2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <trace/kmemtrace.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/kmemcheck.h>
30 #include <linux/fault-inject.h>
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Set of flags that will prevent slab merging
146 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
147 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
149 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 SLAB_CACHE_DMA | SLAB_NOTRACK)
152 #ifndef ARCH_KMALLOC_MINALIGN
153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #ifndef ARCH_SLAB_MINALIGN
157 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
161 #define OO_MASK ((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON 0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
168 static int kmem_size
= sizeof(struct kmem_cache
);
171 static struct notifier_block slab_notifier
;
175 DOWN
, /* No slab functionality available */
176 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
177 UP
, /* Everything works but does not show up in sysfs */
181 /* A list of all slab caches on the system */
182 static DECLARE_RWSEM(slub_lock
);
183 static LIST_HEAD(slab_caches
);
186 * Tracking user of a slab.
189 unsigned long addr
; /* Called from address */
190 int cpu
; /* Was running on cpu */
191 int pid
; /* Pid context */
192 unsigned long when
; /* When did the operation occur */
195 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
197 #ifdef CONFIG_SLUB_DEBUG
198 static int sysfs_slab_add(struct kmem_cache
*);
199 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
200 static void sysfs_slab_remove(struct kmem_cache
*);
203 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
204 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
206 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
213 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
215 #ifdef CONFIG_SLUB_STATS
220 /********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
224 int slab_is_available(void)
226 return slab_state
>= UP
;
229 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
232 return s
->node
[node
];
234 return &s
->local_node
;
238 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
241 return s
->cpu_slab
[cpu
];
247 /* Verify that a pointer has an address that is valid within a slab page */
248 static inline int check_valid_pointer(struct kmem_cache
*s
,
249 struct page
*page
, const void *object
)
256 base
= page_address(page
);
257 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
258 (object
- base
) % s
->size
) {
266 * Slow version of get and set free pointer.
268 * This version requires touching the cache lines of kmem_cache which
269 * we avoid to do in the fast alloc free paths. There we obtain the offset
270 * from the page struct.
272 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
274 return *(void **)(object
+ s
->offset
);
277 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
279 *(void **)(object
+ s
->offset
) = fp
;
282 /* Loop over all objects in a slab */
283 #define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 #define for_each_free_object(__p, __s, __free) \
289 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
294 return (p
- addr
) / s
->size
;
297 static inline struct kmem_cache_order_objects
oo_make(int order
,
300 struct kmem_cache_order_objects x
= {
301 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
307 static inline int oo_order(struct kmem_cache_order_objects x
)
309 return x
.x
>> OO_SHIFT
;
312 static inline int oo_objects(struct kmem_cache_order_objects x
)
314 return x
.x
& OO_MASK
;
317 #ifdef CONFIG_SLUB_DEBUG
321 #ifdef CONFIG_SLUB_DEBUG_ON
322 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
324 static int slub_debug
;
327 static char *slub_debug_slabs
;
332 static void print_section(char *text
, u8
*addr
, unsigned int length
)
340 for (i
= 0; i
< length
; i
++) {
342 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
345 printk(KERN_CONT
" %02x", addr
[i
]);
347 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
349 printk(KERN_CONT
" %s\n", ascii
);
356 printk(KERN_CONT
" ");
360 printk(KERN_CONT
" %s\n", ascii
);
364 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
365 enum track_item alloc
)
370 p
= object
+ s
->offset
+ sizeof(void *);
372 p
= object
+ s
->inuse
;
377 static void set_track(struct kmem_cache
*s
, void *object
,
378 enum track_item alloc
, unsigned long addr
)
383 p
= object
+ s
->offset
+ sizeof(void *);
385 p
= object
+ s
->inuse
;
390 p
->cpu
= smp_processor_id();
391 p
->pid
= current
->pid
;
394 memset(p
, 0, sizeof(struct track
));
397 static void init_tracking(struct kmem_cache
*s
, void *object
)
399 if (!(s
->flags
& SLAB_STORE_USER
))
402 set_track(s
, object
, TRACK_FREE
, 0UL);
403 set_track(s
, object
, TRACK_ALLOC
, 0UL);
406 static void print_track(const char *s
, struct track
*t
)
411 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
412 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
415 static void print_tracking(struct kmem_cache
*s
, void *object
)
417 if (!(s
->flags
& SLAB_STORE_USER
))
420 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
421 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
424 static void print_page_info(struct page
*page
)
426 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
427 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
431 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
437 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
439 printk(KERN_ERR
"========================================"
440 "=====================================\n");
441 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
442 printk(KERN_ERR
"----------------------------------------"
443 "-------------------------------------\n\n");
446 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
452 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
454 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
457 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
459 unsigned int off
; /* Offset of last byte */
460 u8
*addr
= page_address(page
);
462 print_tracking(s
, p
);
464 print_page_info(page
);
466 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
467 p
, p
- addr
, get_freepointer(s
, p
));
470 print_section("Bytes b4", p
- 16, 16);
472 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
474 if (s
->flags
& SLAB_RED_ZONE
)
475 print_section("Redzone", p
+ s
->objsize
,
476 s
->inuse
- s
->objsize
);
479 off
= s
->offset
+ sizeof(void *);
483 if (s
->flags
& SLAB_STORE_USER
)
484 off
+= 2 * sizeof(struct track
);
487 /* Beginning of the filler is the free pointer */
488 print_section("Padding", p
+ off
, s
->size
- off
);
493 static void object_err(struct kmem_cache
*s
, struct page
*page
,
494 u8
*object
, char *reason
)
496 slab_bug(s
, "%s", reason
);
497 print_trailer(s
, page
, object
);
500 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
506 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
508 slab_bug(s
, "%s", buf
);
509 print_page_info(page
);
513 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
517 if (s
->flags
& __OBJECT_POISON
) {
518 memset(p
, POISON_FREE
, s
->objsize
- 1);
519 p
[s
->objsize
- 1] = POISON_END
;
522 if (s
->flags
& SLAB_RED_ZONE
)
523 memset(p
+ s
->objsize
,
524 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
525 s
->inuse
- s
->objsize
);
528 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
531 if (*start
!= (u8
)value
)
539 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
540 void *from
, void *to
)
542 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
543 memset(from
, data
, to
- from
);
546 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
547 u8
*object
, char *what
,
548 u8
*start
, unsigned int value
, unsigned int bytes
)
553 fault
= check_bytes(start
, value
, bytes
);
558 while (end
> fault
&& end
[-1] == value
)
561 slab_bug(s
, "%s overwritten", what
);
562 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
563 fault
, end
- 1, fault
[0], value
);
564 print_trailer(s
, page
, object
);
566 restore_bytes(s
, what
, value
, fault
, end
);
574 * Bytes of the object to be managed.
575 * If the freepointer may overlay the object then the free
576 * pointer is the first word of the object.
578 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
581 * object + s->objsize
582 * Padding to reach word boundary. This is also used for Redzoning.
583 * Padding is extended by another word if Redzoning is enabled and
586 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
587 * 0xcc (RED_ACTIVE) for objects in use.
590 * Meta data starts here.
592 * A. Free pointer (if we cannot overwrite object on free)
593 * B. Tracking data for SLAB_STORE_USER
594 * C. Padding to reach required alignment boundary or at mininum
595 * one word if debugging is on to be able to detect writes
596 * before the word boundary.
598 * Padding is done using 0x5a (POISON_INUSE)
601 * Nothing is used beyond s->size.
603 * If slabcaches are merged then the objsize and inuse boundaries are mostly
604 * ignored. And therefore no slab options that rely on these boundaries
605 * may be used with merged slabcaches.
608 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
610 unsigned long off
= s
->inuse
; /* The end of info */
613 /* Freepointer is placed after the object. */
614 off
+= sizeof(void *);
616 if (s
->flags
& SLAB_STORE_USER
)
617 /* We also have user information there */
618 off
+= 2 * sizeof(struct track
);
623 return check_bytes_and_report(s
, page
, p
, "Object padding",
624 p
+ off
, POISON_INUSE
, s
->size
- off
);
627 /* Check the pad bytes at the end of a slab page */
628 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
636 if (!(s
->flags
& SLAB_POISON
))
639 start
= page_address(page
);
640 length
= (PAGE_SIZE
<< compound_order(page
));
641 end
= start
+ length
;
642 remainder
= length
% s
->size
;
646 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
649 while (end
> fault
&& end
[-1] == POISON_INUSE
)
652 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
653 print_section("Padding", end
- remainder
, remainder
);
655 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
659 static int check_object(struct kmem_cache
*s
, struct page
*page
,
660 void *object
, int active
)
663 u8
*endobject
= object
+ s
->objsize
;
665 if (s
->flags
& SLAB_RED_ZONE
) {
667 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
669 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
670 endobject
, red
, s
->inuse
- s
->objsize
))
673 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
674 check_bytes_and_report(s
, page
, p
, "Alignment padding",
675 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
679 if (s
->flags
& SLAB_POISON
) {
680 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
681 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
682 POISON_FREE
, s
->objsize
- 1) ||
683 !check_bytes_and_report(s
, page
, p
, "Poison",
684 p
+ s
->objsize
- 1, POISON_END
, 1)))
687 * check_pad_bytes cleans up on its own.
689 check_pad_bytes(s
, page
, p
);
692 if (!s
->offset
&& active
)
694 * Object and freepointer overlap. Cannot check
695 * freepointer while object is allocated.
699 /* Check free pointer validity */
700 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
701 object_err(s
, page
, p
, "Freepointer corrupt");
703 * No choice but to zap it and thus lose the remainder
704 * of the free objects in this slab. May cause
705 * another error because the object count is now wrong.
707 set_freepointer(s
, p
, NULL
);
713 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
717 VM_BUG_ON(!irqs_disabled());
719 if (!PageSlab(page
)) {
720 slab_err(s
, page
, "Not a valid slab page");
724 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
725 if (page
->objects
> maxobj
) {
726 slab_err(s
, page
, "objects %u > max %u",
727 s
->name
, page
->objects
, maxobj
);
730 if (page
->inuse
> page
->objects
) {
731 slab_err(s
, page
, "inuse %u > max %u",
732 s
->name
, page
->inuse
, page
->objects
);
735 /* Slab_pad_check fixes things up after itself */
736 slab_pad_check(s
, page
);
741 * Determine if a certain object on a page is on the freelist. Must hold the
742 * slab lock to guarantee that the chains are in a consistent state.
