &&
3846 end_pfn >= early_node_map[i].start_pfn) {
3847 early_node_map[i].start_pfn = start_pfn;
3848 return;
3852 /* Check that early_node_map is large enough */
3853 if (i >= MAX_ACTIVE_REGIONS) {
3854 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3855 MAX_ACTIVE_REGIONS);
3856 return;
3859 early_node_map[i].nid = nid;
3860 early_node_map[i].start_pfn = start_pfn;
3861 early_node_map[i].end_pfn = end_pfn;
3862 nr_nodemap_entries = i + 1;
3866 * remove_active_range - Shrink an existing registered range of PFNs
3867 * @nid: The node id the range is on that should be shrunk
3868 * @start_pfn: The new PFN of the range
3869 * @end_pfn: The new PFN of the range
3871 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3872 * The map is kept near the end physical page range that has already been
3873 * registered. This function allows an arch to shrink an existing registered
3874 * range.
3876 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3877 unsigned long end_pfn)
3879 int i, j;
3880 int removed = 0;
3882 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3883 nid, start_pfn, end_pfn);
3885 /* Find the old active region end and shrink */
3886 for_each_active_range_index_in_nid(i, nid) {
3887 if (early_node_map[i].start_pfn >= start_pfn &&
3888 early_node_map[i].end_pfn <= end_pfn) {
3889 /* clear it */
3890 early_node_map[i].start_pfn = 0;
3891 early_node_map[i].end_pfn = 0;
3892 removed = 1;
3893 continue;
3895 if (early_node_map[i].start_pfn < start_pfn &&
3896 early_node_map[i].end_pfn > start_pfn) {
3897 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3898 early_node_map[i].end_pfn = start_pfn;
3899 if (temp_end_pfn > end_pfn)
3900 add_active_range(nid, end_pfn, temp_end_pfn);
3901 continue;
3903 if (early_node_map[i].start_pfn >= start_pfn &&
3904 early_node_map[i].end_pfn > end_pfn &&
3905 early_node_map[i].start_pfn < end_pfn) {
3906 early_node_map[i].start_pfn = end_pfn;
3907 continue;
3911 if (!removed)
3912 return;
3914 /* remove the blank ones */
3915 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3916 if (early_node_map[i].nid != nid)
3917 continue;
3918 if (early_node_map[i].end_pfn)
3919 continue;
3920 /* we found it, get rid of it */
3921 for (j = i; j < nr_nodemap_entries - 1; j++)
3922 memcpy(&early_node_map[j], &early_node_map[j+1],
3923 sizeof(early_node_map[j]));
3924 j = nr_nodemap_entries - 1;
3925 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3926 nr_nodemap_entries--;
3931 * remove_all_active_ranges - Remove all currently registered regions
3933 * During discovery, it may be found that a table like SRAT is invalid
3934 * and an alternative discovery method must be used. This function removes
3935 * all currently registered regions.
3937 void __init remove_all_active_ranges(void)
3939 memset(early_node_map, 0, sizeof(early_node_map));
3940 nr_nodemap_entries = 0;
3941 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3942 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3943 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3944 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3947 /* Compare two active node_active_regions */
3948 static int __init cmp_node_active_region(const void *a, const void *b)
3950 struct node_active_region *arange = (struct node_active_region *)a;
3951 struct node_active_region *brange = (struct node_active_region *)b;
3953 /* Done this way to avoid overflows */
3954 if (arange->start_pfn > brange->start_pfn)
3955 return 1;
3956 if (arange->start_pfn < brange->start_pfn)
3957 return -1;
3959 return 0;
3962 /* sort the node_map by start_pfn */
3963 static void __init sort_node_map(void)
3965 sort(early_node_map, (size_t)nr_nodemap_entries,
3966 sizeof(struct node_active_region),
3967 cmp_node_active_region, NULL);
3970 /* Find the lowest pfn for a node */
3971 static unsigned long __init find_min_pfn_for_node(int nid)
3973 int i;
3974 unsigned long min_pfn = ULONG_MAX;
3976 /* Assuming a sorted map, the first range found has the starting pfn */
3977 for_each_active_range_index_in_nid(i, nid)
3978 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3980 if (min_pfn == ULONG_MAX) {
3981 printk(KERN_WARNING
3982 "Could not find start_pfn for node %d\n", nid);
3983 return 0;
3986 return min_pfn;
3990 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3992 * It returns the minimum PFN based on information provided via
3993 * add_active_range().
