1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
6 * Davide Libenzi <davidel@xmailserver.org>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
45 * There are three level of locking required by epoll :
47 * 1) epnested_mutex (mutex)
49 * 3) ep->lock (rwlock)
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * The epnested_mutex is acquired when inserting an epoll fd onto another
62 * epoll fd. We do this so that we walk the epoll tree and ensure that this
63 * insertion does not create a cycle of epoll file descriptors, which
64 * could lead to deadlock. We need a global mutex to prevent two
65 * simultaneous inserts (A into B and B into A) from racing and
66 * constructing a cycle without either insert observing that it is
68 * It is necessary to acquire multiple "ep->mtx"es at once in the
69 * case when one epoll fd is added to another. In this case, we
70 * always acquire the locks in the order of nesting (i.e. after
71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72 * before e2->mtx). Since we disallow cycles of epoll file
73 * descriptors, this ensures that the mutexes are well-ordered. In
74 * order to communicate this nesting to lockdep, when walking a tree
75 * of epoll file descriptors, we use the current recursion depth as
77 * It is possible to drop the "ep->mtx" and to use the global
78 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79 * but having "ep->mtx" will make the interface more scalable.
80 * Events that require holding "epnested_mutex" are very rare, while for
81 * normal operations the epoll private "ep->mtx" will guarantee
82 * a better scalability.
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
98 #define EP_UNACTIVE_PTR ((void *) -1L)
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
102 struct epoll_filefd
{
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry
{
109 /* List header used to link this structure to the "struct epitem" */
110 struct eppoll_entry
*next
;
112 /* The "base" pointer is set to the container "struct epitem" */
116 * Wait queue item that will be linked to the target file wait
119 wait_queue_entry_t wait
;
121 /* The wait queue head that linked the "wait" wait queue item */
122 wait_queue_head_t
*whead
;
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
128 * Avoid increasing the size of this struct, there can be many thousands
129 * of these on a server and we do not want this to take another cache line.
133 /* RB tree node links this structure to the eventpoll RB tree */
135 /* Used to free the struct epitem */
139 /* List header used to link this structure to the eventpoll ready list */
140 struct list_head rdllink
;
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
148 /* The file descriptor information this item refers to */
149 struct epoll_filefd ffd
;
152 * Protected by file->f_lock, true for to-be-released epitem already
153 * removed from the "struct file" items list; together with
154 * eventpoll->refcount orchestrates "struct eventpoll" disposal
158 /* List containing poll wait queues */
159 struct eppoll_entry
*pwqlist
;
161 /* The "container" of this item */
162 struct eventpoll
*ep
;
164 /* List header used to link this item to the "struct file" items list */
165 struct hlist_node fllink
;
167 /* wakeup_source used when EPOLLWAKEUP is set */
168 struct wakeup_source __rcu
*ws
;
170 /* The structure that describe the interested events and the source fd */
171 struct epoll_event event
;
175 * This structure is stored inside the "private_data" member of the file
176 * structure and represents the main data structure for the eventpoll
181 * This mutex is used to ensure that files are not removed
182 * while epoll is using them. This is held during the event
183 * collection loop, the file cleanup path, the epoll file exit
184 * code and the ctl operations.
188 /* Wait queue used by sys_epoll_wait() */
189 wait_queue_head_t wq
;
191 /* Wait queue used by file->poll() */
192 wait_queue_head_t poll_wait
;
194 /* List of ready file descriptors */
195 struct list_head rdllist
;
197 /* Lock which protects rdllist and ovflist */
200 /* RB tree root used to store monitored fd structs */
201 struct rb_root_cached rbr
;
204 * This is a single linked list that chains all the "struct epitem" that
205 * happened while transferring ready events to userspace w/out
208 struct epitem
*ovflist
;
210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 struct wakeup_source
*ws
;
213 /* The user that created the eventpoll descriptor */
214 struct user_struct
*user
;
218 /* used to optimize loop detection check */
220 struct hlist_head refs
;
223 * usage count, used together with epitem->dying to
224 * orchestrate the disposal of this struct
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229 /* used to track busy poll napi_id */
230 unsigned int napi_id
;
231 /* busy poll timeout */
233 /* busy poll packet budget */
234 u16 busy_poll_budget
;
235 bool prefer_busy_poll
;
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 /* tracks wakeup nests for lockdep validation */
244 /* Wrapper struct used by poll queueing */
251 * Configuration options available inside /proc/sys/fs/epoll/
253 /* Maximum number of epoll watched descriptors, per user */
254 static long max_user_watches __read_mostly
;
256 /* Used for cycles detection */
257 static DEFINE_MUTEX(epnested_mutex
);
259 static u64 loop_check_gen
= 0;
261 /* Used to check for epoll file descriptor inclusion loops */
262 static struct eventpoll
*inserting_into
;
264 /* Slab cache used to allocate "struct epitem" */
265 static struct kmem_cache
*epi_cache __ro_after_init
;
267 /* Slab cache used to allocate "struct eppoll_entry" */
268 static struct kmem_cache
*pwq_cache __ro_after_init
;
271 * List of files with newly added links, where we may need to limit the number
272 * of emanating paths. Protected by the epnested_mutex.
274 struct epitems_head
{
275 struct hlist_head epitems
;
276 struct epitems_head
*next
;
278 static struct epitems_head
*tfile_check_list
= EP_UNACTIVE_PTR
;
280 static struct kmem_cache
*ephead_cache __ro_after_init
;
282 static inline void free_ephead(struct epitems_head
*head
)
285 kmem_cache_free(ephead_cache
, head
);
288 static void list_file(struct file
*file
)
290 struct epitems_head
*head
;
292 head
= container_of(file
->f_ep
, struct epitems_head
, epitems
);
294 head
->next
= tfile_check_list
;
295 tfile_check_list
= head
;
299 static void unlist_file(struct epitems_head
*head
)
301 struct epitems_head
*to_free
= head
;
302 struct hlist_node
*p
= rcu_dereference(hlist_first_rcu(&head
->epitems
));
304 struct epitem
*epi
= container_of(p
, struct epitem
, fllink
);
305 spin_lock(&epi
->ffd
.file
->f_lock
);
306 if (!hlist_empty(&head
->epitems
))
309 spin_unlock(&epi
->ffd
.file
->f_lock
);
311 free_ephead(to_free
);
316 #include <linux/sysctl.h>
318 static long long_zero
;
319 static long long_max
= LONG_MAX
;
321 static struct ctl_table epoll_table
[] = {
323 .procname
= "max_user_watches",
324 .data
= &max_user_watches
,
325 .maxlen
= sizeof(max_user_watches
),
327 .proc_handler
= proc_doulongvec_minmax
,
328 .extra1
= &long_zero
,
333 static void __init
epoll_sysctls_init(void)
335 register_sysctl("fs/epoll", epoll_table
);
338 #define epoll_sysctls_init() do { } while (0)
339 #endif /* CONFIG_SYSCTL */
341 static const struct file_operations eventpoll_fops
;
343 static inline int is_file_epoll(struct file
*f
)
345 return f
->f_op
== &eventpoll_fops
;
348 /* Setup the structure that is used as key for the RB tree */
349 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
350 struct file
*file
, int fd
)
356 /* Compare RB tree keys */
357 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
358 struct epoll_filefd
*p2
)
360 return (p1
->file
> p2
->file
? +1:
361 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
364 /* Tells us if the item is currently linked */
365 static inline int ep_is_linked(struct epitem
*epi
)
367 return !list_empty(&epi
->rdllink
);
370 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_entry_t
*p
)
372 return container_of(p
, struct eppoll_entry
, wait
);
375 /* Get the "struct epitem" from a wait queue pointer */
376 static inline struct epitem
*ep_item_from_wait(wait_queue_entry_t
*p
)
378 return container_of(p
, struct eppoll_entry
, wait
)->base
;
382 * ep_events_available - Checks if ready events might be available.
384 * @ep: Pointer to the eventpoll context.
386 * Return: a value different than %zero if ready events are available,
387 * or %zero otherwise.
389 static inline int ep_events_available(struct eventpoll
*ep
)
391 return !list_empty_careful(&ep
->rdllist
) ||
392 READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
;
395 #ifdef CONFIG_NET_RX_BUSY_POLL
397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398 * from the epoll instance ep is preferred, but if it is not set fallback to
399 * the system-wide global via busy_loop_timeout.
401 * @start_time: The start time used to compute the remaining time until timeout.
