2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
60 #include <net/protocol.h>
63 #include <net/checksum.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
71 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
72 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
74 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
75 struct pipe_buffer
*buf
)
80 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
81 struct pipe_buffer
*buf
)
86 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
87 struct pipe_buffer
*buf
)
93 /* Pipe buffer operations for a socket. */
94 static struct pipe_buf_operations sock_pipe_buf_ops
= {
96 .map
= generic_pipe_buf_map
,
97 .unmap
= generic_pipe_buf_unmap
,
98 .confirm
= generic_pipe_buf_confirm
,
99 .release
= sock_pipe_buf_release
,
100 .steal
= sock_pipe_buf_steal
,
101 .get
= sock_pipe_buf_get
,
105 * Keep out-of-line to prevent kernel bloat.
106 * __builtin_return_address is not used because it is not always
111 * skb_over_panic - private function
116 * Out of line support code for skb_put(). Not user callable.
118 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
120 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
121 "data:%p tail:%#lx end:%#lx dev:%s\n",
122 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
123 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
124 skb
->dev
? skb
->dev
->name
: "<NULL>");
129 * skb_under_panic - private function
134 * Out of line support code for skb_push(). Not user callable.
137 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
139 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
140 "data:%p tail:%#lx end:%#lx dev:%s\n",
141 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
142 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
143 skb
->dev
? skb
->dev
->name
: "<NULL>");
147 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
148 * 'private' fields and also do memory statistics to find all the
154 * __alloc_skb - allocate a network buffer
155 * @size: size to allocate
156 * @gfp_mask: allocation mask
157 * @fclone: allocate from fclone cache instead of head cache
158 * and allocate a cloned (child) skb
159 * @node: numa node to allocate memory on
161 * Allocate a new &sk_buff. The returned buffer has no headroom and a
162 * tail room of size bytes. The object has a reference count of one.
163 * The return is the buffer. On a failure the return is %NULL.
165 * Buffers may only be allocated from interrupts using a @gfp_mask of
168 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
169 int fclone
, int node
)
171 struct kmem_cache
*cache
;
172 struct skb_shared_info
*shinfo
;
176 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
179 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
183 size
= SKB_DATA_ALIGN(size
);
184 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
190 * Only clear those fields we need to clear, not those that we will
191 * actually initialise below. Hence, don't put any more fields after
192 * the tail pointer in struct sk_buff!
194 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
195 skb
->truesize
= size
+ sizeof(struct sk_buff
);
196 atomic_set(&skb
->users
, 1);
199 skb_reset_tail_pointer(skb
);
200 skb
->end
= skb
->tail
+ size
;
201 kmemcheck_annotate_bitfield(skb
->flags1
);
202 kmemcheck_annotate_bitfield(skb
->flags2
);
203 /* make sure we initialize shinfo sequentially */
204 shinfo
= skb_shinfo(skb
);
205 atomic_set(&shinfo
->dataref
, 1);
206 shinfo
->nr_frags
= 0;
207 shinfo
->gso_size
= 0;
208 shinfo
->gso_segs
= 0;
209 shinfo
->gso_type
= 0;
210 shinfo
->ip6_frag_id
= 0;
211 shinfo
->frag_list
= NULL
;
214 struct sk_buff
*child
= skb
+ 1;
215 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
217 kmemcheck_annotate_bitfield(child
->flags1
);
218 kmemcheck_annotate_bitfield(child
->flags2
);
219 skb
->fclone
= SKB_FCLONE_ORIG
;
220 atomic_set(fclone_ref
, 1);
222 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
227 kmem_cache_free(cache
, skb
);
233 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
234 * @dev: network device to receive on
235 * @length: length to allocate
236 * @gfp_mask: get_free_pages mask, passed to alloc_skb
238 * Allocate a new &sk_buff and assign it a usage count of one. The
239 * buffer has unspecified headroom built in. Users should allocate
240 * the headroom they think they need without accounting for the
241 * built in space. The built in space is used for optimisations.
243 * %NULL is returned if there is no free memory.
245 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
246 unsigned int length
, gfp_t gfp_mask
)
248 int node
= dev_to_node(&dev
->dev
);
251 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, node
);
253 skb_reserve(skb
, NET_SKB_PAD
);
259 struct page
*__netdev_alloc_page(struct net_device
*dev
, gfp_t gfp_mask
)
261 int node
= dev
->dev
.parent
? dev_to_node(dev
->dev
.parent
) : -1;
264 page
= alloc_pages_node(node
, gfp_mask
, 0);
267 EXPORT_SYMBOL(__netdev_alloc_page
);
269 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
272 skb_fill_page_desc(skb
, i
, page
, off
, size
);
274 skb
->data_len
+= size
;
275 skb
->truesize
+= size
;
277 EXPORT_SYMBOL(skb_add_rx_frag
);
280 * dev_alloc_skb - allocate an skbuff for receiving
281 * @length: length to allocate
283 * Allocate a new &sk_buff and assign it a usage count of one. The
284 * buffer has unspecified headroom built in. Users should allocate
285 * the headroom they think they need without accounting for the
286 * built in space. The built in space is used for optimisations.
288 * %NULL is returned if there is no free memory. Although this function
289 * allocates memory it can be called from an interrupt.
291 struct sk_buff
*dev_alloc_skb(unsigned int length
)
294 * There is more code here than it seems:
295 * __dev_alloc_skb is an inline
297 return __dev_alloc_skb(length
, GFP_ATOMIC
);
299 EXPORT_SYMBOL(dev_alloc_skb
);
301 static void skb_drop_list(struct sk_buff
**listp
)
303 struct sk_buff
*list
= *listp
;
308 struct sk_buff
*this = list
;
314 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
316 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
319 static void skb_clone_fraglist(struct sk_buff
*skb
)
321 struct sk_buff
*list
;
323 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
327 static void skb_release_data(struct sk_buff
*skb
)
330 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
331 &skb_shinfo(skb
)->dataref
)) {
332 if (skb_shinfo(skb
)->nr_frags
) {
334 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
335 put_page(skb_shinfo(skb
)->frags
[i
].page
);
338 if (skb_shinfo(skb
)->frag_list
)
339 skb_drop_fraglist(skb
);
346 * Free an skbuff by memory without cleaning the state.
348 static void kfree_skbmem(struct sk_buff
*skb
)
350 struct sk_buff
*other
;
351 atomic_t
*fclone_ref
;
353 switch (skb
->fclone
) {
354 case SKB_FCLONE_UNAVAILABLE
:
355 kmem_cache_free(skbuff_head_cache
, skb
);
358 case SKB_FCLONE_ORIG
:
359 fclone_ref
= (atomic_t
*) (skb
+ 2);
360 if (atomic_dec_and_test(fclone_ref
))
361 kmem_cache_free(skbuff_fclone_cache
, skb
);
364 case SKB_FCLONE_CLONE
:
365 fclone_ref
= (atomic_t
*) (skb
+ 1);
368 /* The clone portion is available for
369 * fast-cloning again.
371 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
373 if (atomic_dec_and_test(fclone_ref
))
374 kmem_cache_free(skbuff_fclone_cache
, other
);
379 static void skb_release_head_state(struct sk_buff
*skb
)
381 dst_release(skb
->dst
);
383 secpath_put(skb
->sp
);
385 if (skb
->destructor
) {
386 // WARN_ON(in_irq());
387 skb
->destructor(skb
);
389 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
390 nf_conntrack_put(skb
->nfct
);
391 nf_conntrack_put_reasm(skb
->nfct_reasm
);
393 #ifdef CONFIG_BRIDGE_NETFILTER
394 nf_bridge_put(skb
->nf_bridge
);
396 /* XXX: IS this still necessary? - JHS */
397 #ifdef CONFIG_NET_SCHED
399 #ifdef CONFIG_NET_CLS_ACT
405 /* Free everything but the sk_buff shell. */
406 static void skb_release_all(struct sk_buff
*skb
)
408 skb_release_head_state(skb
);
409 skb_release_data(skb
);
413 * __kfree_skb - private function
416 * Free an sk_buff. Release anything attached to the buffer.
