1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
9 * UBI wear-leveling sub-system.
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
123 #define WL_MAX_FAILURES 32
125 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
126 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
127 struct ubi_wl_entry
*e
, struct rb_root
*root
);
128 static int self_check_in_pq(const struct ubi_device
*ubi
,
129 struct ubi_wl_entry
*e
);
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
139 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
141 struct rb_node
**p
, *parent
= NULL
;
145 struct ubi_wl_entry
*e1
;
148 e1
= rb_entry(parent
, struct ubi_wl_entry
, u
.rb
);
152 else if (e
->ec
> e1
->ec
)
155 ubi_assert(e
->pnum
!= e1
->pnum
);
156 if (e
->pnum
< e1
->pnum
)
163 rb_link_node(&e
->u
.rb
, parent
, p
);
164 rb_insert_color(&e
->u
.rb
, root
);
168 * wl_entry_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
175 static void wl_entry_destroy(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
177 ubi
->lookuptbl
[e
->pnum
] = NULL
;
178 kmem_cache_free(ubi_wl_entry_slab
, e
);
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 * @executed: whether there is one work is executed
186 * This function returns zero in case of success and a negative error code in
187 * case of failure. If @executed is not NULL and there is one work executed,
188 * @executed is set as %1, otherwise @executed is set as %0.
190 static int do_work(struct ubi_device
*ubi
, int *executed
)
193 struct ubi_work
*wrk
;
198 * @ubi->work_sem is used to synchronize with the workers. Workers take
199 * it in read mode, so many of them may be doing works at a time. But
200 * the queue flush code has to be sure the whole queue of works is
201 * done, and it takes the mutex in write mode.
203 down_read(&ubi
->work_sem
);
204 spin_lock(&ubi
->wl_lock
);
205 if (list_empty(&ubi
->works
)) {
206 spin_unlock(&ubi
->wl_lock
);
207 up_read(&ubi
->work_sem
);
215 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
216 list_del(&wrk
->list
);
217 ubi
->works_count
-= 1;
218 ubi_assert(ubi
->works_count
>= 0);
219 spin_unlock(&ubi
->wl_lock
);
222 * Call the worker function. Do not touch the work structure
223 * after this call as it will have been freed or reused by that
224 * time by the worker function.
226 err
= wrk
->func(ubi
, wrk
, 0);
228 ubi_err(ubi
, "work failed with error code %d", err
);
229 up_read(&ubi
->work_sem
);
235 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
236 * @e: the wear-leveling entry to check
237 * @root: the root of the tree
239 * This function returns non-zero if @e is in the @root RB-tree and zero if it
242 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
248 struct ubi_wl_entry
*e1
;
250 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
252 if (e
->pnum
== e1
->pnum
) {
259 else if (e
->ec
> e1
->ec
)
262 ubi_assert(e
->pnum
!= e1
->pnum
);
263 if (e
->pnum
< e1
->pnum
)
274 * in_pq - check if a wear-leveling entry is present in the protection queue.
275 * @ubi: UBI device description object
276 * @e: the wear-leveling entry to check
278 * This function returns non-zero if @e is in the protection queue and zero
281 static inline int in_pq(const struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
283 struct ubi_wl_entry
*p
;
286 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
)
287 list_for_each_entry(p
, &ubi
->pq
[i
], u
.list
)
295 * prot_queue_add - add physical eraseblock to the protection queue.
296 * @ubi: UBI device description object
297 * @e: the physical eraseblock to add
299 * This function adds @e to the tail of the protection queue @ubi->pq, where
300 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
301 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
304 static void prot_queue_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
306 int pq_tail
= ubi
->pq_head
- 1;
309 pq_tail
= UBI_PROT_QUEUE_LEN
- 1;
310 ubi_assert(pq_tail
>= 0 && pq_tail
< UBI_PROT_QUEUE_LEN
);
311 list_add_tail(&e
->u
.list
, &ubi
->pq
[pq_tail
]);
312 dbg_wl("added PEB %d EC %d to the protection queue", e
->pnum
, e
->ec
);
316 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
317 * @ubi: UBI device description object
318 * @root: the RB-tree where to look for
319 * @diff: maximum possible difference from the smallest erase counter
320 * @pick_max: pick PEB even its erase counter beyonds 'min_ec + @diff'
322 * This function looks for a wear leveling entry with erase counter closest to
323 * min + @diff, where min is the smallest erase counter.
325 static struct ubi_wl_entry
*find_wl_entry(struct ubi_device
*ubi
,
326 struct rb_root
*root
, int diff
,
330 struct ubi_wl_entry
*e
;
333 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
338 struct ubi_wl_entry
*e1
;
340 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
355 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
356 * @ubi: UBI device description object
357 * @root: the RB-tree where to look for
359 * This function looks for a wear leveling entry with medium erase counter,
360 * but not greater or equivalent than the lowest erase counter plus
361 * %WL_FREE_MAX_DIFF/2.
363 static struct ubi_wl_entry
*find_mean_wl_entry(struct ubi_device
*ubi
,
364 struct rb_root
*root
)
366 struct ubi_wl_entry
*e
, *first
, *last
;
368 first
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
369 last
= rb_entry(rb_last(root
), struct ubi_wl_entry
, u
.rb
);
371 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
) {
372 e
= rb_entry(root
->rb_node
, struct ubi_wl_entry
, u
.rb
);
375 * If no fastmap has been written and fm_anchor is not
376 * reserved and this WL entry can be used as anchor PEB
377 * hold it back and return the second best WL entry such
378 * that fastmap can use the anchor PEB later.
380 e
= may_reserve_for_fm(ubi
, e
, root
);
382 e
= find_wl_entry(ubi
, root
, WL_FREE_MAX_DIFF
/2, 0);
388 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
389 * refill_wl_user_pool().
390 * @ubi: UBI device description object
392 * This function returns a wear leveling entry in case of success and
393 * NULL in case of failure.
395 static struct ubi_wl_entry
*wl_get_wle(struct ubi_device
*ubi
)
397 struct ubi_wl_entry
*e
;
399 e
= find_mean_wl_entry(ubi
, &ubi
->free
);
401 ubi_err(ubi
, "no free eraseblocks");
405 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
408 * Move the physical eraseblock to the protection queue where it will
409 * be protected from being moved for some time.
411 rb_erase(&e
->u
.rb
, &ubi
->free
);
413 dbg_wl("PEB %d EC %d", e
->pnum
, e
->ec
);
419 * prot_queue_del - remove a physical eraseblock from the protection queue.