402 * @ep: Pointer to the eventpoll context.
404 * Return: true if the timeout has expired, false otherwise.
406 static bool busy_loop_ep_timeout(unsigned long start_time
,
407 struct eventpoll
*ep
)
409 unsigned long bp_usec
= READ_ONCE(ep
->busy_poll_usecs
);
412 unsigned long end_time
= start_time
+ bp_usec
;
413 unsigned long now
= busy_loop_current_time();
415 return time_after(now
, end_time
);
417 return busy_loop_timeout(start_time
);
421 static bool ep_busy_loop_on(struct eventpoll
*ep
)
423 return !!READ_ONCE(ep
->busy_poll_usecs
) ||
424 READ_ONCE(ep
->prefer_busy_poll
) ||
428 static bool ep_busy_loop_end(void *p
, unsigned long start_time
)
430 struct eventpoll
*ep
= p
;
432 return ep_events_available(ep
) || busy_loop_ep_timeout(start_time
, ep
);
436 * Busy poll if globally on and supporting sockets found && no events,
437 * busy loop will return if need_resched or ep_events_available.
439 * we must do our busy polling with irqs enabled
441 static bool ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
443 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
444 u16 budget
= READ_ONCE(ep
->busy_poll_budget
);
445 bool prefer_busy_poll
= READ_ONCE(ep
->prefer_busy_poll
);
448 budget
= BUSY_POLL_BUDGET
;
450 if (napi_id
>= MIN_NAPI_ID
&& ep_busy_loop_on(ep
)) {
451 napi_busy_loop(napi_id
, nonblock
? NULL
: ep_busy_loop_end
,
452 ep
, prefer_busy_poll
, budget
);
453 if (ep_events_available(ep
))
456 * Busy poll timed out. Drop NAPI ID for now, we can add
457 * it back in when we have moved a socket with a valid NAPI
458 * ID onto the ready list.
460 if (prefer_busy_poll
)
461 napi_resume_irqs(napi_id
);
469 * Set epoll busy poll NAPI ID from sk.
471 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
473 struct eventpoll
*ep
= epi
->ep
;
474 unsigned int napi_id
;
478 if (!ep_busy_loop_on(ep
))
481 sock
= sock_from_file(epi
->ffd
.file
);
489 napi_id
= READ_ONCE(sk
->sk_napi_id
);
491 /* Non-NAPI IDs can be rejected
493 * Nothing to do if we already have this ID
495 if (napi_id
< MIN_NAPI_ID
|| napi_id
== ep
->napi_id
)
498 /* record NAPI ID for use in next busy poll */
499 ep
->napi_id
= napi_id
;
502 static long ep_eventpoll_bp_ioctl(struct file
*file
, unsigned int cmd
,
505 struct eventpoll
*ep
= file
->private_data
;
506 void __user
*uarg
= (void __user
*)arg
;
507 struct epoll_params epoll_params
;
511 if (copy_from_user(&epoll_params
, uarg
, sizeof(epoll_params
)))
514 /* pad byte must be zero */
515 if (epoll_params
.__pad
)
518 if (epoll_params
.busy_poll_usecs
> S32_MAX
)
521 if (epoll_params
.prefer_busy_poll
> 1)
524 if (epoll_params
.busy_poll_budget
> NAPI_POLL_WEIGHT
&&
525 !capable(CAP_NET_ADMIN
))
528 WRITE_ONCE(ep
->busy_poll_usecs
, epoll_params
.busy_poll_usecs
);
529 WRITE_ONCE(ep
->busy_poll_budget
, epoll_params
.busy_poll_budget
);
530 WRITE_ONCE(ep
->prefer_busy_poll
, epoll_params
.prefer_busy_poll
);
533 memset(&epoll_params
, 0, sizeof(epoll_params
));
534 epoll_params
.busy_poll_usecs
= READ_ONCE(ep
->busy_poll_usecs
);
535 epoll_params
.busy_poll_budget
= READ_ONCE(ep
->busy_poll_budget
);
536 epoll_params
.prefer_busy_poll
= READ_ONCE(ep
->prefer_busy_poll
);
537 if (copy_to_user(uarg
, &epoll_params
, sizeof(epoll_params
)))
545 static void ep_suspend_napi_irqs(struct eventpoll
*ep
)
547 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
549 if (napi_id
>= MIN_NAPI_ID
&& READ_ONCE(ep
->prefer_busy_poll
))
550 napi_suspend_irqs(napi_id
);
553 static void ep_resume_napi_irqs(struct eventpoll
*ep
)
555 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
557 if (napi_id
>= MIN_NAPI_ID
&& READ_ONCE(ep
->prefer_busy_poll
))
558 napi_resume_irqs(napi_id
);
563 static inline bool ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
568 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
572 static long ep_eventpoll_bp_ioctl(struct file
*file
, unsigned int cmd
,
578 static void ep_suspend_napi_irqs(struct eventpoll
*ep
)
582 static void ep_resume_napi_irqs(struct eventpoll
*ep
)
586 #endif /* CONFIG_NET_RX_BUSY_POLL */
589 * As described in commit 0ccf831cb lockdep: annotate epoll
590 * the use of wait queues used by epoll is done in a very controlled
591 * manner. Wake ups can nest inside each other, but are never done
592 * with the same locking. For example:
595 * efd1 = epoll_create();
596 * efd2 = epoll_create();
597 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
598 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
600 * When a packet arrives to the device underneath "dfd", the net code will
601 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
602 * callback wakeup entry on that queue, and the wake_up() performed by the
603 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
604 * (efd1) notices that it may have some event ready, so it needs to wake up
605 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
606 * that ends up in another wake_up(), after having checked about the
607 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
610 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
611 * this special case of epoll.
613 #ifdef CONFIG_DEBUG_LOCK_ALLOC
615 static void ep_poll_safewake(struct eventpoll
*ep
, struct epitem
*epi
,
618 struct eventpoll
*ep_src
;
623 * To set the subclass or nesting level for spin_lock_irqsave_nested()
624 * it might be natural to create a per-cpu nest count. However, since
625 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
626 * schedule() in the -rt kernel, the per-cpu variable are no longer
627 * protected. Thus, we are introducing a per eventpoll nest field.
628 * If we are not being call from ep_poll_callback(), epi is NULL and
629 * we are at the first level of nesting, 0. Otherwise, we are being
630 * called from ep_poll_callback() and if a previous wakeup source is
631 * not an epoll file itself, we are at depth 1 since the wakeup source
632 * is depth 0. If the wakeup source is a previous epoll file in the
633 * wakeup chain then we use its nests value and record ours as
634 * nests + 1. The previous epoll file nests value is stable since its
635 * already holding its own poll_wait.lock.
638 if ((is_file_epoll(epi
->ffd
.file
))) {
639 ep_src
= epi
->ffd
.file
->private_data
;
640 nests
= ep_src
->nests
;
645 spin_lock_irqsave_nested(&ep
->poll_wait
.lock
, flags
, nests
);
646 ep
->nests
= nests
+ 1;
647 wake_up_locked_poll(&ep
->poll_wait
, EPOLLIN
| pollflags
);
649 spin_unlock_irqrestore(&ep
->poll_wait
.lock
, flags
);
654 static void ep_poll_safewake(struct eventpoll
*ep
, struct epitem
*epi
,
657 wake_up_poll(&ep
->poll_wait
, EPOLLIN
| pollflags
);
662 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
664 wait_queue_head_t
*whead
;
668 * If it is cleared by POLLFREE, it should be rcu-safe.
669 * If we read NULL we need a barrier paired with
670 * smp_store_release() in ep_poll_callback(), otherwise
671 * we rely on whead->lock.
673 whead
= smp_load_acquire(&pwq
->whead
);
675 remove_wait_queue(whead
, &pwq
->wait
);
680 * This function unregisters poll callbacks from the associated file
681 * descriptor. Must be called with "mtx" held.
683 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
685 struct eppoll_entry
**p
= &epi
->pwqlist
;
686 struct eppoll_entry
*pwq
;
688 while ((pwq
= *p
) != NULL
) {
690 ep_remove_wait_queue(pwq
);
691 kmem_cache_free(pwq_cache
, pwq
);
695 /* call only when ep->mtx is held */
696 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
698 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
701 /* call only when ep->mtx is held */
702 static inline void ep_pm_stay_awake(struct epitem
*epi
)
704 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
710 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
712 return rcu_access_pointer(epi
->ws
) ? true : false;
715 /* call when ep->mtx cannot be held (ep_poll_callback) */
716 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
718 struct wakeup_source
*ws
;
721 ws
= rcu_dereference(epi
->ws
);
729 * ep->mutex needs to be held because we could be hit by
730 * eventpoll_release_file() and epoll_ctl().