417 * Clean the state. This is an internal helper function. Users should
418 * always call kfree_skb
421 void __kfree_skb(struct sk_buff
*skb
)
423 skb_release_all(skb
);
428 * kfree_skb - free an sk_buff
429 * @skb: buffer to free
431 * Drop a reference to the buffer and free it if the usage count has
434 void kfree_skb(struct sk_buff
*skb
)
438 if (likely(atomic_read(&skb
->users
) == 1))
440 else if (likely(!atomic_dec_and_test(&skb
->users
)))
446 * skb_recycle_check - check if skb can be reused for receive
448 * @skb_size: minimum receive buffer size
450 * Checks that the skb passed in is not shared or cloned, and
451 * that it is linear and its head portion at least as large as
452 * skb_size so that it can be recycled as a receive buffer.
453 * If these conditions are met, this function does any necessary
454 * reference count dropping and cleans up the skbuff as if it
455 * just came from __alloc_skb().
457 int skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
459 struct skb_shared_info
*shinfo
;
461 if (skb_is_nonlinear(skb
) || skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
464 skb_size
= SKB_DATA_ALIGN(skb_size
+ NET_SKB_PAD
);
465 if (skb_end_pointer(skb
) - skb
->head
< skb_size
)
468 if (skb_shared(skb
) || skb_cloned(skb
))
471 skb_release_head_state(skb
);
472 shinfo
= skb_shinfo(skb
);
473 atomic_set(&shinfo
->dataref
, 1);
474 shinfo
->nr_frags
= 0;
475 shinfo
->gso_size
= 0;
476 shinfo
->gso_segs
= 0;
477 shinfo
->gso_type
= 0;
478 shinfo
->ip6_frag_id
= 0;
479 shinfo
->frag_list
= NULL
;
481 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
482 skb
->data
= skb
->head
+ NET_SKB_PAD
;
483 skb_reset_tail_pointer(skb
);
487 EXPORT_SYMBOL(skb_recycle_check
);
489 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
491 new->tstamp
= old
->tstamp
;
493 new->transport_header
= old
->transport_header
;
494 new->network_header
= old
->network_header
;
495 new->mac_header
= old
->mac_header
;
496 new->dst
= dst_clone(old
->dst
);
498 new->sp
= secpath_get(old
->sp
);
500 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
501 new->csum_start
= old
->csum_start
;
502 new->csum_offset
= old
->csum_offset
;
503 new->local_df
= old
->local_df
;
504 new->pkt_type
= old
->pkt_type
;
505 new->ip_summed
= old
->ip_summed
;
506 skb_copy_queue_mapping(new, old
);
507 new->priority
= old
->priority
;
508 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
509 new->ipvs_property
= old
->ipvs_property
;
511 new->protocol
= old
->protocol
;
512 new->mark
= old
->mark
;
514 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
515 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
516 new->nf_trace
= old
->nf_trace
;
518 #ifdef CONFIG_NET_SCHED
519 new->tc_index
= old
->tc_index
;
520 #ifdef CONFIG_NET_CLS_ACT
521 new->tc_verd
= old
->tc_verd
;
524 new->vlan_tci
= old
->vlan_tci
;
526 skb_copy_secmark(new, old
);
529 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
531 #define C(x) n->x = skb->x
533 n
->next
= n
->prev
= NULL
;
535 __copy_skb_header(n
, skb
);
540 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
543 n
->destructor
= NULL
;
550 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
554 atomic_set(&n
->users
, 1);
556 atomic_inc(&(skb_shinfo(skb
)->dataref
));
564 * skb_morph - morph one skb into another
565 * @dst: the skb to receive the contents
566 * @src: the skb to supply the contents
568 * This is identical to skb_clone except that the target skb is
569 * supplied by the user.
571 * The target skb is returned upon exit.
573 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
575 skb_release_all(dst
);
576 return __skb_clone(dst
, src
);
578 EXPORT_SYMBOL_GPL(skb_morph
);
581 * skb_clone - duplicate an sk_buff
582 * @skb: buffer to clone
583 * @gfp_mask: allocation priority
585 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
586 * copies share the same packet data but not structure. The new
587 * buffer has a reference count of 1. If the allocation fails the
588 * function returns %NULL otherwise the new buffer is returned.
590 * If this function is called from an interrupt gfp_mask() must be
594 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
599 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
600 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
601 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
602 n
->fclone
= SKB_FCLONE_CLONE
;
603 atomic_inc(fclone_ref
);
605 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
609 kmemcheck_annotate_bitfield(n
->flags1
);
610 kmemcheck_annotate_bitfield(n
->flags2
);
611 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
614 return __skb_clone(n
, skb
);
617 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
619 #ifndef NET_SKBUFF_DATA_USES_OFFSET
621 * Shift between the two data areas in bytes
623 unsigned long offset
= new->data
- old
->data
;
626 __copy_skb_header(new, old
);
628 #ifndef NET_SKBUFF_DATA_USES_OFFSET
629 /* {transport,network,mac}_header are relative to skb->head */
630 new->transport_header
+= offset
;
631 new->network_header
+= offset
;
632 new->mac_header
+= offset
;
634 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
635 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
636 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
640 * skb_copy - create private copy of an sk_buff
641 * @skb: buffer to copy
642 * @gfp_mask: allocation priority
644 * Make a copy of both an &sk_buff and its data. This is used when the
645 * caller wishes to modify the data and needs a private copy of the
646 * data to alter. Returns %NULL on failure or the pointer to the buffer
647 * on success. The returned buffer has a reference count of 1.
649 * As by-product this function converts non-linear &sk_buff to linear
650 * one, so that &sk_buff becomes completely private and caller is allowed
651 * to modify all the data of returned buffer. This means that this
652 * function is not recommended for use in circumstances when only
653 * header is going to be modified. Use pskb_copy() instead.
656 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
658 int headerlen
= skb
->data
- skb
->head
;
660 * Allocate the copy buffer
663 #ifdef NET_SKBUFF_DATA_USES_OFFSET
664 n
= alloc_skb(skb
->end
+ skb
->data_len
, gfp_mask
);
666 n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
, gfp_mask
);
671 /* Set the data pointer */
672 skb_reserve(n
, headerlen
);
673 /* Set the tail pointer and length */
674 skb_put(n
, skb
->len
);
676 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
679 copy_skb_header(n
, skb
);
685 * pskb_copy - create copy of an sk_buff with private head.
686 * @skb: buffer to copy
687 * @gfp_mask: allocation priority
689 * Make a copy of both an &sk_buff and part of its data, located
690 * in header. Fragmented data remain shared. This is used when
691 * the caller wishes to modify only header of &sk_buff and needs
692 * private copy of the header to alter. Returns %NULL on failure
693 * or the pointer to the buffer on success.
694 * The returned buffer has a reference count of 1.
697 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
700 * Allocate the copy buffer
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 n
= alloc_skb(skb
->end
, gfp_mask
);
706 n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
711 /* Set the data pointer */
712 skb_reserve(n
, skb
->data
- skb
->head
);
713 /* Set the tail pointer and length */
714 skb_put(n
, skb_headlen(skb
));
716 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
718 n
->truesize
+= skb
->data_len
;
719 n
->data_len
= skb
->data_len
;
722 if (skb_shinfo(skb
)->nr_frags
) {
725 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
726 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
727 get_page(skb_shinfo(n
)->frags
[i
].page
);
729 skb_shinfo(n
)->nr_frags
= i
;
732 if (skb_shinfo(skb
)->frag_list
) {
733 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
734 skb_clone_fraglist(n
);
737 copy_skb_header(n
, skb
);
743 * pskb_expand_head - reallocate header of &sk_buff
744 * @skb: buffer to reallocate
745 * @nhead: room to add at head
746 * @ntail: room to add at tail
747 * @gfp_mask: allocation priority
749 * Expands (or creates identical copy, if &nhead and &ntail are zero)
750 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
751 * reference count of 1. Returns zero in the case of success or error,
752 * if expansion failed. In the last case, &sk_buff is not changed.