3995 unsigned long __init find_min_pfn_with_active_regions(void)
3997 return find_min_pfn_for_node(MAX_NUMNODES);
4001 * early_calculate_totalpages()
4002 * Sum pages in active regions for movable zone.
4003 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4005 static unsigned long __init early_calculate_totalpages(void)
4007 int i;
4008 unsigned long totalpages = 0;
4010 for (i = 0; i < nr_nodemap_entries; i++) {
4011 unsigned long pages = early_node_map[i].end_pfn -
4012 early_node_map[i].start_pfn;
4013 totalpages += pages;
4014 if (pages)
4015 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4017 return totalpages;
4021 * Find the PFN the Movable zone begins in each node. Kernel memory
4022 * is spread evenly between nodes as long as the nodes have enough
4023 * memory. When they don't, some nodes will have more kernelcore than
4024 * others
4026 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4028 int i, nid;
4029 unsigned long usable_startpfn;
4030 unsigned long kernelcore_node, kernelcore_remaining;
4031 unsigned long totalpages = early_calculate_totalpages();
4032 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4035 * If movablecore was specified, calculate what size of
4036 * kernelcore that corresponds so that memory usable for
4037 * any allocation type is evenly spread. If both kernelcore
4038 * and movablecore are specified, then the value of kernelcore
4039 * will be used for required_kernelcore if it's greater than
4040 * what movablecore would have allowed.
4042 if (required_movablecore) {
4043 unsigned long corepages;
4046 * Round-up so that ZONE_MOVABLE is at least as large as what
4047 * was requested by the user
4049 required_movablecore =
4050 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4051 corepages = totalpages - required_movablecore;
4053 required_kernelcore = max(required_kernelcore, corepages);
4056 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4057 if (!required_kernelcore)
4058 return;
4060 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4061 find_usable_zone_for_movable();
4062 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4064 restart:
4065 /* Spread kernelcore memory as evenly as possible throughout nodes */
4066 kernelcore_node = required_kernelcore / usable_nodes;
4067 for_each_node_state(nid, N_HIGH_MEMORY) {
4069 * Recalculate kernelcore_node if the division per node
4070 * now exceeds what is necessary to satisfy the requested
4071 * amount of memory for the kernel
4073 if (required_kernelcore < kernelcore_node)
4074 kernelcore_node = required_kernelcore / usable_nodes;
4077 * As the map is walked, we track how much memory is usable
4078 * by the kernel using kernelcore_remaining. When it is
4079 * 0, the rest of the node is usable by ZONE_MOVABLE
4081 kernelcore_remaining = kernelcore_node;
4083 /* Go through each range of PFNs within this node */
4084 for_each_active_range_index_in_nid(i, nid) {
4085 unsigned long start_pfn, end_pfn;
4086 unsigned long size_pages;
4088 start_pfn = max(early_node_map[i].start_pfn,
4089 zone_movable_pfn[nid]);
4090 end_pfn = early_node_map[i].end_pfn;
4091 if (start_pfn >= end_pfn)
4092 continue;
4094 /* Account for what is only usable for kernelcore */
4095 if (start_pfn < usable_startpfn) {
4096 unsigned long kernel_pages;
4097 kernel_pages = min(end_pfn, usable_startpfn)
4098 - start_pfn;
4100 kernelcore_remaining -= min(kernel_pages,
4101 kernelcore_remaining);
4102 required_kernelcore -= min(kernel_pages,
4103 required_kernelcore);
4105 /* Continue if range is now fully accounted */
4106 if (end_pfn <= usable_startpfn) {
4109 * Push zone_movable_pfn to the end so
4110 * that if we have to rebalance
4111 * kernelcore across nodes, we will