732 static void ep_start_scan(struct eventpoll
*ep
, struct list_head
*txlist
)
735 * Steal the ready list, and re-init the original one to the
736 * empty list. Also, set ep->ovflist to NULL so that events
737 * happening while looping w/out locks, are not lost. We cannot
738 * have the poll callback to queue directly on ep->rdllist,
739 * because we want the "sproc" callback to be able to do it
742 lockdep_assert_irqs_enabled();
743 write_lock_irq(&ep
->lock
);
744 list_splice_init(&ep
->rdllist
, txlist
);
745 WRITE_ONCE(ep
->ovflist
, NULL
);
746 write_unlock_irq(&ep
->lock
);
749 static void ep_done_scan(struct eventpoll
*ep
,
750 struct list_head
*txlist
)
752 struct epitem
*epi
, *nepi
;
754 write_lock_irq(&ep
->lock
);
756 * During the time we spent inside the "sproc" callback, some
757 * other events might have been queued by the poll callback.
758 * We re-insert them inside the main ready-list here.
760 for (nepi
= READ_ONCE(ep
->ovflist
); (epi
= nepi
) != NULL
;
761 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
763 * We need to check if the item is already in the list.
764 * During the "sproc" callback execution time, items are
765 * queued into ->ovflist but the "txlist" might already
766 * contain them, and the list_splice() below takes care of them.
768 if (!ep_is_linked(epi
)) {
770 * ->ovflist is LIFO, so we have to reverse it in order
773 list_add(&epi
->rdllink
, &ep
->rdllist
);
774 ep_pm_stay_awake(epi
);
778 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
779 * releasing the lock, events will be queued in the normal way inside
782 WRITE_ONCE(ep
->ovflist
, EP_UNACTIVE_PTR
);
785 * Quickly re-inject items left on "txlist".
787 list_splice(txlist
, &ep
->rdllist
);
790 if (!list_empty(&ep
->rdllist
)) {
791 if (waitqueue_active(&ep
->wq
))
795 write_unlock_irq(&ep
->lock
);
798 static void ep_get(struct eventpoll
*ep
)
800 refcount_inc(&ep
->refcount
);
804 * Returns true if the event poll can be disposed
806 static bool ep_refcount_dec_and_test(struct eventpoll
*ep
)
808 if (!refcount_dec_and_test(&ep
->refcount
))
811 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep
->rbr
.rb_root
));
815 static void ep_free(struct eventpoll
*ep
)
817 ep_resume_napi_irqs(ep
);
818 mutex_destroy(&ep
->mtx
);
820 wakeup_source_unregister(ep
->ws
);
825 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
826 * all the associated resources. Must be called with "mtx" held.
827 * If the dying flag is set, do the removal only if force is true.
828 * This prevents ep_clear_and_put() from dropping all the ep references
829 * while running concurrently with eventpoll_release_file().
830 * Returns true if the eventpoll can be disposed.
832 static bool __ep_remove(struct eventpoll
*ep
, struct epitem
*epi
, bool force
)
834 struct file
*file
= epi
->ffd
.file
;
835 struct epitems_head
*to_free
;
836 struct hlist_head
*head
;
838 lockdep_assert_irqs_enabled();
841 * Removes poll wait queue hooks.
843 ep_unregister_pollwait(ep
, epi
);
845 /* Remove the current item from the list of epoll hooks */
846 spin_lock(&file
->f_lock
);
847 if (epi
->dying
&& !force
) {
848 spin_unlock(&file
->f_lock
);
854 if (head
->first
== &epi
->fllink
&& !epi
->fllink
.next
) {
855 /* See eventpoll_release() for details. */
856 WRITE_ONCE(file
->f_ep
, NULL
);
857 if (!is_file_epoll(file
)) {
858 struct epitems_head
*v
;
859 v
= container_of(head
, struct epitems_head
, epitems
);
860 if (!smp_load_acquire(&v
->next
))
864 hlist_del_rcu(&epi
->fllink
);
865 spin_unlock(&file
->f_lock
);
866 free_ephead(to_free
);
868 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
870 write_lock_irq(&ep
->lock
);
871 if (ep_is_linked(epi
))
872 list_del_init(&epi
->rdllink
);
873 write_unlock_irq(&ep
->lock
);
875 wakeup_source_unregister(ep_wakeup_source(epi
));
877 * At this point it is safe to free the eventpoll item. Use the union
878 * field epi->rcu, since we are trying to minimize the size of
879 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
880 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
881 * use of the rbn field.
885 percpu_counter_dec(&ep
->user
->epoll_watches
);
886 return ep_refcount_dec_and_test(ep
);
890 * ep_remove variant for callers owing an additional reference to the ep
892 static void ep_remove_safe(struct eventpoll
*ep
, struct epitem
*epi
)
894 WARN_ON_ONCE(__ep_remove(ep
, epi
, false));
897 static void ep_clear_and_put(struct eventpoll
*ep
)
899 struct rb_node
*rbp
, *next
;
903 /* We need to release all tasks waiting for these file */
904 if (waitqueue_active(&ep
->poll_wait
))
905 ep_poll_safewake(ep
, NULL
, 0);
907 mutex_lock(&ep
->mtx
);
910 * Walks through the whole tree by unregistering poll callbacks.
912 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
913 epi
= rb_entry(rbp
, struct epitem
, rbn
);
915 ep_unregister_pollwait(ep
, epi
);
920 * Walks through the whole tree and try to free each "struct epitem".
921 * Note that ep_remove_safe() will not remove the epitem in case of a
922 * racing eventpoll_release_file(); the latter will do the removal.
923 * At this point we are sure no poll callbacks will be lingering around.
924 * Since we still own a reference to the eventpoll struct, the loop can't
927 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= next
) {
929 epi
= rb_entry(rbp
, struct epitem
, rbn
);
930 ep_remove_safe(ep
, epi
);
934 dispose
= ep_refcount_dec_and_test(ep
);
935 mutex_unlock(&ep
->mtx
);
941 static long ep_eventpoll_ioctl(struct file
*file
, unsigned int cmd
,
946 if (!is_file_epoll(file
))
952 ret
= ep_eventpoll_bp_ioctl(file
, cmd
, arg
);
962 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
964 struct eventpoll
*ep
= file
->private_data
;
967 ep_clear_and_put(ep
);
972 static __poll_t
ep_item_poll(const struct epitem
*epi
, poll_table
*pt
, int depth
);
974 static __poll_t
__ep_eventpoll_poll(struct file
*file
, poll_table
*wait
, int depth
)
976 struct eventpoll
*ep
= file
->private_data
;
978 struct epitem
*epi
, *tmp
;
982 init_poll_funcptr(&pt
, NULL
);
984 /* Insert inside our poll wait queue */
985 poll_wait(file
, &ep
->poll_wait
, wait
);
988 * Proceed to find out if wanted events are really available inside
991 mutex_lock_nested(&ep
->mtx
, depth
);
992 ep_start_scan(ep
, &txlist
);
993 list_for_each_entry_safe(epi
, tmp
, &txlist
, rdllink
) {
994 if (ep_item_poll(epi
, &pt
, depth
+ 1)) {
995 res
= EPOLLIN
| EPOLLRDNORM
;
999 * Item has been dropped into the ready list by the poll
1000 * callback, but it's not actually ready, as far as
1001 * caller requested events goes. We can remove it here.
1003 __pm_relax(ep_wakeup_source(epi
));
1004 list_del_init(&epi
->rdllink
);
1007 ep_done_scan(ep
, &txlist
);
1008 mutex_unlock(&ep
->mtx
);
1013 * The ffd.file pointer may be in the process of being torn down due to
1014 * being closed, but we may not have finished eventpoll_release() yet.
1016 * Normally, even with the atomic_long_inc_not_zero, the file may have
1017 * been free'd and then gotten re-allocated to something else (since
1018 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
1020 * But for epoll, users hold the ep->mtx mutex, and as such any file in
1021 * the process of being free'd will block in eventpoll_release_file()
1022 * and thus the underlying file allocation will not be free'd, and the
1023 * file re-use cannot happen.
