2 * SLOB Allocator: Simple List Of Blocks
4 * Matt Mackall <mpm@selenic.com> 12/30/03
6 * NUMA support by Paul Mundt, 2007.
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
63 #include <linux/cache.h>
64 #include <linux/init.h>
65 #include <linux/module.h>
66 #include <linux/rcupdate.h>
67 #include <linux/list.h>
68 #include <trace/kmemtrace.h>
69 #include <asm/atomic.h>
72 * slob_block has a field 'units', which indicates size of block if +ve,
73 * or offset of next block if -ve (in SLOB_UNITs).
75 * Free blocks of size 1 unit simply contain the offset of the next block.
76 * Those with larger size contain their size in the first SLOB_UNIT of
77 * memory, and the offset of the next free block in the second SLOB_UNIT.
79 #if PAGE_SIZE <= (32767 * 2)
80 typedef s16 slobidx_t
;
82 typedef s32 slobidx_t
;
88 typedef struct slob_block slob_t
;
91 * We use struct page fields to manage some slob allocation aspects,
92 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
93 * just define our own struct page type variant here.
98 unsigned long flags
; /* mandatory */
99 atomic_t _count
; /* mandatory */
100 slobidx_t units
; /* free units left in page */
101 unsigned long pad
[2];
102 slob_t
*free
; /* first free slob_t in page */
103 struct list_head list
; /* linked list of free pages */
108 static inline void struct_slob_page_wrong_size(void)
109 { BUILD_BUG_ON(sizeof(struct slob_page
) != sizeof(struct page
)); }
112 * free_slob_page: call before a slob_page is returned to the page allocator.
114 static inline void free_slob_page(struct slob_page
*sp
)
116 reset_page_mapcount(&sp
->page
);
117 sp
->page
.mapping
= NULL
;
121 * All partially free slob pages go on these lists.
123 #define SLOB_BREAK1 256
124 #define SLOB_BREAK2 1024
125 static LIST_HEAD(free_slob_small
);
126 static LIST_HEAD(free_slob_medium
);
127 static LIST_HEAD(free_slob_large
);
130 * slob_page: True for all slob pages (false for bigblock pages)
132 static inline int slob_page(struct slob_page
*sp
)
134 return PageSlobPage((struct page
*)sp
);
137 static inline void set_slob_page(struct slob_page
*sp
)
139 __SetPageSlobPage((struct page
*)sp
);
142 static inline void clear_slob_page(struct slob_page
*sp
)
144 __ClearPageSlobPage((struct page
*)sp
);
148 * slob_page_free: true for pages on free_slob_pages list.
150 static inline int slob_page_free(struct slob_page
*sp
)
152 return PageSlobFree((struct page
*)sp
);
155 static void set_slob_page_free(struct slob_page
*sp
, struct list_head
*list
)
157 list_add(&sp
->list
, list
);
158 __SetPageSlobFree((struct page
*)sp
);
161 static inline void clear_slob_page_free(struct slob_page
*sp
)
164 __ClearPageSlobFree((struct page
*)sp
);
167 #define SLOB_UNIT sizeof(slob_t)
168 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
169 #define SLOB_ALIGN L1_CACHE_BYTES
172 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
173 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
174 * the block using call_rcu.
177 struct rcu_head head
;
182 * slob_lock protects all slob allocator structures.
184 static DEFINE_SPINLOCK(slob_lock
);
187 * Encode the given size and next info into a free slob block s.
189 static void set_slob(slob_t
*s
, slobidx_t size
, slob_t
*next
)
191 slob_t
*base
= (slob_t
*)((unsigned long)s
& PAGE_MASK
);
192 slobidx_t offset
= next
- base
;
198 s
[0].units
= -offset
;
202 * Return the size of a slob block.
204 static slobidx_t
slob_units(slob_t
*s
)
212 * Return the next free slob block pointer after this one.
214 static slob_t
*slob_next(slob_t
*s
)
216 slob_t
*base
= (slob_t
*)((unsigned long)s
& PAGE_MASK
);
227 * Returns true if s is the last free block in its page.
