1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
95 * [10-Sep-98 Alan Modra] Another symlink change.
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
129 getname_flags(const char __user
*filename
, int flags
)
131 struct filename
*result
;
135 result
= audit_reusename(filename
);
139 result
= __getname();
140 if (unlikely(!result
))
141 return ERR_PTR(-ENOMEM
);
144 * First, try to embed the struct filename inside the names_cache
147 kname
= (char *)result
->iname
;
148 result
->name
= kname
;
150 len
= strncpy_from_user(kname
, filename
, EMBEDDED_NAME_MAX
);
152 * Handle both empty path and copy failure in one go.
154 if (unlikely(len
<= 0)) {
155 if (unlikely(len
< 0)) {
160 /* The empty path is special. */
161 if (!(flags
& LOOKUP_EMPTY
)) {
163 return ERR_PTR(-ENOENT
);
168 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
169 * separate struct filename so we can dedicate the entire
170 * names_cache allocation for the pathname, and re-do the copy from
173 if (unlikely(len
== EMBEDDED_NAME_MAX
)) {
174 const size_t size
= offsetof(struct filename
, iname
[1]);
175 kname
= (char *)result
;
178 * size is chosen that way we to guarantee that
179 * result->iname[0] is within the same object and that
180 * kname can't be equal to result->iname, no matter what.
182 result
= kzalloc(size
, GFP_KERNEL
);
183 if (unlikely(!result
)) {
185 return ERR_PTR(-ENOMEM
);
187 result
->name
= kname
;
188 len
= strncpy_from_user(kname
, filename
, PATH_MAX
);
189 if (unlikely(len
< 0)) {
194 /* The empty path is special. */
195 if (unlikely(!len
) && !(flags
& LOOKUP_EMPTY
)) {
198 return ERR_PTR(-ENOENT
);
200 if (unlikely(len
== PATH_MAX
)) {
203 return ERR_PTR(-ENAMETOOLONG
);
207 atomic_set(&result
->refcnt
, 1);
208 result
->uptr
= filename
;
209 result
->aname
= NULL
;
210 audit_getname(result
);
214 struct filename
*getname_uflags(const char __user
*filename
, int uflags
)
216 int flags
= (uflags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
218 return getname_flags(filename
, flags
);
221 struct filename
*getname(const char __user
* filename
)
223 return getname_flags(filename
, 0);
226 struct filename
*__getname_maybe_null(const char __user
*pathname
)
228 struct filename
*name
;
231 /* try to save on allocations; loss on um, though */
232 if (get_user(c
, pathname
))
233 return ERR_PTR(-EFAULT
);
237 name
= getname_flags(pathname
, LOOKUP_EMPTY
);
238 if (!IS_ERR(name
) && !(name
->name
[0])) {
245 struct filename
*getname_kernel(const char * filename
)
247 struct filename
*result
;
248 int len
= strlen(filename
) + 1;
250 result
= __getname();
251 if (unlikely(!result
))
252 return ERR_PTR(-ENOMEM
);
254 if (len
<= EMBEDDED_NAME_MAX
) {
255 result
->name
= (char *)result
->iname
;
256 } else if (len
<= PATH_MAX
) {
257 const size_t size
= offsetof(struct filename
, iname
[1]);
258 struct filename
*tmp
;
260 tmp
= kmalloc(size
, GFP_KERNEL
);
261 if (unlikely(!tmp
)) {
263 return ERR_PTR(-ENOMEM
);
265 tmp
->name
= (char *)result
;
269 return ERR_PTR(-ENAMETOOLONG
);
271 memcpy((char *)result
->name
, filename
, len
);
273 result
->aname
= NULL
;
274 atomic_set(&result
->refcnt
, 1);
275 audit_getname(result
);
279 EXPORT_SYMBOL(getname_kernel
);
281 void putname(struct filename
*name
)
283 if (IS_ERR_OR_NULL(name
))
286 if (WARN_ON_ONCE(!atomic_read(&name
->refcnt
)))
289 if (!atomic_dec_and_test(&name
->refcnt
))
292 if (name
->name
!= name
->iname
) {
293 __putname(name
->name
);
298 EXPORT_SYMBOL(putname
);
301 * check_acl - perform ACL permission checking
302 * @idmap: idmap of the mount the inode was found from
303 * @inode: inode to check permissions on
304 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306 * This function performs the ACL permission checking. Since this function
307 * retrieve POSIX acls it needs to know whether it is called from a blocking or
308 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310 * If the inode has been found through an idmapped mount the idmap of
311 * the vfsmount must be passed through @idmap. This function will then take
312 * care to map the inode according to @idmap before checking permissions.
313 * On non-idmapped mounts or if permission checking is to be performed on the
314 * raw inode simply pass @nop_mnt_idmap.
316 static int check_acl(struct mnt_idmap
*idmap
,
317 struct inode
*inode
, int mask
)
319 #ifdef CONFIG_FS_POSIX_ACL
320 struct posix_acl
*acl
;
322 if (mask
& MAY_NOT_BLOCK
) {
323 acl
= get_cached_acl_rcu(inode
, ACL_TYPE_ACCESS
);
326 /* no ->get_inode_acl() calls in RCU mode... */
327 if (is_uncached_acl(acl
))
329 return posix_acl_permission(idmap
, inode
, acl
, mask
);
332 acl
= get_inode_acl(inode
, ACL_TYPE_ACCESS
);
336 int error
= posix_acl_permission(idmap
, inode
, acl
, mask
);
337 posix_acl_release(acl
);
346 * Very quick optimistic "we know we have no ACL's" check.
348 * Note that this is purely for ACL_TYPE_ACCESS, and purely
349 * for the "we have cached that there are no ACLs" case.
351 * If this returns true, we know there are no ACLs. But if
352 * it returns false, we might still not have ACLs (it could
353 * be the is_uncached_acl() case).
355 static inline bool no_acl_inode(struct inode
*inode
)
357 #ifdef CONFIG_FS_POSIX_ACL
358 return likely(!READ_ONCE(inode
->i_acl
));
365 * acl_permission_check - perform basic UNIX permission checking
366 * @idmap: idmap of the mount the inode was found from
367 * @inode: inode to check permissions on
368 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370 * This function performs the basic UNIX permission checking. Since this
371 * function may retrieve POSIX acls it needs to know whether it is called from a
372 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374 * If the inode has been found through an idmapped mount the idmap of
375 * the vfsmount must be passed through @idmap. This function will then take
376 * care to map the inode according to @idmap before checking permissions.
377 * On non-idmapped mounts or if permission checking is to be performed on the
378 * raw inode simply pass @nop_mnt_idmap.
380 static int acl_permission_check(struct mnt_idmap
*idmap
,
381 struct inode
*inode
, int mask
)
383 unsigned int mode
= inode
->i_mode
;
387 * Common cheap case: everybody has the requested
388 * rights, and there are no ACLs to check. No need
389 * to do any owner/group checks in that case.
391 * - 'mask&7' is the requested permission bit set
392 * - multiplying by 0111 spreads them out to all of ugo
393 * - '& ~mode' looks for missing inode permission bits
394 * - the '!' is for "no missing permissions"
396 * After that, we just need to check that there are no
397 * ACL's on the inode - do the 'IS_POSIXACL()' check last
398 * because it will dereference the ->i_sb pointer and we
399 * want to avoid that if at all possible.