1025 * For the same reason we can avoid a rcu_read_lock() around the
1026 * operation - 'ffd.file' cannot go away even if the refcount has
1027 * reached zero (but we must still not call out to ->poll() functions
1030 static struct file
*epi_fget(const struct epitem
*epi
)
1034 file
= epi
->ffd
.file
;
1035 if (!file_ref_get(&file
->f_ref
))
1041 * Differs from ep_eventpoll_poll() in that internal callers already have
1042 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1043 * is correctly annotated.
1045 static __poll_t
ep_item_poll(const struct epitem
*epi
, poll_table
*pt
,
1048 struct file
*file
= epi_fget(epi
);
1052 * We could return EPOLLERR | EPOLLHUP or something, but let's
1053 * treat this more as "file doesn't exist, poll didn't happen".
1058 pt
->_key
= epi
->event
.events
;
1059 if (!is_file_epoll(file
))
1060 res
= vfs_poll(file
, pt
);
1062 res
= __ep_eventpoll_poll(file
, pt
, depth
);
1064 return res
& epi
->event
.events
;
1067 static __poll_t
ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
1069 return __ep_eventpoll_poll(file
, wait
, 0);
1072 #ifdef CONFIG_PROC_FS
1073 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1075 struct eventpoll
*ep
= f
->private_data
;
1076 struct rb_node
*rbp
;
1078 mutex_lock(&ep
->mtx
);
1079 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1080 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
1081 struct inode
*inode
= file_inode(epi
->ffd
.file
);
1083 seq_printf(m
, "tfd: %8d events: %8x data: %16llx "
1084 " pos:%lli ino:%lx sdev:%x\n",
1085 epi
->ffd
.fd
, epi
->event
.events
,
1086 (long long)epi
->event
.data
,
1087 (long long)epi
->ffd
.file
->f_pos
,
1088 inode
->i_ino
, inode
->i_sb
->s_dev
);
1089 if (seq_has_overflowed(m
))
1092 mutex_unlock(&ep
->mtx
);
1096 /* File callbacks that implement the eventpoll file behaviour */
1097 static const struct file_operations eventpoll_fops
= {
1098 #ifdef CONFIG_PROC_FS
1099 .show_fdinfo
= ep_show_fdinfo
,
1101 .release
= ep_eventpoll_release
,
1102 .poll
= ep_eventpoll_poll
,
1103 .llseek
= noop_llseek
,
1104 .unlocked_ioctl
= ep_eventpoll_ioctl
,
1105 .compat_ioctl
= compat_ptr_ioctl
,
1109 * This is called from eventpoll_release() to unlink files from the eventpoll
1110 * interface. We need to have this facility to cleanup correctly files that are
1111 * closed without being removed from the eventpoll interface.
1113 void eventpoll_release_file(struct file
*file
)
1115 struct eventpoll
*ep
;
1120 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1121 * touching the epitems list before eventpoll_release_file() can access
1125 spin_lock(&file
->f_lock
);
1126 if (file
->f_ep
&& file
->f_ep
->first
) {
1127 epi
= hlist_entry(file
->f_ep
->first
, struct epitem
, fllink
);
1129 spin_unlock(&file
->f_lock
);
1132 * ep access is safe as we still own a reference to the ep
1136 mutex_lock(&ep
->mtx
);
1137 dispose
= __ep_remove(ep
, epi
, true);
1138 mutex_unlock(&ep
->mtx
);
1144 spin_unlock(&file
->f_lock
);
1147 static int ep_alloc(struct eventpoll
**pep
)
1149 struct eventpoll
*ep
;
1151 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
1155 mutex_init(&ep
->mtx
);
1156 rwlock_init(&ep
->lock
);
1157 init_waitqueue_head(&ep
->wq
);
1158 init_waitqueue_head(&ep
->poll_wait
);
1159 INIT_LIST_HEAD(&ep
->rdllist
);
1160 ep
->rbr
= RB_ROOT_CACHED
;
1161 ep
->ovflist
= EP_UNACTIVE_PTR
;
1162 ep
->user
= get_current_user();
1163 refcount_set(&ep
->refcount
, 1);
1171 * Search the file inside the eventpoll tree. The RB tree operations
1172 * are protected by the "mtx" mutex, and ep_find() must be called with
1175 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
1178 struct rb_node
*rbp
;
1179 struct epitem
*epi
, *epir
= NULL
;
1180 struct epoll_filefd ffd
;
1182 ep_set_ffd(&ffd
, file
, fd
);
1183 for (rbp
= ep
->rbr
.rb_root
.rb_node
; rbp
; ) {
1184 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1185 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1187 rbp
= rbp
->rb_right
;
1200 static struct epitem
*ep_find_tfd(struct eventpoll
*ep
, int tfd
, unsigned long toff
)
1202 struct rb_node
*rbp
;
1205 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1206 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1207 if (epi
->ffd
.fd
== tfd
) {
1219 struct file
*get_epoll_tfile_raw_ptr(struct file
*file
, int tfd
,
1222 struct file
*file_raw
;
1223 struct eventpoll
*ep
;
1226 if (!is_file_epoll(file
))
1227 return ERR_PTR(-EINVAL
);
1229 ep
= file
->private_data
;
1231 mutex_lock(&ep
->mtx
);
1232 epi
= ep_find_tfd(ep
, tfd
, toff
);
1234 file_raw
= epi
->ffd
.file
;
1236 file_raw
= ERR_PTR(-ENOENT
);
1237 mutex_unlock(&ep
->mtx
);
1241 #endif /* CONFIG_KCMP */
1244 * Adds a new entry to the tail of the list in a lockless way, i.e.
1245 * multiple CPUs are allowed to call this function concurrently.
1247 * Beware: it is necessary to prevent any other modifications of the
1248 * existing list until all changes are completed, in other words
1249 * concurrent list_add_tail_lockless() calls should be protected
1250 * with a read lock, where write lock acts as a barrier which
1251 * makes sure all list_add_tail_lockless() calls are fully
1254 * Also an element can be locklessly added to the list only in one
1255 * direction i.e. either to the tail or to the head, otherwise
1256 * concurrent access will corrupt the list.
1258 * Return: %false if element has been already added to the list, %true
1261 static inline bool list_add_tail_lockless(struct list_head
*new,
1262 struct list_head
*head
)
1264 struct list_head
*prev
;
1267 * This is simple 'new->next = head' operation, but cmpxchg()
1268 * is used in order to detect that same element has been just
1269 * added to the list from another CPU: the winner observes
1272 if (!try_cmpxchg(&new->next
, &new, head
))
1276 * Initially ->next of a new element must be updated with the head
1277 * (we are inserting to the tail) and only then pointers are atomically
1278 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1279 * updated before pointers are actually swapped and pointers are
1280 * swapped before prev->next is updated.
1283 prev
= xchg(&head
->prev
, new);
1286 * It is safe to modify prev->next and new->prev, because a new element
1287 * is added only to the tail and new->next is updated before XCHG.
1297 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1298 * i.e. multiple CPUs are allowed to call this function concurrently.
1300 * Return: %false if epi element has been already chained, %true otherwise.
1302 static inline bool chain_epi_lockless(struct epitem
*epi
)
1304 struct eventpoll
*ep
= epi
->ep
;
1306 /* Fast preliminary check */
1307 if (epi
->next
!= EP_UNACTIVE_PTR
)
1310 /* Check that the same epi has not been just chained from another CPU */
1311 if (cmpxchg(&epi
->next
, EP_UNACTIVE_PTR
, NULL
) != EP_UNACTIVE_PTR
)
1314 /* Atomically exchange tail */
1315 epi
->next
= xchg(&ep
->ovflist
, epi
);
1321 * This is the callback that is passed to the wait queue wakeup
1322 * mechanism. It is called by the stored file descriptors when they
1323 * have events to report.
1325 * This callback takes a read lock in order not to contend with concurrent
1326 * events from another file descriptor, thus all modifications to ->rdllist
1327 * or ->ovflist are lockless. Read lock is paired with the write lock from
1328 * ep_start/done_scan(), which stops all list modifications and guarantees
1329 * that lists state is seen correctly.
1331 * Another thing worth to mention is that ep_poll_callback() can be called
1332 * concurrently for the same @epi from different CPUs if poll table was inited
1333 * with several wait queues entries. Plural wakeup from different CPUs of a
1334 * single wait queue is serialized by wq.lock, but the case when multiple wait
1335 * queues are used should be detected accordingly. This is detected using
1336 * cmpxchg() operation.