420 * @ubi: UBI device description object
421 * @pnum: the physical eraseblock to remove
423 * This function deletes PEB @pnum from the protection queue and returns zero
424 * in case of success and %-ENODEV if the PEB was not found.
426 static int prot_queue_del(struct ubi_device
*ubi
, int pnum
)
428 struct ubi_wl_entry
*e
;
430 e
= ubi
->lookuptbl
[pnum
];
434 if (self_check_in_pq(ubi
, e
))
437 list_del(&e
->u
.list
);
438 dbg_wl("deleted PEB %d from the protection queue", e
->pnum
);
443 * ubi_sync_erase - synchronously erase a physical eraseblock.
444 * @ubi: UBI device description object
445 * @e: the physical eraseblock to erase
446 * @torture: if the physical eraseblock has to be tortured
448 * This function returns zero in case of success and a negative error code in
451 int ubi_sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
, int torture
)
454 struct ubi_ec_hdr
*ec_hdr
;
455 unsigned long long ec
= e
->ec
;
457 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
459 err
= self_check_ec(ubi
, e
->pnum
, e
->ec
);
463 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
467 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
472 if (ec
> UBI_MAX_ERASECOUNTER
) {
474 * Erase counter overflow. Upgrade UBI and use 64-bit
475 * erase counters internally.
477 ubi_err(ubi
, "erase counter overflow at PEB %d, EC %llu",
483 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
485 ec_hdr
->ec
= cpu_to_be64(ec
);
487 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
492 spin_lock(&ubi
->wl_lock
);
493 if (e
->ec
> ubi
->max_ec
)
495 spin_unlock(&ubi
->wl_lock
);
503 * serve_prot_queue - check if it is time to stop protecting PEBs.
504 * @ubi: UBI device description object
506 * This function is called after each erase operation and removes PEBs from the
507 * tail of the protection queue. These PEBs have been protected for long enough
508 * and should be moved to the used tree.
510 static void serve_prot_queue(struct ubi_device
*ubi
)
512 struct ubi_wl_entry
*e
, *tmp
;
516 * There may be several protected physical eraseblock to remove,
521 spin_lock(&ubi
->wl_lock
);
522 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[ubi
->pq_head
], u
.list
) {
523 dbg_wl("PEB %d EC %d protection over, move to used tree",
526 list_del(&e
->u
.list
);
527 wl_tree_add(e
, &ubi
->used
);
530 * Let's be nice and avoid holding the spinlock for
533 spin_unlock(&ubi
->wl_lock
);
540 if (ubi
->pq_head
== UBI_PROT_QUEUE_LEN
)
542 ubi_assert(ubi
->pq_head
>= 0 && ubi
->pq_head
< UBI_PROT_QUEUE_LEN
);
543 spin_unlock(&ubi
->wl_lock
);
547 * __schedule_ubi_work - schedule a work.
548 * @ubi: UBI device description object
549 * @wrk: the work to schedule
551 * This function adds a work defined by @wrk to the tail of the pending works
552 * list. Can only be used if ubi->work_sem is already held in read mode!
554 static void __schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
556 spin_lock(&ubi
->wl_lock
);
557 list_add_tail(&wrk
->list
, &ubi
->works
);
558 ubi_assert(ubi
->works_count
>= 0);
559 ubi
->works_count
+= 1;
560 if (ubi
->thread_enabled
&& !ubi_dbg_is_bgt_disabled(ubi
))
561 wake_up_process(ubi
->bgt_thread
);
562 spin_unlock(&ubi
->wl_lock
);
566 * schedule_ubi_work - schedule a work.
567 * @ubi: UBI device description object
568 * @wrk: the work to schedule
570 * This function adds a work defined by @wrk to the tail of the pending works
573 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
575 down_read(&ubi
->work_sem
);
576 __schedule_ubi_work(ubi
, wrk
);
577 up_read(&ubi
->work_sem
);
580 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
584 * schedule_erase - schedule an erase work.
585 * @ubi: UBI device description object
586 * @e: the WL entry of the physical eraseblock to erase
587 * @vol_id: the volume ID that last used this PEB
588 * @lnum: the last used logical eraseblock number for the PEB
589 * @torture: if the physical eraseblock has to be tortured
590 * @nested: denotes whether the work_sem is already held
592 * This function returns zero in case of success and a %-ENOMEM in case of
595 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
596 int vol_id
, int lnum
, int torture
, bool nested
)
598 struct ubi_work
*wl_wrk
;
602 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
603 e
->pnum
, e
->ec
, torture
);
605 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
609 wl_wrk
->func
= &erase_worker
;
611 wl_wrk
->vol_id
= vol_id
;
613 wl_wrk
->torture
= torture
;
616 __schedule_ubi_work(ubi
, wl_wrk
);
618 schedule_ubi_work(ubi
, wl_wrk
);
622 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
);
624 * do_sync_erase - run the erase worker synchronously.
625 * @ubi: UBI device description object
626 * @e: the WL entry of the physical eraseblock to erase
627 * @vol_id: the volume ID that last used this PEB
628 * @lnum: the last used logical eraseblock number for the PEB
629 * @torture: if the physical eraseblock has to be tortured
632 static int do_sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
633 int vol_id
, int lnum
, int torture
)
635 struct ubi_work wl_wrk
;
637 dbg_wl("sync erase of PEB %i", e
->pnum
);
640 wl_wrk
.vol_id
= vol_id
;
642 wl_wrk
.torture
= torture
;
644 return __erase_worker(ubi
, &wl_wrk
);
647 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
);
649 * wear_leveling_worker - wear-leveling worker function.
650 * @ubi: UBI device description object
651 * @wrk: the work object
652 * @shutdown: non-zero if the worker has to free memory and exit
653 * because the WL-subsystem is shutting down
655 * This function copies a more worn out physical eraseblock to a less worn out
656 * one. Returns zero in case of success and a negative error code in case of
659 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
662 int err
, scrubbing
= 0, torture
= 0, protect
= 0, erroneous
= 0;
663 int erase
= 0, keep
= 0, vol_id
= -1, lnum
= -1;
664 struct ubi_wl_entry
*e1
, *e2
;
665 struct ubi_vid_io_buf
*vidb
;
666 struct ubi_vid_hdr
*vid_hdr
;
667 int dst_leb_clean
= 0;
673 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
677 vid_hdr
= ubi_get_vid_hdr(vidb
);
679 down_read(&ubi
->fm_eba_sem
);
680 mutex_lock(&ubi
->move_mutex
);
681 spin_lock(&ubi
->wl_lock
);
682 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
683 ubi_assert(!ubi
->move_to_put
);
685 #ifdef CONFIG_MTD_UBI_FASTMAP
686 if (!next_peb_for_wl(ubi
, true) ||
688 if (!ubi
->free
.rb_node
||
690 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
692 * No free physical eraseblocks? Well, they must be waiting in
693 * the queue to be erased. Cancel movement - it will be
694 * triggered again when a free physical eraseblock appears.
