2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
56 * Array of node states.
58 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
59 [N_POSSIBLE
] = NODE_MASK_ALL
,
60 [N_ONLINE
] = { { [0] = 1UL } },
62 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
64 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
66 [N_CPU
] = { { [0] = 1UL } },
69 EXPORT_SYMBOL(node_states
);
71 unsigned long totalram_pages __read_mostly
;
72 unsigned long totalreserve_pages __read_mostly
;
73 unsigned long highest_memmap_pfn __read_mostly
;
74 int percpu_pagelist_fraction
;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly
;
80 static void __free_pages_ok(struct page
*page
, unsigned int order
);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
94 #ifdef CONFIG_ZONE_DMA
97 #ifdef CONFIG_ZONE_DMA32
100 #ifdef CONFIG_HIGHMEM
106 EXPORT_SYMBOL(totalram_pages
);
108 static char * const zone_names
[MAX_NR_ZONES
] = {
109 #ifdef CONFIG_ZONE_DMA
112 #ifdef CONFIG_ZONE_DMA32
116 #ifdef CONFIG_HIGHMEM
122 int min_free_kbytes
= 1024;
124 unsigned long __meminitdata nr_kernel_pages
;
125 unsigned long __meminitdata nr_all_pages
;
126 static unsigned long __meminitdata dma_reserve
;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
149 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
150 static int __meminitdata nr_nodemap_entries
;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
153 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
154 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
155 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
156 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
157 static unsigned long __initdata required_kernelcore
;
158 static unsigned long __initdata required_movablecore
;
159 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
161 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
163 EXPORT_SYMBOL(movable_zone
);
164 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 #ifdef CONFIG_PREEMPT_RT
167 static DEFINE_PER_CPU_LOCKED(int, pcp_locks
);
170 static inline void __lock_cpu_pcp(unsigned long *flags
, int cpu
)
172 #ifdef CONFIG_PREEMPT_RT
173 spin_lock(&__get_cpu_lock(pcp_locks
, cpu
));
176 local_irq_save(*flags
);
180 static inline void lock_cpu_pcp(unsigned long *flags
, int *this_cpu
)
182 #ifdef CONFIG_PREEMPT_RT
183 (void)get_cpu_var_locked(pcp_locks
, this_cpu
);
186 local_irq_save(*flags
);
187 *this_cpu
= smp_processor_id();
191 static inline void unlock_cpu_pcp(unsigned long flags
, int this_cpu
)
193 #ifdef CONFIG_PREEMPT_RT
194 put_cpu_var_locked(pcp_locks
, this_cpu
);
196 local_irq_restore(flags
);
200 static struct per_cpu_pageset
*
201 get_zone_pcp(struct zone
*zone
, unsigned long *flags
, int *this_cpu
)
203 lock_cpu_pcp(flags
, this_cpu
);
204 return zone_pcp(zone
, *this_cpu
);
208 put_zone_pcp(struct zone
*zone
, unsigned long flags
, int this_cpu
)
210 unlock_cpu_pcp(flags
, this_cpu
);
214 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
215 EXPORT_SYMBOL(nr_node_ids
);
218 int page_group_by_mobility_disabled __read_mostly
;
220 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
222 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
223 PB_migrate
, PB_migrate_end
);
226 #ifdef CONFIG_DEBUG_VM
227 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
231 unsigned long pfn
= page_to_pfn(page
);
234 seq
= zone_span_seqbegin(zone
);
235 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
237 else if (pfn
< zone
->zone_start_pfn
)
239 } while (zone_span_seqretry(zone
, seq
));
244 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
246 if (!pfn_valid_within(page_to_pfn(page
)))
248 if (zone
!= page_zone(page
))
254 * Temporary debugging check for pages not lying within a given zone.
256 static int bad_range(struct zone
*zone
, struct page
*page
)
258 if (page_outside_zone_boundaries(zone
, page
))
260 if (!page_is_consistent(zone
, page
))
266 static inline int bad_range(struct zone
*zone
, struct page
*page
)
272 static void bad_page(struct page
*page
)
274 static unsigned long resume
;
275 static unsigned long nr_shown
;
276 static unsigned long nr_unshown
;
279 * Allow a burst of 60 reports, then keep quiet for that minute;
280 * or allow a steady drip of one report per second.
282 if (nr_shown
== 60) {
283 if (time_before(jiffies
, resume
)) {
289 "BUG: Bad page state: %lu messages suppressed\n",
296 resume
= jiffies
+ 60 * HZ
;
298 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
299 current
->comm
, page_to_pfn(page
));
301 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
302 page
, (void *)page
->flags
, page_count(page
),
303 page_mapcount(page
), page
->mapping
, page
->index
);
307 /* Leave bad fields for debug, except PageBuddy could make trouble */
308 __ClearPageBuddy(page
);
309 add_taint(TAINT_BAD_PAGE
);
313 * Higher-order pages are called "compound pages". They are structured thusly:
315 * The first PAGE_SIZE page is called the "head page".
317 * The remaining PAGE_SIZE pages are called "tail pages".
319 * All pages have PG_compound set. All pages have their ->private pointing at
320 * the head page (even the head page has this).
322 * The first tail page's ->lru.next holds the address of the compound page's
323 * put_page() function. Its ->lru.prev holds the order of allocation.
324 * This usage means that zero-order pages may not be compound.
327 static void free_compound_page(struct page
*page
)
329 __free_pages_ok(page
, compound_order(page
));
332 void prep_compound_page(struct page
*page
, unsigned long order
)
335 int nr_pages
= 1 << order
;
337 set_compound_page_dtor(page
, free_compound_page
);
338 set_compound_order(page
, order
);
340 for (i
= 1; i
< nr_pages
; i
++) {
341 struct page
*p
= page
+ i
;
344 p
->first_page
= page
;
348 #ifdef CONFIG_HUGETLBFS
349 void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
352 int nr_pages
= 1 << order
;
353 struct page
*p
= page
+ 1;
355 set_compound_page_dtor(page
, free_compound_page
);
356 set_compound_order(page
, order
);
358 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
360 p
->first_page
= page
;
365 static int destroy_compound_page(struct page
*page
, unsigned long order
)
368 int nr_pages
= 1 << order
;
371 if (unlikely(compound_order(page
) != order
) ||
372 unlikely(!PageHead(page
))) {
377 __ClearPageHead(page
);
379 for (i
= 1; i
< nr_pages
; i
++) {
380 struct page
*p
= page
+ i
;
382 if (unlikely(!PageTail(p
) | (p
->first_page
!= page
))) {
392 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
401 for (i
= 0; i
< (1 << order
); i
++)
402 clear_highpage(page
+ i
);
405 static inline void set_page_order(struct page
*page
, int order
)
407 set_page_private(page
, order
);
408 __SetPageBuddy(page
);
411 static inline void rmv_page_order(struct page
*page
)
413 __ClearPageBuddy(page
);
414 set_page_private(page
, 0);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
424 * For example, if the starting buddy (buddy2) is #8 its order
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 static inline struct page
*
435 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
437 unsigned long buddy_idx
= page_idx
^ (1 << order
);
439 return page
+ (buddy_idx
- page_idx
);
442 static inline unsigned long
443 __find_combined_index(unsigned long page_idx
, unsigned int order
)
445 return (page_idx
& ~(1 << order
));
449 * This function checks whether a page is free && is the buddy
450 * we can do coalesce a page and its buddy if
451 * (a) the buddy is not in a hole &&
452 * (b) the buddy is in the buddy system &&
453 * (c) a page and its buddy have the same order &&
454 * (d) a page and its buddy are in the same zone.
456 * For recording whether a page is in the buddy system, we use PG_buddy.
457 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
459 * For recording page's order, we use page_private(page).
461 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
464 if (!pfn_valid_within(page_to_pfn(buddy
)))
467 if (page_zone_id(page
) != page_zone_id(buddy
))
470 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
471 BUG_ON(page_count(buddy
) != 0);
478 * Freeing function for a buddy system allocator.
480 * The concept of a buddy system is to maintain direct-mapped table
481 * (containing bit values) for memory blocks of various "orders".
482 * The bottom level table contains the map for the smallest allocatable
483 * units of memory (here, pages), and each level above it describes
484 * pairs of units from the levels below, hence, "buddies".
485 * At a high level, all that happens here is marking the table entry
486 * at the bottom level available, and propagating the changes upward
487 * as necessary, plus some accounting needed to play nicely with other
488 * parts of the VM system.
489 * At each level, we keep a list of pages, which are heads of continuous
490 * free pages of length of (1 << order) and marked with PG_buddy. Page's
491 * order is recorded in page_private(page) field.
492 * So when we are allocating or freeing one, we can derive the state of the
493 * other. That is, if we allocate a small block, and both were
494 * free, the remainder of the region must be split into blocks.
495 * If a block is freed, and its buddy is also free, then this
496 * triggers coalescing into a block of larger size.
501 static inline void __free_one_page(struct page
*page
,
502 struct zone
*zone
, unsigned int order
)
504 unsigned long page_idx
;
505 int order_size
= 1 << order
;
506 int migratetype
= get_pageblock_migratetype(page
);
508 if (unlikely(PageCompound(page
)))
509 if (unlikely(destroy_compound_page(page
, order
)))
512 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
514 VM_BUG_ON(page_idx
& (order_size
- 1));
515 VM_BUG_ON(bad_range(zone
, page
));
517 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
518 while (order
< MAX_ORDER
-1) {
519 unsigned long combined_idx
;
522 buddy
= __page_find_buddy(page
, page_idx
, order
);
523 if (!page_is_buddy(page
, buddy
, order
))
526 /* Our buddy is free, merge with it and move up one order. */
527 list_del(&buddy
->lru
);
528 zone
->free_area
[order
].nr_free
--;
529 rmv_page_order(buddy
);
530 combined_idx
= __find_combined_index(page_idx
, order
);
531 page
= page
+ (combined_idx
- page_idx
);
532 page_idx
= combined_idx
;
535 set_page_order(page
, order
);
537 &zone
->free_area
[order
].free_list
[migratetype
]);
538 zone
->free_area
[order
].nr_free
++;
541 static inline int free_pages_check(struct page
*page
)
543 free_page_mlock(page
);
544 if (unlikely(page_mapcount(page
) |
545 (page
->mapping
!= NULL
) |
546 (page_count(page
) != 0) |
547 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
551 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
552 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
557 * Frees a list of pages.
558 * Assumes all pages on list are in same zone, and of same order.
559 * count is the number of pages to free.
561 * If the zone was previously in an "all pages pinned" state then look to
562 * see if this freeing clears that state.
564 * And clear the zone's pages_scanned counter, to hold off the "all pages are
565 * pinned" detection logic.
568 free_pages_bulk(struct zone
*zone
, struct list_head
*list
, int order
)
572 spin_lock_irqsave(&zone
->lock
, flags
);
573 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
574 zone
->pages_scanned
= 0;
576 while (!list_empty(list
)) {
577 struct page
*page
= list_first_entry(list
, struct page
, lru
);
579 list_del(&page
->lru
);
580 __free_one_page(page
, zone
, order
);
581 #ifdef CONFIG_PREEMPT_RT
582 cond_resched_lock(&zone
->lock
);
585 spin_unlock_irqrestore(&zone
->lock
, flags
);
588 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
592 spin_lock_irqsave(&zone
->lock
, flags
);
594 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
595 zone
->pages_scanned
= 0;
596 __free_one_page(page
, zone
, order
);
597 spin_unlock_irqrestore(&zone
->lock
, flags
);
600 static void __free_pages_ok(struct page
*page
, unsigned int order
)
603 int i
, this_cpu
, bad
= 0;
605 kmemcheck_free_shadow(page
, order
);
607 for (i
= 0 ; i
< (1 << order
) ; ++i
)
608 bad
+= free_pages_check(page
+ i
);
612 if (!PageHighMem(page
)) {
613 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
614 debug_check_no_obj_freed(page_address(page
),
617 arch_free_page(page
, order
);
618 kernel_map_pages(page
, 1 << order
, 0);
620 lock_cpu_pcp(&flags
, &this_cpu
);
621 count_vm_events(PGFREE
, 1 << order
);
622 unlock_cpu_pcp(flags
, this_cpu
);
623 free_one_page(page_zone(page
), page
, order
);
627 * permit the bootmem allocator to evade page validation on high-order frees
629 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
632 __ClearPageReserved(page
);
633 set_page_count(page
, 0);
634 set_page_refcounted(page
);
640 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
641 struct page
*p
= &page
[loop
];
643 if (loop
+ 1 < BITS_PER_LONG
)
645 __ClearPageReserved(p
);
646 set_page_count(p
, 0);
649 set_page_refcounted(page
);
650 __free_pages(page
, order
);
656 * The order of subdivision here is critical for the IO subsystem.
657 * Please do not alter this order without good reasons and regression
658 * testing. Specifically, as large blocks of memory are subdivided,
659 * the order in which smaller blocks are delivered depends on the order
660 * they're subdivided in this function. This is the primary factor
661 * influencing the order in which pages are delivered to the IO
662 * subsystem according to empirical testing, and this is also justified
663 * by considering the behavior of a buddy system containing a single
664 * large block of memory acted on by a series of small allocations.
665 * This behavior is a critical factor in sglist merging's success.
669 static inline void expand(struct zone
*zone
, struct page
*page
,
670 int low
, int high
, struct free_area
*area
,
673 unsigned long size
= 1 << high
;
679 VM_BUG_ON(bad_range(zone
, &page
[size
]));
680 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
682 set_page_order(&page
[size
], high
);
687 * This page is about to be returned from the page allocator
689 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
691 if (unlikely(page_mapcount(page
) |
692 (page
->mapping
!= NULL
) |
693 (page_count(page
) != 0) |
694 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
699 set_page_private(page
, 0);
700 set_page_refcounted(page
);
702 arch_alloc_page(page
, order
);
703 kernel_map_pages(page
, 1 << order
, 1);
705 if (gfp_flags
& __GFP_ZERO
)
706 prep_zero_page(page
, order
, gfp_flags
);
708 if (order
&& (gfp_flags
& __GFP_COMP
))
709 prep_compound_page(page
, order
);
715 * Go through the free lists for the given migratetype and remove
716 * the smallest available page from the freelists
718 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
721 unsigned int current_order
;
722 struct free_area
* area
;
725 /* Find a page of the appropriate size in the preferred list */
726 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
727 area
= &(zone
->free_area
[current_order
]);
728 if (list_empty(&area
->free_list
[migratetype
]))
731 page
= list_entry(area
->free_list
[migratetype
].next
,
733 list_del(&page
->lru
);
734 rmv_page_order(page
);
736 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
737 expand(zone
, page
, order
, current_order
, area
, migratetype
);
746 * This array describes the order lists are fallen back to when
747 * the free lists for the desirable migrate type are depleted
749 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
750 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
751 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
752 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
753 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
757 * Move the free pages in a range to the free lists of the requested type.