744 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
747 void *fp
= page
->freelist
;
749 unsigned long max_objects
;
751 while (fp
&& nr
<= page
->objects
) {
754 if (!check_valid_pointer(s
, page
, fp
)) {
756 object_err(s
, page
, object
,
757 "Freechain corrupt");
758 set_freepointer(s
, object
, NULL
);
761 slab_err(s
, page
, "Freepointer corrupt");
762 page
->freelist
= NULL
;
763 page
->inuse
= page
->objects
;
764 slab_fix(s
, "Freelist cleared");
770 fp
= get_freepointer(s
, object
);
774 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
775 if (max_objects
> MAX_OBJS_PER_PAGE
)
776 max_objects
= MAX_OBJS_PER_PAGE
;
778 if (page
->objects
!= max_objects
) {
779 slab_err(s
, page
, "Wrong number of objects. Found %d but "
780 "should be %d", page
->objects
, max_objects
);
781 page
->objects
= max_objects
;
782 slab_fix(s
, "Number of objects adjusted.");
784 if (page
->inuse
!= page
->objects
- nr
) {
785 slab_err(s
, page
, "Wrong object count. Counter is %d but "
786 "counted were %d", page
->inuse
, page
->objects
- nr
);
787 page
->inuse
= page
->objects
- nr
;
788 slab_fix(s
, "Object count adjusted.");
790 return search
== NULL
;
793 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
796 if (s
->flags
& SLAB_TRACE
) {
797 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
799 alloc
? "alloc" : "free",
804 print_section("Object", (void *)object
, s
->objsize
);
811 * Tracking of fully allocated slabs for debugging purposes.
813 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
815 spin_lock(&n
->list_lock
);
816 list_add(&page
->lru
, &n
->full
);
817 spin_unlock(&n
->list_lock
);
820 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
822 struct kmem_cache_node
*n
;
824 if (!(s
->flags
& SLAB_STORE_USER
))
827 n
= get_node(s
, page_to_nid(page
));
829 spin_lock(&n
->list_lock
);
830 list_del(&page
->lru
);
831 spin_unlock(&n
->list_lock
);
834 /* Tracking of the number of slabs for debugging purposes */
835 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
837 struct kmem_cache_node
*n
= get_node(s
, node
);
839 return atomic_long_read(&n
->nr_slabs
);
842 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
844 struct kmem_cache_node
*n
= get_node(s
, node
);
847 * May be called early in order to allocate a slab for the
848 * kmem_cache_node structure. Solve the chicken-egg
849 * dilemma by deferring the increment of the count during
850 * bootstrap (see early_kmem_cache_node_alloc).
852 if (!NUMA_BUILD
|| n
) {
853 atomic_long_inc(&n
->nr_slabs
);
854 atomic_long_add(objects
, &n
->total_objects
);
857 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
859 struct kmem_cache_node
*n
= get_node(s
, node
);
861 atomic_long_dec(&n
->nr_slabs
);
862 atomic_long_sub(objects
, &n
->total_objects
);
865 /* Object debug checks for alloc/free paths */
866 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
869 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
872 init_object(s
, object
, 0);
873 init_tracking(s
, object
);
876 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
877 void *object
, unsigned long addr
)
879 if (!check_slab(s
, page
))
882 if (!on_freelist(s
, page
, object
)) {
883 object_err(s
, page
, object
, "Object already allocated");
887 if (!check_valid_pointer(s
, page
, object
)) {
888 object_err(s
, page
, object
, "Freelist Pointer check fails");
892 if (!check_object(s
, page
, object
, 0))
895 /* Success perform special debug activities for allocs */
896 if (s
->flags
& SLAB_STORE_USER
)
897 set_track(s
, object
, TRACK_ALLOC
, addr
);
898 trace(s
, page
, object
, 1);
899 init_object(s
, object
, 1);
903 if (PageSlab(page
)) {
905 * If this is a slab page then lets do the best we can
906 * to avoid issues in the future. Marking all objects
907 * as used avoids touching the remaining objects.
909 slab_fix(s
, "Marking all objects used");
910 page
->inuse
= page
->objects
;
911 page
->freelist
= NULL
;
916 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
917 void *object
, unsigned long addr
)
919 if (!check_slab(s
, page
))
922 if (!check_valid_pointer(s
, page
, object
)) {
923 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
927 if (on_freelist(s
, page
, object
)) {
928 object_err(s
, page
, object
, "Object already free");
932 if (!check_object(s
, page
, object
, 1))
935 if (unlikely(s
!= page
->slab
)) {
936 if (!PageSlab(page
)) {
937 slab_err(s
, page
, "Attempt to free object(0x%p) "
938 "outside of slab", object
);
939 } else if (!page
->slab
) {
941 "SLUB <none>: no slab for object 0x%p.\n",
945 object_err(s
, page
, object
,
946 "page slab pointer corrupt.");
950 /* Special debug activities for freeing objects */
951 if (!PageSlubFrozen(page
) && !page
->freelist
)
952 remove_full(s
, page
);
953 if (s
->flags
& SLAB_STORE_USER
)
954 set_track(s
, object
, TRACK_FREE
, addr
);
955 trace(s
, page
, object
, 0);
956 init_object(s
, object
, 0);
960 slab_fix(s
, "Object at 0x%p not freed", object
);
964 static int __init
setup_slub_debug(char *str
)
966 slub_debug
= DEBUG_DEFAULT_FLAGS
;
967 if (*str
++ != '=' || !*str
)
969 * No options specified. Switch on full debugging.
975 * No options but restriction on slabs. This means full
976 * debugging for slabs matching a pattern.
983 * Switch off all debugging measures.
988 * Determine which debug features should be switched on
990 for (; *str
&& *str
!= ','; str
++) {
991 switch (tolower(*str
)) {
993 slub_debug
|= SLAB_DEBUG_FREE
;
996 slub_debug
|= SLAB_RED_ZONE
;
999 slub_debug
|= SLAB_POISON
;
1002 slub_debug
|= SLAB_STORE_USER
;
1005 slub_debug
|= SLAB_TRACE
;
1008 printk(KERN_ERR
"slub_debug option '%c' "
1009 "unknown. skipped\n", *str
);
1015 slub_debug_slabs
= str
+ 1;
1020 __setup("slub_debug", setup_slub_debug
);
1022 static unsigned long kmem_cache_flags(unsigned long objsize
,
1023 unsigned long flags
, const char *name
,
1024 void (*ctor
)(void *))
1027 * Enable debugging if selected on the kernel commandline.
1029 if (slub_debug
&& (!slub_debug_slabs
||
1030 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1031 flags
|= slub_debug
;
1036 static inline void setup_object_debug(struct kmem_cache
*s
,
1037 struct page
*page
, void *object
) {}
1039 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1040 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1042 static inline int free_debug_processing(struct kmem_cache
*s
,
1043 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1045 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1047 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1048 void *object
, int active
) { return 1; }
1049 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1050 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1051 unsigned long flags
, const char *name
,
1052 void (*ctor
)(void *))
1056 #define slub_debug 0
1058 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1060 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1062 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1067 * Slab allocation and freeing
1069 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1070 struct kmem_cache_order_objects oo
)
1072 int order
= oo_order(oo
);
1074 flags
|= __GFP_NOTRACK
;
1077 return alloc_pages(flags
, order
);
1079 return alloc_pages_node(node
, flags
, order
);
1082 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1085 struct kmem_cache_order_objects oo
= s
->oo
;
1087 flags
|= s
->allocflags
;
1089 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1091 if (unlikely(!page
)) {
1094 * Allocation may have failed due to fragmentation.
1095 * Try a lower order alloc if possible
1097 page
= alloc_slab_page(flags
, node
, oo
);
1101 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1104 if (kmemcheck_enabled
1105 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
)))
1107 int pages
= 1 << oo_order(oo
);
1109 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1112 * Objects from caches that have a constructor don't get
1113 * cleared when they're allocated, so we need to do it here.
1116 kmemcheck_mark_uninitialized_pages(page
, pages
);
1118 kmemcheck_mark_unallocated_pages(page
, pages
);
1121 page
->objects
= oo_objects(oo
);
1122 mod_zone_page_state(page_zone(page
),
1123 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1124 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1130 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1133 setup_object_debug(s
, page
, object
);
1134 if (unlikely(s
->ctor
))
1138 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1145 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1147 page
= allocate_slab(s
,
1148 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1152 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1154 page
->flags
|= 1 << PG_slab
;
1155 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1156 SLAB_STORE_USER
| SLAB_TRACE
))
1157 __SetPageSlubDebug(page
);
1159 start
= page_address(page
);
1161 if (unlikely(s
->flags
& SLAB_POISON
))
1162 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1165 for_each_object(p
, s
, start
, page
->objects
) {
1166 setup_object(s
, page
, last
);
1167 set_freepointer(s
, last
, p
);
1170 setup_object(s
, page
, last
);
1171 set_freepointer(s
, last
, NULL
);
1173 page
->freelist
= start
;
1179 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1181 int order
= compound_order(page
);
1182 int pages
= 1 << order
;
1184 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1187 slab_pad_check(s
, page
);
1188 for_each_object(p
, s
, page_address(page
),
1190 check_object(s
, page
, p
, 0);
1191 __ClearPageSlubDebug(page
);
1194 kmemcheck_free_shadow(page
, compound_order(page
));
1196 mod_zone_page_state(page_zone(page
),
1197 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1198 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1201 __ClearPageSlab(page
);
1202 reset_page_mapcount(page
);
1203 if (current
->reclaim_state
)
1204 current
->reclaim_state
->reclaimed_slab
+= pages
;
1205 __free_pages(page
, order
);
1208 static void rcu_free_slab(struct rcu_head
*h
)
1212 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1213 __free_slab(page
->slab
, page
);
1216 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1218 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1220 * RCU free overloads the RCU head over the LRU
1222 struct rcu_head
*head
= (void *)&page
->lru
;
1224 call_rcu(head
, rcu_free_slab
);
1226 __free_slab(s
, page
);
1229 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1231 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1236 * Per slab locking using the pagelock
1238 static __always_inline
void slab_lock(struct page
*page
)
1240 bit_spin_lock(PG_locked
, &page
->flags
);
1243 static __always_inline
void slab_unlock(struct page
*page
)
1245 __bit_spin_unlock(PG_locked
, &page
->flags
);
1248 static __always_inline
int slab_trylock(struct page
*page
)
1252 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1257 * Management of partially allocated slabs
1259 static void add_partial(struct kmem_cache_node
*n
,
1260 struct page
*page
, int tail
)
1262 spin_lock(&n
->list_lock
);
1265 list_add_tail(&page
->lru
, &n
->partial
);
1267 list_add(&page
->lru
, &n
->partial
);
1268 spin_unlock(&n
->list_lock
);
1271 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1273 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1275 spin_lock(&n
->list_lock
);
1276 list_del(&page
->lru
);
1278 spin_unlock(&n
->list_lock
);
1282 * Lock slab and remove from the partial list.
1284 * Must hold list_lock.
1286 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1289 if (slab_trylock(page
)) {
1290 list_del(&page
->lru
);
1292 __SetPageSlubFrozen(page
);
1299 * Try to allocate a partial slab from a specific node.
1301 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1306 * Racy check. If we mistakenly see no partial slabs then we
1307 * just allocate an empty slab. If we mistakenly try to get a
1308 * partial slab and there is none available then get_partials()
1311 if (!n
|| !n
->nr_partial
)
1314 spin_lock(&n
->list_lock
);
1315 list_for_each_entry(page
, &n
->partial
, lru
)
1316 if (lock_and_freeze_slab(n
, page
))
1320 spin_unlock(&n
->list_lock
);
1325 * Get a page from somewhere. Search in increasing NUMA distances.