696 * No used physical eraseblocks? They must be temporarily
697 * protected from being moved. They will be moved to the
698 * @ubi->used tree later and the wear-leveling will be
701 dbg_wl("cancel WL, a list is empty: free %d, used %d",
702 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
706 #ifdef CONFIG_MTD_UBI_FASTMAP
707 e1
= find_anchor_wl_entry(&ubi
->used
);
708 if (e1
&& ubi
->fm_anchor
&&
709 (ubi
->fm_anchor
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
710 ubi
->fm_do_produce_anchor
= 1;
712 * fm_anchor is no longer considered a good anchor.
713 * NULL assignment also prevents multiple wear level checks
716 wl_tree_add(ubi
->fm_anchor
, &ubi
->free
);
717 ubi
->fm_anchor
= NULL
;
721 if (ubi
->fm_do_produce_anchor
) {
724 e2
= get_peb_for_wl(ubi
);
728 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
729 rb_erase(&e1
->u
.rb
, &ubi
->used
);
730 dbg_wl("anchor-move PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
731 ubi
->fm_do_produce_anchor
= 0;
732 } else if (!ubi
->scrub
.rb_node
) {
734 if (!ubi
->scrub
.rb_node
) {
737 * Now pick the least worn-out used physical eraseblock and a
738 * highly worn-out free physical eraseblock. If the erase
739 * counters differ much enough, start wear-leveling.
741 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
742 e2
= get_peb_for_wl(ubi
);
746 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
747 dbg_wl("no WL needed: min used EC %d, max free EC %d",
750 /* Give the unused PEB back */
751 wl_tree_add(e2
, &ubi
->free
);
755 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
756 rb_erase(&e1
->u
.rb
, &ubi
->used
);
757 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
758 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
760 /* Perform scrubbing */
762 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, u
.rb
);
763 e2
= get_peb_for_wl(ubi
);
767 self_check_in_wl_tree(ubi
, e1
, &ubi
->scrub
);
768 rb_erase(&e1
->u
.rb
, &ubi
->scrub
);
769 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
774 spin_unlock(&ubi
->wl_lock
);
777 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
778 * We so far do not know which logical eraseblock our physical
779 * eraseblock (@e1) belongs to. We have to read the volume identifier
782 * Note, we are protected from this PEB being unmapped and erased. The
783 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
784 * which is being moved was unmapped.
787 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vidb
, 0);
788 if (err
&& err
!= UBI_IO_BITFLIPS
) {
790 if (err
== UBI_IO_FF
) {
792 * We are trying to move PEB without a VID header. UBI
793 * always write VID headers shortly after the PEB was
794 * given, so we have a situation when it has not yet
795 * had a chance to write it, because it was preempted.
796 * So add this PEB to the protection queue so far,
797 * because presumably more data will be written there
798 * (including the missing VID header), and then we'll
801 dbg_wl("PEB %d has no VID header", e1
->pnum
);
804 } else if (err
== UBI_IO_FF_BITFLIPS
) {
806 * The same situation as %UBI_IO_FF, but bit-flips were
807 * detected. It is better to schedule this PEB for
810 dbg_wl("PEB %d has no VID header but has bit-flips",
814 } else if (ubi
->fast_attach
&& err
== UBI_IO_BAD_HDR_EBADMSG
) {
816 * While a full scan would detect interrupted erasures
817 * at attach time we can face them here when attached from
820 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
826 ubi_err(ubi
, "error %d while reading VID header from PEB %d",
831 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
832 lnum
= be32_to_cpu(vid_hdr
->lnum
);
834 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vidb
);
836 if (err
== MOVE_CANCEL_RACE
) {
838 * The LEB has not been moved because the volume is
839 * being deleted or the PEB has been put meanwhile. We
840 * should prevent this PEB from being selected for
841 * wear-leveling movement again, so put it to the
848 if (err
== MOVE_RETRY
) {
851 * 1. The scrubbing is set for scrub type PEB, it will
852 * be put back into ubi->scrub list.
853 * 2. Non-scrub type PEB will be put back into ubi->used
860 if (err
== MOVE_TARGET_BITFLIPS
|| err
== MOVE_TARGET_WR_ERR
||
861 err
== MOVE_TARGET_RD_ERR
) {
863 * Target PEB had bit-flips or write error - torture it.
870 if (err
== MOVE_SOURCE_RD_ERR
) {
872 * An error happened while reading the source PEB. Do
873 * not switch to R/O mode in this case, and give the
874 * upper layers a possibility to recover from this,
875 * e.g. by unmapping corresponding LEB. Instead, just
876 * put this PEB to the @ubi->erroneous list to prevent
877 * UBI from trying to move it over and over again.
879 if (ubi
->erroneous_peb_count
> ubi
->max_erroneous
) {
880 ubi_err(ubi
, "too many erroneous eraseblocks (%d)",
881 ubi
->erroneous_peb_count
);
895 /* The PEB has been successfully moved */
897 ubi_msg(ubi
, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
898 e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
899 ubi_free_vid_buf(vidb
);
901 spin_lock(&ubi
->wl_lock
);
902 if (!ubi
->move_to_put
) {
903 wl_tree_add(e2
, &ubi
->used
);
906 ubi
->move_from
= ubi
->move_to
= NULL
;
907 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
908 spin_unlock(&ubi
->wl_lock
);
910 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 0);
913 spin_lock(&ubi
->wl_lock
);
914 wl_entry_destroy(ubi
, e2
);
915 spin_unlock(&ubi
->wl_lock
);
922 * Well, the target PEB was put meanwhile, schedule it for
925 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
926 e2
->pnum
, vol_id
, lnum
);
927 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, 0);
933 mutex_unlock(&ubi
->move_mutex
);
934 up_read(&ubi
->fm_eba_sem
);
938 * For some reasons the LEB was not moved, might be an error, might be
939 * something else. @e1 was not changed, so return it back. @e2 might
940 * have been changed, schedule it for erasure.