1338 static int ep_poll_callback(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1341 struct epitem
*epi
= ep_item_from_wait(wait
);
1342 struct eventpoll
*ep
= epi
->ep
;
1343 __poll_t pollflags
= key_to_poll(key
);
1344 unsigned long flags
;
1347 read_lock_irqsave(&ep
->lock
, flags
);
1349 ep_set_busy_poll_napi_id(epi
);
1352 * If the event mask does not contain any poll(2) event, we consider the
1353 * descriptor to be disabled. This condition is likely the effect of the
1354 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1355 * until the next EPOLL_CTL_MOD will be issued.
1357 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1361 * Check the events coming with the callback. At this stage, not
1362 * every device reports the events in the "key" parameter of the
1363 * callback. We need to be able to handle both cases here, hence the
1364 * test for "key" != NULL before the event match test.
1366 if (pollflags
&& !(pollflags
& epi
->event
.events
))
1370 * If we are transferring events to userspace, we can hold no locks
1371 * (because we're accessing user memory, and because of linux f_op->poll()
1372 * semantics). All the events that happen during that period of time are
1373 * chained in ep->ovflist and requeued later on.
1375 if (READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
) {
1376 if (chain_epi_lockless(epi
))
1377 ep_pm_stay_awake_rcu(epi
);
1378 } else if (!ep_is_linked(epi
)) {
1379 /* In the usual case, add event to ready list. */
1380 if (list_add_tail_lockless(&epi
->rdllink
, &ep
->rdllist
))
1381 ep_pm_stay_awake_rcu(epi
);
1385 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1388 if (waitqueue_active(&ep
->wq
)) {
1389 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1390 !(pollflags
& POLLFREE
)) {
1391 switch (pollflags
& EPOLLINOUT_BITS
) {
1393 if (epi
->event
.events
& EPOLLIN
)
1397 if (epi
->event
.events
& EPOLLOUT
)
1406 wake_up_sync(&ep
->wq
);
1410 if (waitqueue_active(&ep
->poll_wait
))
1414 read_unlock_irqrestore(&ep
->lock
, flags
);
1416 /* We have to call this outside the lock */
1418 ep_poll_safewake(ep
, epi
, pollflags
& EPOLL_URING_WAKE
);
1420 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1423 if (pollflags
& POLLFREE
) {
1425 * If we race with ep_remove_wait_queue() it can miss
1426 * ->whead = NULL and do another remove_wait_queue() after
1427 * us, so we can't use __remove_wait_queue().
1429 list_del_init(&wait
->entry
);
1431 * ->whead != NULL protects us from the race with
1432 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1433 * takes whead->lock held by the caller. Once we nullify it,
1434 * nothing protects ep/epi or even wait.
1436 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1443 * This is the callback that is used to add our wait queue to the
1444 * target file wakeup lists.
1446 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1449 struct ep_pqueue
*epq
= container_of(pt
, struct ep_pqueue
, pt
);
1450 struct epitem
*epi
= epq
->epi
;
1451 struct eppoll_entry
*pwq
;
1453 if (unlikely(!epi
)) // an earlier allocation has failed
1456 pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
);
1457 if (unlikely(!pwq
)) {
1462 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1465 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1466 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1468 add_wait_queue(whead
, &pwq
->wait
);
1469 pwq
->next
= epi
->pwqlist
;
1473 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1476 struct rb_node
**p
= &ep
->rbr
.rb_root
.rb_node
, *parent
= NULL
;
1477 struct epitem
*epic
;
1478 bool leftmost
= true;
1482 epic
= rb_entry(parent
, struct epitem
, rbn
);
1483 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1485 p
= &parent
->rb_right
;
1488 p
= &parent
->rb_left
;
1490 rb_link_node(&epi
->rbn
, parent
, p
);
1491 rb_insert_color_cached(&epi
->rbn
, &ep
->rbr
, leftmost
);
1496 #define PATH_ARR_SIZE 5
1498 * These are the number paths of length 1 to 5, that we are allowing to emanate
1499 * from a single file of interest. For example, we allow 1000 paths of length
1500 * 1, to emanate from each file of interest. This essentially represents the
1501 * potential wakeup paths, which need to be limited in order to avoid massive
1502 * uncontrolled wakeup storms. The common use case should be a single ep which
1503 * is connected to n file sources. In this case each file source has 1 path
1504 * of length 1. Thus, the numbers below should be more than sufficient. These
1505 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1506 * and delete can't add additional paths. Protected by the epnested_mutex.
1508 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1509 static int path_count
[PATH_ARR_SIZE
];
1511 static int path_count_inc(int nests
)
1513 /* Allow an arbitrary number of depth 1 paths */
1517 if (++path_count
[nests
] > path_limits
[nests
])
1522 static void path_count_init(void)
1526 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1530 static int reverse_path_check_proc(struct hlist_head
*refs
, int depth
)
1535 if (depth
> EP_MAX_NESTS
) /* too deep nesting */
1538 /* CTL_DEL can remove links here, but that can't increase our count */
1539 hlist_for_each_entry_rcu(epi
, refs
, fllink
) {
1540 struct hlist_head
*refs
= &epi
->ep
->refs
;
1541 if (hlist_empty(refs
))
1542 error
= path_count_inc(depth
);
1544 error
= reverse_path_check_proc(refs
, depth
+ 1);
1552 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1553 * links that are proposed to be newly added. We need to
1554 * make sure that those added links don't add too many
1555 * paths such that we will spend all our time waking up
1556 * eventpoll objects.
1558 * Return: %zero if the proposed links don't create too many paths,
1561 static int reverse_path_check(void)
1563 struct epitems_head
*p
;
1565 for (p
= tfile_check_list
; p
!= EP_UNACTIVE_PTR
; p
= p
->next
) {
1569 error
= reverse_path_check_proc(&p
->epitems
, 0);
1577 static int ep_create_wakeup_source(struct epitem
*epi
)
1579 struct name_snapshot n
;
1580 struct wakeup_source
*ws
;
1583 epi
->ep
->ws
= wakeup_source_register(NULL
, "eventpoll");
1588 take_dentry_name_snapshot(&n
, epi
->ffd
.file
->f_path
.dentry
);
1589 ws
= wakeup_source_register(NULL
, n
.name
.name
);
1590 release_dentry_name_snapshot(&n
);
1594 rcu_assign_pointer(epi
->ws
, ws
);
1599 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1600 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1602 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1604 RCU_INIT_POINTER(epi
->ws
, NULL
);
1607 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1608 * used internally by wakeup_source_remove, too (called by
1609 * wakeup_source_unregister), so we cannot use call_rcu
1612 wakeup_source_unregister(ws
);
1615 static int attach_epitem(struct file
*file
, struct epitem
*epi
)
1617 struct epitems_head
*to_free
= NULL
;
1618 struct hlist_head
*head
= NULL
;
1619 struct eventpoll
*ep
= NULL
;
1621 if (is_file_epoll(file
))
1622 ep
= file
->private_data
;
1626 } else if (!READ_ONCE(file
->f_ep
)) {
1628 to_free
= kmem_cache_zalloc(ephead_cache
, GFP_KERNEL
);
1631 head
= &to_free
->epitems
;
1633 spin_lock(&file
->f_lock
);
1635 if (unlikely(!head
)) {
1636 spin_unlock(&file
->f_lock
);
1639 /* See eventpoll_release() for details. */
1640 WRITE_ONCE(file
->f_ep
, head
);
1643 hlist_add_head_rcu(&epi
->fllink
, file
->f_ep
);
1644 spin_unlock(&file
->f_lock
);
1645 free_ephead(to_free
);
1650 * Must be called with "mtx" held.
1652 static int ep_insert(struct eventpoll
*ep
, const struct epoll_event
*event
,
1653 struct file
*tfile
, int fd
, int full_check
)
1655 int error
, pwake
= 0;
1658 struct ep_pqueue epq
;
1659 struct eventpoll
*tep
= NULL
;
1661 if (is_file_epoll(tfile
))
1662 tep
= tfile
->private_data
;
1664 lockdep_assert_irqs_enabled();
1666 if (unlikely(percpu_counter_compare(&ep
->user
->epoll_watches
,
1667 max_user_watches
) >= 0))
1669 percpu_counter_inc(&ep
->user
->epoll_watches
);
1671 if (!(epi
= kmem_cache_zalloc(epi_cache
, GFP_KERNEL
))) {
1672 percpu_counter_dec(&ep
->user
->epoll_watches
);
1676 /* Item initialization follow here ... */
1677 INIT_LIST_HEAD(&epi
->rdllink
);
1679 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1680 epi
->event
= *event
;
1681 epi
->next
= EP_UNACTIVE_PTR
;
1684 mutex_lock_nested(&tep
->mtx
, 1);
1685 /* Add the current item to the list of active epoll hook for this file */
1686 if (unlikely(attach_epitem(tfile
, epi
) < 0)) {
1688 mutex_unlock(&tep
->mtx
);
1689 kmem_cache_free(epi_cache
, epi
);
1690 percpu_counter_dec(&ep
->user
->epoll_watches
);
1694 if (full_check
&& !tep
)
1698 * Add the current item to the RB tree. All RB tree operations are
1699 * protected by "mtx", and ep_insert() is called with "mtx" held.