758 * Note that start_page and end_pages are not aligned on a pageblock
759 * boundary. If alignment is required, use move_freepages_block()
761 static int move_freepages(struct zone
*zone
,
762 struct page
*start_page
, struct page
*end_page
,
769 #ifndef CONFIG_HOLES_IN_ZONE
771 * page_zone is not safe to call in this context when
772 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
773 * anyway as we check zone boundaries in move_freepages_block().
774 * Remove at a later date when no bug reports exist related to
775 * grouping pages by mobility
777 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
780 for (page
= start_page
; page
<= end_page
;) {
781 /* Make sure we are not inadvertently changing nodes */
782 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
784 if (!pfn_valid_within(page_to_pfn(page
))) {
789 if (!PageBuddy(page
)) {
794 order
= page_order(page
);
795 list_del(&page
->lru
);
797 &zone
->free_area
[order
].free_list
[migratetype
]);
799 pages_moved
+= 1 << order
;
805 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
808 unsigned long start_pfn
, end_pfn
;
809 struct page
*start_page
, *end_page
;
811 start_pfn
= page_to_pfn(page
);
812 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
813 start_page
= pfn_to_page(start_pfn
);
814 end_page
= start_page
+ pageblock_nr_pages
- 1;
815 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
817 /* Do not cross zone boundaries */
818 if (start_pfn
< zone
->zone_start_pfn
)
820 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
823 return move_freepages(zone
, start_page
, end_page
, migratetype
);
826 /* Remove an element from the buddy allocator from the fallback list */
827 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
828 int start_migratetype
)
830 struct free_area
* area
;
835 /* Find the largest possible block of pages in the other list */
836 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
838 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
839 migratetype
= fallbacks
[start_migratetype
][i
];
841 /* MIGRATE_RESERVE handled later if necessary */
842 if (migratetype
== MIGRATE_RESERVE
)
845 area
= &(zone
->free_area
[current_order
]);
846 if (list_empty(&area
->free_list
[migratetype
]))
849 page
= list_entry(area
->free_list
[migratetype
].next
,
854 * If breaking a large block of pages, move all free
855 * pages to the preferred allocation list. If falling
856 * back for a reclaimable kernel allocation, be more
857 * agressive about taking ownership of free pages
859 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
860 start_migratetype
== MIGRATE_RECLAIMABLE
) {
862 pages
= move_freepages_block(zone
, page
,
865 /* Claim the whole block if over half of it is free */
866 if (pages
>= (1 << (pageblock_order
-1)))
867 set_pageblock_migratetype(page
,
870 migratetype
= start_migratetype
;
873 /* Remove the page from the freelists */
874 list_del(&page
->lru
);
875 rmv_page_order(page
);
876 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
879 if (current_order
== pageblock_order
)
880 set_pageblock_migratetype(page
,
883 expand(zone
, page
, order
, current_order
, area
, migratetype
);
888 /* Use MIGRATE_RESERVE rather than fail an allocation */
889 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
893 * Do the hard work of removing an element from the buddy allocator.
894 * Call me with the zone->lock already held.
896 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
901 page
= __rmqueue_smallest(zone
, order
, migratetype
);
904 page
= __rmqueue_fallback(zone
, order
, migratetype
);
910 * Obtain a specified number of elements from the buddy allocator, all under
911 * a single hold of the lock, for efficiency. Add them to the supplied list.
912 * Returns the number of new pages which were placed at *list.
914 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
915 unsigned long count
, struct list_head
*list
,
920 spin_lock(&zone
->lock
);
921 for (i
= 0; i
< count
; ++i
) {
922 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
923 if (unlikely(page
== NULL
))
927 * Split buddy pages returned by expand() are received here
928 * in physical page order. The page is added to the callers and
929 * list and the list head then moves forward. From the callers
930 * perspective, the linked list is ordered by page number in
931 * some conditions. This is useful for IO devices that can
932 * merge IO requests if the physical pages are ordered
935 list_add(&page
->lru
, list
);
936 set_page_private(page
, migratetype
);
939 spin_unlock(&zone
->lock
);
944 isolate_pcp_pages(int count
, struct list_head
*src
, struct list_head
*dst
)
947 struct page
*page
= list_last_entry(src
, struct page
, lru
);
948 list_move(&page
->lru
, dst
);
955 * Called from the vmstat counter updater to drain pagesets of this
956 * currently executing processor on remote nodes after they have
959 * Note that this function must be called with the thread pinned to
960 * a single processor.
962 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
964 LIST_HEAD(free_list
);
969 lock_cpu_pcp(&flags
, &this_cpu
);
970 if (pcp
->count
>= pcp
->batch
)
971 to_drain
= pcp
->batch
;
973 to_drain
= pcp
->count
;
974 isolate_pcp_pages(to_drain
, &pcp
->list
, &free_list
);
975 pcp
->count
-= to_drain
;
976 unlock_cpu_pcp(flags
, this_cpu
);
977 free_pages_bulk(zone
, &free_list
, 0);
982 * Drain pages of the indicated processor.
984 * The processor must either be the current processor and the
985 * thread pinned to the current processor or a processor that
988 static void drain_pages(unsigned int cpu
)
993 for_each_zone(zone
) {
994 struct per_cpu_pageset
*pset
;
995 struct per_cpu_pages
*pcp
;
996 LIST_HEAD(free_list
);
998 if (!populated_zone(zone
))
1001 __lock_cpu_pcp(&flags
, cpu
);
1002 pset
= zone_pcp(zone
, cpu
);
1004 unlock_cpu_pcp(flags
, cpu
);
1009 isolate_pcp_pages(pcp
->count
, &pcp
->list
, &free_list
);
1011 unlock_cpu_pcp(flags
, cpu
);
1012 free_pages_bulk(zone
, &free_list
, 0);
1017 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1019 void drain_local_pages(void *arg
)
1021 drain_pages(smp_processor_id());
1024 #ifdef CONFIG_PREEMPT_RT
1025 static void drain_local_pages_work(struct work_struct
*wrk
)
1027 drain_pages(smp_processor_id());
1032 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1034 void drain_all_pages(void)
1036 #ifdef CONFIG_PREEMPT_RT
1039 * For RT we can't use IPIs to run drain_local_pages, since
1040 * that code will call spin_locks that will now sleep.
1041 * But, schedule_on_each_cpu will call kzalloc, which will
1042 * call page_alloc which was what calls this.
1044 * Luckily, there's a condition to get here, and that is if
1045 * the order passed in to alloc_pages is greater than 0
1046 * (alloced more than a page size). The slabs only allocate
1047 * what is needed, and the allocation made by schedule_on_each_cpu
1048 * does an alloc of "sizeof(void *)*nr_cpu_ids".
1050 * So we can safely call schedule_on_each_cpu if that number
1051 * is less than a page. Otherwise don't bother. At least warn of
1054 * And yes, this is one big hack. Please fix ;-)
1056 if (sizeof(void *)*nr_cpu_ids
< PAGE_SIZE
)
1057 schedule_on_each_cpu(drain_local_pages_work
);
1061 printk(KERN_ERR
"Can't drain all CPUS due to possible recursion\n");
1064 drain_local_pages(NULL
);
1068 on_each_cpu(drain_local_pages
, NULL
, 1);
1072 #ifdef CONFIG_HIBERNATION
1074 void mark_free_pages(struct zone
*zone
)
1076 unsigned long pfn
, max_zone_pfn
;
1077 unsigned long flags
;
1079 struct list_head
*curr
;
1081 if (!zone
->spanned_pages
)
1084 spin_lock_irqsave(&zone
->lock
, flags
);
1086 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1087 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1088 if (pfn_valid(pfn
)) {
1089 struct page
*page
= pfn_to_page(pfn
);
1091 if (!swsusp_page_is_forbidden(page
))
1092 swsusp_unset_page_free(page
);
1095 for_each_migratetype_order(order
, t
) {
1096 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1099 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1100 for (i
= 0; i
< (1UL << order
); i
++)
1101 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1104 spin_unlock_irqrestore(&zone
->lock
, flags
);
1106 #endif /* CONFIG_PM */
1109 * Free a 0-order page
1111 static void free_hot_cold_page(struct page
*page
, int cold
)
1113 struct zone
*zone
= page_zone(page
);
1114 struct per_cpu_pageset
*pset
;
1115 struct per_cpu_pages
*pcp
;
1116 unsigned long flags
;
1119 kmemcheck_free_shadow(page
, 0);
1122 page
->mapping
= NULL
;
1123 if (free_pages_check(page
))
1126 if (!PageHighMem(page
)) {
1127 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1128 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1130 arch_free_page(page
, 0);
1131 kernel_map_pages(page
, 1, 0);
1133 pset
= get_zone_pcp(zone
, &flags
, &this_cpu
);
1136 count_vm_event(PGFREE
);
1139 list_add_tail(&page
->lru
, &pcp
->list
);
1141 list_add(&page
->lru
, &pcp
->list
);
1142 set_page_private(page
, get_pageblock_migratetype(page
));
1144 if (pcp
->count
>= pcp
->high
) {
1145 LIST_HEAD(free_list
);
1147 isolate_pcp_pages(pcp
->batch
, &pcp
->list
, &free_list
);
1148 pcp
->count
-= pcp
->batch
;
1149 put_zone_pcp(zone
, flags
, this_cpu
);
1150 free_pages_bulk(zone
, &free_list
, 0);
1152 put_zone_pcp(zone
, flags
, this_cpu
);
1155 void free_hot_page(struct page
*page
)
1157 free_hot_cold_page(page
, 0);
1160 void free_cold_page(struct page
*page
)
1162 free_hot_cold_page(page
, 1);
1166 * split_page takes a non-compound higher-order page, and splits it into
1167 * n (1<<order) sub-pages: page[0..n]
1168 * Each sub-page must be freed individually.
1170 * Note: this is probably too low level an operation for use in drivers.
1171 * Please consult with lkml before using this in your driver.
1173 void split_page(struct page
*page
, unsigned int order
)
1177 VM_BUG_ON(PageCompound(page
));
1178 VM_BUG_ON(!page_count(page
));
1180 #ifdef CONFIG_KMEMCHECK
1182 * Split shadow pages too, because free(page[0]) would
1183 * otherwise free the whole shadow.
1185 if (kmemcheck_page_is_tracked(page
))
1186 split_page(virt_to_page(page
[0].shadow
), order
);
1189 for (i
= 1; i
< (1 << order
); i
++)
1190 set_page_refcounted(page
+ i
);
1194 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1195 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1198 static struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1199 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1201 unsigned long flags
;
1203 int cold
= !!(gfp_flags
& __GFP_COLD
);
1204 struct per_cpu_pageset
*pset
;
1205 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1209 pset
= get_zone_pcp(zone
, &flags
, &this_cpu
);
1210 if (likely(order
== 0)) {
1211 struct per_cpu_pages
*pcp
= &pset
->pcp
;
1214 pcp
->count
= rmqueue_bulk(zone
, 0,
1215 pcp
->batch
, &pcp
->list
, migratetype
);
1216 if (unlikely(!pcp
->count
))
1220 /* Find a page of the appropriate migrate type */
1222 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1223 if (page_private(page
) == migratetype
)
1226 list_for_each_entry(page
, &pcp
->list
, lru
)
1227 if (page_private(page
) == migratetype
)
1231 /* Allocate more to the pcp list if necessary */
1232 if (unlikely(&page
->lru
== &pcp
->list
)) {
1233 pcp
->count
+= rmqueue_bulk(zone
, 0,
1234 pcp
->batch
, &pcp
->list
, migratetype
);
1235 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1238 list_del(&page
->lru
);
1241 spin_lock(&zone
->lock
);
1242 page
= __rmqueue(zone
, order
, migratetype
);
1243 spin_unlock(&zone
->lock
);
1248 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1249 zone_statistics(preferred_zone
, zone
);
1250 put_zone_pcp(zone
, flags
, this_cpu
);
1252 VM_BUG_ON(bad_range(zone
, page
));
1253 if (prep_new_page(page
, order
, gfp_flags
))
1258 put_zone_pcp(zone
, flags
, this_cpu
);
1262 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1263 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1264 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1265 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1266 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1267 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1268 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1270 #ifdef CONFIG_FAIL_PAGE_ALLOC
1272 static struct fail_page_alloc_attr
{
1273 struct fault_attr attr
;
1275 u32 ignore_gfp_highmem
;
1276 u32 ignore_gfp_wait
;
1279 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1281 struct dentry
*ignore_gfp_highmem_file
;
1282 struct dentry
*ignore_gfp_wait_file
;
1283 struct dentry
*min_order_file
;
1285 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1287 } fail_page_alloc
= {
1288 .attr
= FAULT_ATTR_INITIALIZER
,
1289 .ignore_gfp_wait
= 1,
1290 .ignore_gfp_highmem
= 1,
1294 static int __init
setup_fail_page_alloc(char *str
)
1296 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1298 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1300 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1302 if (order
< fail_page_alloc
.min_order
)
1304 if (gfp_mask
& __GFP_NOFAIL
)
1306 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1308 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1311 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1314 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1316 static int __init
fail_page_alloc_debugfs(void)
1318 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1322 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1326 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1328 fail_page_alloc
.ignore_gfp_wait_file
=
1329 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1330 &fail_page_alloc
.ignore_gfp_wait
);
1332 fail_page_alloc
.ignore_gfp_highmem_file
=
1333 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1334 &fail_page_alloc
.ignore_gfp_highmem
);
1335 fail_page_alloc
.min_order_file
=
1336 debugfs_create_u32("min-order", mode
, dir
,
1337 &fail_page_alloc
.min_order
);
1339 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1340 !fail_page_alloc
.ignore_gfp_highmem_file
||
1341 !fail_page_alloc
.min_order_file
) {
1343 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1344 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1345 debugfs_remove(fail_page_alloc
.min_order_file
);
1346 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1352 late_initcall(fail_page_alloc_debugfs
);
1354 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1356 #else /* CONFIG_FAIL_PAGE_ALLOC */
1358 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1363 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1366 * Return 1 if free pages are above 'mark'. This takes into account the order
1367 * of the allocation.