401 if (!((mask
& 7) * 0111 & ~mode
)) {
402 if (no_acl_inode(inode
))
404 if (!IS_POSIXACL(inode
))
408 /* Are we the owner? If so, ACL's don't matter */
409 vfsuid
= i_uid_into_vfsuid(idmap
, inode
);
410 if (likely(vfsuid_eq_kuid(vfsuid
, current_fsuid()))) {
413 return (mask
& ~mode
) ? -EACCES
: 0;
416 /* Do we have ACL's? */
417 if (IS_POSIXACL(inode
) && (mode
& S_IRWXG
)) {
418 int error
= check_acl(idmap
, inode
, mask
);
419 if (error
!= -EAGAIN
)
423 /* Only RWX matters for group/other mode bits */
427 * Are the group permissions different from
428 * the other permissions in the bits we care
429 * about? Need to check group ownership if so.
431 if (mask
& (mode
^ (mode
>> 3))) {
432 vfsgid_t vfsgid
= i_gid_into_vfsgid(idmap
, inode
);
433 if (vfsgid_in_group_p(vfsgid
))
437 /* Bits in 'mode' clear that we require? */
438 return (mask
& ~mode
) ? -EACCES
: 0;
442 * generic_permission - check for access rights on a Posix-like filesystem
443 * @idmap: idmap of the mount the inode was found from
444 * @inode: inode to check access rights for
445 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
446 * %MAY_NOT_BLOCK ...)
448 * Used to check for read/write/execute permissions on a file.
449 * We use "fsuid" for this, letting us set arbitrary permissions
450 * for filesystem access without changing the "normal" uids which
451 * are used for other things.
453 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
454 * request cannot be satisfied (eg. requires blocking or too much complexity).
455 * It would then be called again in ref-walk mode.
457 * If the inode has been found through an idmapped mount the idmap of
458 * the vfsmount must be passed through @idmap. This function will then take
459 * care to map the inode according to @idmap before checking permissions.
460 * On non-idmapped mounts or if permission checking is to be performed on the
461 * raw inode simply pass @nop_mnt_idmap.
463 int generic_permission(struct mnt_idmap
*idmap
, struct inode
*inode
,
469 * Do the basic permission checks.
471 ret
= acl_permission_check(idmap
, inode
, mask
);
475 if (S_ISDIR(inode
->i_mode
)) {
476 /* DACs are overridable for directories */
477 if (!(mask
& MAY_WRITE
))
478 if (capable_wrt_inode_uidgid(idmap
, inode
,
479 CAP_DAC_READ_SEARCH
))
481 if (capable_wrt_inode_uidgid(idmap
, inode
,
488 * Searching includes executable on directories, else just read.
490 mask
&= MAY_READ
| MAY_WRITE
| MAY_EXEC
;
491 if (mask
== MAY_READ
)
492 if (capable_wrt_inode_uidgid(idmap
, inode
,
493 CAP_DAC_READ_SEARCH
))
496 * Read/write DACs are always overridable.
497 * Executable DACs are overridable when there is
498 * at least one exec bit set.
500 if (!(mask
& MAY_EXEC
) || (inode
->i_mode
& S_IXUGO
))
501 if (capable_wrt_inode_uidgid(idmap
, inode
,
507 EXPORT_SYMBOL(generic_permission
);
510 * do_inode_permission - UNIX permission checking
511 * @idmap: idmap of the mount the inode was found from
512 * @inode: inode to check permissions on
513 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515 * We _really_ want to just do "generic_permission()" without
516 * even looking at the inode->i_op values. So we keep a cache
517 * flag in inode->i_opflags, that says "this has not special
518 * permission function, use the fast case".
520 static inline int do_inode_permission(struct mnt_idmap
*idmap
,
521 struct inode
*inode
, int mask
)
523 if (unlikely(!(inode
->i_opflags
& IOP_FASTPERM
))) {
524 if (likely(inode
->i_op
->permission
))
525 return inode
->i_op
->permission(idmap
, inode
, mask
);
527 /* This gets set once for the inode lifetime */
528 spin_lock(&inode
->i_lock
);
529 inode
->i_opflags
|= IOP_FASTPERM
;
530 spin_unlock(&inode
->i_lock
);
532 return generic_permission(idmap
, inode
, mask
);
536 * sb_permission - Check superblock-level permissions
537 * @sb: Superblock of inode to check permission on
538 * @inode: Inode to check permission on
539 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541 * Separate out file-system wide checks from inode-specific permission checks.
543 static int sb_permission(struct super_block
*sb
, struct inode
*inode
, int mask
)
545 if (unlikely(mask
& MAY_WRITE
)) {
546 umode_t mode
= inode
->i_mode
;
548 /* Nobody gets write access to a read-only fs. */
549 if (sb_rdonly(sb
) && (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
)))
556 * inode_permission - Check for access rights to a given inode
557 * @idmap: idmap of the mount the inode was found from
558 * @inode: Inode to check permission on
559 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
562 * this, letting us set arbitrary permissions for filesystem access without
563 * changing the "normal" UIDs which are used for other things.
565 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567 int inode_permission(struct mnt_idmap
*idmap
,
568 struct inode
*inode
, int mask
)
572 retval
= sb_permission(inode
->i_sb
, inode
, mask
);
576 if (unlikely(mask
& MAY_WRITE
)) {
578 * Nobody gets write access to an immutable file.
580 if (IS_IMMUTABLE(inode
))
584 * Updating mtime will likely cause i_uid and i_gid to be
585 * written back improperly if their true value is unknown
588 if (HAS_UNMAPPED_ID(idmap
, inode
))
592 retval
= do_inode_permission(idmap
, inode
, mask
);
596 retval
= devcgroup_inode_permission(inode
, mask
);
600 return security_inode_permission(inode
, mask
);
602 EXPORT_SYMBOL(inode_permission
);
605 * path_get - get a reference to a path
606 * @path: path to get the reference to
608 * Given a path increment the reference count to the dentry and the vfsmount.
610 void path_get(const struct path
*path
)
615 EXPORT_SYMBOL(path_get
);
618 * path_put - put a reference to a path
619 * @path: path to put the reference to
621 * Given a path decrement the reference count to the dentry and the vfsmount.