4112 * not double account here
4114 zone_movable_pfn[nid] = end_pfn;
4115 continue;
4117 start_pfn = usable_startpfn;
4121 * The usable PFN range for ZONE_MOVABLE is from
4122 * start_pfn->end_pfn. Calculate size_pages as the
4123 * number of pages used as kernelcore
4125 size_pages = end_pfn - start_pfn;
4126 if (size_pages > kernelcore_remaining)
4127 size_pages = kernelcore_remaining;
4128 zone_movable_pfn[nid] = start_pfn + size_pages;
4131 * Some kernelcore has been met, update counts and
4132 * break if the kernelcore for this node has been
4133 * satisified
4135 required_kernelcore -= min(required_kernelcore,
4136 size_pages);
4137 kernelcore_remaining -= size_pages;
4138 if (!kernelcore_remaining)
4139 break;
4144 * If there is still required_kernelcore, we do another pass with one
4145 * less node in the count. This will push zone_movable_pfn[nid] further
4146 * along on the nodes that still have memory until kernelcore is
4147 * satisified
4149 usable_nodes--;
4150 if (usable_nodes && required_kernelcore > usable_nodes)
4151 goto restart;
4153 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4154 for (nid = 0; nid < MAX_NUMNODES; nid++)
4155 zone_movable_pfn[nid] =
4156 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4159 /* Any regular memory on that node ? */
4160 static void check_for_regular_memory(pg_data_t *pgdat)
4162 #ifdef CONFIG_HIGHMEM
4163 enum zone_type zone_type;
4165 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4166 struct zone *zone = &pgdat->node_zones[zone_type];
4167 if (zone->present_pages)
4168 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4170 #endif
4174 * free_area_init_nodes - Initialise all pg_data_t and zone data
4175 * @max_zone_pfn: an array of max PFNs for each zone
4177 * This will call free_area_init_node() for each active node in the system.
4178 * Using the page ranges provided by add_active_range(), the size of each
4179 * zone in each node and their holes is calculated. If the maximum PFN
4180 * between two adjacent zones match, it is assumed that the zone is empty.
4181 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4182 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4183 * starts where the previous one ended. For example, ZONE_DMA32 starts
4184 * at arch_max_dma_pfn.
4186 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4188 unsigned long nid;
4189 int i;
4191 /* Sort early_node_map as initialisation assumes it is sorted */
4192 sort_node_map();
4194 /* Record where the zone boundaries are */
4195 memset(arch_zone_lowest_possible_pfn, 0,
4196 sizeof(arch_zone_lowest_possible_pfn));
4197 memset(arch_zone_highest_possible_pfn, 0,
4198 sizeof(arch_zone_highest_possible_pfn));
4199 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4200 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4201 for (i = 1; i < MAX_NR_ZONES; i++) {
4202 if (i == ZONE_MOVABLE)
4203 continue;
4204 arch_zone_lowest_possible_pfn[i] =
4205 arch_zone_highest_possible_pfn[i-1];
4206 arch_zone_highest_possible_pfn[i] =
4207 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4209 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4210 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4212 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4213 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4214 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4216 /* Print out the zone ranges */
4217 printk("Zone PFN ranges:\n");
4218 for (i = 0; i < MAX_NR_ZONES; i++) {
4219 if (i == ZONE_MOVABLE)
4220 continue;
4221 printk(" %-8s %0#10lx -> %0#10lx\n",
4222 zone_names[i],
4223 arch_zone_lowest_possible_pfn[i],
4224 arch_zone_highest_possible_pfn[i]);