1369 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1370 int classzone_idx
, int alloc_flags
)
1372 /* free_pages my go negative - that's OK */
1374 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1377 if (alloc_flags
& ALLOC_HIGH
)
1379 if (alloc_flags
& ALLOC_HARDER
)
1382 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1384 for (o
= 0; o
< order
; o
++) {
1385 /* At the next order, this order's pages become unavailable */
1386 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1388 /* Require fewer higher order pages to be free */
1391 if (free_pages
<= min
)
1399 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1400 * skip over zones that are not allowed by the cpuset, or that have
1401 * been recently (in last second) found to be nearly full. See further
1402 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1403 * that have to skip over a lot of full or unallowed zones.
1405 * If the zonelist cache is present in the passed in zonelist, then
1406 * returns a pointer to the allowed node mask (either the current
1407 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1409 * If the zonelist cache is not available for this zonelist, does
1410 * nothing and returns NULL.
1412 * If the fullzones BITMAP in the zonelist cache is stale (more than
1413 * a second since last zap'd) then we zap it out (clear its bits.)
1415 * We hold off even calling zlc_setup, until after we've checked the
1416 * first zone in the zonelist, on the theory that most allocations will
1417 * be satisfied from that first zone, so best to examine that zone as
1418 * quickly as we can.
1420 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1422 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1423 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1425 zlc
= zonelist
->zlcache_ptr
;
1429 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1430 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1431 zlc
->last_full_zap
= jiffies
;
1434 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1435 &cpuset_current_mems_allowed
:
1436 &node_states
[N_HIGH_MEMORY
];
1437 return allowednodes
;
1441 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1442 * if it is worth looking at further for free memory:
1443 * 1) Check that the zone isn't thought to be full (doesn't have its
1444 * bit set in the zonelist_cache fullzones BITMAP).
1445 * 2) Check that the zones node (obtained from the zonelist_cache
1446 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1447 * Return true (non-zero) if zone is worth looking at further, or
1448 * else return false (zero) if it is not.
1450 * This check -ignores- the distinction between various watermarks,
1451 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1452 * found to be full for any variation of these watermarks, it will
1453 * be considered full for up to one second by all requests, unless
1454 * we are so low on memory on all allowed nodes that we are forced
1455 * into the second scan of the zonelist.
1457 * In the second scan we ignore this zonelist cache and exactly
1458 * apply the watermarks to all zones, even it is slower to do so.
1459 * We are low on memory in the second scan, and should leave no stone
1460 * unturned looking for a free page.
1462 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1463 nodemask_t
*allowednodes
)
1465 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1466 int i
; /* index of *z in zonelist zones */
1467 int n
; /* node that zone *z is on */
1469 zlc
= zonelist
->zlcache_ptr
;
1473 i
= z
- zonelist
->_zonerefs
;
1476 /* This zone is worth trying if it is allowed but not full */
1477 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1481 * Given 'z' scanning a zonelist, set the corresponding bit in
1482 * zlc->fullzones, so that subsequent attempts to allocate a page
1483 * from that zone don't waste time re-examining it.
1485 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1487 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1488 int i
; /* index of *z in zonelist zones */
1490 zlc
= zonelist
->zlcache_ptr
;
1494 i
= z
- zonelist
->_zonerefs
;
1496 set_bit(i
, zlc
->fullzones
);
1499 #else /* CONFIG_NUMA */
1501 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1506 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1507 nodemask_t
*allowednodes
)
1512 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1515 #endif /* CONFIG_NUMA */
1518 * get_page_from_freelist goes through the zonelist trying to allocate
1521 static struct page
*
1522 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1523 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
)
1526 struct page
*page
= NULL
;
1528 struct zone
*zone
, *preferred_zone
;
1529 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1530 int zlc_active
= 0; /* set if using zonelist_cache */
1531 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1533 (void)first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
,
1535 if (!preferred_zone
)
1538 classzone_idx
= zone_idx(preferred_zone
);
1542 * Scan zonelist, looking for a zone with enough free.
1543 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1545 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1546 high_zoneidx
, nodemask
) {
1547 if (NUMA_BUILD
&& zlc_active
&&
1548 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1550 if ((alloc_flags
& ALLOC_CPUSET
) &&
1551 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1554 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1556 if (alloc_flags
& ALLOC_WMARK_MIN
)
1557 mark
= zone
->pages_min
;
1558 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1559 mark
= zone
->pages_low
;
1561 mark
= zone
->pages_high
;
1562 if (!zone_watermark_ok(zone
, order
, mark
,
1563 classzone_idx
, alloc_flags
)) {
1564 if (!zone_reclaim_mode
||
1565 !zone_reclaim(zone
, gfp_mask
, order
))
1566 goto this_zone_full
;
1570 page
= buffered_rmqueue(preferred_zone
, zone
, order
, gfp_mask
);
1575 zlc_mark_zone_full(zonelist
, z
);
1577 if (NUMA_BUILD
&& !did_zlc_setup
) {
1578 /* we do zlc_setup after the first zone is tried */
1579 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1585 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1586 /* Disable zlc cache for second zonelist scan */
1594 * This is the 'heart' of the zoned buddy allocator.
1597 __alloc_pages_internal(gfp_t gfp_mask
, unsigned int order
,
1598 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1600 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1601 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1605 struct reclaim_state reclaim_state
;
1606 struct task_struct
*p
= current
;
1609 unsigned long did_some_progress
;
1610 unsigned long pages_reclaimed
= 0;
1612 lockdep_trace_alloc(gfp_mask
);
1614 might_sleep_if(wait
);
1616 if (should_fail_alloc_page(gfp_mask
, order
))
1620 z
= zonelist
->_zonerefs
; /* the list of zones suitable for gfp_mask */
1622 if (unlikely(!z
->zone
)) {
1624 * Happens if we have an empty zonelist as a result of
1625 * GFP_THISNODE being used on a memoryless node
1630 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1631 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1636 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1637 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1638 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1639 * using a larger set of nodes after it has established that the
1640 * allowed per node queues are empty and that nodes are
1643 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1646 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1647 wakeup_kswapd(zone
, order
);
1650 * OK, we're below the kswapd watermark and have kicked background
1651 * reclaim. Now things get more complex, so set up alloc_flags according
1652 * to how we want to proceed.
1654 * The caller may dip into page reserves a bit more if the caller
1655 * cannot run direct reclaim, or if the caller has realtime scheduling
1656 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1657 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1659 alloc_flags
= ALLOC_WMARK_MIN
;
1660 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1661 alloc_flags
|= ALLOC_HARDER
;
1662 if (gfp_mask
& __GFP_HIGH
)
1663 alloc_flags
|= ALLOC_HIGH
;
1665 alloc_flags
|= ALLOC_CPUSET
;
1668 * Go through the zonelist again. Let __GFP_HIGH and allocations
1669 * coming from realtime tasks go deeper into reserves.
1671 * This is the last chance, in general, before the goto nopage.
1672 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1673 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1675 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1676 high_zoneidx
, alloc_flags
);
1680 /* This allocation should allow future memory freeing. */
1683 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1684 && !in_interrupt()) {
1685 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1687 /* go through the zonelist yet again, ignoring mins */
1688 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1689 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
);
1692 if (gfp_mask
& __GFP_NOFAIL
) {
1693 congestion_wait(WRITE
, HZ
/50);
1700 /* Atomic allocations - we can't balance anything */
1706 /* We now go into synchronous reclaim */
1707 cpuset_memory_pressure_bump();
1709 * The task's cpuset might have expanded its set of allowable nodes
1711 cpuset_update_task_memory_state();
1712 p
->flags
|= PF_MEMALLOC
;
1714 lockdep_set_current_reclaim_state(gfp_mask
);
1715 reclaim_state
.reclaimed_slab
= 0;
1716 p
->reclaim_state
= &reclaim_state
;
1718 did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
);
1720 p
->reclaim_state
= NULL
;
1721 lockdep_clear_current_reclaim_state();
1722 p
->flags
&= ~PF_MEMALLOC
;
1729 if (likely(did_some_progress
)) {
1730 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1731 zonelist
, high_zoneidx
, alloc_flags
);
1734 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1735 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1736 schedule_timeout_uninterruptible(1);
1741 * Go through the zonelist yet one more time, keep
1742 * very high watermark here, this is only to catch
1743 * a parallel oom killing, we must fail if we're still
1744 * under heavy pressure.
1746 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1747 order
, zonelist
, high_zoneidx
,
1748 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1750 clear_zonelist_oom(zonelist
, gfp_mask
);
1754 /* The OOM killer will not help higher order allocs so fail */
1755 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1756 clear_zonelist_oom(zonelist
, gfp_mask
);
1760 out_of_memory(zonelist
, gfp_mask
, order
);
1761 clear_zonelist_oom(zonelist
, gfp_mask
);
1766 * Don't let big-order allocations loop unless the caller explicitly
1767 * requests that. Wait for some write requests to complete then retry.
1769 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1770 * means __GFP_NOFAIL, but that may not be true in other
1773 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1774 * specified, then we retry until we no longer reclaim any pages
1775 * (above), or we've reclaimed an order of pages at least as
1776 * large as the allocation's order. In both cases, if the
1777 * allocation still fails, we stop retrying.
1779 pages_reclaimed
+= did_some_progress
;
1781 if (!(gfp_mask
& __GFP_NORETRY
)) {
1782 if (order
<= PAGE_ALLOC_COSTLY_ORDER
) {
1785 if (gfp_mask
& __GFP_REPEAT
&&
1786 pages_reclaimed
< (1 << order
))
1789 if (gfp_mask
& __GFP_NOFAIL
)
1793 congestion_wait(WRITE
, HZ
/50);
1798 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1799 printk(KERN_WARNING
"%s: page allocation failure."
1800 " order:%d, mode:0x%x\n",
1801 p
->comm
, order
, gfp_mask
);
1807 if (kmemcheck_enabled
)
1808 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
1811 EXPORT_SYMBOL(__alloc_pages_internal
);
1814 * Common helper functions.
1816 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1819 page
= alloc_pages(gfp_mask
, order
);
1822 return (unsigned long) page_address(page
);
1825 EXPORT_SYMBOL(__get_free_pages
);
1827 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1832 * get_zeroed_page() returns a 32-bit address, which cannot represent
1835 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1837 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1839 return (unsigned long) page_address(page
);
1843 EXPORT_SYMBOL(get_zeroed_page
);
1845 void __pagevec_free(struct pagevec
*pvec
)
1847 int i
= pagevec_count(pvec
);
1850 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1853 void __free_pages(struct page
*page
, unsigned int order
)
1855 if (put_page_testzero(page
)) {
1857 free_hot_page(page
);
1859 __free_pages_ok(page
, order
);
1863 EXPORT_SYMBOL(__free_pages
);
1865 void free_pages(unsigned long addr
, unsigned int order
)
1868 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1869 __free_pages(virt_to_page((void *)addr
), order
);
1873 EXPORT_SYMBOL(free_pages
);
1876 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1877 * @size: the number of bytes to allocate
1878 * @gfp_mask: GFP flags for the allocation
1880 * This function is similar to alloc_pages(), except that it allocates the
1881 * minimum number of pages to satisfy the request. alloc_pages() can only
1882 * allocate memory in power-of-two pages.
1884 * This function is also limited by MAX_ORDER.
1886 * Memory allocated by this function must be released by free_pages_exact().
1888 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
1890 unsigned int order
= get_order(size
);
1893 addr
= __get_free_pages(gfp_mask
, order
);
1895 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
1896 unsigned long used
= addr
+ PAGE_ALIGN(size
);
1898 split_page(virt_to_page(addr
), order
);
1899 while (used
< alloc_end
) {
1905 return (void *)addr
;
1907 EXPORT_SYMBOL(alloc_pages_exact
);
1910 * free_pages_exact - release memory allocated via alloc_pages_exact()
1911 * @virt: the value returned by alloc_pages_exact.
1912 * @size: size of allocation, same value as passed to alloc_pages_exact().
1914 * Release the memory allocated by a previous call to alloc_pages_exact.
1916 void free_pages_exact(void *virt
, size_t size
)
1918 unsigned long addr
= (unsigned long)virt
;
1919 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1921 while (addr
< end
) {
1926 EXPORT_SYMBOL(free_pages_exact
);
1928 static unsigned int nr_free_zone_pages(int offset
)
1933 /* Just pick one node, since fallback list is circular */
1934 unsigned int sum
= 0;
1936 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
1938 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
1939 unsigned long size
= zone
->present_pages
;
1940 unsigned long high
= zone
->pages_high
;
1949 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1951 unsigned int nr_free_buffer_pages(void)
1953 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1955 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1958 * Amount of free RAM allocatable within all zones
1960 unsigned int nr_free_pagecache_pages(void)
1962 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1965 static inline void show_node(struct zone
*zone
)
1968 printk("Node %d ", zone_to_nid(zone
));
1971 void si_meminfo(struct sysinfo
*val
)
1973 val
->totalram
= totalram_pages
;
1975 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1976 val
->bufferram
= nr_blockdev_pages();
1977 val
->totalhigh
= totalhigh_pages
;
1978 val
->freehigh
= nr_free_highpages();
1979 val
->mem_unit
= PAGE_SIZE
;
1982 EXPORT_SYMBOL(si_meminfo
);
1985 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1987 pg_data_t
*pgdat
= NODE_DATA(nid
);
1989 val
->totalram
= pgdat
->node_present_pages
;
1990 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1991 #ifdef CONFIG_HIGHMEM
1992 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1993 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1999 val
->mem_unit
= PAGE_SIZE
;
2003 #define K(x) ((x) << (PAGE_SHIFT-10))
2006 * Show free area list (used inside shift_scroll-lock stuff)
2007 * We also calculate the percentage fragmentation. We do this by counting the
2008 * memory on each free list with the exception of the first item on the list.