754 * All the pointers pointing into skb header may change and must be
755 * reloaded after call to this function.
758 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
763 #ifdef NET_SKBUFF_DATA_USES_OFFSET
764 int size
= nhead
+ skb
->end
+ ntail
;
766 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
775 size
= SKB_DATA_ALIGN(size
);
777 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
781 /* Copy only real data... and, alas, header. This should be
782 * optimized for the cases when header is void. */
783 #ifdef NET_SKBUFF_DATA_USES_OFFSET
784 memcpy(data
+ nhead
, skb
->head
, skb
->tail
);
786 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
788 memcpy(data
+ size
, skb_end_pointer(skb
),
789 sizeof(struct skb_shared_info
));
791 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
792 get_page(skb_shinfo(skb
)->frags
[i
].page
);
794 if (skb_shinfo(skb
)->frag_list
)
795 skb_clone_fraglist(skb
);
797 skb_release_data(skb
);
799 off
= (data
+ nhead
) - skb
->head
;
803 #ifdef NET_SKBUFF_DATA_USES_OFFSET
807 skb
->end
= skb
->head
+ size
;
809 /* {transport,network,mac}_header and tail are relative to skb->head */
811 skb
->transport_header
+= off
;
812 skb
->network_header
+= off
;
813 skb
->mac_header
+= off
;
814 skb
->csum_start
+= nhead
;
818 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
825 /* Make private copy of skb with writable head and some headroom */
827 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
829 struct sk_buff
*skb2
;
830 int delta
= headroom
- skb_headroom(skb
);
833 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
835 skb2
= skb_clone(skb
, GFP_ATOMIC
);
836 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
847 * skb_copy_expand - copy and expand sk_buff
848 * @skb: buffer to copy
849 * @newheadroom: new free bytes at head
850 * @newtailroom: new free bytes at tail
851 * @gfp_mask: allocation priority
853 * Make a copy of both an &sk_buff and its data and while doing so
854 * allocate additional space.
856 * This is used when the caller wishes to modify the data and needs a
857 * private copy of the data to alter as well as more space for new fields.
858 * Returns %NULL on failure or the pointer to the buffer
859 * on success. The returned buffer has a reference count of 1.
861 * You must pass %GFP_ATOMIC as the allocation priority if this function
862 * is called from an interrupt.
864 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
865 int newheadroom
, int newtailroom
,
869 * Allocate the copy buffer
871 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
873 int oldheadroom
= skb_headroom(skb
);
874 int head_copy_len
, head_copy_off
;
880 skb_reserve(n
, newheadroom
);
882 /* Set the tail pointer and length */
883 skb_put(n
, skb
->len
);
885 head_copy_len
= oldheadroom
;
887 if (newheadroom
<= head_copy_len
)
888 head_copy_len
= newheadroom
;
890 head_copy_off
= newheadroom
- head_copy_len
;
892 /* Copy the linear header and data. */
893 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
894 skb
->len
+ head_copy_len
))
897 copy_skb_header(n
, skb
);
899 off
= newheadroom
- oldheadroom
;
900 n
->csum_start
+= off
;
901 #ifdef NET_SKBUFF_DATA_USES_OFFSET
902 n
->transport_header
+= off
;
903 n
->network_header
+= off
;
904 n
->mac_header
+= off
;
911 * skb_pad - zero pad the tail of an skb
912 * @skb: buffer to pad
915 * Ensure that a buffer is followed by a padding area that is zero
916 * filled. Used by network drivers which may DMA or transfer data
917 * beyond the buffer end onto the wire.
919 * May return error in out of memory cases. The skb is freed on error.
922 int skb_pad(struct sk_buff
*skb
, int pad
)
927 /* If the skbuff is non linear tailroom is always zero.. */
928 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
929 memset(skb
->data
+skb
->len
, 0, pad
);
933 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
934 if (likely(skb_cloned(skb
) || ntail
> 0)) {
935 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
940 /* FIXME: The use of this function with non-linear skb's really needs
943 err
= skb_linearize(skb
);
947 memset(skb
->data
+ skb
->len
, 0, pad
);
956 * skb_put - add data to a buffer
957 * @skb: buffer to use
958 * @len: amount of data to add
960 * This function extends the used data area of the buffer. If this would
961 * exceed the total buffer size the kernel will panic. A pointer to the
962 * first byte of the extra data is returned.
964 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
966 unsigned char *tmp
= skb_tail_pointer(skb
);
967 SKB_LINEAR_ASSERT(skb
);
970 if (unlikely(skb
->tail
> skb
->end
))
971 skb_over_panic(skb
, len
, __builtin_return_address(0));
974 EXPORT_SYMBOL(skb_put
);
977 * skb_push - add data to the start of a buffer
978 * @skb: buffer to use
979 * @len: amount of data to add
981 * This function extends the used data area of the buffer at the buffer
982 * start. If this would exceed the total buffer headroom the kernel will
983 * panic. A pointer to the first byte of the extra data is returned.
985 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
989 if (unlikely(skb
->data
<skb
->head
))
990 skb_under_panic(skb
, len
, __builtin_return_address(0));
993 EXPORT_SYMBOL(skb_push
);
996 * skb_pull - remove data from the start of a buffer
997 * @skb: buffer to use
998 * @len: amount of data to remove
1000 * This function removes data from the start of a buffer, returning
1001 * the memory to the headroom. A pointer to the next data in the buffer
1002 * is returned. Once the data has been pulled future pushes will overwrite
1005 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1007 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
1009 EXPORT_SYMBOL(skb_pull
);
1012 * skb_trim - remove end from a buffer
1013 * @skb: buffer to alter
1016 * Cut the length of a buffer down by removing data from the tail. If
1017 * the buffer is already under the length specified it is not modified.
1018 * The skb must be linear.
1020 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1023 __skb_trim(skb
, len
);
1025 EXPORT_SYMBOL(skb_trim
);
1027 /* Trims skb to length len. It can change skb pointers.
1030 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1032 struct sk_buff
**fragp
;
1033 struct sk_buff
*frag
;
1034 int offset
= skb_headlen(skb
);
1035 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1039 if (skb_cloned(skb
) &&
1040 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1047 for (; i
< nfrags
; i
++) {
1048 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
1055 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
1058 skb_shinfo(skb
)->nr_frags
= i
;
1060 for (; i
< nfrags
; i
++)
1061 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1063 if (skb_shinfo(skb
)->frag_list
)
1064 skb_drop_fraglist(skb
);
1068 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1069 fragp
= &frag
->next
) {
1070 int end
= offset
+ frag
->len
;
1072 if (skb_shared(frag
)) {
1073 struct sk_buff
*nfrag
;
1075 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1076 if (unlikely(!nfrag
))
1079 nfrag
->next
= frag
->next
;
1091 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1095 skb_drop_list(&frag
->next
);
1100 if (len
> skb_headlen(skb
)) {
1101 skb
->data_len
-= skb
->len
- len
;
1106 skb_set_tail_pointer(skb
, len
);
1113 * __pskb_pull_tail - advance tail of skb header
1114 * @skb: buffer to reallocate
1115 * @delta: number of bytes to advance tail
1117 * The function makes a sense only on a fragmented &sk_buff,
1118 * it expands header moving its tail forward and copying necessary
1119 * data from fragmented part.
1121 * &sk_buff MUST have reference count of 1.
1123 * Returns %NULL (and &sk_buff does not change) if pull failed
1124 * or value of new tail of skb in the case of success.
1126 * All the pointers pointing into skb header may change and must be
1127 * reloaded after call to this function.
1130 /* Moves tail of skb head forward, copying data from fragmented part,
1131 * when it is necessary.
1132 * 1. It may fail due to malloc failure.
1133 * 2. It may change skb pointers.