944 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
945 e1
->pnum
, vol_id
, lnum
, e2
->pnum
, err
);
947 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
948 e1
->pnum
, e2
->pnum
, err
);
949 spin_lock(&ubi
->wl_lock
);
951 prot_queue_add(ubi
, e1
);
952 else if (erroneous
) {
953 wl_tree_add(e1
, &ubi
->erroneous
);
954 ubi
->erroneous_peb_count
+= 1;
955 } else if (scrubbing
)
956 wl_tree_add(e1
, &ubi
->scrub
);
958 wl_tree_add(e1
, &ubi
->used
);
960 wl_tree_add(e2
, &ubi
->free
);
964 ubi_assert(!ubi
->move_to_put
);
965 ubi
->move_from
= ubi
->move_to
= NULL
;
966 ubi
->wl_scheduled
= 0;
967 spin_unlock(&ubi
->wl_lock
);
969 ubi_free_vid_buf(vidb
);
971 ensure_wear_leveling(ubi
, 1);
973 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, torture
);
979 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 1);
984 mutex_unlock(&ubi
->move_mutex
);
985 up_read(&ubi
->fm_eba_sem
);
990 ubi_err(ubi
, "error %d while moving PEB %d to PEB %d",
991 err
, e1
->pnum
, e2
->pnum
);
993 ubi_err(ubi
, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
994 err
, e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
995 spin_lock(&ubi
->wl_lock
);
996 ubi
->move_from
= ubi
->move_to
= NULL
;
997 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
998 wl_entry_destroy(ubi
, e1
);
999 wl_entry_destroy(ubi
, e2
);
1000 spin_unlock(&ubi
->wl_lock
);
1002 ubi_free_vid_buf(vidb
);
1006 mutex_unlock(&ubi
->move_mutex
);
1007 up_read(&ubi
->fm_eba_sem
);
1008 ubi_assert(err
!= 0);
1009 return err
< 0 ? err
: -EIO
;
1012 ubi
->wl_scheduled
= 0;
1013 spin_unlock(&ubi
->wl_lock
);
1014 mutex_unlock(&ubi
->move_mutex
);
1015 up_read(&ubi
->fm_eba_sem
);
1016 ubi_free_vid_buf(vidb
);
1021 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1022 * @ubi: UBI device description object
1023 * @nested: set to non-zero if this function is called from UBI worker
1025 * This function checks if it is time to start wear-leveling and schedules it
1026 * if yes. This function returns zero in case of success and a negative error
1027 * code in case of failure.
1029 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
)
1032 struct ubi_work
*wrk
;
1034 spin_lock(&ubi
->wl_lock
);
1035 if (ubi
->wl_scheduled
)
1036 /* Wear-leveling is already in the work queue */
1040 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1041 * WL worker has to be scheduled anyway.
1043 if (!ubi
->scrub
.rb_node
) {
1044 #ifdef CONFIG_MTD_UBI_FASTMAP
1045 if (!need_wear_leveling(ubi
))
1048 struct ubi_wl_entry
*e1
;
1049 struct ubi_wl_entry
*e2
;
1051 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
1052 /* No physical eraseblocks - no deal */
1056 * We schedule wear-leveling only if the difference between the
1057 * lowest erase counter of used physical eraseblocks and a high
1058 * erase counter of free physical eraseblocks is greater than
1059 * %UBI_WL_THRESHOLD.
1061 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
1062 e2
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
, 0);
1064 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
1067 dbg_wl("schedule wear-leveling");
1069 dbg_wl("schedule scrubbing");
1071 ubi
->wl_scheduled
= 1;
1072 spin_unlock(&ubi
->wl_lock
);
1074 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
1080 wrk
->func
= &wear_leveling_worker
;
1082 __schedule_ubi_work(ubi
, wrk
);
1084 schedule_ubi_work(ubi
, wrk
);
1088 spin_lock(&ubi
->wl_lock
);
1089 ubi
->wl_scheduled
= 0;
1091 spin_unlock(&ubi
->wl_lock
);
1096 * __erase_worker - physical eraseblock erase worker function.
1097 * @ubi: UBI device description object
1098 * @wl_wrk: the work object
1100 * This function erases a physical eraseblock and perform torture testing if
1101 * needed. It also takes care about marking the physical eraseblock bad if
1102 * needed. Returns zero in case of success and a negative error code in case of
1105 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
)
1107 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1109 int vol_id
= wl_wrk
->vol_id
;
1110 int lnum
= wl_wrk
->lnum
;
1111 int err
, available_consumed
= 0;
1113 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1114 pnum
, e
->ec
, wl_wrk
->vol_id
, wl_wrk
->lnum
);
1116 err
= ubi_sync_erase(ubi
, e
, wl_wrk
->torture
);
1118 spin_lock(&ubi
->wl_lock
);
1120 if (!ubi
->fm_disabled
&& !ubi
->fm_anchor
&&
1121 e
->pnum
< UBI_FM_MAX_START
) {
1123 * Abort anchor production, if needed it will be
1124 * enabled again in the wear leveling started below.
1127 ubi
->fm_do_produce_anchor
= 0;
1129 wl_tree_add(e
, &ubi
->free
);
1133 spin_unlock(&ubi
->wl_lock
);
1136 * One more erase operation has happened, take care about
1137 * protected physical eraseblocks.
1139 serve_prot_queue(ubi
);
1141 /* And take care about wear-leveling */
1142 err
= ensure_wear_leveling(ubi
, 1);
1146 ubi_err(ubi
, "failed to erase PEB %d, error %d", pnum
, err
);
1148 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1152 /* Re-schedule the LEB for erasure */
1153 err1
= schedule_erase(ubi
, e
, vol_id
, lnum
, 0, true);
1155 spin_lock(&ubi
->wl_lock
);
1156 wl_entry_destroy(ubi
, e
);
1157 spin_unlock(&ubi
->wl_lock
);
1164 spin_lock(&ubi
->wl_lock
);
1165 wl_entry_destroy(ubi
, e
);
1166 spin_unlock(&ubi
->wl_lock
);
1169 * If this is not %-EIO, we have no idea what to do. Scheduling
1170 * this physical eraseblock for erasure again would cause
1171 * errors again and again. Well, lets switch to R/O mode.