1327 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1330 struct zonelist
*zonelist
;
1333 enum zone_type high_zoneidx
= gfp_zone(flags
);
1337 * The defrag ratio allows a configuration of the tradeoffs between
1338 * inter node defragmentation and node local allocations. A lower
1339 * defrag_ratio increases the tendency to do local allocations
1340 * instead of attempting to obtain partial slabs from other nodes.
1342 * If the defrag_ratio is set to 0 then kmalloc() always
1343 * returns node local objects. If the ratio is higher then kmalloc()
1344 * may return off node objects because partial slabs are obtained
1345 * from other nodes and filled up.
1347 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1348 * defrag_ratio = 1000) then every (well almost) allocation will
1349 * first attempt to defrag slab caches on other nodes. This means
1350 * scanning over all nodes to look for partial slabs which may be
1351 * expensive if we do it every time we are trying to find a slab
1352 * with available objects.
1354 if (!s
->remote_node_defrag_ratio
||
1355 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1358 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1359 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1360 struct kmem_cache_node
*n
;
1362 n
= get_node(s
, zone_to_nid(zone
));
1364 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1365 n
->nr_partial
> n
->min_partial
) {
1366 page
= get_partial_node(n
);
1376 * Get a partial page, lock it and return it.
1378 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1381 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1383 page
= get_partial_node(get_node(s
, searchnode
));
1384 if (page
|| (flags
& __GFP_THISNODE
))
1387 return get_any_partial(s
, flags
);
1391 * Move a page back to the lists.
1393 * Must be called with the slab lock held.
1395 * On exit the slab lock will have been dropped.
1397 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1399 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1400 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1402 __ClearPageSlubFrozen(page
);
1405 if (page
->freelist
) {
1406 add_partial(n
, page
, tail
);
1407 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1409 stat(c
, DEACTIVATE_FULL
);
1410 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1411 (s
->flags
& SLAB_STORE_USER
))
1416 stat(c
, DEACTIVATE_EMPTY
);
1417 if (n
->nr_partial
< n
->min_partial
) {
1419 * Adding an empty slab to the partial slabs in order
1420 * to avoid page allocator overhead. This slab needs
1421 * to come after the other slabs with objects in
1422 * so that the others get filled first. That way the
1423 * size of the partial list stays small.
1425 * kmem_cache_shrink can reclaim any empty slabs from
1428 add_partial(n
, page
, 1);
1432 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1433 discard_slab(s
, page
);
1439 * Remove the cpu slab
1441 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1443 struct page
*page
= c
->page
;
1447 stat(c
, DEACTIVATE_REMOTE_FREES
);
1449 * Merge cpu freelist into slab freelist. Typically we get here
1450 * because both freelists are empty. So this is unlikely
1453 while (unlikely(c
->freelist
)) {
1456 tail
= 0; /* Hot objects. Put the slab first */
1458 /* Retrieve object from cpu_freelist */
1459 object
= c
->freelist
;
1460 c
->freelist
= c
->freelist
[c
->offset
];
1462 /* And put onto the regular freelist */
1463 object
[c
->offset
] = page
->freelist
;
1464 page
->freelist
= object
;
1468 unfreeze_slab(s
, page
, tail
);
1471 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1473 stat(c
, CPUSLAB_FLUSH
);
1475 deactivate_slab(s
, c
);
1481 * Called from IPI handler with interrupts disabled.
1483 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1485 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1487 if (likely(c
&& c
->page
))
1491 static void flush_cpu_slab(void *d
)
1493 struct kmem_cache
*s
= d
;
1495 __flush_cpu_slab(s
, smp_processor_id());
1498 static void flush_all(struct kmem_cache
*s
)
1500 on_each_cpu(flush_cpu_slab
, s
, 1);
1504 * Check if the objects in a per cpu structure fit numa
1505 * locality expectations.
1507 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1510 if (node
!= -1 && c
->node
!= node
)
1517 * Slow path. The lockless freelist is empty or we need to perform
1520 * Interrupts are disabled.
1522 * Processing is still very fast if new objects have been freed to the
1523 * regular freelist. In that case we simply take over the regular freelist
1524 * as the lockless freelist and zap the regular freelist.
1526 * If that is not working then we fall back to the partial lists. We take the
1527 * first element of the freelist as the object to allocate now and move the
1528 * rest of the freelist to the lockless freelist.
1530 * And if we were unable to get a new slab from the partial slab lists then
1531 * we need to allocate a new slab. This is the slowest path since it involves
1532 * a call to the page allocator and the setup of a new slab.
1534 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1535 unsigned long addr
, struct kmem_cache_cpu
*c
)
1540 /* We handle __GFP_ZERO in the caller */
1541 gfpflags
&= ~__GFP_ZERO
;
1547 if (unlikely(!node_match(c
, node
)))
1550 stat(c
, ALLOC_REFILL
);
1553 object
= c
->page
->freelist
;
1554 if (unlikely(!object
))
1556 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1559 c
->freelist
= object
[c
->offset
];
1560 c
->page
->inuse
= c
->page
->objects
;
1561 c
->page
->freelist
= NULL
;
1562 c
->node
= page_to_nid(c
->page
);
1564 slab_unlock(c
->page
);
1565 stat(c
, ALLOC_SLOWPATH
);
1569 deactivate_slab(s
, c
);
1572 new = get_partial(s
, gfpflags
, node
);
1575 stat(c
, ALLOC_FROM_PARTIAL
);
1579 if (gfpflags
& __GFP_WAIT
)
1582 new = new_slab(s
, gfpflags
, node
);
1584 if (gfpflags
& __GFP_WAIT
)
1585 local_irq_disable();
1588 c
= get_cpu_slab(s
, smp_processor_id());
1589 stat(c
, ALLOC_SLAB
);
1593 __SetPageSlubFrozen(new);
1599 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1603 c
->page
->freelist
= object
[c
->offset
];
1609 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1610 * have the fastpath folded into their functions. So no function call
1611 * overhead for requests that can be satisfied on the fastpath.
1613 * The fastpath works by first checking if the lockless freelist can be used.
1614 * If not then __slab_alloc is called for slow processing.
1616 * Otherwise we can simply pick the next object from the lockless free list.
1618 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1619 gfp_t gfpflags
, int node
, unsigned long addr
)
1622 struct kmem_cache_cpu
*c
;
1623 unsigned long flags
;
1624 unsigned int objsize
;
1626 lockdep_trace_alloc(gfpflags
);
1627 might_sleep_if(gfpflags
& __GFP_WAIT
);
1629 if (should_failslab(s
->objsize
, gfpflags
))
1632 local_irq_save(flags
);
1633 c
= get_cpu_slab(s
, smp_processor_id());
1634 objsize
= c
->objsize
;
1635 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1637 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1640 object
= c
->freelist
;
1641 c
->freelist
= object
[c
->offset
];
1642 stat(c
, ALLOC_FASTPATH
);
1644 local_irq_restore(flags
);
1646 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1647 memset(object
, 0, objsize
);
1649 kmemcheck_slab_alloc(s
, gfpflags
, object
, c
->objsize
);
1653 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1655 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1657 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1661 EXPORT_SYMBOL(kmem_cache_alloc
);
1663 #ifdef CONFIG_KMEMTRACE
1664 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1666 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1668 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1672 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1674 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1676 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1677 s
->objsize
, s
->size
, gfpflags
, node
);
1681 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1684 #ifdef CONFIG_KMEMTRACE
1685 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1689 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1691 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1695 * Slow patch handling. This may still be called frequently since objects
1696 * have a longer lifetime than the cpu slabs in most processing loads.
1698 * So we still attempt to reduce cache line usage. Just take the slab
1699 * lock and free the item. If there is no additional partial page
1700 * handling required then we can return immediately.
1702 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1703 void *x
, unsigned long addr
, unsigned int offset
)
1706 void **object
= (void *)x
;
1707 struct kmem_cache_cpu
*c
;
1709 c
= get_cpu_slab(s
, raw_smp_processor_id());
1710 stat(c
, FREE_SLOWPATH
);
1713 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1717 prior
= object
[offset
] = page
->freelist
;
1718 page
->freelist
= object
;
1721 if (unlikely(PageSlubFrozen(page
))) {
1722 stat(c
, FREE_FROZEN
);
1726 if (unlikely(!page
->inuse
))
1730 * Objects left in the slab. If it was not on the partial list before
1733 if (unlikely(!prior
)) {
1734 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1735 stat(c
, FREE_ADD_PARTIAL
);
1745 * Slab still on the partial list.
1747 remove_partial(s
, page
);
1748 stat(c
, FREE_REMOVE_PARTIAL
);
1752 discard_slab(s
, page
);
1756 if (!free_debug_processing(s
, page
, x
, addr
))
1762 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1763 * can perform fastpath freeing without additional function calls.
1765 * The fastpath is only possible if we are freeing to the current cpu slab
1766 * of this processor. This typically the case if we have just allocated
1769 * If fastpath is not possible then fall back to __slab_free where we deal
1770 * with all sorts of special processing.
1772 static __always_inline
void slab_free(struct kmem_cache
*s
,
1773 struct page
*page
, void *x
, unsigned long addr
)
1775 void **object
= (void *)x
;
1776 struct kmem_cache_cpu
*c
;
1777 unsigned long flags
;
1779 local_irq_save(flags
);
1780 c
= get_cpu_slab(s
, smp_processor_id());
1781 kmemcheck_slab_free(s
, object
, c
->objsize
);
1782 debug_check_no_locks_freed(object
, c
->objsize
);
1783 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1784 debug_check_no_obj_freed(object
, s
->objsize
);
1785 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1786 object
[c
->offset
] = c
->freelist
;
1787 c
->freelist
= object
;
1788 stat(c
, FREE_FASTPATH
);
1790 __slab_free(s
, page
, x
, addr
, c
->offset
);
1792 local_irq_restore(flags
);
1795 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1799 page
= virt_to_head_page(x
);
1801 slab_free(s
, page
, x
, _RET_IP_
);
1803 trace_kmem_cache_free(_RET_IP_
, x
);
1805 EXPORT_SYMBOL(kmem_cache_free
);
1807 /* Figure out on which slab page the object resides */
1808 static struct page
*get_object_page(const void *x
)
1810 struct page
*page
= virt_to_head_page(x
);
1812 if (!PageSlab(page
))
1819 * Object placement in a slab is made very easy because we always start at
1820 * offset 0. If we tune the size of the object to the alignment then we can
1821 * get the required alignment by putting one properly sized object after
1824 * Notice that the allocation order determines the sizes of the per cpu
1825 * caches. Each processor has always one slab available for allocations.
1826 * Increasing the allocation order reduces the number of times that slabs
1827 * must be moved on and off the partial lists and is therefore a factor in
1832 * Mininum / Maximum order of slab pages. This influences locking overhead
1833 * and slab fragmentation. A higher order reduces the number of partial slabs
1834 * and increases the number of allocations possible without having to
1835 * take the list_lock.
1837 static int slub_min_order
;
1838 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1839 static int slub_min_objects
;
1842 * Merge control. If this is set then no merging of slab caches will occur.