1135 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1137 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1139 /* If skb has not enough free space at tail, get new one
1140 * plus 128 bytes for future expansions. If we have enough
1141 * room at tail, reallocate without expansion only if skb is cloned.
1143 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1145 if (eat
> 0 || skb_cloned(skb
)) {
1146 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1151 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1154 /* Optimization: no fragments, no reasons to preestimate
1155 * size of pulled pages. Superb.
1157 if (!skb_shinfo(skb
)->frag_list
)
1160 /* Estimate size of pulled pages. */
1162 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1163 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
1165 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1168 /* If we need update frag list, we are in troubles.
1169 * Certainly, it possible to add an offset to skb data,
1170 * but taking into account that pulling is expected to
1171 * be very rare operation, it is worth to fight against
1172 * further bloating skb head and crucify ourselves here instead.
1173 * Pure masohism, indeed. 8)8)
1176 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1177 struct sk_buff
*clone
= NULL
;
1178 struct sk_buff
*insp
= NULL
;
1183 if (list
->len
<= eat
) {
1184 /* Eaten as whole. */
1189 /* Eaten partially. */
1191 if (skb_shared(list
)) {
1192 /* Sucks! We need to fork list. :-( */
1193 clone
= skb_clone(list
, GFP_ATOMIC
);
1199 /* This may be pulled without
1203 if (!pskb_pull(list
, eat
)) {
1212 /* Free pulled out fragments. */
1213 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1214 skb_shinfo(skb
)->frag_list
= list
->next
;
1217 /* And insert new clone at head. */
1220 skb_shinfo(skb
)->frag_list
= clone
;
1223 /* Success! Now we may commit changes to skb data. */
1228 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1229 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1230 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1231 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1233 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1235 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1236 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1242 skb_shinfo(skb
)->nr_frags
= k
;
1245 skb
->data_len
-= delta
;
1247 return skb_tail_pointer(skb
);
1250 /* Copy some data bits from skb to kernel buffer. */
1252 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1255 int start
= skb_headlen(skb
);
1257 if (offset
> (int)skb
->len
- len
)
1261 if ((copy
= start
- offset
) > 0) {
1264 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1265 if ((len
-= copy
) == 0)
1271 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1274 WARN_ON(start
> offset
+ len
);
1276 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1277 if ((copy
= end
- offset
) > 0) {
1283 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1285 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1286 offset
- start
, copy
);
1287 kunmap_skb_frag(vaddr
);
1289 if ((len
-= copy
) == 0)
1297 if (skb_shinfo(skb
)->frag_list
) {
1298 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1300 for (; list
; list
= list
->next
) {
1303 WARN_ON(start
> offset
+ len
);
1305 end
= start
+ list
->len
;
1306 if ((copy
= end
- offset
) > 0) {
1309 if (skb_copy_bits(list
, offset
- start
,
1312 if ((len
-= copy
) == 0)
1328 * Callback from splice_to_pipe(), if we need to release some pages
1329 * at the end of the spd in case we error'ed out in filling the pipe.
1331 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1333 put_page(spd
->pages
[i
]);
1336 static inline struct page
*linear_to_page(struct page
*page
, unsigned int len
,
1337 unsigned int offset
)
1339 struct page
*p
= alloc_pages(GFP_KERNEL
, 0);
1343 memcpy(page_address(p
) + offset
, page_address(page
) + offset
, len
);
1349 * Fill page/offset/length into spd, if it can hold more pages.
1351 static inline int spd_fill_page(struct splice_pipe_desc
*spd
, struct page
*page
,
1352 unsigned int len
, unsigned int offset
,
1353 struct sk_buff
*skb
, int linear
)
1355 if (unlikely(spd
->nr_pages
== PIPE_BUFFERS
))
1359 page
= linear_to_page(page
, len
, offset
);
1365 spd
->pages
[spd
->nr_pages
] = page
;
1366 spd
->partial
[spd
->nr_pages
].len
= len
;
1367 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1373 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1374 unsigned int *plen
, unsigned int off
)
1377 *page
+= *poff
/ PAGE_SIZE
;
1378 *poff
= *poff
% PAGE_SIZE
;
1382 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1383 unsigned int plen
, unsigned int *off
,
1384 unsigned int *len
, struct sk_buff
*skb
,
1385 struct splice_pipe_desc
*spd
, int linear
)
1390 /* skip this segment if already processed */
1396 /* ignore any bits we already processed */
1398 __segment_seek(&page
, &poff
, &plen
, *off
);
1403 unsigned int flen
= min(*len
, plen
);
1405 /* the linear region may spread across several pages */
1406 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1408 if (spd_fill_page(spd
, page
, flen
, poff
, skb
, linear
))
1411 __segment_seek(&page
, &poff
, &plen
, flen
);
1414 } while (*len
&& plen
);
1420 * Map linear and fragment data from the skb to spd. It reports failure if the
1421 * pipe is full or if we already spliced the requested length.
1423 static int __skb_splice_bits(struct sk_buff
*skb
, unsigned int *offset
,
1425 struct splice_pipe_desc
*spd
)
1430 * map the linear part
1432 if (__splice_segment(virt_to_page(skb
->data
),
1433 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1435 offset
, len
, skb
, spd
, 1))
1439 * then map the fragments
1441 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1442 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1444 if (__splice_segment(f
->page
, f
->page_offset
, f
->size
,
1445 offset
, len
, skb
, spd
, 0))
1453 * Map data from the skb to a pipe. Should handle both the linear part,
1454 * the fragments, and the frag list. It does NOT handle frag lists within
1455 * the frag list, if such a thing exists. We'd probably need to recurse to
1456 * handle that cleanly.
1458 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1459 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1462 struct partial_page partial
[PIPE_BUFFERS
];
1463 struct page
*pages
[PIPE_BUFFERS
];
1464 struct splice_pipe_desc spd
= {
1468 .ops
= &sock_pipe_buf_ops
,
1469 .spd_release
= sock_spd_release
,
1473 * __skb_splice_bits() only fails if the output has no room left,
1474 * so no point in going over the frag_list for the error case.
1476 if (__skb_splice_bits(skb
, &offset
, &tlen
, &spd
))
1482 * now see if we have a frag_list to map
1484 if (skb_shinfo(skb
)->frag_list
) {
1485 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1487 for (; list
&& tlen
; list
= list
->next
) {
1488 if (__skb_splice_bits(list
, &offset
, &tlen
, &spd
))
1495 struct sock
*sk
= skb
->sk
;
1499 * Drop the socket lock, otherwise we have reverse
1500 * locking dependencies between sk_lock and i_mutex
1501 * here as compared to sendfile(). We enter here
1502 * with the socket lock held, and splice_to_pipe() will
1503 * grab the pipe inode lock. For sendfile() emulation,
1504 * we call into ->sendpage() with the i_mutex lock held
1505 * and networking will grab the socket lock.
1508 ret
= splice_to_pipe(pipe
, &spd
);
1517 * skb_store_bits - store bits from kernel buffer to skb
1518 * @skb: destination buffer
1519 * @offset: offset in destination
1520 * @from: source buffer
1521 * @len: number of bytes to copy
1523 * Copy the specified number of bytes from the source buffer to the
1524 * destination skb. This function handles all the messy bits of
1525 * traversing fragment lists and such.