4227 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4228 printk("Movable zone start PFN for each node\n");
4229 for (i = 0; i < MAX_NUMNODES; i++) {
4230 if (zone_movable_pfn[i])
4231 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4234 /* Print out the early_node_map[] */
4235 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4236 for (i = 0; i < nr_nodemap_entries; i++)
4237 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4238 early_node_map[i].start_pfn,
4239 early_node_map[i].end_pfn);
4241 /* Initialise every node */
4242 mminit_verify_pageflags_layout();
4243 setup_nr_node_ids();
4244 for_each_online_node(nid) {
4245 pg_data_t *pgdat = NODE_DATA(nid);
4246 free_area_init_node(nid, NULL,
4247 find_min_pfn_for_node(nid), NULL);
4249 /* Any memory on that node */
4250 if (pgdat->node_present_pages)
4251 node_set_state(nid, N_HIGH_MEMORY);
4252 check_for_regular_memory(pgdat);
4256 static int __init cmdline_parse_core(char *p, unsigned long *core)
4258 unsigned long long coremem;
4259 if (!p)
4260 return -EINVAL;
4262 coremem = memparse(p, &p);
4263 *core = coremem >> PAGE_SHIFT;
4265 /* Paranoid check that UL is enough for the coremem value */
4266 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4268 return 0;
4272 * kernelcore=size sets the amount of memory for use for allocations that
4273 * cannot be reclaimed or migrated.
4275 static int __init cmdline_parse_kernelcore(char *p)
4277 return cmdline_parse_core(p, &required_kernelcore);
4281 * movablecore=size sets the amount of memory for use for allocations that
4282 * can be reclaimed or migrated.
4284 static int __init cmdline_parse_movablecore(char *p)
4286 return cmdline_parse_core(p, &required_movablecore);
4289 early_param("kernelcore", cmdline_parse_kernelcore);
4290 early_param("movablecore", cmdline_parse_movablecore);
4292 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4295 * set_dma_reserve - set the specified number of pages reserved in the first zone
4296 * @new_dma_reserve: The number of pages to mark reserved
4298 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4299 * In the DMA zone, a significant percentage may be consumed by kernel image
4300 * and other unfreeable allocations which can skew the watermarks badly. This
4301 * function may optionally be used to account for unfreeable pages in the
4302 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4303 * smaller per-cpu batchsize.
4305 void __init set_dma_reserve(unsigned long new_dma_reserve)
4307 dma_reserve = new_dma_reserve;
4310 #ifndef CONFIG_NEED_MULTIPLE_NODES
4311 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4312 EXPORT_SYMBOL(contig_page_data);
4313 #endif
4315 void __init free_area_init(unsigned long *zones_size)
4317 free_area_init_node(0, zones_size,
4318 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4321 static int page_alloc_cpu_notify(struct notifier_block *self,
4322 unsigned long action, void *hcpu)
4324 int cpu = (unsigned long)hcpu;
4326 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4327 drain_pages(cpu);
4330 * Spill the event counters of the dead processor
4331 * into the current processors event counters.
4332 * This artificially elevates the count of the current
4333 * processor.
4335 vm_events_fold_cpu(cpu);
4338 * Zero the differential counters of the dead processor
4339 * so that the vm statistics are consistent.
4341 * This is only okay since the processor is dead and cannot
4342 * race with what we are doing.
4344 refresh_cpu_vm_stats(cpu);
4346 return NOTIFY_OK;
4349 void __init page_alloc_init(void)
4351 hotcpu_notifier(page_alloc_cpu_notify, 0);
4355 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4356 * or min_free_kbytes changes.