1843 * (Could be removed. This was introduced to pacify the merge skeptics.)
1845 static int slub_nomerge
;
1848 * Calculate the order of allocation given an slab object size.
1850 * The order of allocation has significant impact on performance and other
1851 * system components. Generally order 0 allocations should be preferred since
1852 * order 0 does not cause fragmentation in the page allocator. Larger objects
1853 * be problematic to put into order 0 slabs because there may be too much
1854 * unused space left. We go to a higher order if more than 1/16th of the slab
1857 * In order to reach satisfactory performance we must ensure that a minimum
1858 * number of objects is in one slab. Otherwise we may generate too much
1859 * activity on the partial lists which requires taking the list_lock. This is
1860 * less a concern for large slabs though which are rarely used.
1862 * slub_max_order specifies the order where we begin to stop considering the
1863 * number of objects in a slab as critical. If we reach slub_max_order then
1864 * we try to keep the page order as low as possible. So we accept more waste
1865 * of space in favor of a small page order.
1867 * Higher order allocations also allow the placement of more objects in a
1868 * slab and thereby reduce object handling overhead. If the user has
1869 * requested a higher mininum order then we start with that one instead of
1870 * the smallest order which will fit the object.
1872 static inline int slab_order(int size
, int min_objects
,
1873 int max_order
, int fract_leftover
)
1877 int min_order
= slub_min_order
;
1879 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1880 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1882 for (order
= max(min_order
,
1883 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1884 order
<= max_order
; order
++) {
1886 unsigned long slab_size
= PAGE_SIZE
<< order
;
1888 if (slab_size
< min_objects
* size
)
1891 rem
= slab_size
% size
;
1893 if (rem
<= slab_size
/ fract_leftover
)
1901 static inline int calculate_order(int size
)
1908 * Attempt to find best configuration for a slab. This
1909 * works by first attempting to generate a layout with
1910 * the best configuration and backing off gradually.
1912 * First we reduce the acceptable waste in a slab. Then
1913 * we reduce the minimum objects required in a slab.
1915 min_objects
= slub_min_objects
;
1917 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1918 while (min_objects
> 1) {
1920 while (fraction
>= 4) {
1921 order
= slab_order(size
, min_objects
,
1922 slub_max_order
, fraction
);
1923 if (order
<= slub_max_order
)
1931 * We were unable to place multiple objects in a slab. Now
1932 * lets see if we can place a single object there.
1934 order
= slab_order(size
, 1, slub_max_order
, 1);
1935 if (order
<= slub_max_order
)
1939 * Doh this slab cannot be placed using slub_max_order.
1941 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1942 if (order
<= MAX_ORDER
)
1948 * Figure out what the alignment of the objects will be.
1950 static unsigned long calculate_alignment(unsigned long flags
,
1951 unsigned long align
, unsigned long size
)
1954 * If the user wants hardware cache aligned objects then follow that
1955 * suggestion if the object is sufficiently large.
1957 * The hardware cache alignment cannot override the specified
1958 * alignment though. If that is greater then use it.
1960 if (flags
& SLAB_HWCACHE_ALIGN
) {
1961 unsigned long ralign
= cache_line_size();
1962 while (size
<= ralign
/ 2)
1964 align
= max(align
, ralign
);
1967 if (align
< ARCH_SLAB_MINALIGN
)
1968 align
= ARCH_SLAB_MINALIGN
;
1970 return ALIGN(align
, sizeof(void *));
1973 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1974 struct kmem_cache_cpu
*c
)
1979 c
->offset
= s
->offset
/ sizeof(void *);
1980 c
->objsize
= s
->objsize
;
1981 #ifdef CONFIG_SLUB_STATS
1982 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1987 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
1992 * The larger the object size is, the more pages we want on the partial
1993 * list to avoid pounding the page allocator excessively.
1995 n
->min_partial
= ilog2(s
->size
);
1996 if (n
->min_partial
< MIN_PARTIAL
)
1997 n
->min_partial
= MIN_PARTIAL
;
1998 else if (n
->min_partial
> MAX_PARTIAL
)
1999 n
->min_partial
= MAX_PARTIAL
;
2001 spin_lock_init(&n
->list_lock
);
2002 INIT_LIST_HEAD(&n
->partial
);
2003 #ifdef CONFIG_SLUB_DEBUG
2004 atomic_long_set(&n
->nr_slabs
, 0);
2005 atomic_long_set(&n
->total_objects
, 0);
2006 INIT_LIST_HEAD(&n
->full
);
2012 * Per cpu array for per cpu structures.
2014 * The per cpu array places all kmem_cache_cpu structures from one processor
2015 * close together meaning that it becomes possible that multiple per cpu
2016 * structures are contained in one cacheline. This may be particularly
2017 * beneficial for the kmalloc caches.
2019 * A desktop system typically has around 60-80 slabs. With 100 here we are
2020 * likely able to get per cpu structures for all caches from the array defined
2021 * here. We must be able to cover all kmalloc caches during bootstrap.
2023 * If the per cpu array is exhausted then fall back to kmalloc
2024 * of individual cachelines. No sharing is possible then.
2026 #define NR_KMEM_CACHE_CPU 100
2028 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
2029 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
2031 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2032 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
2034 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2035 int cpu
, gfp_t flags
)
2037 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2040 per_cpu(kmem_cache_cpu_free
, cpu
) =
2041 (void *)c
->freelist
;
2043 /* Table overflow: So allocate ourselves */
2045 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2046 flags
, cpu_to_node(cpu
));
2051 init_kmem_cache_cpu(s
, c
);
2055 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2057 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2058 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2062 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2063 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2066 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2070 for_each_online_cpu(cpu
) {
2071 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2074 s
->cpu_slab
[cpu
] = NULL
;
2075 free_kmem_cache_cpu(c
, cpu
);
2080 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2084 for_each_online_cpu(cpu
) {
2085 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2090 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2092 free_kmem_cache_cpus(s
);
2095 s
->cpu_slab
[cpu
] = c
;
2101 * Initialize the per cpu array.
2103 static void init_alloc_cpu_cpu(int cpu
)
2107 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2110 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2111 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2113 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2116 static void __init
init_alloc_cpu(void)
2120 for_each_online_cpu(cpu
)
2121 init_alloc_cpu_cpu(cpu
);
2125 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2126 static inline void init_alloc_cpu(void) {}
2128 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2130 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2137 * No kmalloc_node yet so do it by hand. We know that this is the first
2138 * slab on the node for this slabcache. There are no concurrent accesses
2141 * Note that this function only works on the kmalloc_node_cache
2142 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2143 * memory on a fresh node that has no slab structures yet.
2145 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2148 struct kmem_cache_node
*n
;
2149 unsigned long flags
;
2151 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2153 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2156 if (page_to_nid(page
) != node
) {
2157 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2159 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2160 "in order to be able to continue\n");
2165 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2167 kmalloc_caches
->node
[node
] = n
;
2168 #ifdef CONFIG_SLUB_DEBUG
2169 init_object(kmalloc_caches
, n
, 1);
2170 init_tracking(kmalloc_caches
, n
);
2172 init_kmem_cache_node(n
, kmalloc_caches
);
2173 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2176 * lockdep requires consistent irq usage for each lock
2177 * so even though there cannot be a race this early in
2178 * the boot sequence, we still disable irqs.
2180 local_irq_save(flags
);
2181 add_partial(n
, page
, 0);
2182 local_irq_restore(flags
);
2185 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2189 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2190 struct kmem_cache_node
*n
= s
->node
[node
];
2191 if (n
&& n
!= &s
->local_node
)
2192 kmem_cache_free(kmalloc_caches
, n
);
2193 s
->node
[node
] = NULL
;
2197 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2202 if (slab_state
>= UP
)
2203 local_node
= page_to_nid(virt_to_page(s
));
2207 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2208 struct kmem_cache_node
*n
;
2210 if (local_node
== node
)
2213 if (slab_state
== DOWN
) {
2214 early_kmem_cache_node_alloc(gfpflags
, node
);
2217 n
= kmem_cache_alloc_node(kmalloc_caches
,
2221 free_kmem_cache_nodes(s
);
2227 init_kmem_cache_node(n
, s
);
2232 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2236 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2238 init_kmem_cache_node(&s
->local_node
, s
);
2244 * calculate_sizes() determines the order and the distribution of data within
2247 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2249 unsigned long flags
= s
->flags
;
2250 unsigned long size
= s
->objsize
;
2251 unsigned long align
= s
->align
;
2255 * Round up object size to the next word boundary. We can only
2256 * place the free pointer at word boundaries and this determines
2257 * the possible location of the free pointer.
2259 size
= ALIGN(size
, sizeof(void *));
2261 #ifdef CONFIG_SLUB_DEBUG
2263 * Determine if we can poison the object itself. If the user of
2264 * the slab may touch the object after free or before allocation
2265 * then we should never poison the object itself.
2267 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2269 s
->flags
|= __OBJECT_POISON
;
2271 s
->flags
&= ~__OBJECT_POISON
;
2275 * If we are Redzoning then check if there is some space between the
2276 * end of the object and the free pointer. If not then add an
2277 * additional word to have some bytes to store Redzone information.
2279 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2280 size
+= sizeof(void *);
2284 * With that we have determined the number of bytes in actual use
2285 * by the object. This is the potential offset to the free pointer.
2289 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2292 * Relocate free pointer after the object if it is not
2293 * permitted to overwrite the first word of the object on
2296 * This is the case if we do RCU, have a constructor or
2297 * destructor or are poisoning the objects.
2300 size
+= sizeof(void *);
2303 #ifdef CONFIG_SLUB_DEBUG
2304 if (flags
& SLAB_STORE_USER
)
2306 * Need to store information about allocs and frees after
2309 size
+= 2 * sizeof(struct track
);
2311 if (flags
& SLAB_RED_ZONE
)
2313 * Add some empty padding so that we can catch
2314 * overwrites from earlier objects rather than let
2315 * tracking information or the free pointer be
2316 * corrupted if a user writes before the start
2319 size
+= sizeof(void *);
2323 * Determine the alignment based on various parameters that the
2324 * user specified and the dynamic determination of cache line size
2327 align
= calculate_alignment(flags
, align
, s
->objsize
);
2330 * SLUB stores one object immediately after another beginning from
2331 * offset 0. In order to align the objects we have to simply size
2332 * each object to conform to the alignment.