1175 /* It is %-EIO, the PEB went bad */
1177 if (!ubi
->bad_allowed
) {
1178 ubi_err(ubi
, "bad physical eraseblock %d detected", pnum
);
1182 spin_lock(&ubi
->volumes_lock
);
1183 if (ubi
->beb_rsvd_pebs
== 0) {
1184 if (ubi
->avail_pebs
== 0) {
1185 spin_unlock(&ubi
->volumes_lock
);
1186 ubi_err(ubi
, "no reserved/available physical eraseblocks");
1189 ubi
->avail_pebs
-= 1;
1190 available_consumed
= 1;
1192 spin_unlock(&ubi
->volumes_lock
);
1194 ubi_msg(ubi
, "mark PEB %d as bad", pnum
);
1195 err
= ubi_io_mark_bad(ubi
, pnum
);
1199 spin_lock(&ubi
->volumes_lock
);
1200 if (ubi
->beb_rsvd_pebs
> 0) {
1201 if (available_consumed
) {
1203 * The amount of reserved PEBs increased since we last
1206 ubi
->avail_pebs
+= 1;
1207 available_consumed
= 0;
1209 ubi
->beb_rsvd_pebs
-= 1;
1211 ubi
->bad_peb_count
+= 1;
1212 ubi
->good_peb_count
-= 1;
1213 ubi_calculate_reserved(ubi
);
1214 if (available_consumed
)
1215 ubi_warn(ubi
, "no PEBs in the reserved pool, used an available PEB");
1216 else if (ubi
->beb_rsvd_pebs
)
1217 ubi_msg(ubi
, "%d PEBs left in the reserve",
1218 ubi
->beb_rsvd_pebs
);
1220 ubi_warn(ubi
, "last PEB from the reserve was used");
1221 spin_unlock(&ubi
->volumes_lock
);
1226 if (available_consumed
) {
1227 spin_lock(&ubi
->volumes_lock
);
1228 ubi
->avail_pebs
+= 1;
1229 spin_unlock(&ubi
->volumes_lock
);
1235 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
1241 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1243 dbg_wl("cancel erasure of PEB %d EC %d", e
->pnum
, e
->ec
);
1245 wl_entry_destroy(ubi
, e
);
1249 ret
= __erase_worker(ubi
, wl_wrk
);
1255 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1256 * @ubi: UBI device description object
1257 * @vol_id: the volume ID that last used this PEB
1258 * @lnum: the last used logical eraseblock number for the PEB
1259 * @pnum: physical eraseblock to return
1260 * @torture: if this physical eraseblock has to be tortured
1262 * This function is called to return physical eraseblock @pnum to the pool of
1263 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1264 * occurred to this @pnum and it has to be tested. This function returns zero
1265 * in case of success, and a negative error code in case of failure.
1267 int ubi_wl_put_peb(struct ubi_device
*ubi
, int vol_id
, int lnum
,
1268 int pnum
, int torture
)
1271 struct ubi_wl_entry
*e
;
1273 dbg_wl("PEB %d", pnum
);
1274 ubi_assert(pnum
>= 0);
1275 ubi_assert(pnum
< ubi
->peb_count
);
1277 down_read(&ubi
->fm_protect
);
1280 spin_lock(&ubi
->wl_lock
);
1281 e
= ubi
->lookuptbl
[pnum
];
1284 * This wl entry has been removed for some errors by other
1285 * process (eg. wear leveling worker), corresponding process
1286 * (except __erase_worker, which cannot concurrent with
1287 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1288 * just ignore this wl entry.
1290 spin_unlock(&ubi
->wl_lock
);
1291 up_read(&ubi
->fm_protect
);
1294 if (e
== ubi
->move_from
) {
1296 * User is putting the physical eraseblock which was selected to
1297 * be moved. It will be scheduled for erasure in the
1298 * wear-leveling worker.
1300 dbg_wl("PEB %d is being moved, wait", pnum
);
1301 spin_unlock(&ubi
->wl_lock
);
1303 /* Wait for the WL worker by taking the @ubi->move_mutex */
1304 mutex_lock(&ubi
->move_mutex
);
1305 mutex_unlock(&ubi
->move_mutex
);
1307 } else if (e
== ubi
->move_to
) {
1309 * User is putting the physical eraseblock which was selected
1310 * as the target the data is moved to. It may happen if the EBA
1311 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1312 * but the WL sub-system has not put the PEB to the "used" tree
1313 * yet, but it is about to do this. So we just set a flag which
1314 * will tell the WL worker that the PEB is not needed anymore
1315 * and should be scheduled for erasure.
1317 dbg_wl("PEB %d is the target of data moving", pnum
);
1318 ubi_assert(!ubi
->move_to_put
);
1319 ubi
->move_to_put
= 1;
1320 spin_unlock(&ubi
->wl_lock
);
1321 up_read(&ubi
->fm_protect
);
1324 if (in_wl_tree(e
, &ubi
->used
)) {
1325 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1326 rb_erase(&e
->u
.rb
, &ubi
->used
);
1327 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1328 self_check_in_wl_tree(ubi
, e
, &ubi
->scrub
);
1329 rb_erase(&e
->u
.rb
, &ubi
->scrub
);
1330 } else if (in_wl_tree(e
, &ubi
->erroneous
)) {
1331 self_check_in_wl_tree(ubi
, e
, &ubi
->erroneous
);
1332 rb_erase(&e
->u
.rb
, &ubi
->erroneous
);
1333 ubi
->erroneous_peb_count
-= 1;
1334 ubi_assert(ubi
->erroneous_peb_count
>= 0);
1335 /* Erroneous PEBs should be tortured */
1338 err
= prot_queue_del(ubi
, e
->pnum
);
1340 ubi_err(ubi
, "PEB %d not found", pnum
);
1342 spin_unlock(&ubi
->wl_lock
);
1343 up_read(&ubi
->fm_protect
);
1348 spin_unlock(&ubi
->wl_lock
);
1350 err
= schedule_erase(ubi
, e
, vol_id
, lnum
, torture
, false);
1352 spin_lock(&ubi
->wl_lock
);
1353 wl_tree_add(e
, &ubi
->used
);
1354 spin_unlock(&ubi
->wl_lock
);
1357 up_read(&ubi
->fm_protect
);
1362 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1363 * @ubi: UBI device description object
1364 * @pnum: the physical eraseblock to schedule
1366 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1367 * needs scrubbing. This function schedules a physical eraseblock for
1368 * scrubbing which is done in background. This function returns zero in case of
1369 * success and a negative error code in case of failure.