1528 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1531 int start
= skb_headlen(skb
);
1533 if (offset
> (int)skb
->len
- len
)
1536 if ((copy
= start
- offset
) > 0) {
1539 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1540 if ((len
-= copy
) == 0)
1546 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1547 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1550 WARN_ON(start
> offset
+ len
);
1552 end
= start
+ frag
->size
;
1553 if ((copy
= end
- offset
) > 0) {
1559 vaddr
= kmap_skb_frag(frag
);
1560 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1562 kunmap_skb_frag(vaddr
);
1564 if ((len
-= copy
) == 0)
1572 if (skb_shinfo(skb
)->frag_list
) {
1573 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1575 for (; list
; list
= list
->next
) {
1578 WARN_ON(start
> offset
+ len
);
1580 end
= start
+ list
->len
;
1581 if ((copy
= end
- offset
) > 0) {
1584 if (skb_store_bits(list
, offset
- start
,
1587 if ((len
-= copy
) == 0)
1602 EXPORT_SYMBOL(skb_store_bits
);
1604 /* Checksum skb data. */
1606 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1607 int len
, __wsum csum
)
1609 int start
= skb_headlen(skb
);
1610 int i
, copy
= start
- offset
;
1613 /* Checksum header. */
1617 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1618 if ((len
-= copy
) == 0)
1624 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1627 WARN_ON(start
> offset
+ len
);
1629 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1630 if ((copy
= end
- offset
) > 0) {
1633 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1637 vaddr
= kmap_skb_frag(frag
);
1638 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1639 offset
- start
, copy
, 0);
1640 kunmap_skb_frag(vaddr
);
1641 csum
= csum_block_add(csum
, csum2
, pos
);
1650 if (skb_shinfo(skb
)->frag_list
) {
1651 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1653 for (; list
; list
= list
->next
) {
1656 WARN_ON(start
> offset
+ len
);
1658 end
= start
+ list
->len
;
1659 if ((copy
= end
- offset
) > 0) {
1663 csum2
= skb_checksum(list
, offset
- start
,
1665 csum
= csum_block_add(csum
, csum2
, pos
);
1666 if ((len
-= copy
) == 0)
1679 /* Both of above in one bottle. */
1681 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1682 u8
*to
, int len
, __wsum csum
)
1684 int start
= skb_headlen(skb
);
1685 int i
, copy
= start
- offset
;
1692 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1694 if ((len
-= copy
) == 0)
1701 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1704 WARN_ON(start
> offset
+ len
);
1706 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1707 if ((copy
= end
- offset
) > 0) {
1710 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1714 vaddr
= kmap_skb_frag(frag
);
1715 csum2
= csum_partial_copy_nocheck(vaddr
+
1719 kunmap_skb_frag(vaddr
);
1720 csum
= csum_block_add(csum
, csum2
, pos
);
1730 if (skb_shinfo(skb
)->frag_list
) {
1731 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1733 for (; list
; list
= list
->next
) {
1737 WARN_ON(start
> offset
+ len
);
1739 end
= start
+ list
->len
;
1740 if ((copy
= end
- offset
) > 0) {
1743 csum2
= skb_copy_and_csum_bits(list
,
1746 csum
= csum_block_add(csum
, csum2
, pos
);
1747 if ((len
-= copy
) == 0)
1760 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1765 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1766 csstart
= skb
->csum_start
- skb_headroom(skb
);
1768 csstart
= skb_headlen(skb
);
1770 BUG_ON(csstart
> skb_headlen(skb
));
1772 skb_copy_from_linear_data(skb
, to
, csstart
);
1775 if (csstart
!= skb
->len
)
1776 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1777 skb
->len
- csstart
, 0);
1779 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1780 long csstuff
= csstart
+ skb
->csum_offset
;
1782 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1787 * skb_dequeue - remove from the head of the queue
1788 * @list: list to dequeue from
1790 * Remove the head of the list. The list lock is taken so the function
1791 * may be used safely with other locking list functions. The head item is
1792 * returned or %NULL if the list is empty.
1795 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1797 unsigned long flags
;
1798 struct sk_buff
*result
;
1800 spin_lock_irqsave(&list
->lock
, flags
);
1801 result
= __skb_dequeue(list
);
1802 spin_unlock_irqrestore(&list
->lock
, flags
);
1807 * skb_dequeue_tail - remove from the tail of the queue
1808 * @list: list to dequeue from
1810 * Remove the tail of the list. The list lock is taken so the function
1811 * may be used safely with other locking list functions. The tail item is
1812 * returned or %NULL if the list is empty.
1814 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1816 unsigned long flags
;
1817 struct sk_buff
*result
;
1819 spin_lock_irqsave(&list
->lock
, flags
);
1820 result
= __skb_dequeue_tail(list
);
1821 spin_unlock_irqrestore(&list
->lock
, flags
);
1826 * skb_queue_purge - empty a list
1827 * @list: list to empty
1829 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1830 * the list and one reference dropped. This function takes the list
1831 * lock and is atomic with respect to other list locking functions.
1833 void skb_queue_purge(struct sk_buff_head
*list
)
1835 struct sk_buff
*skb
;
1836 while ((skb
= skb_dequeue(list
)) != NULL
)
1841 * skb_queue_head - queue a buffer at the list head
1842 * @list: list to use
1843 * @newsk: buffer to queue
1845 * Queue a buffer at the start of the list. This function takes the
1846 * list lock and can be used safely with other locking &sk_buff functions
1849 * A buffer cannot be placed on two lists at the same time.
1851 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1853 unsigned long flags
;
1855 spin_lock_irqsave(&list
->lock
, flags
);
1856 __skb_queue_head(list
, newsk
);
1857 spin_unlock_irqrestore(&list
->lock
, flags
);
1861 * skb_queue_tail - queue a buffer at the list tail
1862 * @list: list to use
1863 * @newsk: buffer to queue
1865 * Queue a buffer at the tail of the list. This function takes the
1866 * list lock and can be used safely with other locking &sk_buff functions
1869 * A buffer cannot be placed on two lists at the same time.
1871 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1873 unsigned long flags
;
1875 spin_lock_irqsave(&list
->lock
, flags
);
1876 __skb_queue_tail(list
, newsk
);
1877 spin_unlock_irqrestore(&list
->lock
, flags
);
1881 * skb_unlink - remove a buffer from a list
1882 * @skb: buffer to remove
1883 * @list: list to use
1885 * Remove a packet from a list. The list locks are taken and this
1886 * function is atomic with respect to other list locked calls
1888 * You must know what list the SKB is on.
1890 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1892 unsigned long flags
;
1894 spin_lock_irqsave(&list
->lock
, flags
);
1895 __skb_unlink(skb
, list
);
1896 spin_unlock_irqrestore(&list
->lock
, flags
);
1900 * skb_append - append a buffer
1901 * @old: buffer to insert after
1902 * @newsk: buffer to insert
1903 * @list: list to use
1905 * Place a packet after a given packet in a list. The list locks are taken
1906 * and this function is atomic with respect to other list locked calls.
1907 * A buffer cannot be placed on two lists at the same time.
1909 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1911 unsigned long flags
;
1913 spin_lock_irqsave(&list
->lock
, flags
);
1914 __skb_queue_after(list
, old
, newsk
);
1915 spin_unlock_irqrestore(&list
->lock
, flags
);
1920 * skb_insert - insert a buffer
1921 * @old: buffer to insert before
1922 * @newsk: buffer to insert
1923 * @list: list to use
1925 * Place a packet before a given packet in a list. The list locks are
1926 * taken and this function is atomic with respect to other list locked
1929 * A buffer cannot be placed on two lists at the same time.
1931 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1933 unsigned long flags
;
1935 spin_lock_irqsave(&list
->lock
, flags
);
1936 __skb_insert(newsk
, old
->prev
, old
, list
);
1937 spin_unlock_irqrestore(&list
->lock
, flags
);
1940 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1941 struct sk_buff
* skb1
,
1942 const u32 len
, const int pos
)
1946 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
1948 /* And move data appendix as is. */
1949 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1950 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1952 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1953 skb_shinfo(skb
)->nr_frags
= 0;
1954 skb1
->data_len
= skb
->data_len
;
1955 skb1
->len
+= skb1
->data_len
;
1958 skb_set_tail_pointer(skb
, len
);
1961 static inline void skb_split_no_header(struct sk_buff
*skb
,
1962 struct sk_buff
* skb1
,
1963 const u32 len
, int pos
)
1966 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1968 skb_shinfo(skb
)->nr_frags
= 0;
1969 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1971 skb
->data_len
= len
- pos
;
1973 for (i
= 0; i
< nfrags
; i
++) {
1974 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1976 if (pos
+ size
> len
) {
1977 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1981 * We have two variants in this case:
1982 * 1. Move all the frag to the second
1983 * part, if it is possible. F.e.