623 void path_put(const struct path
*path
)
628 EXPORT_SYMBOL(path_put
);
630 #define EMBEDDED_LEVELS 2
635 struct inode
*inode
; /* path.dentry.d_inode */
636 unsigned int flags
, state
;
637 unsigned seq
, next_seq
, m_seq
, r_seq
;
640 int total_link_count
;
643 struct delayed_call done
;
646 } *stack
, internal
[EMBEDDED_LEVELS
];
647 struct filename
*name
;
648 const char *pathname
;
649 struct nameidata
*saved
;
654 } __randomize_layout
;
656 #define ND_ROOT_PRESET 1
657 #define ND_ROOT_GRABBED 2
660 static void __set_nameidata(struct nameidata
*p
, int dfd
, struct filename
*name
)
662 struct nameidata
*old
= current
->nameidata
;
663 p
->stack
= p
->internal
;
667 p
->pathname
= likely(name
) ? name
->name
: "";
669 p
->path
.dentry
= NULL
;
670 p
->total_link_count
= old
? old
->total_link_count
: 0;
672 current
->nameidata
= p
;
675 static inline void set_nameidata(struct nameidata
*p
, int dfd
, struct filename
*name
,
676 const struct path
*root
)
678 __set_nameidata(p
, dfd
, name
);
680 if (unlikely(root
)) {
681 p
->state
= ND_ROOT_PRESET
;
686 static void restore_nameidata(void)
688 struct nameidata
*now
= current
->nameidata
, *old
= now
->saved
;
690 current
->nameidata
= old
;
692 old
->total_link_count
= now
->total_link_count
;
693 if (now
->stack
!= now
->internal
)
697 static bool nd_alloc_stack(struct nameidata
*nd
)
701 p
= kmalloc_array(MAXSYMLINKS
, sizeof(struct saved
),
702 nd
->flags
& LOOKUP_RCU
? GFP_ATOMIC
: GFP_KERNEL
);
705 memcpy(p
, nd
->internal
, sizeof(nd
->internal
));
711 * path_connected - Verify that a dentry is below mnt.mnt_root
712 * @mnt: The mountpoint to check.
713 * @dentry: The dentry to check.
715 * Rename can sometimes move a file or directory outside of a bind
716 * mount, path_connected allows those cases to be detected.
718 static bool path_connected(struct vfsmount
*mnt
, struct dentry
*dentry
)
720 struct super_block
*sb
= mnt
->mnt_sb
;
722 /* Bind mounts can have disconnected paths */
723 if (mnt
->mnt_root
== sb
->s_root
)
726 return is_subdir(dentry
, mnt
->mnt_root
);
729 static void drop_links(struct nameidata
*nd
)
733 struct saved
*last
= nd
->stack
+ i
;
734 do_delayed_call(&last
->done
);
735 clear_delayed_call(&last
->done
);
739 static void leave_rcu(struct nameidata
*nd
)
741 nd
->flags
&= ~LOOKUP_RCU
;
742 nd
->seq
= nd
->next_seq
= 0;
746 static void terminate_walk(struct nameidata
*nd
)
749 if (!(nd
->flags
& LOOKUP_RCU
)) {
752 for (i
= 0; i
< nd
->depth
; i
++)
753 path_put(&nd
->stack
[i
].link
);
754 if (nd
->state
& ND_ROOT_GRABBED
) {
756 nd
->state
&= ~ND_ROOT_GRABBED
;
763 nd
->path
.dentry
= NULL
;
766 /* path_put is needed afterwards regardless of success or failure */
767 static bool __legitimize_path(struct path
*path
, unsigned seq
, unsigned mseq
)
769 int res
= __legitimize_mnt(path
->mnt
, mseq
);
776 if (unlikely(!lockref_get_not_dead(&path
->dentry
->d_lockref
))) {
780 return !read_seqcount_retry(&path
->dentry
->d_seq
, seq
);
783 static inline bool legitimize_path(struct nameidata
*nd
,
784 struct path
*path
, unsigned seq
)
786 return __legitimize_path(path
, seq
, nd
->m_seq
);
789 static bool legitimize_links(struct nameidata
*nd
)
792 if (unlikely(nd
->flags
& LOOKUP_CACHED
)) {
797 for (i
= 0; i
< nd
->depth
; i
++) {
798 struct saved
*last
= nd
->stack
+ i
;
799 if (unlikely(!legitimize_path(nd
, &last
->link
, last
->seq
))) {
808 static bool legitimize_root(struct nameidata
*nd
)
810 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
811 if (!nd
->root
.mnt
|| (nd
->state
& ND_ROOT_PRESET
))
813 nd
->state
|= ND_ROOT_GRABBED
;
814 return legitimize_path(nd
, &nd
->root
, nd
->root_seq
);
818 * Path walking has 2 modes, rcu-walk and ref-walk (see
819 * Documentation/filesystems/path-lookup.txt). In situations when we can't
820 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
821 * normal reference counts on dentries and vfsmounts to transition to ref-walk
822 * mode. Refcounts are grabbed at the last known good point before rcu-walk
823 * got stuck, so ref-walk may continue from there. If this is not successful
824 * (eg. a seqcount has changed), then failure is returned and it's up to caller
825 * to restart the path walk from the beginning in ref-walk mode.
829 * try_to_unlazy - try to switch to ref-walk mode.
830 * @nd: nameidata pathwalk data
831 * Returns: true on success, false on failure
833 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
835 * Must be called from rcu-walk context.
836 * Nothing should touch nameidata between try_to_unlazy() failure and
839 static bool try_to_unlazy(struct nameidata
*nd
)
841 struct dentry
*parent
= nd
->path
.dentry
;
843 BUG_ON(!(nd
->flags
& LOOKUP_RCU
));
845 if (unlikely(!legitimize_links(nd
)))
847 if (unlikely(!legitimize_path(nd
, &nd
->path
, nd
->seq
)))
849 if (unlikely(!legitimize_root(nd
)))
852 BUG_ON(nd
->inode
!= parent
->d_inode
);
857 nd
->path
.dentry
= NULL
;
864 * try_to_unlazy_next - try to switch to ref-walk mode.
865 * @nd: nameidata pathwalk data
866 * @dentry: next dentry to step into
867 * Returns: true on success, false on failure
869 * Similar to try_to_unlazy(), but here we have the next dentry already
870 * picked by rcu-walk and want to legitimize that in addition to the current
871 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
872 * Nothing should touch nameidata between try_to_unlazy_next() failure and
875 static bool try_to_unlazy_next(struct nameidata
*nd
, struct dentry
*dentry
)
878 BUG_ON(!(nd
->flags
& LOOKUP_RCU
));
880 if (unlikely(!legitimize_links(nd
)))
882 res
= __legitimize_mnt(nd
->path
.mnt
, nd
->m_seq
);
888 if (unlikely(!lockref_get_not_dead(&nd
->path
.dentry
->d_lockref
)))
892 * We need to move both the parent and the dentry from the RCU domain
893 * to be properly refcounted. And the sequence number in the dentry
894 * validates *both* dentry counters, since we checked the sequence
895 * number of the parent after we got the child sequence number. So we
896 * know the parent must still be valid if the child sequence number is
898 if (unlikely(!lockref_get_not_dead(&dentry
->d_lockref
)))
900 if (read_seqcount_retry(&dentry
->d_seq
, nd
->next_seq
))
903 * Sequence counts matched. Now make sure that the root is
904 * still valid and get it if required.
906 if (unlikely(!legitimize_root(nd
)))
914 nd
->path
.dentry
= NULL
;
924 static inline int d_revalidate(struct inode
*dir
, const struct qstr
*name
,
925 struct dentry
*dentry
, unsigned int flags
)
927 if (unlikely(dentry
->d_flags
& DCACHE_OP_REVALIDATE
))
928 return dentry
->d_op
->d_revalidate(dir
, name
, dentry
, flags
);
934 * complete_walk - successful completion of path walk
935 * @nd: pointer nameidata
937 * If we had been in RCU mode, drop out of it and legitimize nd->path.