1701 ep_rbtree_insert(ep
, epi
);
1703 mutex_unlock(&tep
->mtx
);
1706 * ep_remove_safe() calls in the later error paths can't lead to
1707 * ep_free() as the ep file itself still holds an ep reference.
1711 /* now check if we've created too many backpaths */
1712 if (unlikely(full_check
&& reverse_path_check())) {
1713 ep_remove_safe(ep
, epi
);
1717 if (epi
->event
.events
& EPOLLWAKEUP
) {
1718 error
= ep_create_wakeup_source(epi
);
1720 ep_remove_safe(ep
, epi
);
1725 /* Initialize the poll table using the queue callback */
1727 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1730 * Attach the item to the poll hooks and get current event bits.
1731 * We can safely use the file* here because its usage count has
1732 * been increased by the caller of this function. Note that after
1733 * this operation completes, the poll callback can start hitting
1736 revents
= ep_item_poll(epi
, &epq
.pt
, 1);
1739 * We have to check if something went wrong during the poll wait queue
1740 * install process. Namely an allocation for a wait queue failed due
1741 * high memory pressure.
1743 if (unlikely(!epq
.epi
)) {
1744 ep_remove_safe(ep
, epi
);
1748 /* We have to drop the new item inside our item list to keep track of it */
1749 write_lock_irq(&ep
->lock
);
1751 /* record NAPI ID of new item if present */
1752 ep_set_busy_poll_napi_id(epi
);
1754 /* If the file is already "ready" we drop it inside the ready list */
1755 if (revents
&& !ep_is_linked(epi
)) {
1756 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1757 ep_pm_stay_awake(epi
);
1759 /* Notify waiting tasks that events are available */
1760 if (waitqueue_active(&ep
->wq
))
1762 if (waitqueue_active(&ep
->poll_wait
))
1766 write_unlock_irq(&ep
->lock
);
1768 /* We have to call this outside the lock */
1770 ep_poll_safewake(ep
, NULL
, 0);
1776 * Modify the interest event mask by dropping an event if the new mask
1777 * has a match in the current file status. Must be called with "mtx" held.
1779 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
,
1780 const struct epoll_event
*event
)
1785 lockdep_assert_irqs_enabled();
1787 init_poll_funcptr(&pt
, NULL
);
1790 * Set the new event interest mask before calling f_op->poll();
1791 * otherwise we might miss an event that happens between the
1792 * f_op->poll() call and the new event set registering.
1794 epi
->event
.events
= event
->events
; /* need barrier below */
1795 epi
->event
.data
= event
->data
; /* protected by mtx */
1796 if (epi
->event
.events
& EPOLLWAKEUP
) {
1797 if (!ep_has_wakeup_source(epi
))
1798 ep_create_wakeup_source(epi
);
1799 } else if (ep_has_wakeup_source(epi
)) {
1800 ep_destroy_wakeup_source(epi
);
1804 * The following barrier has two effects:
1806 * 1) Flush epi changes above to other CPUs. This ensures
1807 * we do not miss events from ep_poll_callback if an
1808 * event occurs immediately after we call f_op->poll().
1809 * We need this because we did not take ep->lock while
1810 * changing epi above (but ep_poll_callback does take
1813 * 2) We also need to ensure we do not miss _past_ events
1814 * when calling f_op->poll(). This barrier also
1815 * pairs with the barrier in wq_has_sleeper (see
1816 * comments for wq_has_sleeper).
1818 * This barrier will now guarantee ep_poll_callback or f_op->poll
1819 * (or both) will notice the readiness of an item.
1824 * Get current event bits. We can safely use the file* here because
1825 * its usage count has been increased by the caller of this function.
1826 * If the item is "hot" and it is not registered inside the ready
1827 * list, push it inside.
1829 if (ep_item_poll(epi
, &pt
, 1)) {
1830 write_lock_irq(&ep
->lock
);
1831 if (!ep_is_linked(epi
)) {
1832 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1833 ep_pm_stay_awake(epi
);
1835 /* Notify waiting tasks that events are available */
1836 if (waitqueue_active(&ep
->wq
))
1838 if (waitqueue_active(&ep
->poll_wait
))
1841 write_unlock_irq(&ep
->lock
);
1844 /* We have to call this outside the lock */
1846 ep_poll_safewake(ep
, NULL
, 0);
1851 static int ep_send_events(struct eventpoll
*ep
,
1852 struct epoll_event __user
*events
, int maxevents
)
1854 struct epitem
*epi
, *tmp
;
1860 * Always short-circuit for fatal signals to allow threads to make a
1861 * timely exit without the chance of finding more events available and
1862 * fetching repeatedly.
1864 if (fatal_signal_pending(current
))
1867 init_poll_funcptr(&pt
, NULL
);
1869 mutex_lock(&ep
->mtx
);
1870 ep_start_scan(ep
, &txlist
);
1873 * We can loop without lock because we are passed a task private list.
1874 * Items cannot vanish during the loop we are holding ep->mtx.
1876 list_for_each_entry_safe(epi
, tmp
, &txlist
, rdllink
) {
1877 struct wakeup_source
*ws
;
1880 if (res
>= maxevents
)
1884 * Activate ep->ws before deactivating epi->ws to prevent
1885 * triggering auto-suspend here (in case we reactive epi->ws
1888 * This could be rearranged to delay the deactivation of epi->ws
1889 * instead, but then epi->ws would temporarily be out of sync
1890 * with ep_is_linked().
1892 ws
= ep_wakeup_source(epi
);
1895 __pm_stay_awake(ep
->ws
);
1899 list_del_init(&epi
->rdllink
);
1902 * If the event mask intersect the caller-requested one,
1903 * deliver the event to userspace. Again, we are holding ep->mtx,
1904 * so no operations coming from userspace can change the item.
1906 revents
= ep_item_poll(epi
, &pt
, 1);
1910 events
= epoll_put_uevent(revents
, epi
->event
.data
, events
);
1912 list_add(&epi
->rdllink
, &txlist
);
1913 ep_pm_stay_awake(epi
);
1919 if (epi
->event
.events
& EPOLLONESHOT
)
1920 epi
->event
.events
&= EP_PRIVATE_BITS
;
1921 else if (!(epi
->event
.events
& EPOLLET
)) {
1923 * If this file has been added with Level
1924 * Trigger mode, we need to insert back inside
1925 * the ready list, so that the next call to
1926 * epoll_wait() will check again the events
1927 * availability. At this point, no one can insert
1928 * into ep->rdllist besides us. The epoll_ctl()
1929 * callers are locked out by
1930 * ep_send_events() holding "mtx" and the
1931 * poll callback will queue them in ep->ovflist.
1933 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1934 ep_pm_stay_awake(epi
);
1937 ep_done_scan(ep
, &txlist
);
1938 mutex_unlock(&ep
->mtx
);
1943 static struct timespec64
*ep_timeout_to_timespec(struct timespec64
*to
, long ms
)
1945 struct timespec64 now
;
1956 to
->tv_sec
= ms
/ MSEC_PER_SEC
;
1957 to
->tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
);
1959 ktime_get_ts64(&now
);
1960 *to
= timespec64_add_safe(now
, *to
);
1965 * autoremove_wake_function, but remove even on failure to wake up, because we
1966 * know that default_wake_function/ttwu will only fail if the thread is already
1967 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1970 static int ep_autoremove_wake_function(struct wait_queue_entry
*wq_entry
,
1971 unsigned int mode
, int sync
, void *key
)
1973 int ret
= default_wake_function(wq_entry
, mode
, sync
, key
);
1976 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1977 * iterations see the cause of this wakeup.
1979 list_del_init_careful(&wq_entry
->entry
);
1984 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1987 * @ep: Pointer to the eventpoll context.