2010 void show_free_areas(void)
2015 for_each_zone(zone
) {
2016 if (!populated_zone(zone
))
2020 printk("%s per-cpu:\n", zone
->name
);
2022 for_each_online_cpu(cpu
) {
2023 struct per_cpu_pageset
*pageset
;
2025 pageset
= zone_pcp(zone
, cpu
);
2027 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2028 cpu
, pageset
->pcp
.high
,
2029 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2033 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2034 " inactive_file:%lu"
2035 //TODO: check/adjust line lengths
2036 #ifdef CONFIG_UNEVICTABLE_LRU
2039 " dirty:%lu writeback:%lu unstable:%lu\n"
2040 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2041 global_page_state(NR_ACTIVE_ANON
),
2042 global_page_state(NR_ACTIVE_FILE
),
2043 global_page_state(NR_INACTIVE_ANON
),
2044 global_page_state(NR_INACTIVE_FILE
),
2045 #ifdef CONFIG_UNEVICTABLE_LRU
2046 global_page_state(NR_UNEVICTABLE
),
2048 global_page_state(NR_FILE_DIRTY
),
2049 global_page_state(NR_WRITEBACK
),
2050 global_page_state(NR_UNSTABLE_NFS
),
2051 global_page_state(NR_FREE_PAGES
),
2052 global_page_state(NR_SLAB_RECLAIMABLE
) +
2053 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2054 global_page_state(NR_FILE_MAPPED
),
2055 global_page_state(NR_PAGETABLE
),
2056 global_page_state(NR_BOUNCE
));
2058 for_each_zone(zone
) {
2061 if (!populated_zone(zone
))
2070 " active_anon:%lukB"
2071 " inactive_anon:%lukB"
2072 " active_file:%lukB"
2073 " inactive_file:%lukB"
2074 #ifdef CONFIG_UNEVICTABLE_LRU
2075 " unevictable:%lukB"
2078 " pages_scanned:%lu"
2079 " all_unreclaimable? %s"
2082 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2085 K(zone
->pages_high
),
2086 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2087 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2088 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2089 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2090 #ifdef CONFIG_UNEVICTABLE_LRU
2091 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2093 K(zone
->present_pages
),
2094 zone
->pages_scanned
,
2095 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
2097 printk("lowmem_reserve[]:");
2098 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2099 printk(" %lu", zone
->lowmem_reserve
[i
]);
2103 for_each_zone(zone
) {
2104 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2106 if (!populated_zone(zone
))
2110 printk("%s: ", zone
->name
);
2112 spin_lock_irqsave(&zone
->lock
, flags
);
2113 for (order
= 0; order
< MAX_ORDER
; order
++) {
2114 nr
[order
] = zone
->free_area
[order
].nr_free
;
2115 total
+= nr
[order
] << order
;
2117 spin_unlock_irqrestore(&zone
->lock
, flags
);
2118 for (order
= 0; order
< MAX_ORDER
; order
++)
2119 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2120 printk("= %lukB\n", K(total
));
2123 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2125 show_swap_cache_info();
2128 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2130 zoneref
->zone
= zone
;
2131 zoneref
->zone_idx
= zone_idx(zone
);
2135 * Builds allocation fallback zone lists.
2137 * Add all populated zones of a node to the zonelist.
2139 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2140 int nr_zones
, enum zone_type zone_type
)
2144 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2149 zone
= pgdat
->node_zones
+ zone_type
;
2150 if (populated_zone(zone
)) {
2151 zoneref_set_zone(zone
,
2152 &zonelist
->_zonerefs
[nr_zones
++]);
2153 check_highest_zone(zone_type
);
2156 } while (zone_type
);
2163 * 0 = automatic detection of better ordering.
2164 * 1 = order by ([node] distance, -zonetype)
2165 * 2 = order by (-zonetype, [node] distance)
2167 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2168 * the same zonelist. So only NUMA can configure this param.
2170 #define ZONELIST_ORDER_DEFAULT 0
2171 #define ZONELIST_ORDER_NODE 1
2172 #define ZONELIST_ORDER_ZONE 2
2174 /* zonelist order in the kernel.
2175 * set_zonelist_order() will set this to NODE or ZONE.
2177 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2178 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2182 /* The value user specified ....changed by config */
2183 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2184 /* string for sysctl */
2185 #define NUMA_ZONELIST_ORDER_LEN 16
2186 char numa_zonelist_order
[16] = "default";
2189 * interface for configure zonelist ordering.
2190 * command line option "numa_zonelist_order"
2191 * = "[dD]efault - default, automatic configuration.
2192 * = "[nN]ode - order by node locality, then by zone within node
2193 * = "[zZ]one - order by zone, then by locality within zone
2196 static int __parse_numa_zonelist_order(char *s
)
2198 if (*s
== 'd' || *s
== 'D') {
2199 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2200 } else if (*s
== 'n' || *s
== 'N') {
2201 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2202 } else if (*s
== 'z' || *s
== 'Z') {
2203 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2206 "Ignoring invalid numa_zonelist_order value: "
2213 static __init
int setup_numa_zonelist_order(char *s
)
2216 return __parse_numa_zonelist_order(s
);
2219 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2222 * sysctl handler for numa_zonelist_order
2224 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2225 struct file
*file
, void __user
*buffer
, size_t *length
,
2228 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2232 strncpy(saved_string
, (char*)table
->data
,
2233 NUMA_ZONELIST_ORDER_LEN
);
2234 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2238 int oldval
= user_zonelist_order
;
2239 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2241 * bogus value. restore saved string
2243 strncpy((char*)table
->data
, saved_string
,
2244 NUMA_ZONELIST_ORDER_LEN
);
2245 user_zonelist_order
= oldval
;
2246 } else if (oldval
!= user_zonelist_order
)
2247 build_all_zonelists();
2253 #define MAX_NODE_LOAD (num_online_nodes())
2254 static int node_load
[MAX_NUMNODES
];
2257 * find_next_best_node - find the next node that should appear in a given node's fallback list
2258 * @node: node whose fallback list we're appending
2259 * @used_node_mask: nodemask_t of already used nodes
2261 * We use a number of factors to determine which is the next node that should
2262 * appear on a given node's fallback list. The node should not have appeared
2263 * already in @node's fallback list, and it should be the next closest node
2264 * according to the distance array (which contains arbitrary distance values
2265 * from each node to each node in the system), and should also prefer nodes
2266 * with no CPUs, since presumably they'll have very little allocation pressure
2267 * on them otherwise.
2268 * It returns -1 if no node is found.
2270 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2273 int min_val
= INT_MAX
;
2275 const struct cpumask
*tmp
= cpumask_of_node(0);
2277 /* Use the local node if we haven't already */
2278 if (!node_isset(node
, *used_node_mask
)) {
2279 node_set(node
, *used_node_mask
);
2283 for_each_node_state(n
, N_HIGH_MEMORY
) {
2285 /* Don't want a node to appear more than once */
2286 if (node_isset(n
, *used_node_mask
))
2289 /* Use the distance array to find the distance */
2290 val
= node_distance(node
, n
);
2292 /* Penalize nodes under us ("prefer the next node") */
2295 /* Give preference to headless and unused nodes */
2296 tmp
= cpumask_of_node(n
);
2297 if (!cpumask_empty(tmp
))
2298 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2300 /* Slight preference for less loaded node */
2301 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2302 val
+= node_load
[n
];
2304 if (val
< min_val
) {
2311 node_set(best_node
, *used_node_mask
);
2318 * Build zonelists ordered by node and zones within node.
2319 * This results in maximum locality--normal zone overflows into local
2320 * DMA zone, if any--but risks exhausting DMA zone.
2322 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2325 struct zonelist
*zonelist
;
2327 zonelist
= &pgdat
->node_zonelists
[0];
2328 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2330 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2332 zonelist
->_zonerefs
[j
].zone
= NULL
;
2333 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2337 * Build gfp_thisnode zonelists
2339 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2342 struct zonelist
*zonelist
;
2344 zonelist
= &pgdat
->node_zonelists
[1];
2345 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2346 zonelist
->_zonerefs
[j
].zone
= NULL
;
2347 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2351 * Build zonelists ordered by zone and nodes within zones.
2352 * This results in conserving DMA zone[s] until all Normal memory is
2353 * exhausted, but results in overflowing to remote node while memory
2354 * may still exist in local DMA zone.
2356 static int node_order
[MAX_NUMNODES
];
2358 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2361 int zone_type
; /* needs to be signed */
2363 struct zonelist
*zonelist
;
2365 zonelist
= &pgdat
->node_zonelists
[0];
2367 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2368 for (j
= 0; j
< nr_nodes
; j
++) {
2369 node
= node_order
[j
];
2370 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2371 if (populated_zone(z
)) {
2373 &zonelist
->_zonerefs
[pos
++]);
2374 check_highest_zone(zone_type
);
2378 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2379 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2382 static int default_zonelist_order(void)
2385 unsigned long low_kmem_size
,total_size
;
2389 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2390 * If they are really small and used heavily, the system can fall
2391 * into OOM very easily.
2392 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2394 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2397 for_each_online_node(nid
) {
2398 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2399 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2400 if (populated_zone(z
)) {
2401 if (zone_type
< ZONE_NORMAL
)
2402 low_kmem_size
+= z
->present_pages
;
2403 total_size
+= z
->present_pages
;
2407 if (!low_kmem_size
|| /* there are no DMA area. */
2408 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2409 return ZONELIST_ORDER_NODE
;
2411 * look into each node's config.
2412 * If there is a node whose DMA/DMA32 memory is very big area on
2413 * local memory, NODE_ORDER may be suitable.
2415 average_size
= total_size
/
2416 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2417 for_each_online_node(nid
) {
2420 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2421 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2422 if (populated_zone(z
)) {
2423 if (zone_type
< ZONE_NORMAL
)
2424 low_kmem_size
+= z
->present_pages
;
2425 total_size
+= z
->present_pages
;
2428 if (low_kmem_size
&&
2429 total_size
> average_size
&& /* ignore small node */
2430 low_kmem_size
> total_size
* 70/100)
2431 return ZONELIST_ORDER_NODE
;
2433 return ZONELIST_ORDER_ZONE
;
2436 static void set_zonelist_order(void)
2438 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2439 current_zonelist_order
= default_zonelist_order();
2441 current_zonelist_order
= user_zonelist_order
;
2444 static void build_zonelists(pg_data_t
*pgdat
)
2448 nodemask_t used_mask
;
2449 int local_node
, prev_node
;
2450 struct zonelist
*zonelist
;
2451 int order
= current_zonelist_order
;
2453 /* initialize zonelists */
2454 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2455 zonelist
= pgdat
->node_zonelists
+ i
;
2456 zonelist
->_zonerefs
[0].zone
= NULL
;
2457 zonelist
->_zonerefs
[0].zone_idx
= 0;
2460 /* NUMA-aware ordering of nodes */
2461 local_node
= pgdat
->node_id
;
2462 load
= num_online_nodes();
2463 prev_node
= local_node
;
2464 nodes_clear(used_mask
);
2466 memset(node_load
, 0, sizeof(node_load
));
2467 memset(node_order
, 0, sizeof(node_order
));
2470 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2471 int distance
= node_distance(local_node
, node
);
2474 * If another node is sufficiently far away then it is better
2475 * to reclaim pages in a zone before going off node.
2477 if (distance
> RECLAIM_DISTANCE
)
2478 zone_reclaim_mode
= 1;
2481 * We don't want to pressure a particular node.
2482 * So adding penalty to the first node in same
2483 * distance group to make it round-robin.
2485 if (distance
!= node_distance(local_node
, prev_node
))
2486 node_load
[node
] = load
;
2490 if (order
== ZONELIST_ORDER_NODE
)
2491 build_zonelists_in_node_order(pgdat
, node
);
2493 node_order
[j
++] = node
; /* remember order */
2496 if (order
== ZONELIST_ORDER_ZONE
) {
2497 /* calculate node order -- i.e., DMA last! */
2498 build_zonelists_in_zone_order(pgdat
, j
);
2501 build_thisnode_zonelists(pgdat
);
2504 /* Construct the zonelist performance cache - see further mmzone.h */
2505 static void build_zonelist_cache(pg_data_t
*pgdat
)
2507 struct zonelist
*zonelist
;
2508 struct zonelist_cache
*zlc
;
2511 zonelist
= &pgdat
->node_zonelists
[0];
2512 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2513 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2514 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2515 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2519 #else /* CONFIG_NUMA */
2521 static void set_zonelist_order(void)
2523 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2526 static void build_zonelists(pg_data_t
*pgdat
)
2528 int node
, local_node
;
2530 struct zonelist
*zonelist
;
2532 local_node
= pgdat
->node_id
;
2534 zonelist
= &pgdat
->node_zonelists
[0];
2535 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2538 * Now we build the zonelist so that it contains the zones
2539 * of all the other nodes.