938 * Revalidate the final result, unless we'd already done that during
939 * the path walk or the filesystem doesn't ask for it. Return 0 on
940 * success, -error on failure. In case of failure caller does not
941 * need to drop nd->path.
943 static int complete_walk(struct nameidata
*nd
)
945 struct dentry
*dentry
= nd
->path
.dentry
;
948 if (nd
->flags
& LOOKUP_RCU
) {
950 * We don't want to zero nd->root for scoped-lookups or
951 * externally-managed nd->root.
953 if (!(nd
->state
& ND_ROOT_PRESET
))
954 if (!(nd
->flags
& LOOKUP_IS_SCOPED
))
956 nd
->flags
&= ~LOOKUP_CACHED
;
957 if (!try_to_unlazy(nd
))
961 if (unlikely(nd
->flags
& LOOKUP_IS_SCOPED
)) {
963 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
964 * ever step outside the root during lookup" and should already
965 * be guaranteed by the rest of namei, we want to avoid a namei
966 * BUG resulting in userspace being given a path that was not
967 * scoped within the root at some point during the lookup.
969 * So, do a final sanity-check to make sure that in the
970 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
971 * we won't silently return an fd completely outside of the
972 * requested root to userspace.
974 * Userspace could move the path outside the root after this
975 * check, but as discussed elsewhere this is not a concern (the
976 * resolved file was inside the root at some point).
978 if (!path_is_under(&nd
->path
, &nd
->root
))
982 if (likely(!(nd
->state
& ND_JUMPED
)))
985 if (likely(!(dentry
->d_flags
& DCACHE_OP_WEAK_REVALIDATE
)))
988 status
= dentry
->d_op
->d_weak_revalidate(dentry
, nd
->flags
);
998 static int set_root(struct nameidata
*nd
)
1000 struct fs_struct
*fs
= current
->fs
;
1003 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1004 * still have to ensure it doesn't happen because it will cause a breakout
1007 if (WARN_ON(nd
->flags
& LOOKUP_IS_SCOPED
))
1008 return -ENOTRECOVERABLE
;
1010 if (nd
->flags
& LOOKUP_RCU
) {
1014 seq
= read_seqcount_begin(&fs
->seq
);
1015 nd
->root
= fs
->root
;
1016 nd
->root_seq
= __read_seqcount_begin(&nd
->root
.dentry
->d_seq
);
1017 } while (read_seqcount_retry(&fs
->seq
, seq
));
1019 get_fs_root(fs
, &nd
->root
);
1020 nd
->state
|= ND_ROOT_GRABBED
;
1025 static int nd_jump_root(struct nameidata
*nd
)
1027 if (unlikely(nd
->flags
& LOOKUP_BENEATH
))
1029 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
)) {
1030 /* Absolute path arguments to path_init() are allowed. */
1031 if (nd
->path
.mnt
!= NULL
&& nd
->path
.mnt
!= nd
->root
.mnt
)
1034 if (!nd
->root
.mnt
) {
1035 int error
= set_root(nd
);
1039 if (nd
->flags
& LOOKUP_RCU
) {
1041 nd
->path
= nd
->root
;
1042 d
= nd
->path
.dentry
;
1043 nd
->inode
= d
->d_inode
;
1044 nd
->seq
= nd
->root_seq
;
1045 if (read_seqcount_retry(&d
->d_seq
, nd
->seq
))
1048 path_put(&nd
->path
);
1049 nd
->path
= nd
->root
;
1050 path_get(&nd
->path
);
1051 nd
->inode
= nd
->path
.dentry
->d_inode
;
1053 nd
->state
|= ND_JUMPED
;
1058 * Helper to directly jump to a known parsed path from ->get_link,
1059 * caller must have taken a reference to path beforehand.
1061 int nd_jump_link(const struct path
*path
)
1064 struct nameidata
*nd
= current
->nameidata
;
1066 if (unlikely(nd
->flags
& LOOKUP_NO_MAGICLINKS
))
1070 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
)) {
1071 if (nd
->path
.mnt
!= path
->mnt
)
1074 /* Not currently safe for scoped-lookups. */
1075 if (unlikely(nd
->flags
& LOOKUP_IS_SCOPED
))
1078 path_put(&nd
->path
);
1080 nd
->inode
= nd
->path
.dentry
->d_inode
;
1081 nd
->state
|= ND_JUMPED
;
1089 static inline void put_link(struct nameidata
*nd
)
1091 struct saved
*last
= nd
->stack
+ --nd
->depth
;
1092 do_delayed_call(&last
->done
);
1093 if (!(nd
->flags
& LOOKUP_RCU
))
1094 path_put(&last
->link
);
1097 static int sysctl_protected_symlinks __read_mostly
;
1098 static int sysctl_protected_hardlinks __read_mostly
;
1099 static int sysctl_protected_fifos __read_mostly
;
1100 static int sysctl_protected_regular __read_mostly
;
1102 #ifdef CONFIG_SYSCTL
1103 static const struct ctl_table namei_sysctls
[] = {
1105 .procname
= "protected_symlinks",
1106 .data
= &sysctl_protected_symlinks
,
1107 .maxlen
= sizeof(int),
1109 .proc_handler
= proc_dointvec_minmax
,
1110 .extra1
= SYSCTL_ZERO
,
1111 .extra2
= SYSCTL_ONE
,
1114 .procname
= "protected_hardlinks",
1115 .data
= &sysctl_protected_hardlinks
,
1116 .maxlen
= sizeof(int),
1118 .proc_handler
= proc_dointvec_minmax
,
1119 .extra1
= SYSCTL_ZERO
,
1120 .extra2
= SYSCTL_ONE
,
1123 .procname
= "protected_fifos",
1124 .data
= &sysctl_protected_fifos
,
1125 .maxlen
= sizeof(int),
1127 .proc_handler
= proc_dointvec_minmax
,
1128 .extra1
= SYSCTL_ZERO
,
1129 .extra2
= SYSCTL_TWO
,
1132 .procname
= "protected_regular",
1133 .data
= &sysctl_protected_regular
,
1134 .maxlen
= sizeof(int),
1136 .proc_handler
= proc_dointvec_minmax
,
1137 .extra1
= SYSCTL_ZERO
,
1138 .extra2
= SYSCTL_TWO
,
1142 static int __init
init_fs_namei_sysctls(void)
1144 register_sysctl_init("fs", namei_sysctls
);
1147 fs_initcall(init_fs_namei_sysctls
);
1149 #endif /* CONFIG_SYSCTL */
1152 * may_follow_link - Check symlink following for unsafe situations
1153 * @nd: nameidata pathwalk data
1154 * @inode: Used for idmapping.
1156 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1157 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1158 * in a sticky world-writable directory. This is to protect privileged
1159 * processes from failing races against path names that may change out
1160 * from under them by way of other users creating malicious symlinks.
1161 * It will permit symlinks to be followed only when outside a sticky
1162 * world-writable directory, or when the uid of the symlink and follower
1163 * match, or when the directory owner matches the symlink's owner.
1165 * Returns 0 if following the symlink is allowed, -ve on error.