229 static int slob_last(slob_t
*s
)
231 return !((unsigned long)slob_next(s
) & ~PAGE_MASK
);
234 static void *slob_new_page(gfp_t gfp
, int order
, int node
)
240 page
= alloc_pages_node(node
, gfp
, order
);
243 page
= alloc_pages(gfp
, order
);
248 return page_address(page
);
252 * Allocate a slob block within a given slob_page sp.
254 static void *slob_page_alloc(struct slob_page
*sp
, size_t size
, int align
)
256 slob_t
*prev
, *cur
, *aligned
= 0;
257 int delta
= 0, units
= SLOB_UNITS(size
);
259 for (prev
= NULL
, cur
= sp
->free
; ; prev
= cur
, cur
= slob_next(cur
)) {
260 slobidx_t avail
= slob_units(cur
);
263 aligned
= (slob_t
*)ALIGN((unsigned long)cur
, align
);
264 delta
= aligned
- cur
;
266 if (avail
>= units
+ delta
) { /* room enough? */
269 if (delta
) { /* need to fragment head to align? */
270 next
= slob_next(cur
);
271 set_slob(aligned
, avail
- delta
, next
);
272 set_slob(cur
, delta
, aligned
);
275 avail
= slob_units(cur
);
278 next
= slob_next(cur
);
279 if (avail
== units
) { /* exact fit? unlink. */
281 set_slob(prev
, slob_units(prev
), next
);
284 } else { /* fragment */
286 set_slob(prev
, slob_units(prev
), cur
+ units
);
288 sp
->free
= cur
+ units
;
289 set_slob(cur
+ units
, avail
- units
, next
);
294 clear_slob_page_free(sp
);
303 * slob_alloc: entry point into the slob allocator.
305 static void *slob_alloc(size_t size
, gfp_t gfp
, int align
, int node
)
307 struct slob_page
*sp
;
308 struct list_head
*prev
;
309 struct list_head
*slob_list
;
313 if (size
< SLOB_BREAK1
)
314 slob_list
= &free_slob_small
;
315 else if (size
< SLOB_BREAK2
)
316 slob_list
= &free_slob_medium
;
318 slob_list
= &free_slob_large
;
320 spin_lock_irqsave(&slob_lock
, flags
);
321 /* Iterate through each partially free page, try to find room */
322 list_for_each_entry(sp
, slob_list
, list
) {
325 * If there's a node specification, search for a partial
326 * page with a matching node id in the freelist.
328 if (node
!= -1 && page_to_nid(&sp
->page
) != node
)
331 /* Enough room on this page? */
332 if (sp
->units
< SLOB_UNITS(size
))
335 /* Attempt to alloc */
336 prev
= sp
->list
.prev
;
337 b
= slob_page_alloc(sp
, size
, align
);
341 /* Improve fragment distribution and reduce our average
342 * search time by starting our next search here. (see
343 * Knuth vol 1, sec 2.5, pg 449) */
344 if (prev
!= slob_list
->prev
&&
345 slob_list
->next
!= prev
->next
)
346 list_move_tail(slob_list
, prev
->next
);
349 spin_unlock_irqrestore(&slob_lock
, flags
);
351 /* Not enough space: must allocate a new page */
353 b
= slob_new_page(gfp
& ~__GFP_ZERO
, 0, node
);
356 sp
= (struct slob_page
*)virt_to_page(b
);
359 spin_lock_irqsave(&slob_lock
, flags
);
360 sp
->units
= SLOB_UNITS(PAGE_SIZE
);
362 INIT_LIST_HEAD(&sp
->list
);
363 set_slob(b
, SLOB_UNITS(PAGE_SIZE
), b
+ SLOB_UNITS(PAGE_SIZE
));
364 set_slob_page_free(sp
, slob_list
);
365 b
= slob_page_alloc(sp
, size
, align
);
367 spin_unlock_irqrestore(&slob_lock
, flags
);
369 if (unlikely((gfp
& __GFP_ZERO
) && b
))
375 * slob_free: entry point into the slob allocator.