4358 static void calculate_totalreserve_pages(void)
4360 struct pglist_data *pgdat;
4361 unsigned long reserve_pages = 0;
4362 enum zone_type i, j;
4364 for_each_online_pgdat(pgdat) {
4365 for (i = 0; i < MAX_NR_ZONES; i++) {
4366 struct zone *zone = pgdat->node_zones + i;
4367 unsigned long max = 0;
4369 /* Find valid and maximum lowmem_reserve in the zone */
4370 for (j = i; j < MAX_NR_ZONES; j++) {
4371 if (zone->lowmem_reserve[j] > max)
4372 max = zone->lowmem_reserve[j];
4375 /* we treat pages_high as reserved pages. */
4376 max += zone->pages_high;
4378 if (max > zone->present_pages)
4379 max = zone->present_pages;
4380 reserve_pages += max;
4383 totalreserve_pages = reserve_pages;
4387 * setup_per_zone_lowmem_reserve - called whenever
4388 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4389 * has a correct pages reserved value, so an adequate number of
4390 * pages are left in the zone after a successful __alloc_pages().
4392 static void setup_per_zone_lowmem_reserve(void)
4394 struct pglist_data *pgdat;
4395 enum zone_type j, idx;
4397 for_each_online_pgdat(pgdat) {
4398 for (j = 0; j < MAX_NR_ZONES; j++) {
4399 struct zone *zone = pgdat->node_zones + j;
4400 unsigned long present_pages = zone->present_pages;
4402 zone->lowmem_reserve[j] = 0;
4404 idx = j;
4405 while (idx) {
4406 struct zone *lower_zone;
4408 idx--;
4410 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4411 sysctl_lowmem_reserve_ratio[idx] = 1;
4413 lower_zone = pgdat->node_zones + idx;
4414 lower_zone->lowmem_reserve[j] = present_pages /
4415 sysctl_lowmem_reserve_ratio[idx];
4416 present_pages += lower_zone->present_pages;
4421 /* update totalreserve_pages */
4422 calculate_totalreserve_pages();
4426 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4428 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4429 * with respect to min_free_kbytes.
4431 void setup_per_zone_pages_min(void)
4433 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4434 unsigned long lowmem_pages = 0;
4435 struct zone *zone;
4436 unsigned long flags;
4438 /* Calculate total number of !ZONE_HIGHMEM pages */
4439 for_each_zone(zone) {
4440 if (!is_highmem(zone))
4441 lowmem_pages += zone->present_pages;
4444 for_each_zone(zone) {
4445 u64 tmp;
4447 spin_lock_irqsave(&zone->lock, flags);
4448 tmp = (u64)pages_min * zone->present_pages;
4449 do_div(tmp, lowmem_pages);
4450 if (is_highmem(zone)) {
4452 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4453 * need highmem pages, so cap pages_min to a small
4454 * value here.
4456 * The (pages_high-pages_low) and (pages_low-pages_min)
4457 * deltas controls asynch page reclaim, and so should
4458 * not be capped for highmem.
4460 int min_pages;
4462 min_pages = zone->present_pages / 1024;
4463 if (min_pages < SWAP_CLUSTER_MAX)
4464 min_pages = SWAP_CLUSTER_MAX;
4465 if (min_pages > 128)
4466 min_pages = 128;
4467 zone->pages_min = min_pages;
4468 } else {
4470 * If it's a lowmem zone, reserve a number of pages
4471 * proportionate to the zone's size.
4473 zone->pages_min = tmp;
4476 zone->pages_low = zone->pages_min + (tmp >> 2);
4477 zone->pages_high = zone->pages_min + (tmp >> 1);
4478 setup_zone_migrate_reserve(zone);
4479 spin_unlock_irqrestore(&zone->lock, flags);
4482 /* update totalreserve_pages */
4483 calculate_totalreserve_pages();
4487 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4489 * The inactive anon list should be small enough that the VM never has to
4490 * do too much work, but large enough that each inactive page has a chance
4491 * to be referenced again before it is swapped out.
4493 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4494 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4495 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4496 * the anonymous pages are kept on the inactive list.