1167 static inline int may_follow_link(struct nameidata
*nd
, const struct inode
*inode
)
1169 struct mnt_idmap
*idmap
;
1172 if (!sysctl_protected_symlinks
)
1175 idmap
= mnt_idmap(nd
->path
.mnt
);
1176 vfsuid
= i_uid_into_vfsuid(idmap
, inode
);
1177 /* Allowed if owner and follower match. */
1178 if (vfsuid_eq_kuid(vfsuid
, current_fsuid()))
1181 /* Allowed if parent directory not sticky and world-writable. */
1182 if ((nd
->dir_mode
& (S_ISVTX
|S_IWOTH
)) != (S_ISVTX
|S_IWOTH
))
1185 /* Allowed if parent directory and link owner match. */
1186 if (vfsuid_valid(nd
->dir_vfsuid
) && vfsuid_eq(nd
->dir_vfsuid
, vfsuid
))
1189 if (nd
->flags
& LOOKUP_RCU
)
1192 audit_inode(nd
->name
, nd
->stack
[0].link
.dentry
, 0);
1193 audit_log_path_denied(AUDIT_ANOM_LINK
, "follow_link");
1198 * safe_hardlink_source - Check for safe hardlink conditions
1199 * @idmap: idmap of the mount the inode was found from
1200 * @inode: the source inode to hardlink from
1202 * Return false if at least one of the following conditions:
1203 * - inode is not a regular file
1205 * - inode is setgid and group-exec
1206 * - access failure for read and write
1208 * Otherwise returns true.
1210 static bool safe_hardlink_source(struct mnt_idmap
*idmap
,
1211 struct inode
*inode
)
1213 umode_t mode
= inode
->i_mode
;
1215 /* Special files should not get pinned to the filesystem. */
1219 /* Setuid files should not get pinned to the filesystem. */
1223 /* Executable setgid files should not get pinned to the filesystem. */
1224 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
))
1227 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1228 if (inode_permission(idmap
, inode
, MAY_READ
| MAY_WRITE
))
1235 * may_linkat - Check permissions for creating a hardlink
1236 * @idmap: idmap of the mount the inode was found from
1237 * @link: the source to hardlink from
1239 * Block hardlink when all of:
1240 * - sysctl_protected_hardlinks enabled
1241 * - fsuid does not match inode
1242 * - hardlink source is unsafe (see safe_hardlink_source() above)
1243 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1245 * If the inode has been found through an idmapped mount the idmap of
1246 * the vfsmount must be passed through @idmap. This function will then take
1247 * care to map the inode according to @idmap before checking permissions.
1248 * On non-idmapped mounts or if permission checking is to be performed on the
1249 * raw inode simply pass @nop_mnt_idmap.
1251 * Returns 0 if successful, -ve on error.
1253 int may_linkat(struct mnt_idmap
*idmap
, const struct path
*link
)
1255 struct inode
*inode
= link
->dentry
->d_inode
;
1257 /* Inode writeback is not safe when the uid or gid are invalid. */
1258 if (!vfsuid_valid(i_uid_into_vfsuid(idmap
, inode
)) ||
1259 !vfsgid_valid(i_gid_into_vfsgid(idmap
, inode
)))
1262 if (!sysctl_protected_hardlinks
)
1265 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1266 * otherwise, it must be a safe source.
1268 if (safe_hardlink_source(idmap
, inode
) ||
1269 inode_owner_or_capable(idmap
, inode
))
1272 audit_log_path_denied(AUDIT_ANOM_LINK
, "linkat");
1277 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1278 * should be allowed, or not, on files that already
1280 * @idmap: idmap of the mount the inode was found from
1281 * @nd: nameidata pathwalk data
1282 * @inode: the inode of the file to open
1284 * Block an O_CREAT open of a FIFO (or a regular file) when:
1285 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1286 * - the file already exists
1287 * - we are in a sticky directory
1288 * - we don't own the file
1289 * - the owner of the directory doesn't own the file
1290 * - the directory is world writable
1291 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1292 * the directory doesn't have to be world writable: being group writable will
1295 * If the inode has been found through an idmapped mount the idmap of
1296 * the vfsmount must be passed through @idmap. This function will then take
1297 * care to map the inode according to @idmap before checking permissions.
1298 * On non-idmapped mounts or if permission checking is to be performed on the
1299 * raw inode simply pass @nop_mnt_idmap.
1301 * Returns 0 if the open is allowed, -ve on error.
1303 static int may_create_in_sticky(struct mnt_idmap
*idmap
, struct nameidata
*nd
,
1304 struct inode
*const inode
)
1306 umode_t dir_mode
= nd
->dir_mode
;
1307 vfsuid_t dir_vfsuid
= nd
->dir_vfsuid
, i_vfsuid
;
1309 if (likely(!(dir_mode
& S_ISVTX
)))
1312 if (S_ISREG(inode
->i_mode
) && !sysctl_protected_regular
)
1315 if (S_ISFIFO(inode
->i_mode
) && !sysctl_protected_fifos
)
1318 i_vfsuid
= i_uid_into_vfsuid(idmap
, inode
);
1320 if (vfsuid_eq(i_vfsuid
, dir_vfsuid
))
1323 if (vfsuid_eq_kuid(i_vfsuid
, current_fsuid()))
1326 if (likely(dir_mode
& 0002)) {
1327 audit_log_path_denied(AUDIT_ANOM_CREAT
, "sticky_create");
1331 if (dir_mode
& 0020) {
1332 if (sysctl_protected_fifos
>= 2 && S_ISFIFO(inode
->i_mode
)) {
1333 audit_log_path_denied(AUDIT_ANOM_CREAT
,
1334 "sticky_create_fifo");
1338 if (sysctl_protected_regular
>= 2 && S_ISREG(inode
->i_mode
)) {
1339 audit_log_path_denied(AUDIT_ANOM_CREAT
,
1340 "sticky_create_regular");
1349 * follow_up - Find the mountpoint of path's vfsmount
1351 * Given a path, find the mountpoint of its source file system.
1352 * Replace @path with the path of the mountpoint in the parent mount.