2334 size
= ALIGN(size
, align
);
2336 if (forced_order
>= 0)
2337 order
= forced_order
;
2339 order
= calculate_order(size
);
2346 s
->allocflags
|= __GFP_COMP
;
2348 if (s
->flags
& SLAB_CACHE_DMA
)
2349 s
->allocflags
|= SLUB_DMA
;
2351 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2352 s
->allocflags
|= __GFP_RECLAIMABLE
;
2355 * Determine the number of objects per slab
2357 s
->oo
= oo_make(order
, size
);
2358 s
->min
= oo_make(get_order(size
), size
);
2359 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2362 return !!oo_objects(s
->oo
);
2366 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2367 const char *name
, size_t size
,
2368 size_t align
, unsigned long flags
,
2369 void (*ctor
)(void *))
2371 memset(s
, 0, kmem_size
);
2376 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2378 if (!calculate_sizes(s
, -1))
2383 s
->remote_node_defrag_ratio
= 1000;
2385 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2388 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2390 free_kmem_cache_nodes(s
);
2392 if (flags
& SLAB_PANIC
)
2393 panic("Cannot create slab %s size=%lu realsize=%u "
2394 "order=%u offset=%u flags=%lx\n",
2395 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2401 * Check if a given pointer is valid
2403 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2407 page
= get_object_page(object
);
2409 if (!page
|| s
!= page
->slab
)
2410 /* No slab or wrong slab */
2413 if (!check_valid_pointer(s
, page
, object
))
2417 * We could also check if the object is on the slabs freelist.
2418 * But this would be too expensive and it seems that the main
2419 * purpose of kmem_ptr_valid() is to check if the object belongs
2420 * to a certain slab.
2424 EXPORT_SYMBOL(kmem_ptr_validate
);
2427 * Determine the size of a slab object
2429 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2433 EXPORT_SYMBOL(kmem_cache_size
);
2435 const char *kmem_cache_name(struct kmem_cache
*s
)
2439 EXPORT_SYMBOL(kmem_cache_name
);
2441 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2444 #ifdef CONFIG_SLUB_DEBUG
2445 void *addr
= page_address(page
);
2447 DECLARE_BITMAP(map
, page
->objects
);
2449 bitmap_zero(map
, page
->objects
);
2450 slab_err(s
, page
, "%s", text
);
2452 for_each_free_object(p
, s
, page
->freelist
)
2453 set_bit(slab_index(p
, s
, addr
), map
);
2455 for_each_object(p
, s
, addr
, page
->objects
) {
2457 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2458 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2460 print_tracking(s
, p
);
2468 * Attempt to free all partial slabs on a node.
2470 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2472 unsigned long flags
;
2473 struct page
*page
, *h
;
2475 spin_lock_irqsave(&n
->list_lock
, flags
);
2476 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2478 list_del(&page
->lru
);
2479 discard_slab(s
, page
);
2482 list_slab_objects(s
, page
,
2483 "Objects remaining on kmem_cache_close()");
2486 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2490 * Release all resources used by a slab cache.
2492 static inline int kmem_cache_close(struct kmem_cache
*s
)
2498 /* Attempt to free all objects */
2499 free_kmem_cache_cpus(s
);
2500 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2501 struct kmem_cache_node
*n
= get_node(s
, node
);
2504 if (n
->nr_partial
|| slabs_node(s
, node
))
2507 free_kmem_cache_nodes(s
);
2512 * Close a cache and release the kmem_cache structure
2513 * (must be used for caches created using kmem_cache_create)
2515 void kmem_cache_destroy(struct kmem_cache
*s
)
2517 down_write(&slub_lock
);
2521 up_write(&slub_lock
);
2522 if (kmem_cache_close(s
)) {
2523 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2524 "still has objects.\n", s
->name
, __func__
);
2527 sysfs_slab_remove(s
);
2529 up_write(&slub_lock
);
2531 EXPORT_SYMBOL(kmem_cache_destroy
);
2533 /********************************************************************
2535 *******************************************************************/
2537 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2538 EXPORT_SYMBOL(kmalloc_caches
);
2540 static int __init
setup_slub_min_order(char *str
)
2542 get_option(&str
, &slub_min_order
);
2547 __setup("slub_min_order=", setup_slub_min_order
);
2549 static int __init
setup_slub_max_order(char *str
)
2551 get_option(&str
, &slub_max_order
);
2556 __setup("slub_max_order=", setup_slub_max_order
);
2558 static int __init
setup_slub_min_objects(char *str
)
2560 get_option(&str
, &slub_min_objects
);
2565 __setup("slub_min_objects=", setup_slub_min_objects
);
2567 static int __init
setup_slub_nomerge(char *str
)
2573 __setup("slub_nomerge", setup_slub_nomerge
);
2575 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2576 const char *name
, int size
, gfp_t gfp_flags
)
2578 unsigned int flags
= 0;
2580 if (gfp_flags
& SLUB_DMA
)
2581 flags
= SLAB_CACHE_DMA
;
2583 down_write(&slub_lock
);
2584 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2588 list_add(&s
->list
, &slab_caches
);
2589 up_write(&slub_lock
);
2590 if (sysfs_slab_add(s
))
2595 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2598 #ifdef CONFIG_ZONE_DMA
2599 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2601 static void sysfs_add_func(struct work_struct
*w
)
2603 struct kmem_cache
*s
;
2605 down_write(&slub_lock
);
2606 list_for_each_entry(s
, &slab_caches
, list
) {
2607 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2608 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2612 up_write(&slub_lock
);
2615 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2617 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2619 struct kmem_cache
*s
;
2623 s
= kmalloc_caches_dma
[index
];
2627 /* Dynamically create dma cache */
2628 if (flags
& __GFP_WAIT
)
2629 down_write(&slub_lock
);
2631 if (!down_write_trylock(&slub_lock
))
2635 if (kmalloc_caches_dma
[index
])
2638 realsize
= kmalloc_caches
[index
].objsize
;
2639 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2640 (unsigned int)realsize
);
2641 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2643 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2644 realsize
, ARCH_KMALLOC_MINALIGN
,
2645 SLAB_CACHE_DMA
|SLAB_NOTRACK
|__SYSFS_ADD_DEFERRED
,
2652 list_add(&s
->list
, &slab_caches
);
2653 kmalloc_caches_dma
[index
] = s
;
2655 schedule_work(&sysfs_add_work
);
2658 up_write(&slub_lock
);
2660 return kmalloc_caches_dma
[index
];
2665 * Conversion table for small slabs sizes / 8 to the index in the
2666 * kmalloc array. This is necessary for slabs < 192 since we have non power
2667 * of two cache sizes there. The size of larger slabs can be determined using
2670 static s8 size_index
[24] = {
2697 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2703 return ZERO_SIZE_PTR
;
2705 index
= size_index
[(size
- 1) / 8];
2707 index
= fls(size
- 1);
2709 #ifdef CONFIG_ZONE_DMA
2710 if (unlikely((flags
& SLUB_DMA
)))
2711 return dma_kmalloc_cache(index
, flags
);
2714 return &kmalloc_caches
[index
];
2717 void *__kmalloc(size_t size
, gfp_t flags
)
2719 struct kmem_cache
*s
;
2722 if (unlikely(size
> SLUB_MAX_SIZE
))
2723 return kmalloc_large(size
, flags
);
2725 s
= get_slab(size
, flags
);
2727 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2730 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2732 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2736 EXPORT_SYMBOL(__kmalloc
);
2738 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2742 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2743 page
= alloc_pages_node(node
, flags
, get_order(size
));
2745 return page_address(page
);
2751 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2753 struct kmem_cache
*s
;
2756 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2757 ret
= kmalloc_large_node(size
, flags
, node
);
2759 trace_kmalloc_node(_RET_IP_
, ret
,
2760 size
, PAGE_SIZE
<< get_order(size
),
2766 s
= get_slab(size
, flags
);
2768 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2771 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2773 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2777 EXPORT_SYMBOL(__kmalloc_node
);
2780 size_t ksize(const void *object
)
2783 struct kmem_cache
*s
;
2785 if (unlikely(object
== ZERO_SIZE_PTR
))
2788 page
= virt_to_head_page(object
);
2790 if (unlikely(!PageSlab(page
))) {
2791 WARN_ON(!PageCompound(page
));
2792 return PAGE_SIZE
<< compound_order(page
);
2796 #ifdef CONFIG_SLUB_DEBUG
2798 * Debugging requires use of the padding between object
2799 * and whatever may come after it.
2801 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2806 * If we have the need to store the freelist pointer
2807 * back there or track user information then we can
2808 * only use the space before that information.
2810 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2813 * Else we can use all the padding etc for the allocation
2817 EXPORT_SYMBOL(ksize
);
2819 void kfree(const void *x
)
2822 void *object
= (void *)x
;
2824 trace_kfree(_RET_IP_
, x
);
2826 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2829 page
= virt_to_head_page(x
);
2830 if (unlikely(!PageSlab(page
))) {
2831 BUG_ON(!PageCompound(page
));
2835 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2837 EXPORT_SYMBOL(kfree
);
2840 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2841 * the remaining slabs by the number of items in use. The slabs with the
2842 * most items in use come first. New allocations will then fill those up
2843 * and thus they can be removed from the partial lists.
2845 * The slabs with the least items are placed last. This results in them
2846 * being allocated from last increasing the chance that the last objects
2847 * are freed in them.
2849 int kmem_cache_shrink(struct kmem_cache
*s
)
2853 struct kmem_cache_node
*n
;
2856 int objects
= oo_objects(s
->max
);
2857 struct list_head
*slabs_by_inuse
=
2858 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2859 unsigned long flags
;
2861 if (!slabs_by_inuse
)
2865 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2866 n
= get_node(s
, node
);
2871 for (i
= 0; i
< objects
; i
++)
2872 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2874 spin_lock_irqsave(&n
->list_lock
, flags
);
2877 * Build lists indexed by the items in use in each slab.
2879 * Note that concurrent frees may occur while we hold the
2880 * list_lock. page->inuse here is the upper limit.
2882 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2883 if (!page
->inuse
&& slab_trylock(page
)) {
2885 * Must hold slab lock here because slab_free
2886 * may have freed the last object and be
2887 * waiting to release the slab.
2889 list_del(&page
->lru
);
2892 discard_slab(s
, page
);
2894 list_move(&page
->lru
,
2895 slabs_by_inuse
+ page
->inuse
);
2900 * Rebuild the partial list with the slabs filled up most
2901 * first and the least used slabs at the end.
2903 for (i
= objects
- 1; i
>= 0; i
--)
2904 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2906 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2909 kfree(slabs_by_inuse
);
2912 EXPORT_SYMBOL(kmem_cache_shrink
);
2914 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2915 static int slab_mem_going_offline_callback(void *arg
)
2917 struct kmem_cache
*s
;
2919 down_read(&slub_lock
);
2920 list_for_each_entry(s
, &slab_caches
, list
)
2921 kmem_cache_shrink(s
);
2922 up_read(&slub_lock
);
2927 static void slab_mem_offline_callback(void *arg
)
2929 struct kmem_cache_node
*n
;
2930 struct kmem_cache
*s
;
2931 struct memory_notify
*marg
= arg
;
2934 offline_node
= marg
->status_change_nid
;
2937 * If the node still has available memory. we need kmem_cache_node
2940 if (offline_node
< 0)
2943 down_read(&slub_lock
);
2944 list_for_each_entry(s
, &slab_caches
, list
) {
2945 n
= get_node(s
, offline_node
);
2948 * if n->nr_slabs > 0, slabs still exist on the node
2949 * that is going down. We were unable to free them,
2950 * and offline_pages() function shoudn't call this
2951 * callback. So, we must fail.