1988 * @events: Pointer to the userspace buffer where the ready events should be
1990 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1991 * @timeout: Maximum timeout for the ready events fetch operation, in
1992 * timespec. If the timeout is zero, the function will not block,
1993 * while if the @timeout ptr is NULL, the function will block
1994 * until at least one event has been retrieved (or an error
1997 * Return: the number of ready events which have been fetched, or an
1998 * error code, in case of error.
2000 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
2001 int maxevents
, struct timespec64
*timeout
)
2003 int res
, eavail
, timed_out
= 0;
2005 wait_queue_entry_t wait
;
2006 ktime_t expires
, *to
= NULL
;
2008 lockdep_assert_irqs_enabled();
2010 if (timeout
&& (timeout
->tv_sec
| timeout
->tv_nsec
)) {
2011 slack
= select_estimate_accuracy(timeout
);
2013 *to
= timespec64_to_ktime(*timeout
);
2014 } else if (timeout
) {
2016 * Avoid the unnecessary trip to the wait queue loop, if the
2017 * caller specified a non blocking operation.
2023 * This call is racy: We may or may not see events that are being added
2024 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
2025 * with a non-zero timeout, this thread will check the ready list under
2026 * lock and will add to the wait queue. For cases with a zero
2027 * timeout, the user by definition should not care and will have to
2030 eavail
= ep_events_available(ep
);
2035 * Try to transfer events to user space. In case we get
2036 * 0 events and there's still timeout left over, we go
2037 * trying again in search of more luck.
2039 res
= ep_send_events(ep
, events
, maxevents
);
2042 ep_suspend_napi_irqs(ep
);
2050 eavail
= ep_busy_loop(ep
, timed_out
);
2054 if (signal_pending(current
))
2058 * Internally init_wait() uses autoremove_wake_function(),
2059 * thus wait entry is removed from the wait queue on each
2060 * wakeup. Why it is important? In case of several waiters
2061 * each new wakeup will hit the next waiter, giving it the
2062 * chance to harvest new event. Otherwise wakeup can be
2063 * lost. This is also good performance-wise, because on
2064 * normal wakeup path no need to call __remove_wait_queue()
2065 * explicitly, thus ep->lock is not taken, which halts the
2068 * In fact, we now use an even more aggressive function that
2069 * unconditionally removes, because we don't reuse the wait
2070 * entry between loop iterations. This lets us also avoid the
2071 * performance issue if a process is killed, causing all of its
2072 * threads to wake up without being removed normally.
2075 wait
.func
= ep_autoremove_wake_function
;
2077 write_lock_irq(&ep
->lock
);
2079 * Barrierless variant, waitqueue_active() is called under
2080 * the same lock on wakeup ep_poll_callback() side, so it
2081 * is safe to avoid an explicit barrier.
2083 __set_current_state(TASK_INTERRUPTIBLE
);
2086 * Do the final check under the lock. ep_start/done_scan()
2087 * plays with two lists (->rdllist and ->ovflist) and there
2088 * is always a race when both lists are empty for short
2089 * period of time although events are pending, so lock is
2092 eavail
= ep_events_available(ep
);
2094 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
2096 write_unlock_irq(&ep
->lock
);
2099 timed_out
= !schedule_hrtimeout_range(to
, slack
,
2101 __set_current_state(TASK_RUNNING
);
2104 * We were woken up, thus go and try to harvest some events.
2105 * If timed out and still on the wait queue, recheck eavail
2106 * carefully under lock, below.
2110 if (!list_empty_careful(&wait
.entry
)) {
2111 write_lock_irq(&ep
->lock
);
2113 * If the thread timed out and is not on the wait queue,
2114 * it means that the thread was woken up after its
2115 * timeout expired before it could reacquire the lock.
2116 * Thus, when wait.entry is empty, it needs to harvest
2120 eavail
= list_empty(&wait
.entry
);
2121 __remove_wait_queue(&ep
->wq
, &wait
);
2122 write_unlock_irq(&ep
->lock
);
2128 * ep_loop_check_proc - verify that adding an epoll file inside another
2129 * epoll structure does not violate the constraints, in
2130 * terms of closed loops, or too deep chains (which can
2131 * result in excessive stack usage).
2133 * @ep: the &struct eventpoll to be currently checked.
2134 * @depth: Current depth of the path being checked.
2136 * Return: %zero if adding the epoll @file inside current epoll
2137 * structure @ep does not violate the constraints, or %-1 otherwise.
2139 static int ep_loop_check_proc(struct eventpoll
*ep
, int depth
)
2142 struct rb_node
*rbp
;
2145 mutex_lock_nested(&ep
->mtx
, depth
+ 1);
2146 ep
->gen
= loop_check_gen
;
2147 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
2148 epi
= rb_entry(rbp
, struct epitem
, rbn
);
2149 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
2150 struct eventpoll
*ep_tovisit
;
2151 ep_tovisit
= epi
->ffd
.file
->private_data
;
2152 if (ep_tovisit
->gen
== loop_check_gen
)
2154 if (ep_tovisit
== inserting_into
|| depth
> EP_MAX_NESTS
)
2157 error
= ep_loop_check_proc(ep_tovisit
, depth
+ 1);
2162 * If we've reached a file that is not associated with
2163 * an ep, then we need to check if the newly added
2164 * links are going to add too many wakeup paths. We do
2165 * this by adding it to the tfile_check_list, if it's
2166 * not already there, and calling reverse_path_check()
2167 * during ep_insert().
2169 list_file(epi
->ffd
.file
);
2172 mutex_unlock(&ep
->mtx
);
2178 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2179 * into another epoll file (represented by @ep) does not create
2180 * closed loops or too deep chains.
2182 * @ep: Pointer to the epoll we are inserting into.
2183 * @to: Pointer to the epoll to be inserted.
2185 * Return: %zero if adding the epoll @to inside the epoll @from
2186 * does not violate the constraints, or %-1 otherwise.
2188 static int ep_loop_check(struct eventpoll
*ep
, struct eventpoll
*to
)
2190 inserting_into
= ep
;
2191 return ep_loop_check_proc(to
, 0);
2194 static void clear_tfile_check_list(void)
2197 while (tfile_check_list
!= EP_UNACTIVE_PTR
) {
2198 struct epitems_head
*head
= tfile_check_list
;
2199 tfile_check_list
= head
->next
;
2206 * Open an eventpoll file descriptor.
2208 static int do_epoll_create(int flags
)
2211 struct eventpoll
*ep
= NULL
;
2214 /* Check the EPOLL_* constant for consistency. */
2215 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
2217 if (flags
& ~EPOLL_CLOEXEC
)
2220 * Create the internal data structure ("struct eventpoll").
2222 error
= ep_alloc(&ep
);
2226 * Creates all the items needed to setup an eventpoll file. That is,
2227 * a file structure and a free file descriptor.
2229 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
2234 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
2235 O_RDWR
| (flags
& O_CLOEXEC
));
2237 error
= PTR_ERR(file
);
2241 fd_install(fd
, file
);
2247 ep_clear_and_put(ep
);
2251 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
2253 return do_epoll_create(flags
);
2256 SYSCALL_DEFINE1(epoll_create
, int, size
)
2261 return do_epoll_create(0);
2264 #ifdef CONFIG_PM_SLEEP
2265 static inline void ep_take_care_of_epollwakeup(struct epoll_event
*epev
)
2267 if ((epev
->events
& EPOLLWAKEUP
) && !capable(CAP_BLOCK_SUSPEND
))
2268 epev
->events
&= ~EPOLLWAKEUP
;
2271 static inline void ep_take_care_of_epollwakeup(struct epoll_event
*epev
)
2273 epev
->events
&= ~EPOLLWAKEUP
;
2277 static inline int epoll_mutex_lock(struct mutex
*mutex
, int depth
,
2281 mutex_lock_nested(mutex
, depth
);
2284 if (mutex_trylock(mutex
))
2289 int do_epoll_ctl(int epfd
, int op
, int fd
, struct epoll_event
*epds
,
2294 struct eventpoll
*ep
;
2296 struct eventpoll
*tep
= NULL
;
2302 /* Get the "struct file *" for the target file */
2307 /* The target file descriptor must support poll */
2308 if (!file_can_poll(fd_file(tf
)))
2311 /* Check if EPOLLWAKEUP is allowed */
2312 if (ep_op_has_event(op
))
2313 ep_take_care_of_epollwakeup(epds
);
2316 * We have to check that the file structure underneath the file descriptor
2317 * the user passed to us _is_ an eventpoll file. And also we do not permit
2318 * adding an epoll file descriptor inside itself.