4498 * total target max
4499 * memory ratio inactive anon
4500 * -------------------------------------
4501 * 10MB 1 5MB
4502 * 100MB 1 50MB
4503 * 1GB 3 250MB
4504 * 10GB 10 0.9GB
4505 * 100GB 31 3GB
4506 * 1TB 101 10GB
4507 * 10TB 320 32GB
4509 static void setup_per_zone_inactive_ratio(void)
4511 struct zone *zone;
4513 for_each_zone(zone) {
4514 unsigned int gb, ratio;
4516 /* Zone size in gigabytes */
4517 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4518 ratio = int_sqrt(10 * gb);
4519 if (!ratio)
4520 ratio = 1;
4522 zone->inactive_ratio = ratio;
4527 * Initialise min_free_kbytes.
4529 * For small machines we want it small (128k min). For large machines
4530 * we want it large (64MB max). But it is not linear, because network
4531 * bandwidth does not increase linearly with machine size. We use
4533 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4534 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4536 * which yields
4538 * 16MB: 512k
4539 * 32MB: 724k
4540 * 64MB: 1024k
4541 * 128MB: 1448k
4542 * 256MB: 2048k
4543 * 512MB: 2896k
4544 * 1024MB: 4096k
4545 * 2048MB: 5792k
4546 * 4096MB: 8192k
4547 * 8192MB: 11584k
4548 * 16384MB: 16384k
4550 static int __init init_per_zone_pages_min(void)
4552 unsigned long lowmem_kbytes;
4554 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4556 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4557 if (min_free_kbytes < 128)
4558 min_free_kbytes = 128;
4559 if (min_free_kbytes > 65536)
4560 min_free_kbytes = 65536;
4561 setup_per_zone_pages_min();
4562 setup_per_zone_lowmem_reserve();
4563 setup_per_zone_inactive_ratio();
4564 return 0;
4566 module_init(init_per_zone_pages_min)
4569 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4570 * that we can call two helper functions whenever min_free_kbytes
4571 * changes.
4573 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4574 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4576 proc_dointvec(table, write, file, buffer, length, ppos);
4577 if (write)
4578 setup_per_zone_pages_min();
4579 return 0;
4582 #ifdef CONFIG_NUMA
4583 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4584 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4586 struct zone *zone;
4587 int rc;
4589 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4590 if (rc)
4591 return rc;
4593 for_each_zone(zone)
4594 zone->min_unmapped_pages = (zone->present_pages *
4595 sysctl_min_unmapped_ratio) / 100;
4596 return 0;
4599 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4600 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4602 struct zone *zone;
4603 int rc;
4605 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4606 if (rc)
4607 return rc;
4609 for_each_zone(zone)
4610 zone->min_slab_pages = (zone->present_pages *
4611 sysctl_min_slab_ratio) / 100;
4612 return 0;
4614 #endif
4617 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4618 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4619 * whenever sysctl_lowmem_reserve_ratio changes.
4621 * The reserve ratio obviously has absolutely no relation with the
4622 * pages_min watermarks. The lowmem reserve ratio can only make sense
4623 * if in function of the boot time zone sizes.
4625 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4626 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4628 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4629 setup_per_zone_lowmem_reserve();
4630 return 0;
4634 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4635 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4636 * can have before it gets flushed back to buddy allocator.