1371 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1373 struct ubi_wl_entry
*e
;
1375 ubi_msg(ubi
, "schedule PEB %d for scrubbing", pnum
);
1378 spin_lock(&ubi
->wl_lock
);
1379 e
= ubi
->lookuptbl
[pnum
];
1380 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
) ||
1381 in_wl_tree(e
, &ubi
->erroneous
)) {
1382 spin_unlock(&ubi
->wl_lock
);
1386 if (e
== ubi
->move_to
) {
1388 * This physical eraseblock was used to move data to. The data
1389 * was moved but the PEB was not yet inserted to the proper
1390 * tree. We should just wait a little and let the WL worker
1393 spin_unlock(&ubi
->wl_lock
);
1394 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1399 if (in_wl_tree(e
, &ubi
->used
)) {
1400 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1401 rb_erase(&e
->u
.rb
, &ubi
->used
);
1405 err
= prot_queue_del(ubi
, e
->pnum
);
1407 ubi_err(ubi
, "PEB %d not found", pnum
);
1409 spin_unlock(&ubi
->wl_lock
);
1414 wl_tree_add(e
, &ubi
->scrub
);
1415 spin_unlock(&ubi
->wl_lock
);
1418 * Technically scrubbing is the same as wear-leveling, so it is done
1421 return ensure_wear_leveling(ubi
, 0);
1425 * ubi_wl_flush - flush all pending works.
1426 * @ubi: UBI device description object
1427 * @vol_id: the volume id to flush for
1428 * @lnum: the logical eraseblock number to flush for
1430 * This function executes all pending works for a particular volume id /
1431 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1432 * acts as a wildcard for all of the corresponding volume numbers or logical
1433 * eraseblock numbers. It returns zero in case of success and a negative error
1434 * code in case of failure.
1436 int ubi_wl_flush(struct ubi_device
*ubi
, int vol_id
, int lnum
)
1442 * Erase while the pending works queue is not empty, but not more than
1443 * the number of currently pending works.
1445 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1446 vol_id
, lnum
, ubi
->works_count
);
1449 struct ubi_work
*wrk
, *tmp
;
1452 down_read(&ubi
->work_sem
);
1453 spin_lock(&ubi
->wl_lock
);
1454 list_for_each_entry_safe(wrk
, tmp
, &ubi
->works
, list
) {
1455 if ((vol_id
== UBI_ALL
|| wrk
->vol_id
== vol_id
) &&
1456 (lnum
== UBI_ALL
|| wrk
->lnum
== lnum
)) {
1457 list_del(&wrk
->list
);
1458 ubi
->works_count
-= 1;
1459 ubi_assert(ubi
->works_count
>= 0);
1460 spin_unlock(&ubi
->wl_lock
);
1462 err
= wrk
->func(ubi
, wrk
, 0);
1464 up_read(&ubi
->work_sem
);
1468 spin_lock(&ubi
->wl_lock
);
1473 spin_unlock(&ubi
->wl_lock
);
1474 up_read(&ubi
->work_sem
);
1478 * Make sure all the works which have been done in parallel are
1481 down_write(&ubi
->work_sem
);
1482 up_write(&ubi
->work_sem
);
1487 static bool scrub_possible(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
1489 if (in_wl_tree(e
, &ubi
->scrub
))
1491 else if (in_wl_tree(e
, &ubi
->erroneous
))
1493 else if (ubi
->move_from
== e
)
1495 else if (ubi
->move_to
== e
)
1502 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1503 * @ubi: UBI device description object
1504 * @pnum: the physical eraseblock to schedule
1505 * @force: don't read the block, assume bitflips happened and take action.
1507 * This function reads the given eraseblock and checks if bitflips occured.
1508 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1509 * If scrubbing is forced with @force, the eraseblock is not read,
1510 * but scheduled for scrubbing right away.
1513 * %EINVAL, PEB is out of range
1514 * %ENOENT, PEB is no longer used by UBI
1515 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1516 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1517 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1518 * %0, no bit flips detected
1520 int ubi_bitflip_check(struct ubi_device
*ubi
, int pnum
, int force
)
1523 struct ubi_wl_entry
*e
;
1525 if (pnum
< 0 || pnum
>= ubi
->peb_count
) {
1531 * Pause all parallel work, otherwise it can happen that the
1532 * erase worker frees a wl entry under us.
1534 down_write(&ubi
->work_sem
);
1537 * Make sure that the wl entry does not change state while
1540 spin_lock(&ubi
->wl_lock
);
1541 e
= ubi
->lookuptbl
[pnum
];
1543 spin_unlock(&ubi
->wl_lock
);
1549 * Does it make sense to check this PEB?
1551 if (!scrub_possible(ubi
, e
)) {
1552 spin_unlock(&ubi
->wl_lock
);
1556 spin_unlock(&ubi
->wl_lock
);
1559 mutex_lock(&ubi
->buf_mutex
);
1560 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
1561 mutex_unlock(&ubi
->buf_mutex
);
1564 if (force
|| err
== UBI_IO_BITFLIPS
) {
1566 * Okay, bit flip happened, let's figure out what we can do.
1568 spin_lock(&ubi
->wl_lock
);
1571 * Recheck. We released wl_lock, UBI might have killed the
1572 * wl entry under us.
1574 e
= ubi
->lookuptbl
[pnum
];
1576 spin_unlock(&ubi
->wl_lock
);
1582 * Need to re-check state
1584 if (!scrub_possible(ubi
, e
)) {
1585 spin_unlock(&ubi
->wl_lock
);
1590 if (in_pq(ubi
, e
)) {
1591 prot_queue_del(ubi
, e
->pnum
);
1592 wl_tree_add(e
, &ubi
->scrub
);
1593 spin_unlock(&ubi
->wl_lock
);
1595 err
= ensure_wear_leveling(ubi
, 1);
1596 } else if (in_wl_tree(e
, &ubi
->used
)) {
1597 rb_erase(&e
->u
.rb
, &ubi
->used
);
1598 wl_tree_add(e
, &ubi
->scrub
);
1599 spin_unlock(&ubi
->wl_lock
);
1601 err
= ensure_wear_leveling(ubi
, 1);
1602 } else if (in_wl_tree(e
, &ubi
->free
)) {
1603 rb_erase(&e
->u
.rb
, &ubi
->free
);
1605 spin_unlock(&ubi
->wl_lock
);
1608 * This PEB is empty we can schedule it for
1609 * erasure right away. No wear leveling needed.
1611 err
= schedule_erase(ubi
, e
, UBI_UNKNOWN
, UBI_UNKNOWN
,
1612 force
? 0 : 1, true);
1614 spin_unlock(&ubi
->wl_lock
);
1625 up_write(&ubi
->work_sem
);
1632 * tree_destroy - destroy an RB-tree.
1633 * @ubi: UBI device description object
1634 * @root: the root of the tree to destroy
1636 static void tree_destroy(struct ubi_device
*ubi
, struct rb_root
*root
)
1639 struct ubi_wl_entry
*e
;
1645 else if (rb
->rb_right
)
1648 e
= rb_entry(rb
, struct ubi_wl_entry
, u
.rb
);
1652 if (rb
->rb_left
== &e
->u
.rb
)
1655 rb
->rb_right
= NULL
;
1658 wl_entry_destroy(ubi
, e
);
1664 * ubi_thread - UBI background thread.