1984 * this approach is mandatory for TUX,
1985 * where splitting is expensive.
1986 * 2. Split is accurately. We make this.
1988 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1989 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1990 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1991 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1992 skb_shinfo(skb
)->nr_frags
++;
1996 skb_shinfo(skb
)->nr_frags
++;
1999 skb_shinfo(skb1
)->nr_frags
= k
;
2003 * skb_split - Split fragmented skb to two parts at length len.
2004 * @skb: the buffer to split
2005 * @skb1: the buffer to receive the second part
2006 * @len: new length for skb
2008 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2010 int pos
= skb_headlen(skb
);
2012 if (len
< pos
) /* Split line is inside header. */
2013 skb_split_inside_header(skb
, skb1
, len
, pos
);
2014 else /* Second chunk has no header, nothing to copy. */
2015 skb_split_no_header(skb
, skb1
, len
, pos
);
2018 /* Shifting from/to a cloned skb is a no-go.
2020 * Caller cannot keep skb_shinfo related pointers past calling here!
2022 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2024 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2028 * skb_shift - Shifts paged data partially from skb to another
2029 * @tgt: buffer into which tail data gets added
2030 * @skb: buffer from which the paged data comes from
2031 * @shiftlen: shift up to this many bytes
2033 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2034 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2035 * It's up to caller to free skb if everything was shifted.
2037 * If @tgt runs out of frags, the whole operation is aborted.
2039 * Skb cannot include anything else but paged data while tgt is allowed
2040 * to have non-paged data as well.
2042 * TODO: full sized shift could be optimized but that would need
2043 * specialized skb free'er to handle frags without up-to-date nr_frags.
2045 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2047 int from
, to
, merge
, todo
;
2048 struct skb_frag_struct
*fragfrom
, *fragto
;
2050 BUG_ON(shiftlen
> skb
->len
);
2051 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2055 to
= skb_shinfo(tgt
)->nr_frags
;
2056 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2058 /* Actual merge is delayed until the point when we know we can
2059 * commit all, so that we don't have to undo partial changes
2062 !skb_can_coalesce(tgt
, to
, fragfrom
->page
, fragfrom
->page_offset
)) {
2067 todo
-= fragfrom
->size
;
2069 if (skb_prepare_for_shift(skb
) ||
2070 skb_prepare_for_shift(tgt
))
2073 /* All previous frag pointers might be stale! */
2074 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2075 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2077 fragto
->size
+= shiftlen
;
2078 fragfrom
->size
-= shiftlen
;
2079 fragfrom
->page_offset
+= shiftlen
;
2087 /* Skip full, not-fitting skb to avoid expensive operations */
2088 if ((shiftlen
== skb
->len
) &&
2089 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2092 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2095 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2096 if (to
== MAX_SKB_FRAGS
)
2099 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2100 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2102 if (todo
>= fragfrom
->size
) {
2103 *fragto
= *fragfrom
;
2104 todo
-= fragfrom
->size
;
2109 get_page(fragfrom
->page
);
2110 fragto
->page
= fragfrom
->page
;
2111 fragto
->page_offset
= fragfrom
->page_offset
;
2112 fragto
->size
= todo
;
2114 fragfrom
->page_offset
+= todo
;
2115 fragfrom
->size
-= todo
;
2123 /* Ready to "commit" this state change to tgt */
2124 skb_shinfo(tgt
)->nr_frags
= to
;
2127 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2128 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2130 fragto
->size
+= fragfrom
->size
;
2131 put_page(fragfrom
->page
);
2134 /* Reposition in the original skb */
2136 while (from
< skb_shinfo(skb
)->nr_frags
)
2137 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2138 skb_shinfo(skb
)->nr_frags
= to
;
2140 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2143 /* Most likely the tgt won't ever need its checksum anymore, skb on
2144 * the other hand might need it if it needs to be resent
2146 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2147 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2149 /* Yak, is it really working this way? Some helper please? */
2150 skb
->len
-= shiftlen
;
2151 skb
->data_len
-= shiftlen
;
2152 skb
->truesize
-= shiftlen
;
2153 tgt
->len
+= shiftlen
;
2154 tgt
->data_len
+= shiftlen
;
2155 tgt
->truesize
+= shiftlen
;
2161 * skb_prepare_seq_read - Prepare a sequential read of skb data
2162 * @skb: the buffer to read
2163 * @from: lower offset of data to be read
2164 * @to: upper offset of data to be read
2165 * @st: state variable
2167 * Initializes the specified state variable. Must be called before
2168 * invoking skb_seq_read() for the first time.
2170 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2171 unsigned int to
, struct skb_seq_state
*st
)
2173 st
->lower_offset
= from
;
2174 st
->upper_offset
= to
;
2175 st
->root_skb
= st
->cur_skb
= skb
;
2176 st
->frag_idx
= st
->stepped_offset
= 0;
2177 st
->frag_data
= NULL
;
2181 * skb_seq_read - Sequentially read skb data
2182 * @consumed: number of bytes consumed by the caller so far
2183 * @data: destination pointer for data to be returned
2184 * @st: state variable
2186 * Reads a block of skb data at &consumed relative to the
2187 * lower offset specified to skb_prepare_seq_read(). Assigns
2188 * the head of the data block to &data and returns the length
2189 * of the block or 0 if the end of the skb data or the upper
2190 * offset has been reached.
2192 * The caller is not required to consume all of the data
2193 * returned, i.e. &consumed is typically set to the number
2194 * of bytes already consumed and the next call to
2195 * skb_seq_read() will return the remaining part of the block.
2197 * Note 1: The size of each block of data returned can be arbitary,
2198 * this limitation is the cost for zerocopy seqeuental
2199 * reads of potentially non linear data.
2201 * Note 2: Fragment lists within fragments are not implemented
2202 * at the moment, state->root_skb could be replaced with
2203 * a stack for this purpose.
2205 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2206 struct skb_seq_state
*st
)
2208 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2211 if (unlikely(abs_offset
>= st
->upper_offset
))
2215 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2217 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2218 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2219 return block_limit
- abs_offset
;
2222 if (st
->frag_idx
== 0 && !st
->frag_data
)
2223 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2225 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2226 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2227 block_limit
= frag
->size
+ st
->stepped_offset
;
2229 if (abs_offset
< block_limit
) {
2231 st
->frag_data
= kmap_skb_frag(frag
);
2233 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2234 (abs_offset
- st
->stepped_offset
);
2236 return block_limit
- abs_offset
;
2239 if (st
->frag_data
) {
2240 kunmap_skb_frag(st
->frag_data
);
2241 st
->frag_data
= NULL
;
2245 st
->stepped_offset
+= frag
->size
;
2248 if (st
->frag_data
) {
2249 kunmap_skb_frag(st
->frag_data
);
2250 st
->frag_data
= NULL
;
2253 if (st
->root_skb
== st
->cur_skb
&&
2254 skb_shinfo(st
->root_skb
)->frag_list
) {
2255 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2258 } else if (st
->cur_skb
->next
) {
2259 st
->cur_skb
= st
->cur_skb
->next
;
2268 * skb_abort_seq_read - Abort a sequential read of skb data
2269 * @st: state variable
2271 * Must be called if skb_seq_read() was not called until it
2274 void skb_abort_seq_read(struct skb_seq_state
*st
)
2277 kunmap_skb_frag(st
->frag_data
);
2280 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2282 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2283 struct ts_config
*conf
,
2284 struct ts_state
*state
)
2286 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2289 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2291 skb_abort_seq_read(TS_SKB_CB(state
));
2295 * skb_find_text - Find a text pattern in skb data
2296 * @skb: the buffer to look in
2297 * @from: search offset
2299 * @config: textsearch configuration
2300 * @state: uninitialized textsearch state variable
2302 * Finds a pattern in the skb data according to the specified
2303 * textsearch configuration. Use textsearch_next() to retrieve
2304 * subsequent occurrences of the pattern. Returns the offset
2305 * to the first occurrence or UINT_MAX if no match was found.