2540 * We don't want to pressure a particular node, so when
2541 * building the zones for node N, we make sure that the
2542 * zones coming right after the local ones are those from
2543 * node N+1 (modulo N)
2545 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2546 if (!node_online(node
))
2548 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2551 for (node
= 0; node
< local_node
; node
++) {
2552 if (!node_online(node
))
2554 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2558 zonelist
->_zonerefs
[j
].zone
= NULL
;
2559 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2562 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2563 static void build_zonelist_cache(pg_data_t
*pgdat
)
2565 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2568 #endif /* CONFIG_NUMA */
2570 /* return values int ....just for stop_machine() */
2571 static int __build_all_zonelists(void *dummy
)
2575 for_each_online_node(nid
) {
2576 pg_data_t
*pgdat
= NODE_DATA(nid
);
2578 build_zonelists(pgdat
);
2579 build_zonelist_cache(pgdat
);
2584 void build_all_zonelists(void)
2586 set_zonelist_order();
2588 if (system_state
== SYSTEM_BOOTING
) {
2589 __build_all_zonelists(NULL
);
2590 mminit_verify_zonelist();
2591 cpuset_init_current_mems_allowed();
2593 /* we have to stop all cpus to guarantee there is no user
2595 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2596 /* cpuset refresh routine should be here */
2598 vm_total_pages
= nr_free_pagecache_pages();
2600 * Disable grouping by mobility if the number of pages in the
2601 * system is too low to allow the mechanism to work. It would be
2602 * more accurate, but expensive to check per-zone. This check is
2603 * made on memory-hotadd so a system can start with mobility
2604 * disabled and enable it later
2606 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2607 page_group_by_mobility_disabled
= 1;
2609 page_group_by_mobility_disabled
= 0;
2611 printk("Built %i zonelists in %s order, mobility grouping %s. "
2612 "Total pages: %ld\n",
2614 zonelist_order_name
[current_zonelist_order
],
2615 page_group_by_mobility_disabled
? "off" : "on",
2618 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2623 * Helper functions to size the waitqueue hash table.
2624 * Essentially these want to choose hash table sizes sufficiently
2625 * large so that collisions trying to wait on pages are rare.
2626 * But in fact, the number of active page waitqueues on typical
2627 * systems is ridiculously low, less than 200. So this is even
2628 * conservative, even though it seems large.
2630 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2631 * waitqueues, i.e. the size of the waitq table given the number of pages.
2633 #define PAGES_PER_WAITQUEUE 256
2635 #ifndef CONFIG_MEMORY_HOTPLUG
2636 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2638 unsigned long size
= 1;
2640 pages
/= PAGES_PER_WAITQUEUE
;
2642 while (size
< pages
)
2646 * Once we have dozens or even hundreds of threads sleeping
2647 * on IO we've got bigger problems than wait queue collision.
2648 * Limit the size of the wait table to a reasonable size.
2650 size
= min(size
, 4096UL);
2652 return max(size
, 4UL);
2656 * A zone's size might be changed by hot-add, so it is not possible to determine
2657 * a suitable size for its wait_table. So we use the maximum size now.
2659 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2661 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2662 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2663 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2665 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2666 * or more by the traditional way. (See above). It equals:
2668 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2669 * ia64(16K page size) : = ( 8G + 4M)byte.
2670 * powerpc (64K page size) : = (32G +16M)byte.
2672 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2679 * This is an integer logarithm so that shifts can be used later
2680 * to extract the more random high bits from the multiplicative
2681 * hash function before the remainder is taken.
2683 static inline unsigned long wait_table_bits(unsigned long size
)
2688 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2691 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2692 * of blocks reserved is based on zone->pages_min. The memory within the
2693 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2694 * higher will lead to a bigger reserve which will get freed as contiguous
2695 * blocks as reclaim kicks in
2697 static void setup_zone_migrate_reserve(struct zone
*zone
)
2699 unsigned long start_pfn
, pfn
, end_pfn
;
2701 unsigned long reserve
, block_migratetype
;
2703 /* Get the start pfn, end pfn and the number of blocks to reserve */
2704 start_pfn
= zone
->zone_start_pfn
;
2705 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2706 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2709 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2710 if (!pfn_valid(pfn
))
2712 page
= pfn_to_page(pfn
);
2714 /* Watch out for overlapping nodes */
2715 if (page_to_nid(page
) != zone_to_nid(zone
))
2718 /* Blocks with reserved pages will never free, skip them. */
2719 if (PageReserved(page
))
2722 block_migratetype
= get_pageblock_migratetype(page
);
2724 /* If this block is reserved, account for it */
2725 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2730 /* Suitable for reserving if this block is movable */
2731 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2732 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2733 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2739 * If the reserve is met and this is a previous reserved block,
2742 if (block_migratetype
== MIGRATE_RESERVE
) {
2743 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2744 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2750 * Initially all pages are reserved - free ones are freed
2751 * up by free_all_bootmem() once the early boot process is
2752 * done. Non-atomic initialization, single-pass.
2754 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2755 unsigned long start_pfn
, enum memmap_context context
)
2758 unsigned long end_pfn
= start_pfn
+ size
;
2762 if (highest_memmap_pfn
< end_pfn
- 1)
2763 highest_memmap_pfn
= end_pfn
- 1;
2765 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2766 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2768 * There can be holes in boot-time mem_map[]s
2769 * handed to this function. They do not
2770 * exist on hotplugged memory.
2772 if (context
== MEMMAP_EARLY
) {
2773 if (!early_pfn_valid(pfn
))
2775 if (!early_pfn_in_nid(pfn
, nid
))
2778 page
= pfn_to_page(pfn
);
2779 set_page_links(page
, zone
, nid
, pfn
);
2780 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2781 init_page_count(page
);
2782 reset_page_mapcount(page
);
2783 SetPageReserved(page
);
2785 * Mark the block movable so that blocks are reserved for
2786 * movable at startup. This will force kernel allocations
2787 * to reserve their blocks rather than leaking throughout
2788 * the address space during boot when many long-lived
2789 * kernel allocations are made. Later some blocks near
2790 * the start are marked MIGRATE_RESERVE by
2791 * setup_zone_migrate_reserve()
2793 * bitmap is created for zone's valid pfn range. but memmap
2794 * can be created for invalid pages (for alignment)
2795 * check here not to call set_pageblock_migratetype() against
2798 if ((z
->zone_start_pfn
<= pfn
)
2799 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2800 && !(pfn
& (pageblock_nr_pages
- 1)))
2801 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2803 INIT_LIST_HEAD(&page
->lru
);
2804 #ifdef WANT_PAGE_VIRTUAL
2805 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2806 if (!is_highmem_idx(zone
))
2807 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2812 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2815 for_each_migratetype_order(order
, t
) {
2816 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2817 zone
->free_area
[order
].nr_free
= 0;
2821 #ifndef __HAVE_ARCH_MEMMAP_INIT
2822 #define memmap_init(size, nid, zone, start_pfn) \
2823 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2826 static int zone_batchsize(struct zone
*zone
)
2831 * The per-cpu-pages pools are set to around 1000th of the
2832 * size of the zone. But no more than 1/2 of a meg.
2834 * OK, so we don't know how big the cache is. So guess.
2836 batch
= zone
->present_pages
/ 1024;
2837 if (batch
* PAGE_SIZE
> 512 * 1024)
2838 batch
= (512 * 1024) / PAGE_SIZE
;
2839 batch
/= 4; /* We effectively *= 4 below */
2844 * Clamp the batch to a 2^n - 1 value. Having a power
2845 * of 2 value was found to be more likely to have
2846 * suboptimal cache aliasing properties in some cases.
2848 * For example if 2 tasks are alternately allocating
2849 * batches of pages, one task can end up with a lot
2850 * of pages of one half of the possible page colors
2851 * and the other with pages of the other colors.
2853 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2858 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2860 struct per_cpu_pages
*pcp
;
2862 memset(p
, 0, sizeof(*p
));
2866 pcp
->high
= 6 * batch
;
2867 pcp
->batch
= max(1UL, 1 * batch
);
2868 INIT_LIST_HEAD(&pcp
->list
);
2872 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2873 * to the value high for the pageset p.
2876 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2879 struct per_cpu_pages
*pcp
;
2883 pcp
->batch
= max(1UL, high
/4);
2884 if ((high
/4) > (PAGE_SHIFT
* 8))
2885 pcp
->batch
= PAGE_SHIFT
* 8;
2891 * Boot pageset table. One per cpu which is going to be used for all
2892 * zones and all nodes. The parameters will be set in such a way
2893 * that an item put on a list will immediately be handed over to
2894 * the buddy list. This is safe since pageset manipulation is done
2895 * with interrupts disabled.
2897 * Some NUMA counter updates may also be caught by the boot pagesets.
2899 * The boot_pagesets must be kept even after bootup is complete for
2900 * unused processors and/or zones. They do play a role for bootstrapping
2901 * hotplugged processors.
2903 * zoneinfo_show() and maybe other functions do
2904 * not check if the processor is online before following the pageset pointer.
2905 * Other parts of the kernel may not check if the zone is available.
2907 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2910 * Dynamically allocate memory for the
2911 * per cpu pageset array in struct zone.
2913 static int __cpuinit
process_zones(int cpu
)
2915 struct zone
*zone
, *dzone
;
2916 int node
= cpu_to_node(cpu
);
2918 node_set_state(node
, N_CPU
); /* this node has a cpu */
2920 for_each_zone(zone
) {
2922 if (!populated_zone(zone
))
2925 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2927 if (!zone_pcp(zone
, cpu
))
2930 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2932 if (percpu_pagelist_fraction
)
2933 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2934 (zone
->present_pages
/ percpu_pagelist_fraction
));
2939 for_each_zone(dzone
) {
2940 if (!populated_zone(dzone
))
2944 kfree(zone_pcp(dzone
, cpu
));
2945 zone_pcp(dzone
, cpu
) = &boot_pageset
[cpu
];
2950 static inline void free_zone_pagesets(int cpu
)
2954 for_each_zone(zone
) {
2955 unsigned long flags
;
2956 struct per_cpu_pageset
*pset
;
2959 * On PREEMPT_RT the allocator is preemptible, therefore
2960 * kstopmachine can preempt a process in the middle of an
2961 * allocation, freeing the pset underneath such a process
2962 * isn't a good idea.
2964 * Take the per-cpu pcp lock to allow the task to complete
2965 * before we free it. New tasks will be held off by the
2966 * cpu_online() check in get_cpu_var_locked().
2968 __lock_cpu_pcp(&flags
, cpu
);
2969 pset
= zone_pcp(zone
, cpu
);
2970 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2971 unlock_cpu_pcp(flags
, cpu
);
2973 /* Free per_cpu_pageset if it is slab allocated */
2974 if (pset
!= &boot_pageset
[cpu
])
2979 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2980 unsigned long action
,
2983 int cpu
= (long)hcpu
;
2984 int ret
= NOTIFY_OK
;
2987 case CPU_UP_PREPARE
:
2988 case CPU_UP_PREPARE_FROZEN
:
2989 if (process_zones(cpu
))
2992 case CPU_UP_CANCELED
:
2993 case CPU_UP_CANCELED_FROZEN
:
2995 case CPU_DEAD_FROZEN
:
2996 free_zone_pagesets(cpu
);
3004 static struct notifier_block __cpuinitdata pageset_notifier
=
3005 { &pageset_cpuup_callback
, NULL
, 0 };
3007 void __init
setup_per_cpu_pageset(void)
3011 /* Initialize per_cpu_pageset for cpu 0.
3012 * A cpuup callback will do this for every cpu
3013 * as it comes online
3015 err
= process_zones(smp_processor_id());
3017 register_cpu_notifier(&pageset_notifier
);
3022 static noinline __init_refok
3023 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3026 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3030 * The per-page waitqueue mechanism uses hashed waitqueues
3033 zone
->wait_table_hash_nr_entries
=
3034 wait_table_hash_nr_entries(zone_size_pages
);
3035 zone
->wait_table_bits
=
3036 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3037 alloc_size
= zone
->wait_table_hash_nr_entries
3038 * sizeof(wait_queue_head_t
);
3040 if (!slab_is_available()) {
3041 zone
->wait_table
= (wait_queue_head_t
*)
3042 alloc_bootmem_node(pgdat
, alloc_size
);
3045 * This case means that a zone whose size was 0 gets new memory
3046 * via memory hot-add.
3047 * But it may be the case that a new node was hot-added. In
3048 * this case vmalloc() will not be able to use this new node's
3049 * memory - this wait_table must be initialized to use this new
3050 * node itself as well.
3051 * To use this new node's memory, further consideration will be
3054 zone
->wait_table
= vmalloc(alloc_size
);
3056 if (!zone
->wait_table
)
3059 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3060 init_waitqueue_head(zone
->wait_table
+ i
);
3065 static __meminit
void zone_pcp_init(struct zone
*zone
)
3068 unsigned long batch
= zone_batchsize(zone
);
3070 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3072 /* Early boot. Slab allocator not functional yet */
3073 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3074 setup_pageset(&boot_pageset
[cpu
],0);
3076 setup_pageset(zone_pcp(zone
,cpu
), batch
);
3079 if (zone
->present_pages
)
3080 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
3081 zone
->name
, zone
->present_pages
, batch
);
3084 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3085 unsigned long zone_start_pfn
,
3087 enum memmap_context context
)
3089 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3091 ret
= zone_wait_table_init(zone
, size
);
3094 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3096 zone
->zone_start_pfn
= zone_start_pfn
;
3098 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3099 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3101 (unsigned long)zone_idx(zone
),
3102 zone_start_pfn
, (zone_start_pfn
+ size
));
3104 zone_init_free_lists(zone
);
3109 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3111 * Basic iterator support. Return the first range of PFNs for a node
3112 * Note: nid == MAX_NUMNODES returns first region regardless of node
3114 static int __meminit
first_active_region_index_in_nid(int nid
)
3118 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3119 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3126 * Basic iterator support. Return the next active range of PFNs for a node
3127 * Note: nid == MAX_NUMNODES returns next region regardless of node
3129 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3131 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3132 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3138 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3140 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3141 * Architectures may implement their own version but if add_active_range()
3142 * was used and there are no special requirements, this is a convenient
3145 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3149 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3150 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3151 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3153 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3154 return early_node_map
[i
].nid
;
3156 /* This is a memory hole */
3159 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3161 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3165 nid
= __early_pfn_to_nid(pfn
);
3168 /* just returns 0 */
3172 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3173 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3177 nid
= __early_pfn_to_nid(pfn
);
3178 if (nid
>= 0 && nid
!= node
)
3184 /* Basic iterator support to walk early_node_map[] */
3185 #define for_each_active_range_index_in_nid(i, nid) \
3186 for (i = first_active_region_index_in_nid(nid); i != -1; \
3187 i = next_active_region_index_in_nid(i, nid))
3190 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3191 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3192 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3194 * If an architecture guarantees that all ranges registered with
3195 * add_active_ranges() contain no holes and may be freed, this
3196 * this function may be used instead of calling free_bootmem() manually.