1355 * Return 1 if we went up a level and 0 if we were already at the
1358 int follow_up(struct path
*path
)
1360 struct mount
*mnt
= real_mount(path
->mnt
);
1361 struct mount
*parent
;
1362 struct dentry
*mountpoint
;
1364 read_seqlock_excl(&mount_lock
);
1365 parent
= mnt
->mnt_parent
;
1366 if (parent
== mnt
) {
1367 read_sequnlock_excl(&mount_lock
);
1370 mntget(&parent
->mnt
);
1371 mountpoint
= dget(mnt
->mnt_mountpoint
);
1372 read_sequnlock_excl(&mount_lock
);
1374 path
->dentry
= mountpoint
;
1376 path
->mnt
= &parent
->mnt
;
1379 EXPORT_SYMBOL(follow_up
);
1381 static bool choose_mountpoint_rcu(struct mount
*m
, const struct path
*root
,
1382 struct path
*path
, unsigned *seqp
)
1384 while (mnt_has_parent(m
)) {
1385 struct dentry
*mountpoint
= m
->mnt_mountpoint
;
1388 if (unlikely(root
->dentry
== mountpoint
&&
1389 root
->mnt
== &m
->mnt
))
1391 if (mountpoint
!= m
->mnt
.mnt_root
) {
1392 path
->mnt
= &m
->mnt
;
1393 path
->dentry
= mountpoint
;
1394 *seqp
= read_seqcount_begin(&mountpoint
->d_seq
);
1401 static bool choose_mountpoint(struct mount
*m
, const struct path
*root
,
1408 unsigned seq
, mseq
= read_seqbegin(&mount_lock
);
1410 found
= choose_mountpoint_rcu(m
, root
, path
, &seq
);
1411 if (unlikely(!found
)) {
1412 if (!read_seqretry(&mount_lock
, mseq
))
1415 if (likely(__legitimize_path(path
, seq
, mseq
)))
1427 * Perform an automount
1428 * - return -EISDIR to tell follow_managed() to stop and return the path we
1431 static int follow_automount(struct path
*path
, int *count
, unsigned lookup_flags
)
1433 struct dentry
*dentry
= path
->dentry
;
1435 /* We don't want to mount if someone's just doing a stat -
1436 * unless they're stat'ing a directory and appended a '/' to
1439 * We do, however, want to mount if someone wants to open or
1440 * create a file of any type under the mountpoint, wants to
1441 * traverse through the mountpoint or wants to open the
1442 * mounted directory. Also, autofs may mark negative dentries
1443 * as being automount points. These will need the attentions
1444 * of the daemon to instantiate them before they can be used.
1446 if (!(lookup_flags
& (LOOKUP_PARENT
| LOOKUP_DIRECTORY
|
1447 LOOKUP_OPEN
| LOOKUP_CREATE
| LOOKUP_AUTOMOUNT
)) &&
1451 if (count
&& (*count
)++ >= MAXSYMLINKS
)
1454 return finish_automount(dentry
->d_op
->d_automount(path
), path
);
1458 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1459 * dentries are pinned but not locked here, so negative dentry can go
1460 * positive right under us. Use of smp_load_acquire() provides a barrier
1461 * sufficient for ->d_inode and ->d_flags consistency.
1463 static int __traverse_mounts(struct path
*path
, unsigned flags
, bool *jumped
,
1464 int *count
, unsigned lookup_flags
)
1466 struct vfsmount
*mnt
= path
->mnt
;
1467 bool need_mntput
= false;
1470 while (flags
& DCACHE_MANAGED_DENTRY
) {
1471 /* Allow the filesystem to manage the transit without i_mutex
1473 if (flags
& DCACHE_MANAGE_TRANSIT
) {
1474 ret
= path
->dentry
->d_op
->d_manage(path
, false);
1475 flags
= smp_load_acquire(&path
->dentry
->d_flags
);
1480 if (flags
& DCACHE_MOUNTED
) { // something's mounted on it..
1481 struct vfsmount
*mounted
= lookup_mnt(path
);
1482 if (mounted
) { // ... in our namespace
1486 path
->mnt
= mounted
;
1487 path
->dentry
= dget(mounted
->mnt_root
);
1488 // here we know it's positive
1489 flags
= path
->dentry
->d_flags
;
1495 if (!(flags
& DCACHE_NEED_AUTOMOUNT
))
1498 // uncovered automount point
1499 ret
= follow_automount(path
, count
, lookup_flags
);
1500 flags
= smp_load_acquire(&path
->dentry
->d_flags
);
1507 // possible if you race with several mount --move
1508 if (need_mntput
&& path
->mnt
== mnt
)
1510 if (!ret
&& unlikely(d_flags_negative(flags
)))
1512 *jumped
= need_mntput
;
1516 static inline int traverse_mounts(struct path
*path
, bool *jumped
,
1517 int *count
, unsigned lookup_flags
)
1519 unsigned flags
= smp_load_acquire(&path
->dentry
->d_flags
);
1522 if (likely(!(flags
& DCACHE_MANAGED_DENTRY
))) {
1524 if (unlikely(d_flags_negative(flags
)))
1528 return __traverse_mounts(path
, flags
, jumped
, count
, lookup_flags
);
1531 int follow_down_one(struct path
*path
)
1533 struct vfsmount
*mounted
;
1535 mounted
= lookup_mnt(path
);
1539 path
->mnt
= mounted
;
1540 path
->dentry
= dget(mounted
->mnt_root
);
1545 EXPORT_SYMBOL(follow_down_one
);
1548 * Follow down to the covering mount currently visible to userspace. At each
1549 * point, the filesystem owning that dentry may be queried as to whether the
1550 * caller is permitted to proceed or not.
1552 int follow_down(struct path
*path
, unsigned int flags
)
1554 struct vfsmount
*mnt
= path
->mnt
;
1556 int ret
= traverse_mounts(path
, &jumped
, NULL
, flags
);
1558 if (path
->mnt
!= mnt
)
1562 EXPORT_SYMBOL(follow_down
);
1565 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1566 * we meet a managed dentry that would need blocking.
1568 static bool __follow_mount_rcu(struct nameidata
*nd
, struct path
*path
)
1570 struct dentry
*dentry
= path
->dentry
;
1571 unsigned int flags
= dentry
->d_flags
;
1573 if (likely(!(flags
& DCACHE_MANAGED_DENTRY
)))
1576 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
1581 * Don't forget we might have a non-mountpoint managed dentry
1582 * that wants to block transit.
1584 if (unlikely(flags
& DCACHE_MANAGE_TRANSIT
)) {
1585 int res
= dentry
->d_op
->d_manage(path
, true);
1587 return res
== -EISDIR
;
1588 flags
= dentry
->d_flags
;
1591 if (flags
& DCACHE_MOUNTED
) {
1592 struct mount
*mounted
= __lookup_mnt(path
->mnt
, dentry
);
1594 path
->mnt
= &mounted
->mnt
;
1595 dentry
= path
->dentry
= mounted
->mnt
.mnt_root
;
1596 nd
->state
|= ND_JUMPED
;
1597 nd
->next_seq
= read_seqcount_begin(&dentry
->d_seq
);
1598 flags
= dentry
->d_flags
;
1599 // makes sure that non-RCU pathwalk could reach
1601 if (read_seqretry(&mount_lock
, nd
->m_seq
))
1605 if (read_seqretry(&mount_lock
, nd
->m_seq
))
1608 return !(flags
& DCACHE_NEED_AUTOMOUNT
);
1612 static inline int handle_mounts(struct nameidata
*nd
, struct dentry
*dentry
,
1618 path
->mnt
= nd
->path
.mnt
;
1619 path
->dentry
= dentry
;
1620 if (nd
->flags
& LOOKUP_RCU
) {
1621 unsigned int seq
= nd
->next_seq
;
1622 if (likely(__follow_mount_rcu(nd
, path
)))
1624 // *path and nd->next_seq might've been clobbered
1625 path
->mnt
= nd
->path
.mnt
;
1626 path
->dentry
= dentry
;
1628 if (!try_to_unlazy_next(nd
, dentry
))
1631 ret
= traverse_mounts(path
, &jumped
, &nd
->total_link_count
, nd
->flags
);
1633 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
1636 nd
->state
|= ND_JUMPED
;
1638 if (unlikely(ret
)) {
1640 if (path
->mnt
!= nd
->path
.mnt
)
1647 * This looks up the name in dcache and possibly revalidates the found dentry.