2307 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2308 unsigned int to
, struct ts_config
*config
,
2309 struct ts_state
*state
)
2313 config
->get_next_block
= skb_ts_get_next_block
;
2314 config
->finish
= skb_ts_finish
;
2316 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2318 ret
= textsearch_find(config
, state
);
2319 return (ret
<= to
- from
? ret
: UINT_MAX
);
2323 * skb_append_datato_frags: - append the user data to a skb
2324 * @sk: sock structure
2325 * @skb: skb structure to be appened with user data.
2326 * @getfrag: call back function to be used for getting the user data
2327 * @from: pointer to user message iov
2328 * @length: length of the iov message
2330 * Description: This procedure append the user data in the fragment part
2331 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2333 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2334 int (*getfrag
)(void *from
, char *to
, int offset
,
2335 int len
, int odd
, struct sk_buff
*skb
),
2336 void *from
, int length
)
2339 skb_frag_t
*frag
= NULL
;
2340 struct page
*page
= NULL
;
2346 /* Return error if we don't have space for new frag */
2347 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2348 if (frg_cnt
>= MAX_SKB_FRAGS
)
2351 /* allocate a new page for next frag */
2352 page
= alloc_pages(sk
->sk_allocation
, 0);
2354 /* If alloc_page fails just return failure and caller will
2355 * free previous allocated pages by doing kfree_skb()
2360 /* initialize the next frag */
2361 sk
->sk_sndmsg_page
= page
;
2362 sk
->sk_sndmsg_off
= 0;
2363 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2364 skb
->truesize
+= PAGE_SIZE
;
2365 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2367 /* get the new initialized frag */
2368 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2369 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2371 /* copy the user data to page */
2372 left
= PAGE_SIZE
- frag
->page_offset
;
2373 copy
= (length
> left
)? left
: length
;
2375 ret
= getfrag(from
, (page_address(frag
->page
) +
2376 frag
->page_offset
+ frag
->size
),
2377 offset
, copy
, 0, skb
);
2381 /* copy was successful so update the size parameters */
2382 sk
->sk_sndmsg_off
+= copy
;
2385 skb
->data_len
+= copy
;
2389 } while (length
> 0);
2395 * skb_pull_rcsum - pull skb and update receive checksum
2396 * @skb: buffer to update
2397 * @len: length of data pulled
2399 * This function performs an skb_pull on the packet and updates
2400 * the CHECKSUM_COMPLETE checksum. It should be used on
2401 * receive path processing instead of skb_pull unless you know
2402 * that the checksum difference is zero (e.g., a valid IP header)
2403 * or you are setting ip_summed to CHECKSUM_NONE.
2405 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2407 BUG_ON(len
> skb
->len
);
2409 BUG_ON(skb
->len
< skb
->data_len
);
2410 skb_postpull_rcsum(skb
, skb
->data
, len
);
2411 return skb
->data
+= len
;
2414 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2417 * skb_segment - Perform protocol segmentation on skb.
2418 * @skb: buffer to segment
2419 * @features: features for the output path (see dev->features)
2421 * This function performs segmentation on the given skb. It returns
2422 * a pointer to the first in a list of new skbs for the segments.
2423 * In case of error it returns ERR_PTR(err).
2425 struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
)
2427 struct sk_buff
*segs
= NULL
;
2428 struct sk_buff
*tail
= NULL
;
2429 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2430 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2431 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2432 unsigned int offset
= doffset
;
2433 unsigned int headroom
;
2435 int sg
= features
& NETIF_F_SG
;
2436 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2441 __skb_push(skb
, doffset
);
2442 headroom
= skb_headroom(skb
);
2443 pos
= skb_headlen(skb
);
2446 struct sk_buff
*nskb
;
2451 len
= skb
->len
- offset
;
2455 hsize
= skb_headlen(skb
) - offset
;
2458 if (hsize
> len
|| !sg
)
2461 if (!hsize
&& i
>= nfrags
) {
2462 BUG_ON(fskb
->len
!= len
);
2465 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2468 if (unlikely(!nskb
))
2471 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2472 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2477 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2479 skb_release_head_state(nskb
);
2480 __skb_push(nskb
, doffset
);
2482 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2485 if (unlikely(!nskb
))
2488 skb_reserve(nskb
, headroom
);
2489 __skb_put(nskb
, doffset
);
2498 __copy_skb_header(nskb
, skb
);
2499 nskb
->mac_len
= skb
->mac_len
;
2501 skb_reset_mac_header(nskb
);
2502 skb_set_network_header(nskb
, skb
->mac_len
);
2503 nskb
->transport_header
= (nskb
->network_header
+
2504 skb_network_header_len(skb
));
2505 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2507 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2511 nskb
->ip_summed
= CHECKSUM_NONE
;
2512 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2518 frag
= skb_shinfo(nskb
)->frags
;
2520 skb_copy_from_linear_data_offset(skb
, offset
,
2521 skb_put(nskb
, hsize
), hsize
);
2523 while (pos
< offset
+ len
&& i
< nfrags
) {
2524 *frag
= skb_shinfo(skb
)->frags
[i
];
2525 get_page(frag
->page
);
2529 frag
->page_offset
+= offset
- pos
;
2530 frag
->size
-= offset
- pos
;
2533 skb_shinfo(nskb
)->nr_frags
++;
2535 if (pos
+ size
<= offset
+ len
) {
2539 frag
->size
-= pos
+ size
- (offset
+ len
);
2546 if (pos
< offset
+ len
) {
2547 struct sk_buff
*fskb2
= fskb
;
2549 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2555 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2561 BUG_ON(skb_shinfo(nskb
)->frag_list
);
2562 skb_shinfo(nskb
)->frag_list
= fskb2
;
2566 nskb
->data_len
= len
- hsize
;
2567 nskb
->len
+= nskb
->data_len
;
2568 nskb
->truesize
+= nskb
->data_len
;
2569 } while ((offset
+= len
) < skb
->len
);
2574 while ((skb
= segs
)) {
2578 return ERR_PTR(err
);
2581 EXPORT_SYMBOL_GPL(skb_segment
);
2583 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2585 struct sk_buff
*p
= *head
;
2586 struct sk_buff
*nskb
;
2587 unsigned int headroom
;
2588 unsigned int hlen
= p
->data
- skb_mac_header(p
);
2589 unsigned int len
= skb
->len
;
2591 if (hlen
+ p
->len
+ len
>= 65536)
2594 if (skb_shinfo(p
)->frag_list
)
2596 else if (!skb_headlen(p
) && !skb_headlen(skb
) &&
2597 skb_shinfo(p
)->nr_frags
+ skb_shinfo(skb
)->nr_frags
<
2599 memcpy(skb_shinfo(p
)->frags
+ skb_shinfo(p
)->nr_frags
,
2600 skb_shinfo(skb
)->frags
,
2601 skb_shinfo(skb
)->nr_frags
* sizeof(skb_frag_t
));
2603 skb_shinfo(p
)->nr_frags
+= skb_shinfo(skb
)->nr_frags
;
2604 skb_shinfo(skb
)->nr_frags
= 0;
2606 skb
->truesize
-= skb
->data_len
;
2607 skb
->len
-= skb
->data_len
;
2610 NAPI_GRO_CB(skb
)->free
= 1;
2614 headroom
= skb_headroom(p
);
2615 nskb
= netdev_alloc_skb(p
->dev
, headroom
);
2616 if (unlikely(!nskb
))
2619 __copy_skb_header(nskb
, p
);
2620 nskb
->mac_len
= p
->mac_len
;
2622 skb_reserve(nskb
, headroom
);
2624 skb_set_mac_header(nskb
, -hlen
);
2625 skb_set_network_header(nskb
, skb_network_offset(p
));
2626 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2628 memcpy(skb_mac_header(nskb
), skb_mac_header(p
), hlen
);
2630 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2631 skb_shinfo(nskb
)->frag_list
= p
;
2632 skb_shinfo(nskb
)->gso_size
= skb_shinfo(p
)->gso_size
;
2633 skb_header_release(p
);
2636 nskb
->data_len
+= p
->len
;
2637 nskb
->truesize
+= p
->len
;
2638 nskb
->len
+= p
->len
;
2641 nskb
->next
= p
->next
;
2647 p
->prev
->next
= skb
;
2649 skb_header_release(skb
);
2652 NAPI_GRO_CB(p
)->count
++;
2657 NAPI_GRO_CB(skb
)->same_flow
= 1;
2660 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2662 void __init
skb_init(void)
2664 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2665 sizeof(struct sk_buff
),
2667 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2669 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2670 (2*sizeof(struct sk_buff
)) +
2673 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2678 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2679 * @skb: Socket buffer containing the buffers to be mapped
2680 * @sg: The scatter-gather list to map into
2681 * @offset: The offset into the buffer's contents to start mapping
2682 * @len: Length of buffer space to be mapped
2684 * Fill the specified scatter-gather list with mappings/pointers into a
2685 * region of the buffer space attached to a socket buffer.