1665 * @u: the UBI device description object pointer
1667 int ubi_thread(void *u
)
1670 struct ubi_device
*ubi
= u
;
1672 ubi_msg(ubi
, "background thread \"%s\" started, PID %d",
1673 ubi
->bgt_name
, task_pid_nr(current
));
1679 if (kthread_should_stop())
1682 if (try_to_freeze())
1685 spin_lock(&ubi
->wl_lock
);
1686 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1687 !ubi
->thread_enabled
|| ubi_dbg_is_bgt_disabled(ubi
)) {
1688 set_current_state(TASK_INTERRUPTIBLE
);
1689 spin_unlock(&ubi
->wl_lock
);
1692 * Check kthread_should_stop() after we set the task
1693 * state to guarantee that we either see the stop bit
1694 * and exit or the task state is reset to runnable such
1695 * that it's not scheduled out indefinitely and detects
1696 * the stop bit at kthread_should_stop().
1698 if (kthread_should_stop()) {
1699 set_current_state(TASK_RUNNING
);
1706 spin_unlock(&ubi
->wl_lock
);
1708 err
= do_work(ubi
, NULL
);
1710 ubi_err(ubi
, "%s: work failed with error code %d",
1711 ubi
->bgt_name
, err
);
1712 if (failures
++ > WL_MAX_FAILURES
) {
1714 * Too many failures, disable the thread and
1715 * switch to read-only mode.
1717 ubi_msg(ubi
, "%s: %d consecutive failures",
1718 ubi
->bgt_name
, WL_MAX_FAILURES
);
1720 ubi
->thread_enabled
= 0;
1729 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1730 ubi
->thread_enabled
= 0;
1735 * shutdown_work - shutdown all pending works.
1736 * @ubi: UBI device description object
1738 static void shutdown_work(struct ubi_device
*ubi
)
1740 while (!list_empty(&ubi
->works
)) {
1741 struct ubi_work
*wrk
;
1743 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1744 list_del(&wrk
->list
);
1745 wrk
->func(ubi
, wrk
, 1);
1746 ubi
->works_count
-= 1;
1747 ubi_assert(ubi
->works_count
>= 0);
1752 * erase_aeb - erase a PEB given in UBI attach info PEB
1753 * @ubi: UBI device description object
1754 * @aeb: UBI attach info PEB
1755 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1757 static int erase_aeb(struct ubi_device
*ubi
, struct ubi_ainf_peb
*aeb
, bool sync
)
1759 struct ubi_wl_entry
*e
;
1762 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1766 e
->pnum
= aeb
->pnum
;
1768 ubi
->lookuptbl
[e
->pnum
] = e
;
1771 err
= ubi_sync_erase(ubi
, e
, false);
1775 wl_tree_add(e
, &ubi
->free
);
1778 err
= schedule_erase(ubi
, e
, aeb
->vol_id
, aeb
->lnum
, 0, false);
1786 wl_entry_destroy(ubi
, e
);
1792 * ubi_wl_init - initialize the WL sub-system using attaching information.
1793 * @ubi: UBI device description object
1794 * @ai: attaching information
1796 * This function returns zero in case of success, and a negative error code in
1799 int ubi_wl_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1801 int err
, i
, reserved_pebs
, found_pebs
= 0;
1802 struct rb_node
*rb1
, *rb2
;
1803 struct ubi_ainf_volume
*av
;
1804 struct ubi_ainf_peb
*aeb
, *tmp
;
1805 struct ubi_wl_entry
*e
;
1807 ubi
->used
= ubi
->erroneous
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1808 spin_lock_init(&ubi
->wl_lock
);
1809 mutex_init(&ubi
->move_mutex
);
1810 init_rwsem(&ubi
->work_sem
);
1811 ubi
->max_ec
= ai
->max_ec
;
1812 INIT_LIST_HEAD(&ubi
->works
);
1814 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1817 ubi
->lookuptbl
= kcalloc(ubi
->peb_count
, sizeof(void *), GFP_KERNEL
);
1818 if (!ubi
->lookuptbl
)
1821 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; i
++)
1822 INIT_LIST_HEAD(&ubi
->pq
[i
]);
1825 ubi
->free_count
= 0;
1826 list_for_each_entry_safe(aeb
, tmp
, &ai
->erase
, u
.list
) {
1829 err
= erase_aeb(ubi
, aeb
, false);
1836 list_for_each_entry(aeb
, &ai
->free
, u
.list
) {
1839 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1845 e
->pnum
= aeb
->pnum
;
1847 ubi_assert(e
->ec
>= 0);
1849 wl_tree_add(e
, &ubi
->free
);
1852 ubi
->lookuptbl
[e
->pnum
] = e
;
1857 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1858 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1861 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1867 e
->pnum
= aeb
->pnum
;
1869 ubi
->lookuptbl
[e
->pnum
] = e
;
1872 dbg_wl("add PEB %d EC %d to the used tree",
1874 wl_tree_add(e
, &ubi
->used
);
1876 dbg_wl("add PEB %d EC %d to the scrub tree",
1878 wl_tree_add(e
, &ubi
->scrub
);
1885 list_for_each_entry(aeb
, &ai
->fastmap
, u
.list
) {
1888 e
= ubi_find_fm_block(ubi
, aeb
->pnum
);
1891 ubi_assert(!ubi
->lookuptbl
[e
->pnum
]);
1892 ubi
->lookuptbl
[e
->pnum
] = e
;
1897 * Usually old Fastmap PEBs are scheduled for erasure
1898 * and we don't have to care about them but if we face
1899 * an power cut before scheduling them we need to
1900 * take care of them here.
1902 if (ubi
->lookuptbl
[aeb
->pnum
])
1906 * The fastmap update code might not find a free PEB for
1907 * writing the fastmap anchor to and then reuses the
1908 * current fastmap anchor PEB. When this PEB gets erased
1909 * and a power cut happens before it is written again we
1910 * must make sure that the fastmap attach code doesn't
1911 * find any outdated fastmap anchors, hence we erase the
1912 * outdated fastmap anchor PEBs synchronously here.