377 static void slob_free(void *block
, int size
)
379 struct slob_page
*sp
;
380 slob_t
*prev
, *next
, *b
= (slob_t
*)block
;
384 if (unlikely(ZERO_OR_NULL_PTR(block
)))
388 sp
= (struct slob_page
*)virt_to_page(block
);
389 units
= SLOB_UNITS(size
);
391 spin_lock_irqsave(&slob_lock
, flags
);
393 if (sp
->units
+ units
== SLOB_UNITS(PAGE_SIZE
)) {
394 /* Go directly to page allocator. Do not pass slob allocator */
395 if (slob_page_free(sp
))
396 clear_slob_page_free(sp
);
399 free_page((unsigned long)b
);
403 if (!slob_page_free(sp
)) {
404 /* This slob page is about to become partially free. Easy! */
408 (void *)((unsigned long)(b
+
409 SLOB_UNITS(PAGE_SIZE
)) & PAGE_MASK
));
410 set_slob_page_free(sp
, &free_slob_small
);
415 * Otherwise the page is already partially free, so find reinsertion
421 if (b
+ units
== sp
->free
) {
422 units
+= slob_units(sp
->free
);
423 sp
->free
= slob_next(sp
->free
);
425 set_slob(b
, units
, sp
->free
);
429 next
= slob_next(prev
);
432 next
= slob_next(prev
);
435 if (!slob_last(prev
) && b
+ units
== next
) {
436 units
+= slob_units(next
);
437 set_slob(b
, units
, slob_next(next
));
439 set_slob(b
, units
, next
);
441 if (prev
+ slob_units(prev
) == b
) {
442 units
= slob_units(b
) + slob_units(prev
);
443 set_slob(prev
, units
, slob_next(b
));
445 set_slob(prev
, slob_units(prev
), b
);
448 spin_unlock_irqrestore(&slob_lock
, flags
);
452 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
455 #ifndef ARCH_KMALLOC_MINALIGN
456 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
459 #ifndef ARCH_SLAB_MINALIGN
460 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
463 void *__kmalloc_node(size_t size
, gfp_t gfp
, int node
)
466 int align
= max(ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
469 lockdep_trace_alloc(gfp
);
471 if (size
< PAGE_SIZE
- align
) {
473 return ZERO_SIZE_PTR
;
475 m
= slob_alloc(size
+ align
, gfp
, align
, node
);
480 ret
= (void *)m
+ align
;
482 trace_kmalloc_node(_RET_IP_
, ret
,
483 size
, size
+ align
, gfp
, node
);
485 unsigned int order
= get_order(size
);
487 ret
= slob_new_page(gfp
| __GFP_COMP
, order
, node
);
490 page
= virt_to_page(ret
);
491 page
->private = size
;
494 trace_kmalloc_node(_RET_IP_
, ret
,
495 size
, PAGE_SIZE
<< order
, gfp
, node
);
500 EXPORT_SYMBOL(__kmalloc_node
);
502 void kfree(const void *block
)
504 struct slob_page
*sp
;
506 trace_kfree(_RET_IP_
, block
);
508 if (unlikely(ZERO_OR_NULL_PTR(block
)))
511 sp
= (struct slob_page
*)virt_to_page(block
);
513 int align
= max(ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
514 unsigned int *m
= (unsigned int *)(block
- align
);
515 slob_free(m
, *m
+ align
);
519 EXPORT_SYMBOL(kfree
);
521 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
522 size_t ksize(const void *block
)
524 struct slob_page
*sp
;
527 if (unlikely(block
== ZERO_SIZE_PTR
))
530 sp
= (struct slob_page