3198 void __init
free_bootmem_with_active_regions(int nid
,
3199 unsigned long max_low_pfn
)
3203 for_each_active_range_index_in_nid(i
, nid
) {
3204 unsigned long size_pages
= 0;
3205 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3207 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3210 if (end_pfn
> max_low_pfn
)
3211 end_pfn
= max_low_pfn
;
3213 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3214 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3215 PFN_PHYS(early_node_map
[i
].start_pfn
),
3216 size_pages
<< PAGE_SHIFT
);
3220 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3225 for_each_active_range_index_in_nid(i
, nid
) {
3226 ret
= work_fn(early_node_map
[i
].start_pfn
,
3227 early_node_map
[i
].end_pfn
, data
);
3233 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3234 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3236 * If an architecture guarantees that all ranges registered with
3237 * add_active_ranges() contain no holes and may be freed, this
3238 * function may be used instead of calling memory_present() manually.
3240 void __init
sparse_memory_present_with_active_regions(int nid
)
3244 for_each_active_range_index_in_nid(i
, nid
)
3245 memory_present(early_node_map
[i
].nid
,
3246 early_node_map
[i
].start_pfn
,
3247 early_node_map
[i
].end_pfn
);
3251 * push_node_boundaries - Push node boundaries to at least the requested boundary
3252 * @nid: The nid of the node to push the boundary for
3253 * @start_pfn: The start pfn of the node
3254 * @end_pfn: The end pfn of the node
3256 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3257 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3258 * be hotplugged even though no physical memory exists. This function allows
3259 * an arch to push out the node boundaries so mem_map is allocated that can
3262 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3263 void __init
push_node_boundaries(unsigned int nid
,
3264 unsigned long start_pfn
, unsigned long end_pfn
)
3266 mminit_dprintk(MMINIT_TRACE
, "zoneboundary",
3267 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3268 nid
, start_pfn
, end_pfn
);
3270 /* Initialise the boundary for this node if necessary */
3271 if (node_boundary_end_pfn
[nid
] == 0)
3272 node_boundary_start_pfn
[nid
] = -1UL;
3274 /* Update the boundaries */
3275 if (node_boundary_start_pfn
[nid
] > start_pfn
)
3276 node_boundary_start_pfn
[nid
] = start_pfn
;
3277 if (node_boundary_end_pfn
[nid
] < end_pfn
)
3278 node_boundary_end_pfn
[nid
] = end_pfn
;
3281 /* If necessary, push the node boundary out for reserve hotadd */
3282 static void __meminit
account_node_boundary(unsigned int nid
,
3283 unsigned long *start_pfn
, unsigned long *end_pfn
)
3285 mminit_dprintk(MMINIT_TRACE
, "zoneboundary",
3286 "Entering account_node_boundary(%u, %lu, %lu)\n",
3287 nid
, *start_pfn
, *end_pfn
);
3289 /* Return if boundary information has not been provided */
3290 if (node_boundary_end_pfn
[nid
] == 0)
3293 /* Check the boundaries and update if necessary */
3294 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
3295 *start_pfn
= node_boundary_start_pfn
[nid
];
3296 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
3297 *end_pfn
= node_boundary_end_pfn
[nid
];
3300 void __init
push_node_boundaries(unsigned int nid
,
3301 unsigned long start_pfn
, unsigned long end_pfn
) {}
3303 static void __meminit
account_node_boundary(unsigned int nid
,
3304 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3309 * get_pfn_range_for_nid - Return the start and end page frames for a node
3310 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3311 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3312 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3314 * It returns the start and end page frame of a node based on information
3315 * provided by an arch calling add_active_range(). If called for a node
3316 * with no available memory, a warning is printed and the start and end
3319 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3320 unsigned long *start_pfn
, unsigned long *end_pfn
)
3326 for_each_active_range_index_in_nid(i
, nid
) {
3327 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3328 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3331 if (*start_pfn
== -1UL)
3334 /* Push the node boundaries out if requested */
3335 account_node_boundary(nid
, start_pfn
, end_pfn
);
3339 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3340 * assumption is made that zones within a node are ordered in monotonic
3341 * increasing memory addresses so that the "highest" populated zone is used
3343 static void __init
find_usable_zone_for_movable(void)
3346 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3347 if (zone_index
== ZONE_MOVABLE
)
3350 if (arch_zone_highest_possible_pfn
[zone_index
] >
3351 arch_zone_lowest_possible_pfn
[zone_index
])
3355 VM_BUG_ON(zone_index
== -1);
3356 movable_zone
= zone_index
;
3360 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3361 * because it is sized independant of architecture. Unlike the other zones,
3362 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3363 * in each node depending on the size of each node and how evenly kernelcore
3364 * is distributed. This helper function adjusts the zone ranges
3365 * provided by the architecture for a given node by using the end of the
3366 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3367 * zones within a node are in order of monotonic increases memory addresses
3369 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3370 unsigned long zone_type
,
3371 unsigned long node_start_pfn
,
3372 unsigned long node_end_pfn
,
3373 unsigned long *zone_start_pfn
,
3374 unsigned long *zone_end_pfn
)
3376 /* Only adjust if ZONE_MOVABLE is on this node */
3377 if (zone_movable_pfn
[nid
]) {
3378 /* Size ZONE_MOVABLE */
3379 if (zone_type
== ZONE_MOVABLE
) {
3380 *zone_start_pfn
= zone_movable_pfn
[nid
];
3381 *zone_end_pfn
= min(node_end_pfn
,
3382 arch_zone_highest_possible_pfn
[movable_zone
]);
3384 /* Adjust for ZONE_MOVABLE starting within this range */
3385 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3386 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3387 *zone_end_pfn
= zone_movable_pfn
[nid
];
3389 /* Check if this whole range is within ZONE_MOVABLE */
3390 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3391 *zone_start_pfn
= *zone_end_pfn
;
3396 * Return the number of pages a zone spans in a node, including holes
3397 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3399 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3400 unsigned long zone_type
,
3401 unsigned long *ignored
)
3403 unsigned long node_start_pfn
, node_end_pfn
;
3404 unsigned long zone_start_pfn
, zone_end_pfn
;
3406 /* Get the start and end of the node and zone */
3407 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3408 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3409 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3410 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3411 node_start_pfn
, node_end_pfn
,
3412 &zone_start_pfn
, &zone_end_pfn
);
3414 /* Check that this node has pages within the zone's required range */
3415 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3418 /* Move the zone boundaries inside the node if necessary */
3419 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3420 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3422 /* Return the spanned pages */
3423 return zone_end_pfn
- zone_start_pfn
;
3427 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3428 * then all holes in the requested range will be accounted for.
3430 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3431 unsigned long range_start_pfn
,
3432 unsigned long range_end_pfn
)
3435 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3436 unsigned long start_pfn
;
3438 /* Find the end_pfn of the first active range of pfns in the node */
3439 i
= first_active_region_index_in_nid(nid
);
3443 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3445 /* Account for ranges before physical memory on this node */
3446 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3447 hole_pages
= prev_end_pfn
- range_start_pfn
;
3449 /* Find all holes for the zone within the node */
3450 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3452 /* No need to continue if prev_end_pfn is outside the zone */
3453 if (prev_end_pfn
>= range_end_pfn
)
3456 /* Make sure the end of the zone is not within the hole */
3457 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3458 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3460 /* Update the hole size cound and move on */
3461 if (start_pfn
> range_start_pfn
) {
3462 BUG_ON(prev_end_pfn
> start_pfn
);
3463 hole_pages
+= start_pfn
- prev_end_pfn
;
3465 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3468 /* Account for ranges past physical memory on this node */
3469 if (range_end_pfn
> prev_end_pfn
)
3470 hole_pages
+= range_end_pfn
-
3471 max(range_start_pfn
, prev_end_pfn
);
3477 * absent_pages_in_range - Return number of page frames in holes within a range
3478 * @start_pfn: The start PFN to start searching for holes
3479 * @end_pfn: The end PFN to stop searching for holes
3481 * It returns the number of pages frames in memory holes within a range.
3483 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3484 unsigned long end_pfn
)
3486 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3489 /* Return the number of page frames in holes in a zone on a node */
3490 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3491 unsigned long zone_type
,
3492 unsigned long *ignored
)
3494 unsigned long node_start_pfn
, node_end_pfn
;
3495 unsigned long zone_start_pfn
, zone_end_pfn
;
3497 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3498 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3500 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3503 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3504 node_start_pfn
, node_end_pfn
,
3505 &zone_start_pfn
, &zone_end_pfn
);
3506 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3510 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3511 unsigned long zone_type
,
3512 unsigned long *zones_size
)
3514 return zones_size
[zone_type
];
3517 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3518 unsigned long zone_type
,
3519 unsigned long *zholes_size
)
3524 return zholes_size
[zone_type
];
3529 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3530 unsigned long *zones_size
, unsigned long *zholes_size
)
3532 unsigned long realtotalpages
, totalpages
= 0;
3535 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3536 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3538 pgdat
->node_spanned_pages
= totalpages
;
3540 realtotalpages
= totalpages
;
3541 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3543 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3545 pgdat
->node_present_pages
= realtotalpages
;
3546 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3550 #ifndef CONFIG_SPARSEMEM
3552 * Calculate the size of the zone->blockflags rounded to an unsigned long
3553 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3554 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3555 * round what is now in bits to nearest long in bits, then return it in
3558 static unsigned long __init
usemap_size(unsigned long zonesize
)
3560 unsigned long usemapsize
;
3562 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3563 usemapsize
= usemapsize
>> pageblock_order
;
3564 usemapsize
*= NR_PAGEBLOCK_BITS
;
3565 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3567 return usemapsize
/ 8;
3570 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3571 struct zone
*zone
, unsigned long zonesize
)
3573 unsigned long usemapsize
= usemap_size(zonesize
);
3574 zone
->pageblock_flags
= NULL
;
3576 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3579 static void inline setup_usemap(struct pglist_data
*pgdat
,
3580 struct zone
*zone
, unsigned long zonesize
) {}
3581 #endif /* CONFIG_SPARSEMEM */
3583 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3585 /* Return a sensible default order for the pageblock size. */
3586 static inline int pageblock_default_order(void)
3588 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3589 return HUGETLB_PAGE_ORDER
;
3594 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3595 static inline void __init
set_pageblock_order(unsigned int order
)
3597 /* Check that pageblock_nr_pages has not already been setup */
3598 if (pageblock_order
)
3602 * Assume the largest contiguous order of interest is a huge page.
3603 * This value may be variable depending on boot parameters on IA64
3605 pageblock_order
= order
;
3607 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3610 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3611 * and pageblock_default_order() are unused as pageblock_order is set
3612 * at compile-time. See include/linux/pageblock-flags.h for the values of
3613 * pageblock_order based on the kernel config
3615 static inline int pageblock_default_order(unsigned int order
)
3619 #define set_pageblock_order(x) do {} while (0)
3621 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3624 * Set up the zone data structures:
3625 * - mark all pages reserved
3626 * - mark all memory queues empty
3627 * - clear the memory bitmaps
3629 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3630 unsigned long *zones_size
, unsigned long *zholes_size
)
3633 int nid
= pgdat
->node_id
;
3634 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3637 pgdat_resize_init(pgdat
);
3638 pgdat
->nr_zones
= 0;
3639 init_waitqueue_head(&pgdat
->kswapd_wait
);
3640 pgdat
->kswapd_max_order
= 0;
3641 pgdat_page_cgroup_init(pgdat
);
3643 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3644 struct zone
*zone
= pgdat
->node_zones
+ j
;
3645 unsigned long size
, realsize
, memmap_pages
;
3648 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3649 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3653 * Adjust realsize so that it accounts for how much memory
3654 * is used by this zone for memmap. This affects the watermark
3655 * and per-cpu initialisations
3658 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3659 if (realsize
>= memmap_pages
) {
3660 realsize
-= memmap_pages
;
3663 " %s zone: %lu pages used for memmap\n",
3664 zone_names
[j
], memmap_pages
);
3667 " %s zone: %lu pages exceeds realsize %lu\n",
3668 zone_names
[j
], memmap_pages
, realsize
);
3670 /* Account for reserved pages */
3671 if (j
== 0 && realsize
> dma_reserve
) {
3672 realsize
-= dma_reserve
;
3673 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3674 zone_names
[0], dma_reserve
);
3677 if (!is_highmem_idx(j
))
3678 nr_kernel_pages
+= realsize
;
3679 nr_all_pages
+= realsize
;
3681 zone
->spanned_pages
= size
;
3682 zone
->present_pages
= realsize
;
3685 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3687 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3689 zone
->name
= zone_names
[j
];
3690 spin_lock_init(&zone
->lock
);
3691 spin_lock_init(&zone
->lru_lock
);
3692 zone_seqlock_init(zone
);
3693 zone
->zone_pgdat
= pgdat
;
3695 zone
->prev_priority
= DEF_PRIORITY
;
3697 zone_pcp_init(zone
);
3699 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
3700 zone
->lru
[l
].nr_scan
= 0;
3702 zone
->reclaim_stat
.recent_rotated
[0] = 0;
3703 zone
->reclaim_stat
.recent_rotated
[1] = 0;
3704 zone
->reclaim_stat
.recent_scanned
[0] = 0;
3705 zone
->reclaim_stat
.recent_scanned
[1] = 0;
3706 zap_zone_vm_stats(zone
);
3711 set_pageblock_order(pageblock_default_order());
3712 setup_usemap(pgdat
, zone
, size
);
3713 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3714 size
, MEMMAP_EARLY
);
3716 memmap_init(size
, nid
, j
, zone_start_pfn
);
3717 zone_start_pfn
+= size
;
3721 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3723 /* Skip empty nodes */
3724 if (!pgdat
->node_spanned_pages
)
3727 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3728 /* ia64 gets its own node_mem_map, before this, without bootmem */
3729 if (!pgdat
->node_mem_map
) {
3730 unsigned long size
, start
, end
;
3734 * The zone's endpoints aren't required to be MAX_ORDER
3735 * aligned but the node_mem_map endpoints must be in order
3736 * for the buddy allocator to function correctly.