1914 if (aeb
->vol_id
== UBI_FM_SB_VOLUME_ID
)
1917 err
= erase_aeb(ubi
, aeb
, sync
);
1925 dbg_wl("found %i PEBs", found_pebs
);
1927 ubi_assert(ubi
->good_peb_count
== found_pebs
);
1929 reserved_pebs
= WL_RESERVED_PEBS
;
1930 ubi_fastmap_init(ubi
, &reserved_pebs
);
1932 if (ubi
->avail_pebs
< reserved_pebs
) {
1933 ubi_err(ubi
, "no enough physical eraseblocks (%d, need %d)",
1934 ubi
->avail_pebs
, reserved_pebs
);
1935 if (ubi
->corr_peb_count
)
1936 ubi_err(ubi
, "%d PEBs are corrupted and not used",
1937 ubi
->corr_peb_count
);
1941 ubi
->avail_pebs
-= reserved_pebs
;
1942 ubi
->rsvd_pebs
+= reserved_pebs
;
1944 /* Schedule wear-leveling if needed */
1945 err
= ensure_wear_leveling(ubi
, 0);
1949 #ifdef CONFIG_MTD_UBI_FASTMAP
1950 if (!ubi
->ro_mode
&& !ubi
->fm_disabled
)
1951 ubi_ensure_anchor_pebs(ubi
);
1957 tree_destroy(ubi
, &ubi
->used
);
1958 tree_destroy(ubi
, &ubi
->free
);
1959 tree_destroy(ubi
, &ubi
->scrub
);
1960 kfree(ubi
->lookuptbl
);
1965 * protection_queue_destroy - destroy the protection queue.
1966 * @ubi: UBI device description object
1968 static void protection_queue_destroy(struct ubi_device
*ubi
)
1971 struct ubi_wl_entry
*e
, *tmp
;
1973 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
) {
1974 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[i
], u
.list
) {
1975 list_del(&e
->u
.list
);
1976 wl_entry_destroy(ubi
, e
);
1982 * ubi_wl_close - close the wear-leveling sub-system.
1983 * @ubi: UBI device description object
1985 void ubi_wl_close(struct ubi_device
*ubi
)
1987 dbg_wl("close the WL sub-system");
1988 ubi_fastmap_close(ubi
);
1990 protection_queue_destroy(ubi
);
1991 tree_destroy(ubi
, &ubi
->used
);
1992 tree_destroy(ubi
, &ubi
->erroneous
);
1993 tree_destroy(ubi
, &ubi
->free
);
1994 tree_destroy(ubi
, &ubi
->scrub
);
1995 kfree(ubi
->lookuptbl
);
1999 * self_check_ec - make sure that the erase counter of a PEB is correct.
2000 * @ubi: UBI device description object
2001 * @pnum: the physical eraseblock number to check
2002 * @ec: the erase counter to check
2004 * This function returns zero if the erase counter of physical eraseblock @pnum
2005 * is equivalent to @ec, and a negative error code if not or if an error
2008 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
2012 struct ubi_ec_hdr
*ec_hdr
;
2014 if (!ubi_dbg_chk_gen(ubi
))
2017 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
2021 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
2022 if (err
&& err
!= UBI_IO_BITFLIPS
) {
2023 /* The header does not have to exist */
2028 read_ec
= be64_to_cpu(ec_hdr
->ec
);
2029 if (ec
!= read_ec
&& read_ec
- ec
> 1) {
2030 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
2031 ubi_err(ubi
, "read EC is %lld, should be %d", read_ec
, ec
);
2043 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2044 * @ubi: UBI device description object
2045 * @e: the wear-leveling entry to check
2046 * @root: the root of the tree
2048 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2051 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
2052 struct ubi_wl_entry
*e
, struct rb_root
*root
)
2054 if (!ubi_dbg_chk_gen(ubi
))
2057 if (in_wl_tree(e
, root
))
2060 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2061 e
->pnum
, e
->ec
, root
);
2067 * self_check_in_pq - check if wear-leveling entry is in the protection
2069 * @ubi: UBI device description object
2070 * @e: the wear-leveling entry to check
2072 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2074 static int self_check_in_pq(const struct ubi_device
*ubi
,
2075 struct ubi_wl_entry
*e
)
2077 if (!ubi_dbg_chk_gen(ubi
))
2083 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, Protect queue",
2088 #ifndef CONFIG_MTD_UBI_FASTMAP
2089 static struct ubi_wl_entry
*get_peb_for_wl(struct ubi_device
*ubi
)
2091 struct ubi_wl_entry
*e
;
2093 e
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
, 0);
2094 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
2096 ubi_assert(ubi
->free_count
>= 0);
2097 rb_erase(&e
->u
.rb
, &ubi
->free
);
2103 * produce_free_peb - produce a free physical eraseblock.
2104 * @ubi: UBI device description object
2106 * This function tries to make a free PEB by means of synchronous execution of
2107 * pending works. This may be needed if, for example the background thread is
2108 * disabled. Returns zero in case of success and a negative error code in case
2111 static int produce_free_peb(struct ubi_device
*ubi
)
2115 while (!ubi
->free
.rb_node
&& ubi
->works_count
) {
2116 spin_unlock(&ubi
->wl_lock
);
2118 dbg_wl("do one work synchronously");
2119 err
= do_work(ubi
, NULL
);
2121 spin_lock(&ubi
->wl_lock
);
2130 * ubi_wl_get_peb - get a physical eraseblock.
2131 * @ubi: UBI device description object
2133 * This function returns a physical eraseblock in case of success and a
2134 * negative error code in case of failure.
2135 * Returns with ubi->fm_eba_sem held in read mode!
2137 int ubi_wl_get_peb(struct ubi_device
*ubi
)
2140 struct ubi_wl_entry
*e
;
2143 down_read(&ubi
->fm_eba_sem
);
2144 spin_lock(&ubi
->wl_lock
);
2145 if (!ubi
->free
.rb_node
) {
2146 if (ubi
->works_count
== 0) {
2147 ubi_err(ubi
, "no free eraseblocks");
2148 ubi_assert(list_empty(&ubi
->works
));
2149 spin_unlock(&ubi
->wl_lock
);
2153 err
= produce_free_peb(ubi
);
2155 spin_unlock(&ubi
->wl_lock
);
2158 spin_unlock(&ubi
->wl_lock
);
2159 up_read(&ubi
->fm_eba_sem
);
2163 e
= wl_get_wle(ubi
);
2164 prot_queue_add(ubi
, e
);
2165 spin_unlock(&ubi
->wl_lock
);
2167 err
= ubi_self_check_all_ff(ubi
, e
->pnum
, ubi
->vid_hdr_aloffset
,
2168 ubi
->peb_size
- ubi
->vid_hdr_aloffset
);
2170 ubi_err(ubi
, "new PEB %d does not contain all 0xFF bytes", e
->pnum
);
2177 #include "fastmap-wl.c"