*)virt_to_page(block
);
532 int align
= max(ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
533 unsigned int *m
= (unsigned int *)(block
- align
);
534 return SLOB_UNITS(*m
) * SLOB_UNIT
;
536 return sp
->page
.private;
538 EXPORT_SYMBOL(ksize
);
541 unsigned int size
, align
;
544 void (*ctor
)(void *);
547 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
548 size_t align
, unsigned long flags
, void (*ctor
)(void *))
550 struct kmem_cache
*c
;
552 c
= slob_alloc(sizeof(struct kmem_cache
),
553 GFP_KERNEL
, ARCH_KMALLOC_MINALIGN
, -1);
558 if (flags
& SLAB_DESTROY_BY_RCU
) {
559 /* leave room for rcu footer at the end of object */
560 c
->size
+= sizeof(struct slob_rcu
);
564 /* ignore alignment unless it's forced */
565 c
->align
= (flags
& SLAB_HWCACHE_ALIGN
) ? SLOB_ALIGN
: 0;
566 if (c
->align
< ARCH_SLAB_MINALIGN
)
567 c
->align
= ARCH_SLAB_MINALIGN
;
568 if (c
->align
< align
)
570 } else if (flags
& SLAB_PANIC
)
571 panic("Cannot create slab cache %s\n", name
);
575 EXPORT_SYMBOL(kmem_cache_create
);
577 void kmem_cache_destroy(struct kmem_cache
*c
)
579 slob_free(c
, sizeof(struct kmem_cache
));
581 EXPORT_SYMBOL(kmem_cache_destroy
);
583 void *kmem_cache_alloc_node(struct kmem_cache
*c
, gfp_t flags
, int node
)
587 if (c
->size
< PAGE_SIZE
) {
588 b
= slob_alloc(c
->size
, flags
, c
->align
, node
);
589 trace_kmem_cache_alloc_node(_RET_IP_
, b
, c
->size
,
590 SLOB_UNITS(c
->size
) * SLOB_UNIT
,
593 b
= slob_new_page(flags
, get_order(c
->size
), node
);
594 trace_kmem_cache_alloc_node(_RET_IP_
, b
, c
->size
,
595 PAGE_SIZE
<< get_order(c
->size
),
604 EXPORT_SYMBOL(kmem_cache_alloc_node
);
606 static void __kmem_cache_free(void *b
, int size
)
608 if (size
< PAGE_SIZE
)
611 free_pages((unsigned long)b
, get_order(size
));
614 static void kmem_rcu_free(struct rcu_head
*head
)
616 struct slob_rcu
*slob_rcu
= (struct slob_rcu
*)head
;
617 void *b
= (void *)slob_rcu
- (slob_rcu
->size
- sizeof(struct slob_rcu
));
619 __kmem_cache_free(b
, slob_rcu
->size
);
622 void kmem_cache_free(struct kmem_cache
*c
, void *b
)
624 if (unlikely(c
->flags
& SLAB_DESTROY_BY_RCU
)) {
625 struct slob_rcu
*slob_rcu
;
626 slob_rcu
= b
+ (c
->size
- sizeof(struct slob_rcu
));
627 INIT_RCU_HEAD(&slob_rcu
->head
);
628 slob_rcu
->size
= c
->size
;
629 call_rcu(&slob_rcu
->head
, kmem_rcu_free
);
631 __kmem_cache_free(b
, c
->size
);
634 trace_kmem_cache_free(_RET_IP_
, b
);
636 EXPORT_SYMBOL(kmem_cache_free
);
638 unsigned int kmem_cache_size(struct kmem_cache
*c
)
642 EXPORT_SYMBOL(kmem_cache_size
);
644 const char *kmem_cache_name(struct kmem_cache
*c
)
648 EXPORT_SYMBOL(kmem_cache_name
);
650 int kmem_cache_shrink(struct kmem_cache
*d
)
654 EXPORT_SYMBOL(kmem_cache_shrink
);
656 int kmem_ptr_validate(struct kmem_cache
*a
, const void *b
)
661 static unsigned int slob_ready __read_mostly
;
663 int slab_is_available(void)
668 void __init
kmem_cache_init(void)