3738 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3739 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3740 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3741 size
= (end
- start
) * sizeof(struct page
);
3742 map
= alloc_remap(pgdat
->node_id
, size
);
3744 map
= alloc_bootmem_node(pgdat
, size
);
3745 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3747 #ifndef CONFIG_NEED_MULTIPLE_NODES
3749 * With no DISCONTIG, the global mem_map is just set as node 0's
3751 if (pgdat
== NODE_DATA(0)) {
3752 mem_map
= NODE_DATA(0)->node_mem_map
;
3753 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3754 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3755 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3756 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3759 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3762 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3763 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3765 pg_data_t
*pgdat
= NODE_DATA(nid
);
3767 pgdat
->node_id
= nid
;
3768 pgdat
->node_start_pfn
= node_start_pfn
;
3769 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3771 alloc_node_mem_map(pgdat
);
3772 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3773 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3774 nid
, (unsigned long)pgdat
,
3775 (unsigned long)pgdat
->node_mem_map
);
3778 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3781 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3783 #if MAX_NUMNODES > 1
3785 * Figure out the number of possible node ids.
3787 static void __init
setup_nr_node_ids(void)
3790 unsigned int highest
= 0;
3792 for_each_node_mask(node
, node_possible_map
)
3794 nr_node_ids
= highest
+ 1;
3797 static inline void setup_nr_node_ids(void)
3803 * add_active_range - Register a range of PFNs backed by physical memory
3804 * @nid: The node ID the range resides on
3805 * @start_pfn: The start PFN of the available physical memory
3806 * @end_pfn: The end PFN of the available physical memory
3808 * These ranges are stored in an early_node_map[] and later used by
3809 * free_area_init_nodes() to calculate zone sizes and holes. If the
3810 * range spans a memory hole, it is up to the architecture to ensure
3811 * the memory is not freed by the bootmem allocator. If possible
3812 * the range being registered will be merged with existing ranges.
3814 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3815 unsigned long end_pfn
)
3819 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3820 "Entering add_active_range(%d, %#lx, %#lx) "
3821 "%d entries of %d used\n",
3822 nid
, start_pfn
, end_pfn
,
3823 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3825 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3827 /* Merge with existing active regions if possible */
3828 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3829 if (early_node_map
[i
].nid
!= nid
)
3832 /* Skip if an existing region covers this new one */
3833 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3834 end_pfn
<= early_node_map
[i
].end_pfn
)
3837 /* Merge forward if suitable */
3838 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3839 end_pfn
> early_node_map
[i
].end_pfn
) {
3840 early_node_map
[i
].end_pfn
= end_pfn
;
3844 /* Merge backward if suitable */
3845 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3846 end_pfn
>= early_node_map
[i
].start_pfn
) {
3847 early_node_map
[i
].start_pfn
= start_pfn
;
3852 /* Check that early_node_map is large enough */
3853 if (i
>= MAX_ACTIVE_REGIONS
) {
3854 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3855 MAX_ACTIVE_REGIONS
);
3859 early_node_map
[i
].nid
= nid
;
3860 early_node_map
[i
].start_pfn
= start_pfn
;
3861 early_node_map
[i
].end_pfn
= end_pfn
;
3862 nr_nodemap_entries
= i
+ 1;
3866 * remove_active_range - Shrink an existing registered range of PFNs
3867 * @nid: The node id the range is on that should be shrunk
3868 * @start_pfn: The new PFN of the range
3869 * @end_pfn: The new PFN of the range
3871 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3872 * The map is kept near the end physical page range that has already been
3873 * registered. This function allows an arch to shrink an existing registered
3876 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
3877 unsigned long end_pfn
)
3882 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
3883 nid
, start_pfn
, end_pfn
);
3885 /* Find the old active region end and shrink */
3886 for_each_active_range_index_in_nid(i
, nid
) {
3887 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3888 early_node_map
[i
].end_pfn
<= end_pfn
) {
3890 early_node_map
[i
].start_pfn
= 0;
3891 early_node_map
[i
].end_pfn
= 0;
3895 if (early_node_map
[i
].start_pfn
< start_pfn
&&
3896 early_node_map
[i
].end_pfn
> start_pfn
) {
3897 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
3898 early_node_map
[i
].end_pfn
= start_pfn
;
3899 if (temp_end_pfn
> end_pfn
)
3900 add_active_range(nid
, end_pfn
, temp_end_pfn
);
3903 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3904 early_node_map
[i
].end_pfn
> end_pfn
&&
3905 early_node_map
[i
].start_pfn
< end_pfn
) {
3906 early_node_map
[i
].start_pfn
= end_pfn
;
3914 /* remove the blank ones */
3915 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
3916 if (early_node_map
[i
].nid
!= nid
)
3918 if (early_node_map
[i
].end_pfn
)
3920 /* we found it, get rid of it */
3921 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
3922 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
3923 sizeof(early_node_map
[j
]));
3924 j
= nr_nodemap_entries
- 1;
3925 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
3926 nr_nodemap_entries
--;
3931 * remove_all_active_ranges - Remove all currently registered regions
3933 * During discovery, it may be found that a table like SRAT is invalid
3934 * and an alternative discovery method must be used. This function removes
3935 * all currently registered regions.
3937 void __init
remove_all_active_ranges(void)
3939 memset(early_node_map
, 0, sizeof(early_node_map
));
3940 nr_nodemap_entries
= 0;
3941 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3942 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3943 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3944 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3947 /* Compare two active node_active_regions */
3948 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3950 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3951 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3953 /* Done this way to avoid overflows */
3954 if (arange
->start_pfn
> brange
->start_pfn
)
3956 if (arange
->start_pfn
< brange
->start_pfn
)
3962 /* sort the node_map by start_pfn */
3963 static void __init
sort_node_map(void)
3965 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3966 sizeof(struct node_active_region
),
3967 cmp_node_active_region
, NULL
);
3970 /* Find the lowest pfn for a node */
3971 static unsigned long __init
find_min_pfn_for_node(int nid
)
3974 unsigned long min_pfn
= ULONG_MAX
;
3976 /* Assuming a sorted map, the first range found has the starting pfn */
3977 for_each_active_range_index_in_nid(i
, nid
)
3978 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3980 if (min_pfn
== ULONG_MAX
) {
3982 "Could not find start_pfn for node %d\n", nid
);
3990 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3992 * It returns the minimum PFN based on information provided via
3993 * add_active_range().
3995 unsigned long __init
find_min_pfn_with_active_regions(void)
3997 return find_min_pfn_for_node(MAX_NUMNODES
);
4001 * early_calculate_totalpages()
4002 * Sum pages in active regions for movable zone.
4003 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4005 static unsigned long __init
early_calculate_totalpages(void)
4008 unsigned long totalpages
= 0;
4010 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4011 unsigned long pages
= early_node_map
[i
].end_pfn
-
4012 early_node_map
[i
].start_pfn
;
4013 totalpages
+= pages
;
4015 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4021 * Find the PFN the Movable zone begins in each node. Kernel memory
4022 * is spread evenly between nodes as long as the nodes have enough
4023 * memory. When they don't, some nodes will have more kernelcore than
4026 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4029 unsigned long usable_startpfn
;
4030 unsigned long kernelcore_node
, kernelcore_remaining
;
4031 unsigned long totalpages
= early_calculate_totalpages();
4032 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4035 * If movablecore was specified, calculate what size of
4036 * kernelcore that corresponds so that memory usable for
4037 * any allocation type is evenly spread. If both kernelcore
4038 * and movablecore are specified, then the value of kernelcore
4039 * will be used for required_kernelcore if it's greater than
4040 * what movablecore would have allowed.
4042 if (required_movablecore
) {
4043 unsigned long corepages
;
4046 * Round-up so that ZONE_MOVABLE is at least as large as what
4047 * was requested by the user
4049 required_movablecore
=
4050 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4051 corepages
= totalpages
- required_movablecore
;
4053 required_kernelcore
= max(required_kernelcore
, corepages
);
4056 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4057 if (!required_kernelcore
)
4060 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4061 find_usable_zone_for_movable();
4062 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4065 /* Spread kernelcore memory as evenly as possible throughout nodes */
4066 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4067 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4069 * Recalculate kernelcore_node if the division per node
4070 * now exceeds what is necessary to satisfy the requested
4071 * amount of memory for the kernel
4073 if (required_kernelcore
< kernelcore_node
)
4074 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4077 * As the map is walked, we track how much memory is usable
4078 * by the kernel using kernelcore_remaining. When it is
4079 * 0, the rest of the node is usable by ZONE_MOVABLE
4081 kernelcore_remaining
= kernelcore_node
;
4083 /* Go through each range of PFNs within this node */
4084 for_each_active_range_index_in_nid(i
, nid
) {
4085 unsigned long start_pfn
, end_pfn
;
4086 unsigned long size_pages
;
4088 start_pfn
= max(early_node_map
[i
].start_pfn
,
4089 zone_movable_pfn
[nid
]);
4090 end_pfn
= early_node_map
[i
].end_pfn
;
4091 if (start_pfn
>= end_pfn
)
4094 /* Account for what is only usable for kernelcore */
4095 if (start_pfn
< usable_startpfn
) {
4096 unsigned long kernel_pages
;
4097 kernel_pages
= min(end_pfn
, usable_startpfn
)
4100 kernelcore_remaining
-= min(kernel_pages
,
4101 kernelcore_remaining
);
4102 required_kernelcore
-= min(kernel_pages
,
4103 required_kernelcore
);
4105 /* Continue if range is now fully accounted */
4106 if (end_pfn
<= usable_startpfn
) {
4109 * Push zone_movable_pfn to the end so
4110 * that if we have to rebalance
4111 * kernelcore across nodes, we will
4112 * not double account here
4114 zone_movable_pfn
[nid
] = end_pfn
;
4117 start_pfn
= usable_startpfn
;
4121 * The usable PFN range for ZONE_MOVABLE is from
4122 * start_pfn->end_pfn. Calculate size_pages as the
4123 * number of pages used as kernelcore
4125 size_pages
= end_pfn
- start_pfn
;
4126 if (size_pages
> kernelcore_remaining
)
4127 size_pages
= kernelcore_remaining
;
4128 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4131 * Some kernelcore has been met, update counts and
4132 * break if the kernelcore for this node has been
4135 required_kernelcore
-= min(required_kernelcore
,
4137 kernelcore_remaining
-= size_pages
;
4138 if (!kernelcore_remaining
)
4144 * If there is still required_kernelcore, we do another pass with one
4145 * less node in the count. This will push zone_movable_pfn[nid] further
4146 * along on the nodes that still have memory until kernelcore is
4150 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4153 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4154 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4155 zone_movable_pfn
[nid
] =
4156 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4159 /* Any regular memory on that node ? */
4160 static void check_for_regular_memory(pg_data_t
*pgdat
)
4162 #ifdef CONFIG_HIGHMEM
4163 enum zone_type zone_type
;
4165 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4166 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4167 if (zone
->present_pages
)
4168 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4174 * free_area_init_nodes - Initialise all pg_data_t and zone data
4175 * @max_zone_pfn: an array of max PFNs for each zone
4177 * This will call free_area_init_node() for each active node in the system.
4178 * Using the page ranges provided by add_active_range(), the size of each
4179 * zone in each node and their holes is calculated. If the maximum PFN
4180 * between two adjacent zones match, it is assumed that the zone is empty.
4181 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4182 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4183 * starts where the previous one ended. For example, ZONE_DMA32 starts
4184 * at arch_max_dma_pfn.
4186 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4191 /* Sort early_node_map as initialisation assumes it is sorted */
4194 /* Record where the zone boundaries are */
4195 memset(arch_zone_lowest_possible_pfn
, 0,
4196 sizeof(arch_zone_lowest_possible_pfn
));
4197 memset(arch_zone_highest_possible_pfn
, 0,
4198 sizeof(arch_zone_highest_possible_pfn
));
4199 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4200 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4201 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4202 if (i
== ZONE_MOVABLE
)
4204 arch_zone_lowest_possible_pfn
[i
] =
4205 arch_zone_highest_possible_pfn
[i
-1];
4206 arch_zone_highest_possible_pfn
[i
] =
4207 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4209 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4210 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4212 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4213 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4214 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4216 /* Print out the zone ranges */
4217 printk("Zone PFN ranges:\n");
4218 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4219 if (i
== ZONE_MOVABLE
)
4221 printk(" %-8s %0#10lx -> %0#10lx\n",
4223 arch_zone_lowest_possible_pfn
[i
],
4224 arch_zone_highest_possible_pfn
[i
]);
4227 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4228 printk("Movable zone start PFN for each node\n");
4229 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4230 if (zone_movable_pfn
[i
])
4231 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4234 /* Print out the early_node_map[] */
4235 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4236 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4237 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4238 early_node_map
[i
].start_pfn
,
4239 early_node_map
[i
].end_pfn
);
4241 /* Initialise every node */
4242 mminit_verify_pageflags_layout();
4243 setup_nr_node_ids();
4244 for_each_online_node(nid
) {
4245 pg_data_t
*pgdat
= NODE_DATA(nid
);
4246 free_area_init_node(nid
, NULL
,
4247 find_min_pfn_for_node(nid
), NULL
);
4249 /* Any memory on that node */
4250 if (pgdat
->node_present_pages
)
4251 node_set_state(nid
, N_HIGH_MEMORY
);
4252 check_for_regular_memory(pgdat
);
4256 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4258 unsigned long long coremem
;
4262 coremem
= memparse(p
, &p
);
4263 *core
= coremem
>> PAGE_SHIFT
;
4265 /* Paranoid check that UL is enough for the coremem value */
4266 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4272 * kernelcore=size sets the amount of memory for use for allocations that
4273 * cannot be reclaimed or migrated.