1648 * NULL is returned if the dentry does not exist in the cache.
1650 static struct dentry
*lookup_dcache(const struct qstr
*name
,
1654 struct dentry
*dentry
= d_lookup(dir
, name
);
1656 int error
= d_revalidate(dir
->d_inode
, name
, dentry
, flags
);
1657 if (unlikely(error
<= 0)) {
1659 d_invalidate(dentry
);
1661 return ERR_PTR(error
);
1668 * Parent directory has inode locked exclusive. This is one
1669 * and only case when ->lookup() gets called on non in-lookup
1670 * dentries - as the matter of fact, this only gets called
1671 * when directory is guaranteed to have no in-lookup children
1674 struct dentry
*lookup_one_qstr_excl(const struct qstr
*name
,
1675 struct dentry
*base
,
1678 struct dentry
*dentry
= lookup_dcache(name
, base
, flags
);
1680 struct inode
*dir
= base
->d_inode
;
1685 /* Don't create child dentry for a dead directory. */
1686 if (unlikely(IS_DEADDIR(dir
)))
1687 return ERR_PTR(-ENOENT
);
1689 dentry
= d_alloc(base
, name
);
1690 if (unlikely(!dentry
))
1691 return ERR_PTR(-ENOMEM
);
1693 old
= dir
->i_op
->lookup(dir
, dentry
, flags
);
1694 if (unlikely(old
)) {
1700 EXPORT_SYMBOL(lookup_one_qstr_excl
);
1703 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1704 * @nd: current nameidata
1706 * Do a fast, but racy lookup in the dcache for the given dentry, and
1707 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1708 * found. On error, an ERR_PTR will be returned.
1710 * If this function returns a valid dentry and the walk is no longer
1711 * lazy, the dentry will carry a reference that must later be put. If
1712 * RCU mode is still in force, then this is not the case and the dentry
1713 * must be legitimized before use. If this returns NULL, then the walk
1714 * will no longer be in RCU mode.
1716 static struct dentry
*lookup_fast(struct nameidata
*nd
)
1718 struct dentry
*dentry
, *parent
= nd
->path
.dentry
;
1722 * Rename seqlock is not required here because in the off chance
1723 * of a false negative due to a concurrent rename, the caller is
1724 * going to fall back to non-racy lookup.
1726 if (nd
->flags
& LOOKUP_RCU
) {
1727 dentry
= __d_lookup_rcu(parent
, &nd
->last
, &nd
->next_seq
);
1728 if (unlikely(!dentry
)) {
1729 if (!try_to_unlazy(nd
))
1730 return ERR_PTR(-ECHILD
);
1735 * This sequence count validates that the parent had no
1736 * changes while we did the lookup of the dentry above.
1738 if (read_seqcount_retry(&parent
->d_seq
, nd
->seq
))
1739 return ERR_PTR(-ECHILD
);
1741 status
= d_revalidate(nd
->inode
, &nd
->last
, dentry
, nd
->flags
);
1742 if (likely(status
> 0))
1744 if (!try_to_unlazy_next(nd
, dentry
))
1745 return ERR_PTR(-ECHILD
);
1746 if (status
== -ECHILD
)
1747 /* we'd been told to redo it in non-rcu mode */
1748 status
= d_revalidate(nd
->inode
, &nd
->last
,
1751 dentry
= __d_lookup(parent
, &nd
->last
);
1752 if (unlikely(!dentry
))
1754 status
= d_revalidate(nd
->inode
, &nd
->last
, dentry
, nd
->flags
);
1756 if (unlikely(status
<= 0)) {
1758 d_invalidate(dentry
);
1760 return ERR_PTR(status
);
1765 /* Fast lookup failed, do it the slow way */
1766 static struct dentry
*__lookup_slow(const struct qstr
*name
,
1770 struct dentry
*dentry
, *old
;
1771 struct inode
*inode
= dir
->d_inode
;
1772 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1774 /* Don't go there if it's already dead */
1775 if (unlikely(IS_DEADDIR(inode
)))
1776 return ERR_PTR(-ENOENT
);
1778 dentry
= d_alloc_parallel(dir
, name
, &wq
);
1781 if (unlikely(!d_in_lookup(dentry
))) {
1782 int error
= d_revalidate(inode
, name
, dentry
, flags
);
1783 if (unlikely(error
<= 0)) {
1785 d_invalidate(dentry
);
1790 dentry
= ERR_PTR(error
);
1793 old
= inode
->i_op
->lookup(inode
, dentry
, flags
);
1794 d_lookup_done(dentry
);
1795 if (unlikely(old
)) {
1803 static struct dentry
*lookup_slow(const struct qstr
*name
,
1807 struct inode
*inode
= dir
->d_inode
;
1809 inode_lock_shared(inode
);
1810 res
= __lookup_slow(name
, dir
, flags
);
1811 inode_unlock_shared(inode
);
1815 static inline int may_lookup(struct mnt_idmap
*idmap
,
1816 struct nameidata
*restrict nd
)
1820 mask
= nd
->flags
& LOOKUP_RCU
? MAY_NOT_BLOCK
: 0;
1821 err
= inode_permission(idmap
, nd
->inode
, mask
| MAY_EXEC
);
1825 // If we failed, and we weren't in LOOKUP_RCU, it's final
1826 if (!(nd
->flags
& LOOKUP_RCU
))
1829 // Drop out of RCU mode to make sure it wasn't transient
1830 if (!try_to_unlazy(nd
))
1831 return -ECHILD
; // redo it all non-lazy
1833 if (err
!= -ECHILD
) // hard error
1836 return inode_permission(idmap
, nd
->inode
, MAY_EXEC
);
1839 static int reserve_stack(struct nameidata
*nd
, struct path
*link
)
1841 if (unlikely(nd
->total_link_count
++ >= MAXSYMLINKS
))
1844 if (likely(nd
->depth
!= EMBEDDED_LEVELS
))
1846 if (likely(nd
->stack
!= nd
->internal
))
1848 if (likely(nd_alloc_stack(nd
)))
1851 if (nd
->flags
& LOOKUP_RCU
) {
1852 // we need to grab link before we do unlazy. And we can't skip
1853 // unlazy even if we fail to grab the link - cleanup needs it
1854 bool grabbed_link
= legitimize_path(nd
, link
, nd
->next_seq
);
1856 if (!try_to_unlazy(nd
) || !grabbed_link
)
1859 if (nd_alloc_stack(nd
))
1865 enum {WALK_TRAILING
= 1, WALK_MORE
= 2, WALK_NOFOLLOW
= 4};
1867 static const char *pick_link(struct nameidata
*nd
, struct path
*link
,
1868 struct inode
*inode
, int flags
)
1872 int error
= reserve_stack(nd
, link
);
1874 if (unlikely(error
)) {
1875 if (!(nd
->flags
& LOOKUP_RCU
))
1877 return ERR_PTR(error
);
1879 last
= nd
->stack
+ nd
->depth
++;
1881 clear_delayed_call(&last
->done
);
1882 last
->seq
= nd
->next_seq
;
1884 if (flags
& WALK_TRAILING
) {
1885 error
= may_follow_link(nd
, inode
);
1886 if (unlikely(error
))
1887 return ERR_PTR(error
);
1890 if (unlikely(nd
->flags
& LOOKUP_NO_SYMLINKS
) ||
1891 unlikely(link
->mnt
->mnt_flags
& MNT_NOSYMFOLLOW
))
1892 return ERR_PTR(-ELOOP
);
1894 if (!(nd
->flags
& LOOKUP_RCU
)) {
1895 touch_atime(&last
->link
);
1897 } else if (atime_needs_update(&last
->link
, inode
)) {
1898 if (!try_to_unlazy(nd
))
1899 return ERR_PTR(-ECHILD
);
1900 touch_atime(&last
->link
);
1903 error
= security_inode_follow_link(link
->dentry
, inode
,
1904 nd
->flags
& LOOKUP_RCU
);
1905 if (unlikely(error
))
1906 return ERR_PTR(error
);
1908 res
= READ_ONCE(inode
->i_link
);
1910 const char * (*get
)(struct dentry
*, struct inode
*,
1911 struct delayed_call
*);
1912 get
= inode
->i_op
->get_link
;
1913 if (nd
->flags
& LOOKUP_RCU
) {
1914 res
= get(NULL
, inode
, &last
->done
);
1915 if (res
== ERR_PTR(-ECHILD
) && try_to_unlazy(nd
))
1916 res
= get(link
->dentry
, inode
, &last
->done
);
1918 res
= get(link
->dentry
, inode
, &last
->done
);
1926 error
= nd_jump_root(nd
);
1927 if (unlikely(error
))
1928 return ERR_PTR(error
);
1929 while (unlikely(*++res
== '/'))
1934 all_done
: // pure jump
1940 * Do we need to follow links? We _really_ want to be able
1941 * to do this check without having to look at inode->i_op,
1942 * so we keep a cache of "no, this doesn't need follow_link"
1943 * for the common case.