2953 BUG_ON(slabs_node(s
, offline_node
));
2955 s
->node
[offline_node
] = NULL
;
2956 kmem_cache_free(kmalloc_caches
, n
);
2959 up_read(&slub_lock
);
2962 static int slab_mem_going_online_callback(void *arg
)
2964 struct kmem_cache_node
*n
;
2965 struct kmem_cache
*s
;
2966 struct memory_notify
*marg
= arg
;
2967 int nid
= marg
->status_change_nid
;
2971 * If the node's memory is already available, then kmem_cache_node is
2972 * already created. Nothing to do.
2978 * We are bringing a node online. No memory is available yet. We must
2979 * allocate a kmem_cache_node structure in order to bring the node
2982 down_read(&slub_lock
);
2983 list_for_each_entry(s
, &slab_caches
, list
) {
2985 * XXX: kmem_cache_alloc_node will fallback to other nodes
2986 * since memory is not yet available from the node that
2989 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2994 init_kmem_cache_node(n
, s
);
2998 up_read(&slub_lock
);
3002 static int slab_memory_callback(struct notifier_block
*self
,
3003 unsigned long action
, void *arg
)
3008 case MEM_GOING_ONLINE
:
3009 ret
= slab_mem_going_online_callback(arg
);
3011 case MEM_GOING_OFFLINE
:
3012 ret
= slab_mem_going_offline_callback(arg
);
3015 case MEM_CANCEL_ONLINE
:
3016 slab_mem_offline_callback(arg
);
3019 case MEM_CANCEL_OFFLINE
:
3023 ret
= notifier_from_errno(ret
);
3029 #endif /* CONFIG_MEMORY_HOTPLUG */
3031 /********************************************************************
3032 * Basic setup of slabs
3033 *******************************************************************/
3035 void __init
kmem_cache_init(void)
3044 * Must first have the slab cache available for the allocations of the
3045 * struct kmem_cache_node's. There is special bootstrap code in
3046 * kmem_cache_open for slab_state == DOWN.
3048 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3049 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
3050 kmalloc_caches
[0].refcount
= -1;
3053 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3056 /* Able to allocate the per node structures */
3057 slab_state
= PARTIAL
;
3059 /* Caches that are not of the two-to-the-power-of size */
3060 if (KMALLOC_MIN_SIZE
<= 64) {
3061 create_kmalloc_cache(&kmalloc_caches
[1],
3062 "kmalloc-96", 96, GFP_KERNEL
);
3064 create_kmalloc_cache(&kmalloc_caches
[2],
3065 "kmalloc-192", 192, GFP_KERNEL
);
3069 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3070 create_kmalloc_cache(&kmalloc_caches
[i
],
3071 "kmalloc", 1 << i
, GFP_KERNEL
);
3077 * Patch up the size_index table if we have strange large alignment
3078 * requirements for the kmalloc array. This is only the case for
3079 * MIPS it seems. The standard arches will not generate any code here.
3081 * Largest permitted alignment is 256 bytes due to the way we
3082 * handle the index determination for the smaller caches.
3084 * Make sure that nothing crazy happens if someone starts tinkering
3085 * around with ARCH_KMALLOC_MINALIGN
3087 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3088 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3090 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3091 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3093 if (KMALLOC_MIN_SIZE
== 128) {
3095 * The 192 byte sized cache is not used if the alignment
3096 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3099 for (i
= 128 + 8; i
<= 192; i
+= 8)
3100 size_index
[(i
- 1) / 8] = 8;
3105 /* Provide the correct kmalloc names now that the caches are up */
3106 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3107 kmalloc_caches
[i
]. name
=
3108 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3111 register_cpu_notifier(&slab_notifier
);
3112 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3113 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3115 kmem_size
= sizeof(struct kmem_cache
);
3119 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3120 " CPUs=%d, Nodes=%d\n",
3121 caches
, cache_line_size(),
3122 slub_min_order
, slub_max_order
, slub_min_objects
,
3123 nr_cpu_ids
, nr_node_ids
);
3127 * Find a mergeable slab cache
3129 static int slab_unmergeable(struct kmem_cache
*s
)
3131 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3138 * We may have set a slab to be unmergeable during bootstrap.
3140 if (s
->refcount
< 0)
3146 static struct kmem_cache
*find_mergeable(size_t size
,
3147 size_t align
, unsigned long flags
, const char *name
,
3148 void (*ctor
)(void *))
3150 struct kmem_cache
*s
;
3152 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3158 size
= ALIGN(size
, sizeof(void *));
3159 align
= calculate_alignment(flags
, align
, size
);
3160 size
= ALIGN(size
, align
);
3161 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3163 list_for_each_entry(s
, &slab_caches
, list
) {
3164 if (slab_unmergeable(s
))
3170 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3173 * Check if alignment is compatible.
3174 * Courtesy of Adrian Drzewiecki
3176 if ((s
->size
& ~(align
- 1)) != s
->size
)
3179 if (s
->size
- size
>= sizeof(void *))
3187 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3188 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3190 struct kmem_cache
*s
;
3192 down_write(&slub_lock
);
3193 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3199 * Adjust the object sizes so that we clear
3200 * the complete object on kzalloc.
3202 s
->objsize
= max(s
->objsize
, (int)size
);
3205 * And then we need to update the object size in the
3206 * per cpu structures
3208 for_each_online_cpu(cpu
)
3209 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3211 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3212 up_write(&slub_lock
);
3214 if (sysfs_slab_alias(s
, name
)) {
3215 down_write(&slub_lock
);
3217 up_write(&slub_lock
);
3223 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3225 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3226 size
, align
, flags
, ctor
)) {
3227 list_add(&s
->list
, &slab_caches
);
3228 up_write(&slub_lock
);
3229 if (sysfs_slab_add(s
)) {
3230 down_write(&slub_lock
);
3232 up_write(&slub_lock
);
3240 up_write(&slub_lock
);
3243 if (flags
& SLAB_PANIC
)
3244 panic("Cannot create slabcache %s\n", name
);
3249 EXPORT_SYMBOL(kmem_cache_create
);
3253 * Use the cpu notifier to insure that the cpu slabs are flushed when
3256 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3257 unsigned long action
, void *hcpu
)
3259 long cpu
= (long)hcpu
;
3260 struct kmem_cache
*s
;
3261 unsigned long flags
;
3264 case CPU_UP_PREPARE
:
3265 case CPU_UP_PREPARE_FROZEN
:
3266 init_alloc_cpu_cpu(cpu
);
3267 down_read(&slub_lock
);
3268 list_for_each_entry(s
, &slab_caches
, list
)
3269 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3271 up_read(&slub_lock
);
3274 case CPU_UP_CANCELED
:
3275 case CPU_UP_CANCELED_FROZEN
:
3277 case CPU_DEAD_FROZEN
:
3278 down_read(&slub_lock
);
3279 list_for_each_entry(s
, &slab_caches
, list
) {
3280 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3282 local_irq_save(flags
);
3283 __flush_cpu_slab(s
, cpu
);
3284 local_irq_restore(flags
);
3285 free_kmem_cache_cpu(c
, cpu
);
3286 s
->cpu_slab
[cpu
] = NULL
;
3288 up_read(&slub_lock
);
3296 static struct notifier_block __cpuinitdata slab_notifier
= {
3297 .notifier_call
= slab_cpuup_callback
3302 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3304 struct kmem_cache
*s
;
3307 if (unlikely(size
> SLUB_MAX_SIZE
))
3308 return kmalloc_large(size
, gfpflags
);
3310 s
= get_slab(size
, gfpflags
);
3312 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3315 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3317 /* Honor the call site pointer we recieved. */
3318 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3323 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3324 int node
, unsigned long caller
)
3326 struct kmem_cache
*s
;
3329 if (unlikely(size
> SLUB_MAX_SIZE
))
3330 return kmalloc_large_node(size
, gfpflags
, node
);
3332 s
= get_slab(size
, gfpflags
);
3334 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3337 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3339 /* Honor the call site pointer we recieved. */
3340 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3345 #ifdef CONFIG_SLUB_DEBUG
3346 static unsigned long count_partial(struct kmem_cache_node
*n
,
3347 int (*get_count
)(struct page
*))
3349 unsigned long flags
;
3350 unsigned long x
= 0;
3353 spin_lock_irqsave(&n
->list_lock
, flags
);
3354 list_for_each_entry(page
, &n
->partial
, lru
)
3355 x
+= get_count(page
);
3356 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3360 static int count_inuse(struct page
*page
)
3365 static int count_total(struct page
*page
)
3367 return page
->objects
;
3370 static int count_free(struct page
*page
)
3372 return page
->objects
- page
->inuse
;
3375 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3379 void *addr
= page_address(page
);
3381 if (!check_slab(s
, page
) ||
3382 !on_freelist(s
, page
, NULL
))
3385 /* Now we know that a valid freelist exists */
3386 bitmap_zero(map
, page
->objects
);
3388 for_each_free_object(p
, s
, page
->freelist
) {
3389 set_bit(slab_index(p
, s
, addr
), map
);
3390 if (!check_object(s
, page
, p
, 0))
3394 for_each_object(p
, s
, addr
, page
->objects
)
3395 if (!test_bit(slab_index(p
, s
, addr
), map
))
3396 if (!check_object(s
, page
, p
, 1))
3401 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3404 if (slab_trylock(page
)) {
3405 validate_slab(s
, page
, map
);
3408 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3411 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3412 if (!PageSlubDebug(page
))
3413 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3414 "on slab 0x%p\n", s
->name
, page
);
3416 if (PageSlubDebug(page
))
3417 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3418 "slab 0x%p\n", s
->name
, page
);
3422 static int validate_slab_node(struct kmem_cache
*s
,
3423 struct kmem_cache_node
*n
, unsigned long *map
)
3425 unsigned long count
= 0;
3427 unsigned long flags
;
3429 spin_lock_irqsave(&n
->list_lock
, flags
);
3431 list_for_each_entry(page
, &n
->partial
, lru
) {
3432 validate_slab_slab(s
, page
, map
);
3435 if (count
!= n
->nr_partial
)
3436 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3437 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3439 if (!(s
->flags
& SLAB_STORE_USER
))
3442 list_for_each_entry(page
, &n
->full
, lru
) {
3443 validate_slab_slab(s
, page
, map
);
3446 if (count
!= atomic_long_read(&n
->nr_slabs
))
3447 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3448 "counter=%ld\n", s
->name
, count
,
3449 atomic_long_read(&n
->nr_slabs
));
3452 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3456 static long validate_slab_cache(struct kmem_cache
*s
)
3459 unsigned long count
= 0;
3460 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3461 sizeof(unsigned long), GFP_KERNEL
);
3467 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3468 struct kmem_cache_node
*n
= get_node(s
, node
);
3470 count
+= validate_slab_node(s
, n
, map
);
3476 #ifdef SLUB_RESILIENCY_TEST
3477 static void resiliency_test(void)
3481 printk(KERN_ERR
"SLUB resiliency testing\n");
3482 printk(KERN_ERR
"-----------------------\n");
3483 printk(KERN_ERR
"A. Corruption after allocation\n");
3485 p
= kzalloc(16, GFP_KERNEL
);
3487 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3488 " 0x12->0x%p\n\n", p
+ 16);
3490 validate_slab_cache(kmalloc_caches
+ 4);
3492 /* Hmmm... The next two are dangerous */
3493 p
= kzalloc(32, GFP_KERNEL
);
3494 p
[32 + sizeof(void *)] = 0x34;
3495 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3496 " 0x34 -> -0x%p\n", p
);
3498 "If allocated object is overwritten then not detectable\n\n");
3500 validate_slab_cache(kmalloc_caches
+ 5);
3501 p
= kzalloc(64, GFP_KERNEL
);
3502 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3504 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3507 "If allocated object is overwritten then not detectable\n\n");
3508 validate_slab_cache(kmalloc_caches
+ 6);
3510 printk(KERN_ERR
"\nB. Corruption after free\n");
3511 p
= kzalloc(128, GFP_KERNEL
);
3514 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3515 validate_slab_cache(kmalloc_caches
+ 7);
3517 p
= kzalloc(256, GFP_KERNEL
);
3520 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3522 validate_slab_cache(kmalloc_caches
+ 8);
3524 p
= kzalloc(512, GFP_KERNEL
);
3527 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3528 validate_slab_cache(kmalloc_caches
+ 9);
3531 static void resiliency_test(void) {};
3535 * Generate lists of code addresses where slabcache objects are allocated
3540 unsigned long count
;
3547 DECLARE_BITMAP(cpus
, NR_CPUS
);
3553 unsigned long count
;
3554 struct location
*loc
;
3557 static void free_loc_track(struct loc_track
*t
)
3560 free_pages((unsigned long)t
->loc
,
3561 get_order(sizeof(struct location
) * t
->max
));
3564 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3569 order
= get_order(sizeof(struct location
) * max
);
3571 l
= (void *)__get_free_pages(flags
, order
);
3576 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3584 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3585 const struct track
*track
)
3587 long start
, end
, pos
;
3589 unsigned long caddr
;
3590 unsigned long age
= jiffies
- track
->when
;
3596 pos
= start
+ (end
- start
+ 1) / 2;
3599 * There is nothing at "end". If we end up there
3600 * we need to add something to before end.