4639 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4640 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4642 struct zone *zone;
4643 unsigned int cpu;
4644 int ret;
4646 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4647 if (!write || (ret == -EINVAL))
4648 return ret;
4649 for_each_zone(zone) {
4650 if (!populated_zone(zone))
4651 continue;
4652 for_each_online_cpu(cpu) {
4653 unsigned long high;
4654 high = zone->present_pages / percpu_pagelist_fraction;
4655 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4658 return 0;
4661 int hashdist = HASHDIST_DEFAULT;
4663 #ifdef CONFIG_NUMA
4664 static int __init set_hashdist(char *str)
4666 if (!str)
4667 return 0;
4668 hashdist = simple_strtoul(str, &str, 0);
4669 return 1;
4671 __setup("hashdist=", set_hashdist);
4672 #endif
4675 * allocate a large system hash table from bootmem
4676 * - it is assumed that the hash table must contain an exact power-of-2
4677 * quantity of entries
4678 * - limit is the number of hash buckets, not the total allocation size
4680 void *__init alloc_large_system_hash(const char *tablename,
4681 unsigned long bucketsize,
4682 unsigned long numentries,
4683 int scale,
4684 int flags,
4685 unsigned int *_hash_shift,
4686 unsigned int *_hash_mask,
4687 unsigned long limit)
4689 unsigned long long max = limit;
4690 unsigned long log2qty, size;
4691 void *table = NULL;
4693 /* allow the kernel cmdline to have a say */
4694 if (!numentries) {
4695 /* round applicable memory size up to nearest megabyte */
4696 numentries = nr_kernel_pages;
4697 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4698 numentries >>= 20 - PAGE_SHIFT;
4699 numentries <<= 20 - PAGE_SHIFT;
4701 /* limit to 1 bucket per 2^scale bytes of low memory */
4702 if (scale > PAGE_SHIFT)
4703 numentries >>= (scale - PAGE_SHIFT);
4704 else
4705 numentries <<= (PAGE_SHIFT - scale);
4707 /* Make sure we've got at least a 0-order allocation.. */
4708 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4709 numentries = PAGE_SIZE / bucketsize;
4711 numentries = roundup_pow_of_two(numentries);
4713 /* limit allocation size to 1/16 total memory by default */
4714 if (max == 0) {
4715 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4716 do_div(max, bucketsize);
4719 if (numentries > max)
4720 numentries = max;
4722 log2qty = ilog2(numentries);
4724 do {
4725 size = bucketsize << log2qty;
4726 if (flags & HASH_EARLY)
4727 table = alloc_bootmem_nopanic(size);
4728 else if (hashdist)
4729 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4730 else {
4731 unsigned long order = get_order(size);
4732 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4734 * If bucketsize is not a power-of-two, we may free
4735 * some pages at the end of hash table.
4737 if (table) {
4738 unsigned long alloc_end = (unsigned long)table +
4739 (PAGE_SIZE << order);
4740 unsigned long used = (unsigned long)table +
4741 PAGE_ALIGN(size);
4742 split_page(virt_to_page(table), order);
4743 while (used < alloc_end) {
4744 free_page(used);
4745 used += PAGE_SIZE;
4749 } while (!table && size > PAGE_SIZE && --log2qty);
4751 if (!table)
4752 panic("Failed to allocate %s hash table\n", tablename);
4754 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4755 tablename,
4756 (1U << log2qty),
4757 ilog2(size) - PAGE_SHIFT,
4758 size);
4760 if (_hash_shift)
4761 *_hash_shift = log2qty;
4762 if (_hash_mask)
4763 *_hash_mask = (1 << log2qty) - 1;
4765 return table;
4768 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4769 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4770 unsigned long pfn)
4772 #ifdef CONFIG_SPARSEMEM
4773 return __pfn_to_section(pfn)->pageblock_flags;
4774 #else
4775 return zone->pageblock_flags;
4776 #endif /* CONFIG_SPARSEMEM */
4779 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4781 #ifdef CONFIG_SPARSEMEM
4782 pfn &= (PAGES_PER_SECTION-1);
4783 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4784 #else
4785 pfn = pfn - zone->zone_start_pfn;
4786 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4787 #endif /* CONFIG_SPARSEMEM */