2688 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2690 int start
= skb_headlen(skb
);
2691 int i
, copy
= start
- offset
;
2697 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2699 if ((len
-= copy
) == 0)
2704 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2707 WARN_ON(start
> offset
+ len
);
2709 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
2710 if ((copy
= end
- offset
) > 0) {
2711 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2715 sg_set_page(&sg
[elt
], frag
->page
, copy
,
2716 frag
->page_offset
+offset
-start
);
2725 if (skb_shinfo(skb
)->frag_list
) {
2726 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
2728 for (; list
; list
= list
->next
) {
2731 WARN_ON(start
> offset
+ len
);
2733 end
= start
+ list
->len
;
2734 if ((copy
= end
- offset
) > 0) {
2737 elt
+= __skb_to_sgvec(list
, sg
+elt
, offset
- start
,
2739 if ((len
-= copy
) == 0)
2750 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2752 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2754 sg_mark_end(&sg
[nsg
- 1]);
2760 * skb_cow_data - Check that a socket buffer's data buffers are writable
2761 * @skb: The socket buffer to check.
2762 * @tailbits: Amount of trailing space to be added
2763 * @trailer: Returned pointer to the skb where the @tailbits space begins
2765 * Make sure that the data buffers attached to a socket buffer are
2766 * writable. If they are not, private copies are made of the data buffers
2767 * and the socket buffer is set to use these instead.
2769 * If @tailbits is given, make sure that there is space to write @tailbits
2770 * bytes of data beyond current end of socket buffer. @trailer will be
2771 * set to point to the skb in which this space begins.
2773 * The number of scatterlist elements required to completely map the
2774 * COW'd and extended socket buffer will be returned.
2776 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
2780 struct sk_buff
*skb1
, **skb_p
;
2782 /* If skb is cloned or its head is paged, reallocate
2783 * head pulling out all the pages (pages are considered not writable
2784 * at the moment even if they are anonymous).
2786 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
2787 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
2790 /* Easy case. Most of packets will go this way. */
2791 if (!skb_shinfo(skb
)->frag_list
) {
2792 /* A little of trouble, not enough of space for trailer.
2793 * This should not happen, when stack is tuned to generate
2794 * good frames. OK, on miss we reallocate and reserve even more
2795 * space, 128 bytes is fair. */
2797 if (skb_tailroom(skb
) < tailbits
&&
2798 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
2806 /* Misery. We are in troubles, going to mincer fragments... */
2809 skb_p
= &skb_shinfo(skb
)->frag_list
;
2812 while ((skb1
= *skb_p
) != NULL
) {
2815 /* The fragment is partially pulled by someone,
2816 * this can happen on input. Copy it and everything
2819 if (skb_shared(skb1
))
2822 /* If the skb is the last, worry about trailer. */
2824 if (skb1
->next
== NULL
&& tailbits
) {
2825 if (skb_shinfo(skb1
)->nr_frags
||
2826 skb_shinfo(skb1
)->frag_list
||
2827 skb_tailroom(skb1
) < tailbits
)
2828 ntail
= tailbits
+ 128;
2834 skb_shinfo(skb1
)->nr_frags
||
2835 skb_shinfo(skb1
)->frag_list
) {
2836 struct sk_buff
*skb2
;
2838 /* Fuck, we are miserable poor guys... */
2840 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
2842 skb2
= skb_copy_expand(skb1
,
2846 if (unlikely(skb2
== NULL
))
2850 skb_set_owner_w(skb2
, skb1
->sk
);
2852 /* Looking around. Are we still alive?
2853 * OK, link new skb, drop old one */
2855 skb2
->next
= skb1
->next
;
2862 skb_p
= &skb1
->next
;
2869 * skb_partial_csum_set - set up and verify partial csum values for packet
2870 * @skb: the skb to set
2871 * @start: the number of bytes after skb->data to start checksumming.
2872 * @off: the offset from start to place the checksum.
2874 * For untrusted partially-checksummed packets, we need to make sure the values
2875 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2877 * This function checks and sets those values and skb->ip_summed: if this
2878 * returns false you should drop the packet.
2880 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
2882 if (unlikely(start
> skb
->len
- 2) ||
2883 unlikely((int)start
+ off
> skb
->len
- 2)) {
2884 if (net_ratelimit())
2886 "bad partial csum: csum=%u/%u len=%u\n",
2887 start
, off
, skb
->len
);
2890 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2891 skb
->csum_start
= skb_headroom(skb
) + start
;
2892 skb
->csum_offset
= off
;
2896 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
2898 if (net_ratelimit())
2899 pr_warning("%s: received packets cannot be forwarded"
2900 " while LRO is enabled\n", skb
->dev
->name
);
2903 EXPORT_SYMBOL(___pskb_trim
);
2904 EXPORT_SYMBOL(__kfree_skb
);
2905 EXPORT_SYMBOL(kfree_skb
);
2906 EXPORT_SYMBOL(__pskb_pull_tail
);
2907 EXPORT_SYMBOL(__alloc_skb
);
2908 EXPORT_SYMBOL(__netdev_alloc_skb
);
2909 EXPORT_SYMBOL(pskb_copy
);
2910 EXPORT_SYMBOL(pskb_expand_head
);
2911 EXPORT_SYMBOL(skb_checksum
);
2912 EXPORT_SYMBOL(skb_clone
);
2913 EXPORT_SYMBOL(skb_copy
);
2914 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2915 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2916 EXPORT_SYMBOL(skb_copy_bits
);
2917 EXPORT_SYMBOL(skb_copy_expand
);
2918 EXPORT_SYMBOL(skb_over_panic
);
2919 EXPORT_SYMBOL(skb_pad
);
2920 EXPORT_SYMBOL(skb_realloc_headroom
);
2921 EXPORT_SYMBOL(skb_under_panic
);
2922 EXPORT_SYMBOL(skb_dequeue
);
2923 EXPORT_SYMBOL(skb_dequeue_tail
);
2924 EXPORT_SYMBOL(skb_insert
);
2925 EXPORT_SYMBOL(skb_queue_purge
);
2926 EXPORT_SYMBOL(skb_queue_head
);
2927 EXPORT_SYMBOL(skb_queue_tail
);
2928 EXPORT_SYMBOL(skb_unlink
);
2929 EXPORT_SYMBOL(skb_append
);
2930 EXPORT_SYMBOL(skb_split
);
2931 EXPORT_SYMBOL(skb_prepare_seq_read
);
2932 EXPORT_SYMBOL(skb_seq_read
);
2933 EXPORT_SYMBOL(skb_abort_seq_read
);
2934 EXPORT_SYMBOL(skb_find_text
);
2935 EXPORT_SYMBOL(skb_append_datato_frags
);
2936 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
2938 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2939 EXPORT_SYMBOL_GPL(skb_cow_data
);
2940 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);