3605 caddr
= t
->loc
[pos
].addr
;
3606 if (track
->addr
== caddr
) {
3612 if (age
< l
->min_time
)
3614 if (age
> l
->max_time
)
3617 if (track
->pid
< l
->min_pid
)
3618 l
->min_pid
= track
->pid
;
3619 if (track
->pid
> l
->max_pid
)
3620 l
->max_pid
= track
->pid
;
3622 cpumask_set_cpu(track
->cpu
,
3623 to_cpumask(l
->cpus
));
3625 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3629 if (track
->addr
< caddr
)
3636 * Not found. Insert new tracking element.
3638 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3644 (t
->count
- pos
) * sizeof(struct location
));
3647 l
->addr
= track
->addr
;
3651 l
->min_pid
= track
->pid
;
3652 l
->max_pid
= track
->pid
;
3653 cpumask_clear(to_cpumask(l
->cpus
));
3654 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3655 nodes_clear(l
->nodes
);
3656 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3660 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3661 struct page
*page
, enum track_item alloc
)
3663 void *addr
= page_address(page
);
3664 DECLARE_BITMAP(map
, page
->objects
);
3667 bitmap_zero(map
, page
->objects
);
3668 for_each_free_object(p
, s
, page
->freelist
)
3669 set_bit(slab_index(p
, s
, addr
), map
);
3671 for_each_object(p
, s
, addr
, page
->objects
)
3672 if (!test_bit(slab_index(p
, s
, addr
), map
))
3673 add_location(t
, s
, get_track(s
, p
, alloc
));
3676 static int list_locations(struct kmem_cache
*s
, char *buf
,
3677 enum track_item alloc
)
3681 struct loc_track t
= { 0, 0, NULL
};
3684 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3686 return sprintf(buf
, "Out of memory\n");
3688 /* Push back cpu slabs */
3691 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3692 struct kmem_cache_node
*n
= get_node(s
, node
);
3693 unsigned long flags
;
3696 if (!atomic_long_read(&n
->nr_slabs
))
3699 spin_lock_irqsave(&n
->list_lock
, flags
);
3700 list_for_each_entry(page
, &n
->partial
, lru
)
3701 process_slab(&t
, s
, page
, alloc
);
3702 list_for_each_entry(page
, &n
->full
, lru
)
3703 process_slab(&t
, s
, page
, alloc
);
3704 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3707 for (i
= 0; i
< t
.count
; i
++) {
3708 struct location
*l
= &t
.loc
[i
];
3710 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3712 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3715 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3717 len
+= sprintf(buf
+ len
, "<not-available>");
3719 if (l
->sum_time
!= l
->min_time
) {
3720 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3722 (long)div_u64(l
->sum_time
, l
->count
),
3725 len
+= sprintf(buf
+ len
, " age=%ld",
3728 if (l
->min_pid
!= l
->max_pid
)
3729 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3730 l
->min_pid
, l
->max_pid
);
3732 len
+= sprintf(buf
+ len
, " pid=%ld",
3735 if (num_online_cpus() > 1 &&
3736 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3737 len
< PAGE_SIZE
- 60) {
3738 len
+= sprintf(buf
+ len
, " cpus=");
3739 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3740 to_cpumask(l
->cpus
));
3743 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3744 len
< PAGE_SIZE
- 60) {
3745 len
+= sprintf(buf
+ len
, " nodes=");
3746 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3750 len
+= sprintf(buf
+ len
, "\n");
3755 len
+= sprintf(buf
, "No data\n");
3759 enum slab_stat_type
{
3760 SL_ALL
, /* All slabs */
3761 SL_PARTIAL
, /* Only partially allocated slabs */
3762 SL_CPU
, /* Only slabs used for cpu caches */
3763 SL_OBJECTS
, /* Determine allocated objects not slabs */
3764 SL_TOTAL
/* Determine object capacity not slabs */
3767 #define SO_ALL (1 << SL_ALL)
3768 #define SO_PARTIAL (1 << SL_PARTIAL)
3769 #define SO_CPU (1 << SL_CPU)
3770 #define SO_OBJECTS (1 << SL_OBJECTS)
3771 #define SO_TOTAL (1 << SL_TOTAL)
3773 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3774 char *buf
, unsigned long flags
)
3776 unsigned long total
= 0;
3779 unsigned long *nodes
;
3780 unsigned long *per_cpu
;
3782 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3785 per_cpu
= nodes
+ nr_node_ids
;
3787 if (flags
& SO_CPU
) {
3790 for_each_possible_cpu(cpu
) {
3791 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3793 if (!c
|| c
->node
< 0)
3797 if (flags
& SO_TOTAL
)
3798 x
= c
->page
->objects
;
3799 else if (flags
& SO_OBJECTS
)
3805 nodes
[c
->node
] += x
;
3811 if (flags
& SO_ALL
) {
3812 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3813 struct kmem_cache_node
*n
= get_node(s
, node
);
3815 if (flags
& SO_TOTAL
)
3816 x
= atomic_long_read(&n
->total_objects
);
3817 else if (flags
& SO_OBJECTS
)
3818 x
= atomic_long_read(&n
->total_objects
) -
3819 count_partial(n
, count_free
);
3822 x
= atomic_long_read(&n
->nr_slabs
);
3827 } else if (flags
& SO_PARTIAL
) {
3828 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3829 struct kmem_cache_node
*n
= get_node(s
, node
);
3831 if (flags
& SO_TOTAL
)
3832 x
= count_partial(n
, count_total
);
3833 else if (flags
& SO_OBJECTS
)
3834 x
= count_partial(n
, count_inuse
);
3841 x
= sprintf(buf
, "%lu", total
);
3843 for_each_node_state(node
, N_NORMAL_MEMORY
)
3845 x
+= sprintf(buf
+ x
, " N%d=%lu",
3849 return x
+ sprintf(buf
+ x
, "\n");
3852 static int any_slab_objects(struct kmem_cache
*s
)
3856 for_each_online_node(node
) {
3857 struct kmem_cache_node
*n
= get_node(s
, node
);
3862 if (atomic_long_read(&n
->total_objects
))
3868 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3869 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3871 struct slab_attribute
{
3872 struct attribute attr
;
3873 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3874 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3877 #define SLAB_ATTR_RO(_name) \
3878 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3880 #define SLAB_ATTR(_name) \
3881 static struct slab_attribute _name##_attr = \
3882 __ATTR(_name, 0644, _name##_show, _name##_store)
3884 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3886 return sprintf(buf
, "%d\n", s
->size
);
3888 SLAB_ATTR_RO(slab_size
);
3890 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3892 return sprintf(buf
, "%d\n", s
->align
);
3894 SLAB_ATTR_RO(align
);
3896 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3898 return sprintf(buf
, "%d\n", s
->objsize
);
3900 SLAB_ATTR_RO(object_size
);
3902 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3904 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3906 SLAB_ATTR_RO(objs_per_slab
);
3908 static ssize_t
order_store(struct kmem_cache
*s
,
3909 const char *buf
, size_t length
)
3911 unsigned long order
;
3914 err
= strict_strtoul(buf
, 10, &order
);
3918 if (order
> slub_max_order
|| order
< slub_min_order
)
3921 calculate_sizes(s
, order
);
3925 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3927 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3931 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3934 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3936 return n
+ sprintf(buf
+ n
, "\n");
3942 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3944 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3946 SLAB_ATTR_RO(aliases
);
3948 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3950 return show_slab_objects(s
, buf
, SO_ALL
);
3952 SLAB_ATTR_RO(slabs
);
3954 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3956 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3958 SLAB_ATTR_RO(partial
);
3960 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3962 return show_slab_objects(s
, buf
, SO_CPU
);
3964 SLAB_ATTR_RO(cpu_slabs
);
3966 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3968 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3970 SLAB_ATTR_RO(objects
);
3972 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3974 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3976 SLAB_ATTR_RO(objects_partial
);
3978 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3980 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3982 SLAB_ATTR_RO(total_objects
);
3984 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3986 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3989 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3990 const char *buf
, size_t length
)
3992 s
->flags
&= ~SLAB_DEBUG_FREE
;
3994 s
->flags
|= SLAB_DEBUG_FREE
;
3997 SLAB_ATTR(sanity_checks
);
3999 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4001 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4004 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4007 s
->flags
&= ~SLAB_TRACE
;
4009 s
->flags
|= SLAB_TRACE
;
4014 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4016 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4019 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4020 const char *buf
, size_t length
)
4022 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4024 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4027 SLAB_ATTR(reclaim_account
);
4029 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4031 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4033 SLAB_ATTR_RO(hwcache_align
);
4035 #ifdef CONFIG_ZONE_DMA
4036 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4038 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4040 SLAB_ATTR_RO(cache_dma
);
4043 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4045 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4047 SLAB_ATTR_RO(destroy_by_rcu
);
4049 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4051 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4054 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4055 const char *buf
, size_t length
)
4057 if (any_slab_objects(s
))
4060 s
->flags
&= ~SLAB_RED_ZONE
;
4062 s
->flags
|= SLAB_RED_ZONE
;
4063 calculate_sizes(s
, -1);
4066 SLAB_ATTR(red_zone
);
4068 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4070 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4073 static ssize_t
poison_store(struct kmem_cache
*s
,
4074 const char *buf
, size_t length
)
4076 if (any_slab_objects(s
))
4079 s
->flags
&= ~SLAB_POISON
;
4081 s
->flags
|= SLAB_POISON
;
4082 calculate_sizes(s
, -1);
4087 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4089 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4092 static ssize_t
store_user_store(struct kmem_cache
*s
,
4093 const char *buf
, size_t length
)
4095 if (any_slab_objects(s
))
4098 s
->flags
&= ~SLAB_STORE_USER
;
4100 s
->flags
|= SLAB_STORE_USER
;
4101 calculate_sizes(s
, -1);
4104 SLAB_ATTR(store_user
);