2321 if (fd_file(f
) == fd_file(tf
) || !is_file_epoll(fd_file(f
)))
2322 goto error_tgt_fput
;
2325 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2326 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2327 * Also, we do not currently supported nested exclusive wakeups.
2329 if (ep_op_has_event(op
) && (epds
->events
& EPOLLEXCLUSIVE
)) {
2330 if (op
== EPOLL_CTL_MOD
)
2331 goto error_tgt_fput
;
2332 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(fd_file(tf
)) ||
2333 (epds
->events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
2334 goto error_tgt_fput
;
2338 * At this point it is safe to assume that the "private_data" contains
2339 * our own data structure.
2341 ep
= fd_file(f
)->private_data
;
2344 * When we insert an epoll file descriptor inside another epoll file
2345 * descriptor, there is the chance of creating closed loops, which are
2346 * better be handled here, than in more critical paths. While we are
2347 * checking for loops we also determine the list of files reachable
2348 * and hang them on the tfile_check_list, so we can check that we
2349 * haven't created too many possible wakeup paths.
2351 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2352 * the epoll file descriptor is attaching directly to a wakeup source,
2353 * unless the epoll file descriptor is nested. The purpose of taking the
2354 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2355 * deep wakeup paths from forming in parallel through multiple
2356 * EPOLL_CTL_ADD operations.
2358 error
= epoll_mutex_lock(&ep
->mtx
, 0, nonblock
);
2360 goto error_tgt_fput
;
2361 if (op
== EPOLL_CTL_ADD
) {
2362 if (READ_ONCE(fd_file(f
)->f_ep
) || ep
->gen
== loop_check_gen
||
2363 is_file_epoll(fd_file(tf
))) {
2364 mutex_unlock(&ep
->mtx
);
2365 error
= epoll_mutex_lock(&epnested_mutex
, 0, nonblock
);
2367 goto error_tgt_fput
;
2370 if (is_file_epoll(fd_file(tf
))) {
2371 tep
= fd_file(tf
)->private_data
;
2373 if (ep_loop_check(ep
, tep
) != 0)
2374 goto error_tgt_fput
;
2376 error
= epoll_mutex_lock(&ep
->mtx
, 0, nonblock
);
2378 goto error_tgt_fput
;
2383 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2384 * above, we can be sure to be able to use the item looked up by
2385 * ep_find() till we release the mutex.
2387 epi
= ep_find(ep
, fd_file(tf
), fd
);
2393 epds
->events
|= EPOLLERR
| EPOLLHUP
;
2394 error
= ep_insert(ep
, epds
, fd_file(tf
), fd
, full_check
);
2401 * The eventpoll itself is still alive: the refcount
2402 * can't go to zero here.
2404 ep_remove_safe(ep
, epi
);
2412 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
2413 epds
->events
|= EPOLLERR
| EPOLLHUP
;
2414 error
= ep_modify(ep
, epi
, epds
);
2420 mutex_unlock(&ep
->mtx
);
2424 clear_tfile_check_list();
2426 mutex_unlock(&epnested_mutex
);
2432 * The following function implements the controller interface for
2433 * the eventpoll file that enables the insertion/removal/change of
2434 * file descriptors inside the interest set.
2436 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
2437 struct epoll_event __user
*, event
)
2439 struct epoll_event epds
;
2441 if (ep_op_has_event(op
) &&
2442 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
2445 return do_epoll_ctl(epfd
, op
, fd
, &epds
, false);
2449 * Implement the event wait interface for the eventpoll file. It is the kernel
2450 * part of the user space epoll_wait(2).
2452 static int do_epoll_wait(int epfd
, struct epoll_event __user
*events
,
2453 int maxevents
, struct timespec64
*to
)
2455 struct eventpoll
*ep
;
2457 /* The maximum number of event must be greater than zero */
2458 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2461 /* Verify that the area passed by the user is writeable */
2462 if (!access_ok(events
, maxevents
* sizeof(struct epoll_event
)))
2465 /* Get the "struct file *" for the eventpoll file */
2471 * We have to check that the file structure underneath the fd
2472 * the user passed to us _is_ an eventpoll file.
2474 if (!is_file_epoll(fd_file(f
)))
2478 * At this point it is safe to assume that the "private_data" contains
2479 * our own data structure.
2481 ep
= fd_file(f
)->private_data
;
2483 /* Time to fish for events ... */
2484 return ep_poll(ep
, events
, maxevents
, to
);
2487 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2488 int, maxevents
, int, timeout
)
2490 struct timespec64 to
;
2492 return do_epoll_wait(epfd
, events
, maxevents
,
2493 ep_timeout_to_timespec(&to
, timeout
));
2497 * Implement the event wait interface for the eventpoll file. It is the kernel
2498 * part of the user space epoll_pwait(2).
2500 static int do_epoll_pwait(int epfd
, struct epoll_event __user
*events
,
2501 int maxevents
, struct timespec64
*to
,
2502 const sigset_t __user
*sigmask
, size_t sigsetsize
)
2507 * If the caller wants a certain signal mask to be set during the wait,
2510 error
= set_user_sigmask(sigmask
, sigsetsize
);
2514 error
= do_epoll_wait(epfd
, events
, maxevents
, to
);
2516 restore_saved_sigmask_unless(error
== -EINTR
);
2521 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2522 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2525 struct timespec64 to
;
2527 return do_epoll_pwait(epfd
, events
, maxevents
,
2528 ep_timeout_to_timespec(&to
, timeout
),
2529 sigmask
, sigsetsize
);
2532 SYSCALL_DEFINE6(epoll_pwait2
, int, epfd
, struct epoll_event __user
*, events
,
2533 int, maxevents
, const struct __kernel_timespec __user
*, timeout
,
2534 const sigset_t __user
*, sigmask
, size_t, sigsetsize
)
2536 struct timespec64 ts
, *to
= NULL
;
2539 if (get_timespec64(&ts
, timeout
))
2542 if (poll_select_set_timeout(to
, ts
.tv_sec
, ts
.tv_nsec
))
2546 return do_epoll_pwait(epfd
, events
, maxevents
, to
,
2547 sigmask
, sigsetsize
);
2550 #ifdef CONFIG_COMPAT
2551 static int do_compat_epoll_pwait(int epfd
, struct epoll_event __user
*events
,
2552 int maxevents
, struct timespec64
*timeout
,
2553 const compat_sigset_t __user
*sigmask
,
2554 compat_size_t sigsetsize
)
2559 * If the caller wants a certain signal mask to be set during the wait,
2562 err
= set_compat_user_sigmask(sigmask
, sigsetsize
);
2566 err
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2568 restore_saved_sigmask_unless(err
== -EINTR
);
2573 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2574 struct epoll_event __user
*, events
,
2575 int, maxevents
, int, timeout
,
2576 const compat_sigset_t __user
*, sigmask
,
2577 compat_size_t
, sigsetsize
)
2579 struct timespec64 to
;
2581 return do_compat_epoll_pwait(epfd
, events
, maxevents
,
2582 ep_timeout_to_timespec(&to
, timeout
),
2583 sigmask
, sigsetsize
);
2586 COMPAT_SYSCALL_DEFINE6(epoll_pwait2
, int, epfd
,
2587 struct epoll_event __user
*, events
,
2589 const struct __kernel_timespec __user
*, timeout
,
2590 const compat_sigset_t __user
*, sigmask
,
2591 compat_size_t
, sigsetsize
)
2593 struct timespec64 ts
, *to
= NULL
;
2596 if (get_timespec64(&ts
, timeout
))
2599 if (poll_select_set_timeout(to
, ts
.tv_sec
, ts
.tv_nsec
))
2603 return do_compat_epoll_pwait(epfd
, events
, maxevents
, to
,
2604 sigmask
, sigsetsize
);
2609 static int __init
eventpoll_init(void)
2615 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2617 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2619 BUG_ON(max_user_watches
< 0);
2622 * We can have many thousands of epitems, so prevent this from
2623 * using an extra cache line on 64-bit (and smaller) CPUs
2625 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2627 /* Allocates slab cache used to allocate "struct epitem" items */
2628 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2629 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2631 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2632 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2633 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2634 epoll_sysctls_init();
2636 ephead_cache
= kmem_cache_create("ep_head",
2637 sizeof(struct epitems_head
), 0, SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2641 fs_initcall(eventpoll_init
);