4275 static int __init
cmdline_parse_kernelcore(char *p
)
4277 return cmdline_parse_core(p
, &required_kernelcore
);
4281 * movablecore=size sets the amount of memory for use for allocations that
4282 * can be reclaimed or migrated.
4284 static int __init
cmdline_parse_movablecore(char *p
)
4286 return cmdline_parse_core(p
, &required_movablecore
);
4289 early_param("kernelcore", cmdline_parse_kernelcore
);
4290 early_param("movablecore", cmdline_parse_movablecore
);
4292 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4295 * set_dma_reserve - set the specified number of pages reserved in the first zone
4296 * @new_dma_reserve: The number of pages to mark reserved
4298 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4299 * In the DMA zone, a significant percentage may be consumed by kernel image
4300 * and other unfreeable allocations which can skew the watermarks badly. This
4301 * function may optionally be used to account for unfreeable pages in the
4302 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4303 * smaller per-cpu batchsize.
4305 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4307 dma_reserve
= new_dma_reserve
;
4310 #ifndef CONFIG_NEED_MULTIPLE_NODES
4311 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4312 EXPORT_SYMBOL(contig_page_data
);
4315 void __init
free_area_init(unsigned long *zones_size
)
4317 free_area_init_node(0, zones_size
,
4318 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4321 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4322 unsigned long action
, void *hcpu
)
4324 int cpu
= (unsigned long)hcpu
;
4326 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4330 * Spill the event counters of the dead processor
4331 * into the current processors event counters.
4332 * This artificially elevates the count of the current
4335 vm_events_fold_cpu(cpu
);
4338 * Zero the differential counters of the dead processor
4339 * so that the vm statistics are consistent.
4341 * This is only okay since the processor is dead and cannot
4342 * race with what we are doing.
4344 refresh_cpu_vm_stats(cpu
);
4349 void __init
page_alloc_init(void)
4351 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4355 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4356 * or min_free_kbytes changes.
4358 static void calculate_totalreserve_pages(void)
4360 struct pglist_data
*pgdat
;
4361 unsigned long reserve_pages
= 0;
4362 enum zone_type i
, j
;
4364 for_each_online_pgdat(pgdat
) {
4365 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4366 struct zone
*zone
= pgdat
->node_zones
+ i
;
4367 unsigned long max
= 0;
4369 /* Find valid and maximum lowmem_reserve in the zone */
4370 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4371 if (zone
->lowmem_reserve
[j
] > max
)
4372 max
= zone
->lowmem_reserve
[j
];
4375 /* we treat pages_high as reserved pages. */
4376 max
+= zone
->pages_high
;
4378 if (max
> zone
->present_pages
)
4379 max
= zone
->present_pages
;
4380 reserve_pages
+= max
;
4383 totalreserve_pages
= reserve_pages
;
4387 * setup_per_zone_lowmem_reserve - called whenever
4388 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4389 * has a correct pages reserved value, so an adequate number of
4390 * pages are left in the zone after a successful __alloc_pages().
4392 static void setup_per_zone_lowmem_reserve(void)
4394 struct pglist_data
*pgdat
;
4395 enum zone_type j
, idx
;
4397 for_each_online_pgdat(pgdat
) {
4398 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4399 struct zone
*zone
= pgdat
->node_zones
+ j
;
4400 unsigned long present_pages
= zone
->present_pages
;
4402 zone
->lowmem_reserve
[j
] = 0;
4406 struct zone
*lower_zone
;
4410 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4411 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4413 lower_zone
= pgdat
->node_zones
+ idx
;
4414 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4415 sysctl_lowmem_reserve_ratio
[idx
];
4416 present_pages
+= lower_zone
->present_pages
;
4421 /* update totalreserve_pages */
4422 calculate_totalreserve_pages();
4426 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4428 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4429 * with respect to min_free_kbytes.
4431 void setup_per_zone_pages_min(void)
4433 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4434 unsigned long lowmem_pages
= 0;
4436 unsigned long flags
;
4438 /* Calculate total number of !ZONE_HIGHMEM pages */
4439 for_each_zone(zone
) {
4440 if (!is_highmem(zone
))
4441 lowmem_pages
+= zone
->present_pages
;
4444 for_each_zone(zone
) {
4447 spin_lock_irqsave(&zone
->lock
, flags
);
4448 tmp
= (u64
)pages_min
* zone
->present_pages
;
4449 do_div(tmp
, lowmem_pages
);
4450 if (is_highmem(zone
)) {
4452 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4453 * need highmem pages, so cap pages_min to a small
4456 * The (pages_high-pages_low) and (pages_low-pages_min)
4457 * deltas controls asynch page reclaim, and so should
4458 * not be capped for highmem.
4462 min_pages
= zone
->present_pages
/ 1024;
4463 if (min_pages
< SWAP_CLUSTER_MAX
)
4464 min_pages
= SWAP_CLUSTER_MAX
;
4465 if (min_pages
> 128)
4467 zone
->pages_min
= min_pages
;
4470 * If it's a lowmem zone, reserve a number of pages
4471 * proportionate to the zone's size.
4473 zone
->pages_min
= tmp
;
4476 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4477 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4478 setup_zone_migrate_reserve(zone
);
4479 spin_unlock_irqrestore(&zone
->lock
, flags
);
4482 /* update totalreserve_pages */
4483 calculate_totalreserve_pages();
4487 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4489 * The inactive anon list should be small enough that the VM never has to
4490 * do too much work, but large enough that each inactive page has a chance
4491 * to be referenced again before it is swapped out.
4493 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4494 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4495 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4496 * the anonymous pages are kept on the inactive list.
4499 * memory ratio inactive anon
4500 * -------------------------------------
4509 static void setup_per_zone_inactive_ratio(void)
4513 for_each_zone(zone
) {
4514 unsigned int gb
, ratio
;
4516 /* Zone size in gigabytes */
4517 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4518 ratio
= int_sqrt(10 * gb
);
4522 zone
->inactive_ratio
= ratio
;
4527 * Initialise min_free_kbytes.
4529 * For small machines we want it small (128k min). For large machines
4530 * we want it large (64MB max). But it is not linear, because network
4531 * bandwidth does not increase linearly with machine size. We use
4533 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4534 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4550 static int __init
init_per_zone_pages_min(void)
4552 unsigned long lowmem_kbytes
;
4554 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4556 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4557 if (min_free_kbytes
< 128)
4558 min_free_kbytes
= 128;
4559 if (min_free_kbytes
> 65536)
4560 min_free_kbytes
= 65536;
4561 setup_per_zone_pages_min();
4562 setup_per_zone_lowmem_reserve();
4563 setup_per_zone_inactive_ratio();
4566 module_init(init_per_zone_pages_min
)
4569 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4570 * that we can call two helper functions whenever min_free_kbytes
4573 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4574 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4576 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4578 setup_per_zone_pages_min();
4583 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4584 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4589 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4594 zone
->min_unmapped_pages
= (zone
->present_pages
*
4595 sysctl_min_unmapped_ratio
) / 100;
4599 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4600 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4605 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4610 zone
->min_slab_pages
= (zone
->present_pages
*
4611 sysctl_min_slab_ratio
) / 100;
4617 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4618 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4619 * whenever sysctl_lowmem_reserve_ratio changes.
4621 * The reserve ratio obviously has absolutely no relation with the
4622 * pages_min watermarks. The lowmem reserve ratio can only make sense
4623 * if in function of the boot time zone sizes.
4625 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4626 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4628 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4629 setup_per_zone_lowmem_reserve();
4634 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4635 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4636 * can have before it gets flushed back to buddy allocator.
4639 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4640 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4646 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4647 if (!write
|| (ret
== -EINVAL
))
4649 for_each_zone(zone
) {
4650 if (!populated_zone(zone
))
4652 for_each_online_cpu(cpu
) {
4654 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4655 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4661 int hashdist
= HASHDIST_DEFAULT
;
4664 static int __init
set_hashdist(char *str
)
4668 hashdist
= simple_strtoul(str
, &str
, 0);
4671 __setup("hashdist=", set_hashdist
);
4675 * allocate a large system hash table from bootmem
4676 * - it is assumed that the hash table must contain an exact power-of-2
4677 * quantity of entries
4678 * - limit is the number of hash buckets, not the total allocation size
4680 void *__init
alloc_large_system_hash(const char *tablename
,
4681 unsigned long bucketsize
,
4682 unsigned long numentries
,
4685 unsigned int *_hash_shift
,
4686 unsigned int *_hash_mask
,
4687 unsigned long limit
)
4689 unsigned long long max
= limit
;
4690 unsigned long log2qty
, size
;
4693 /* allow the kernel cmdline to have a say */
4695 /* round applicable memory size up to nearest megabyte */
4696 numentries
= nr_kernel_pages
;
4697 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4698 numentries
>>= 20 - PAGE_SHIFT
;
4699 numentries
<<= 20 - PAGE_SHIFT
;
4701 /* limit to 1 bucket per 2^scale bytes of low memory */
4702 if (scale
> PAGE_SHIFT
)
4703 numentries
>>= (scale
- PAGE_SHIFT
);
4705 numentries
<<= (PAGE_SHIFT
- scale
);
4707 /* Make sure we've got at least a 0-order allocation.. */
4708 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4709 numentries
= PAGE_SIZE
/ bucketsize
;
4711 numentries
= roundup_pow_of_two(numentries
);
4713 /* limit allocation size to 1/16 total memory by default */
4715 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4716 do_div(max
, bucketsize
);
4719 if (numentries
> max
)
4722 log2qty
= ilog2(numentries
);
4725 size
= bucketsize
<< log2qty
;
4726 if (flags
& HASH_EARLY
)
4727 table
= alloc_bootmem_nopanic(size
);
4729 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4731 unsigned long order
= get_order(size
);
4732 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4734 * If bucketsize is not a power-of-two, we may free
4735 * some pages at the end of hash table.
4738 unsigned long alloc_end
= (unsigned long)table
+
4739 (PAGE_SIZE
<< order
);
4740 unsigned long used
= (unsigned long)table
+
4742 split_page(virt_to_page(table
), order
);
4743 while (used
< alloc_end
) {
4749 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4752 panic("Failed to allocate %s hash table\n", tablename
);
4754 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4757 ilog2(size
) - PAGE_SHIFT
,
4761 *_hash_shift
= log2qty
;
4763 *_hash_mask
= (1 << log2qty
) - 1;
4768 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4769 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4772 #ifdef CONFIG_SPARSEMEM
4773 return __pfn_to_section(pfn
)->pageblock_flags
;
4775 return zone
->pageblock_flags
;
4776 #endif /* CONFIG_SPARSEMEM */
4779 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4781 #ifdef CONFIG_SPARSEMEM
4782 pfn
&= (PAGES_PER_SECTION
-1);
4783 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4785 pfn
= pfn
- zone
->zone_start_pfn
;
4786 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4787 #endif /* CONFIG_SPARSEMEM */
4791 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4792 * @page: The page within the block of interest
4793 * @start_bitidx: The first bit of interest to retrieve
4794 * @end_bitidx: The last bit of interest
4795 * returns pageblock_bits flags
4797 unsigned long get_pageblock_flags_group(struct page
*page
,
4798 int start_bitidx
, int end_bitidx
)
4801 unsigned long *bitmap
;
4802 unsigned long pfn
, bitidx
;
4803 unsigned long flags
= 0;
4804 unsigned long value
= 1;
4806 zone
= page_zone(page
);
4807 pfn
= page_to_pfn(page
);
4808 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4809 bitidx
= pfn_to_bitidx(zone
, pfn
);
4811 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4812 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4819 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4820 * @page: The page within the block of interest
4821 * @start_bitidx: The first bit of interest
4822 * @end_bitidx: The last bit of interest
4823 * @flags: The flags to set
4825 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4826 int start_bitidx
, int end_bitidx
)
4829 unsigned long *bitmap
;
4830 unsigned long pfn
, bitidx
;
4831 unsigned long value
= 1;
4833 zone
= page_zone(page
);
4834 pfn
= page_to_pfn(page
);
4835 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4836 bitidx
= pfn_to_bitidx(zone
, pfn
);
4837 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4838 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4840 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4842 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4844 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4848 * This is designed as sub function...plz see page_isolation.c also.
4849 * set/clear page block's type to be ISOLATE.
4850 * page allocater never alloc memory from ISOLATE block.
4853 int set_migratetype_isolate(struct page
*page
)
4856 unsigned long flags
;
4859 zone
= page_zone(page
);
4860 spin_lock_irqsave(&zone
->lock
, flags
);
4862 * In future, more migrate types will be able to be isolation target.
4864 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4866 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4867 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4870 spin_unlock_irqrestore(&zone
->lock
, flags
);
4876 void unset_migratetype_isolate(struct page
*page
)
4879 unsigned long flags
;
4880 zone
= page_zone(page
);
4881 spin_lock_irqsave(&zone
->lock
, flags
);
4882 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4884 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4885 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4887 spin_unlock_irqrestore(&zone
->lock
, flags
);
4890 #ifdef CONFIG_MEMORY_HOTREMOVE
4892 * All pages in the range must be isolated before calling this.
4895 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4901 unsigned long flags
;
4902 /* find the first valid pfn */
4903 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4908 zone
= page_zone(pfn_to_page(pfn
));
4909 spin_lock_irqsave(&zone
->lock
, flags
);
4911 while (pfn
< end_pfn
) {
4912 if (!pfn_valid(pfn
)) {
4916 page
= pfn_to_page(pfn
);
4917 BUG_ON(page_count(page
));
4918 BUG_ON(!PageBuddy(page
));
4919 order
= page_order(page
);
4920 #ifdef CONFIG_DEBUG_VM
4921 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4922 pfn
, 1 << order
, end_pfn
);
4924 list_del(&page
->lru
);
4925 rmv_page_order(page
);
4926 zone
->free_area
[order
].nr_free
--;
4927 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4929 for (i
= 0; i
< (1 << order
); i
++)
4930 SetPageReserved((page
+i
));
4931 pfn
+= (1 << order
);
4933 spin_unlock_irqrestore(&zone
->lock
, flags
);