4106 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4111 static ssize_t
validate_store(struct kmem_cache
*s
,
4112 const char *buf
, size_t length
)
4116 if (buf
[0] == '1') {
4117 ret
= validate_slab_cache(s
);
4123 SLAB_ATTR(validate
);
4125 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4130 static ssize_t
shrink_store(struct kmem_cache
*s
,
4131 const char *buf
, size_t length
)
4133 if (buf
[0] == '1') {
4134 int rc
= kmem_cache_shrink(s
);
4144 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4146 if (!(s
->flags
& SLAB_STORE_USER
))
4148 return list_locations(s
, buf
, TRACK_ALLOC
);
4150 SLAB_ATTR_RO(alloc_calls
);
4152 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4154 if (!(s
->flags
& SLAB_STORE_USER
))
4156 return list_locations(s
, buf
, TRACK_FREE
);
4158 SLAB_ATTR_RO(free_calls
);
4161 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4163 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4166 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4167 const char *buf
, size_t length
)
4169 unsigned long ratio
;
4172 err
= strict_strtoul(buf
, 10, &ratio
);
4177 s
->remote_node_defrag_ratio
= ratio
* 10;
4181 SLAB_ATTR(remote_node_defrag_ratio
);
4184 #ifdef CONFIG_SLUB_STATS
4185 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4187 unsigned long sum
= 0;
4190 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4195 for_each_online_cpu(cpu
) {
4196 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4202 len
= sprintf(buf
, "%lu", sum
);
4205 for_each_online_cpu(cpu
) {
4206 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4207 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4211 return len
+ sprintf(buf
+ len
, "\n");
4214 #define STAT_ATTR(si, text) \
4215 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4217 return show_stat(s, buf, si); \
4219 SLAB_ATTR_RO(text); \
4221 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4222 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4223 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4224 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4225 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4226 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4227 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4228 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4229 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4230 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4231 STAT_ATTR(FREE_SLAB
, free_slab
);
4232 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4233 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4234 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4235 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4236 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4237 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4238 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4241 static struct attribute
*slab_attrs
[] = {
4242 &slab_size_attr
.attr
,
4243 &object_size_attr
.attr
,
4244 &objs_per_slab_attr
.attr
,
4247 &objects_partial_attr
.attr
,
4248 &total_objects_attr
.attr
,
4251 &cpu_slabs_attr
.attr
,
4255 &sanity_checks_attr
.attr
,
4257 &hwcache_align_attr
.attr
,
4258 &reclaim_account_attr
.attr
,
4259 &destroy_by_rcu_attr
.attr
,
4260 &red_zone_attr
.attr
,
4262 &store_user_attr
.attr
,
4263 &validate_attr
.attr
,
4265 &alloc_calls_attr
.attr
,
4266 &free_calls_attr
.attr
,
4267 #ifdef CONFIG_ZONE_DMA
4268 &cache_dma_attr
.attr
,
4271 &remote_node_defrag_ratio_attr
.attr
,
4273 #ifdef CONFIG_SLUB_STATS
4274 &alloc_fastpath_attr
.attr
,
4275 &alloc_slowpath_attr
.attr
,
4276 &free_fastpath_attr
.attr
,
4277 &free_slowpath_attr
.attr
,
4278 &free_frozen_attr
.attr
,
4279 &free_add_partial_attr
.attr
,
4280 &free_remove_partial_attr
.attr
,
4281 &alloc_from_partial_attr
.attr
,
4282 &alloc_slab_attr
.attr
,
4283 &alloc_refill_attr
.attr
,
4284 &free_slab_attr
.attr
,
4285 &cpuslab_flush_attr
.attr
,
4286 &deactivate_full_attr
.attr
,
4287 &deactivate_empty_attr
.attr
,
4288 &deactivate_to_head_attr
.attr
,
4289 &deactivate_to_tail_attr
.attr
,
4290 &deactivate_remote_frees_attr
.attr
,
4291 &order_fallback_attr
.attr
,
4296 static struct attribute_group slab_attr_group
= {
4297 .attrs
= slab_attrs
,
4300 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4301 struct attribute
*attr
,
4304 struct slab_attribute
*attribute
;
4305 struct kmem_cache
*s
;
4308 attribute
= to_slab_attr(attr
);
4311 if (!attribute
->show
)
4314 err
= attribute
->show(s
, buf
);
4319 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4320 struct attribute
*attr
,
4321 const char *buf
, size_t len
)
4323 struct slab_attribute
*attribute
;
4324 struct kmem_cache
*s
;
4327 attribute
= to_slab_attr(attr
);
4330 if (!attribute
->store
)
4333 err
= attribute
->store(s
, buf
, len
);
4338 static void kmem_cache_release(struct kobject
*kobj
)
4340 struct kmem_cache
*s
= to_slab(kobj
);
4345 static struct sysfs_ops slab_sysfs_ops
= {
4346 .show
= slab_attr_show
,
4347 .store
= slab_attr_store
,
4350 static struct kobj_type slab_ktype
= {
4351 .sysfs_ops
= &slab_sysfs_ops
,
4352 .release
= kmem_cache_release
4355 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4357 struct kobj_type
*ktype
= get_ktype(kobj
);
4359 if (ktype
== &slab_ktype
)
4364 static struct kset_uevent_ops slab_uevent_ops
= {
4365 .filter
= uevent_filter
,
4368 static struct kset
*slab_kset
;
4370 #define ID_STR_LENGTH 64
4372 /* Create a unique string id for a slab cache:
4374 * Format :[flags-]size
4376 static char *create_unique_id(struct kmem_cache
*s
)
4378 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4385 * First flags affecting slabcache operations. We will only
4386 * get here for aliasable slabs so we do not need to support
4387 * too many flags. The flags here must cover all flags that
4388 * are matched during merging to guarantee that the id is
4391 if (s
->flags
& SLAB_CACHE_DMA
)
4393 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4395 if (s
->flags
& SLAB_DEBUG_FREE
)
4397 if (!(s
->flags
& SLAB_NOTRACK
))
4401 p
+= sprintf(p
, "%07d", s
->size
);
4402 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4406 static int sysfs_slab_add(struct kmem_cache
*s
)
4412 if (slab_state
< SYSFS
)
4413 /* Defer until later */
4416 unmergeable
= slab_unmergeable(s
);
4419 * Slabcache can never be merged so we can use the name proper.
4420 * This is typically the case for debug situations. In that
4421 * case we can catch duplicate names easily.
4423 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4427 * Create a unique name for the slab as a target
4430 name
= create_unique_id(s
);
4433 s
->kobj
.kset
= slab_kset
;
4434 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4436 kobject_put(&s
->kobj
);
4440 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4443 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4445 /* Setup first alias */
4446 sysfs_slab_alias(s
, s
->name
);
4452 static void sysfs_slab_remove(struct kmem_cache
*s
)
4454 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4455 kobject_del(&s
->kobj
);
4456 kobject_put(&s
->kobj
);
4460 * Need to buffer aliases during bootup until sysfs becomes
4461 * available lest we lose that information.
4463 struct saved_alias
{
4464 struct kmem_cache
*s
;
4466 struct saved_alias
*next
;
4469 static struct saved_alias
*alias_list
;
4471 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4473 struct saved_alias
*al
;
4475 if (slab_state
== SYSFS
) {
4477 * If we have a leftover link then remove it.
4479 sysfs_remove_link(&slab_kset
->kobj
, name
);
4480 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4483 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4489 al
->next
= alias_list
;
4494 static int __init
slab_sysfs_init(void)
4496 struct kmem_cache
*s
;
4499 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4501 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4507 list_for_each_entry(s
, &slab_caches
, list
) {
4508 err
= sysfs_slab_add(s
);
4510 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4511 " to sysfs\n", s
->name
);
4514 while (alias_list
) {
4515 struct saved_alias
*al
= alias_list
;
4517 alias_list
= alias_list
->next
;
4518 err
= sysfs_slab_alias(al
->s
, al
->name
);
4520 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4521 " %s to sysfs\n", s
->name
);
4529 __initcall(slab_sysfs_init
);
4533 * The /proc/slabinfo ABI
4535 #ifdef CONFIG_SLABINFO
4536 static void print_slabinfo_header(struct seq_file
*m
)
4538 seq_puts(m
, "slabinfo - version: 2.1\n");
4539 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4540 "<objperslab> <pagesperslab>");
4541 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4542 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4546 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4550 down_read(&slub_lock
);
4552 print_slabinfo_header(m
);
4554 return seq_list_start(&slab_caches
, *pos
);
4557 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4559 return seq_list_next(p
, &slab_caches
, pos
);
4562 static void s_stop(struct seq_file
*m
, void *p
)
4564 up_read(&slub_lock
);
4567 static int s_show(struct seq_file
*m
, void *p
)
4569 unsigned long nr_partials
= 0;
4570 unsigned long nr_slabs
= 0;
4571 unsigned long nr_inuse
= 0;
4572 unsigned long nr_objs
= 0;
4573 unsigned long nr_free
= 0;
4574 struct kmem_cache
*s
;
4577 s
= list_entry(p
, struct kmem_cache
, list
);
4579 for_each_online_node(node
) {
4580 struct kmem_cache_node
*n
= get_node(s
, node
);
4585 nr_partials
+= n
->nr_partial
;
4586 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4587 nr_objs
+= atomic_long_read(&n
->total_objects
);
4588 nr_free
+= count_partial(n
, count_free
);
4591 nr_inuse
= nr_objs
- nr_free
;
4593 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4594 nr_objs
, s
->size
, oo_objects(s
->oo
),
4595 (1 << oo_order(s
->oo
)));
4596 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4597 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4603 static const struct seq_operations slabinfo_op
= {
4610 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4612 return seq_open(file
, &slabinfo_op
);
4615 static const struct file_operations proc_slabinfo_operations
= {
4616 .open
= slabinfo_open
,
4618 .llseek
= seq_lseek
,
4619 .release
= seq_release
,
4622 static int __init
slab_proc_init(void)
4624 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4627 module_init(slab_proc_init
);
4628 #endif /* CONFIG_SLABINFO */