4791 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4792 * @page: The page within the block of interest
4793 * @start_bitidx: The first bit of interest to retrieve
4794 * @end_bitidx: The last bit of interest
4795 * returns pageblock_bits flags
4797 unsigned long get_pageblock_flags_group(struct page *page,
4798 int start_bitidx, int end_bitidx)
4800 struct zone *zone;
4801 unsigned long *bitmap;
4802 unsigned long pfn, bitidx;
4803 unsigned long flags = 0;
4804 unsigned long value = 1;
4806 zone = page_zone(page);
4807 pfn = page_to_pfn(page);
4808 bitmap = get_pageblock_bitmap(zone, pfn);
4809 bitidx = pfn_to_bitidx(zone, pfn);
4811 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4812 if (test_bit(bitidx + start_bitidx, bitmap))
4813 flags |= value;
4815 return flags;
4819 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4820 * @page: The page within the block of interest
4821 * @start_bitidx: The first bit of interest
4822 * @end_bitidx: The last bit of interest
4823 * @flags: The flags to set
4825 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4826 int start_bitidx, int end_bitidx)
4828 struct zone *zone;
4829 unsigned long *bitmap;
4830 unsigned long pfn, bitidx;
4831 unsigned long value = 1;
4833 zone = page_zone(page);
4834 pfn = page_to_pfn(page);
4835 bitmap = get_pageblock_bitmap(zone, pfn);
4836 bitidx = pfn_to_bitidx(zone, pfn);
4837 VM_BUG_ON(pfn < zone->zone_start_pfn);
4838 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4840 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4841 if (flags & value)
4842 __set_bit(bitidx + start_bitidx, bitmap);
4843 else
4844 __clear_bit(bitidx + start_bitidx, bitmap);
4848 * This is designed as sub function...plz see page_isolation.c also.
4849 * set/clear page block's type to be ISOLATE.
4850 * page allocater never alloc memory from ISOLATE block.
4853 int set_migratetype_isolate(struct page *page)
4855 struct zone *zone;
4856 unsigned long flags;
4857 int ret = -EBUSY;
4859 zone = page_zone(page);
4860 spin_lock_irqsave(&zone->lock, flags);
4862 * In future, more migrate types will be able to be isolation target.
4864 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4865 goto out;
4866 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4867 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4868 ret = 0;
4869 out:
4870 spin_unlock_irqrestore(&zone->lock, flags);
4871 if (!ret)
4872 drain_all_pages();
4873 return ret;
4876 void unset_migratetype_isolate(struct page *page)
4878 struct zone *zone;
4879 unsigned long flags;
4880 zone = page_zone(page);
4881 spin_lock_irqsave(&zone->lock, flags);
4882 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4883 goto out;
4884 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4885 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4886 out:
4887 spin_unlock_irqrestore(&zone->lock, flags);
4890 #ifdef CONFIG_MEMORY_HOTREMOVE
4892 * All pages in the range must be isolated before calling this.
4894 void
4895 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4897 struct page *page;
4898 struct zone *zone;
4899 int order, i;
4900 unsigned long pfn;
4901 unsigned long flags;
4902 /* find the first valid pfn */
4903 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4904 if (pfn_valid(pfn))
4905 break;
4906 if (pfn == end_pfn)
4907 return;
4908 zone = page_zone(pfn_to_page(pfn));
4909 spin_lock_irqsave(&zone->lock, flags);
4910 pfn = start_pfn;
4911 while (pfn < end_pfn) {
4912 if (!pfn_valid(pfn)) {
4913 pfn++;
4914 continue;
4916 page = pfn_to_page(pfn);
4917 BUG_ON(page_count(page));
4918 BUG_ON(!PageBuddy(page));
4919 order = page_order(page);
4920 #ifdef CONFIG_DEBUG_VM
4921 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4922 pfn, 1 << order, end_pfn);
4923 #endif
4924 list_del(&page->lru);
4925 rmv_page_order(page);
4926 zone->free_area[order].nr_free--;
4927 __mod_zone_page_state(zone, NR_FREE_PAGES,
4928 - (1UL << order));
4929 for (i = 0; i < (1 << order); i++)
4930 SetPageReserved((page+i));
4931 pfn += (1 << order);
4933 spin_unlock_irqrestore(&zone->lock, flags);
4935 #endif