1945 * NOTE: dentry must be what nd->next_seq had been sampled from.
1947 static const char *step_into(struct nameidata
*nd
, int flags
,
1948 struct dentry
*dentry
)
1951 struct inode
*inode
;
1952 int err
= handle_mounts(nd
, dentry
, &path
);
1955 return ERR_PTR(err
);
1956 inode
= path
.dentry
->d_inode
;
1957 if (likely(!d_is_symlink(path
.dentry
)) ||
1958 ((flags
& WALK_TRAILING
) && !(nd
->flags
& LOOKUP_FOLLOW
)) ||
1959 (flags
& WALK_NOFOLLOW
)) {
1960 /* not a symlink or should not follow */
1961 if (nd
->flags
& LOOKUP_RCU
) {
1962 if (read_seqcount_retry(&path
.dentry
->d_seq
, nd
->next_seq
))
1963 return ERR_PTR(-ECHILD
);
1964 if (unlikely(!inode
))
1965 return ERR_PTR(-ENOENT
);
1967 dput(nd
->path
.dentry
);
1968 if (nd
->path
.mnt
!= path
.mnt
)
1969 mntput(nd
->path
.mnt
);
1973 nd
->seq
= nd
->next_seq
;
1976 if (nd
->flags
& LOOKUP_RCU
) {
1977 /* make sure that d_is_symlink above matches inode */
1978 if (read_seqcount_retry(&path
.dentry
->d_seq
, nd
->next_seq
))
1979 return ERR_PTR(-ECHILD
);
1981 if (path
.mnt
== nd
->path
.mnt
)
1984 return pick_link(nd
, &path
, inode
, flags
);
1987 static struct dentry
*follow_dotdot_rcu(struct nameidata
*nd
)
1989 struct dentry
*parent
, *old
;
1991 if (path_equal(&nd
->path
, &nd
->root
))
1993 if (unlikely(nd
->path
.dentry
== nd
->path
.mnt
->mnt_root
)) {
1996 if (!choose_mountpoint_rcu(real_mount(nd
->path
.mnt
),
1997 &nd
->root
, &path
, &seq
))
1999 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
2000 return ERR_PTR(-ECHILD
);
2002 nd
->inode
= path
.dentry
->d_inode
;
2004 // makes sure that non-RCU pathwalk could reach this state
2005 if (read_seqretry(&mount_lock
, nd
->m_seq
))
2006 return ERR_PTR(-ECHILD
);
2007 /* we know that mountpoint was pinned */
2009 old
= nd
->path
.dentry
;
2010 parent
= old
->d_parent
;
2011 nd
->next_seq
= read_seqcount_begin(&parent
->d_seq
);
2012 // makes sure that non-RCU pathwalk could reach this state
2013 if (read_seqcount_retry(&old
->d_seq
, nd
->seq
))
2014 return ERR_PTR(-ECHILD
);
2015 if (unlikely(!path_connected(nd
->path
.mnt
, parent
)))
2016 return ERR_PTR(-ECHILD
);
2019 if (read_seqretry(&mount_lock
, nd
->m_seq
))
2020 return ERR_PTR(-ECHILD
);
2021 if (unlikely(nd
->flags
& LOOKUP_BENEATH
))
2022 return ERR_PTR(-ECHILD
);
2023 nd
->next_seq
= nd
->seq
;
2024 return nd
->path
.dentry
;
2027 static struct dentry
*follow_dotdot(struct nameidata
*nd
)
2029 struct dentry
*parent
;
2031 if (path_equal(&nd
->path
, &nd
->root
))
2033 if (unlikely(nd
->path
.dentry
== nd
->path
.mnt
->mnt_root
)) {
2036 if (!choose_mountpoint(real_mount(nd
->path
.mnt
),
2039 path_put(&nd
->path
);
2041 nd
->inode
= path
.dentry
->d_inode
;
2042 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
2043 return ERR_PTR(-EXDEV
);
2045 /* rare case of legitimate dget_parent()... */
2046 parent
= dget_parent(nd
->path
.dentry
);
2047 if (unlikely(!path_connected(nd
->path
.mnt
, parent
))) {
2049 return ERR_PTR(-ENOENT
);
2054 if (unlikely(nd
->flags
& LOOKUP_BENEATH
))
2055 return ERR_PTR(-EXDEV
);
2056 return dget(nd
->path
.dentry
);
2059 static const char *handle_dots(struct nameidata
*nd
, int type
)
2061 if (type
== LAST_DOTDOT
) {
2062 const char *error
= NULL
;
2063 struct dentry
*parent
;
2065 if (!nd
->root
.mnt
) {
2066 error
= ERR_PTR(set_root(nd
));
2070 if (nd
->flags
& LOOKUP_RCU
)
2071 parent
= follow_dotdot_rcu(nd
);
2073 parent
= follow_dotdot(nd
);
2075 return ERR_CAST(parent
);
2076 error
= step_into(nd
, WALK_NOFOLLOW
, parent
);
2077 if (unlikely(error
))
2080 if (unlikely(nd
->flags
& LOOKUP_IS_SCOPED
)) {
2082 * If there was a racing rename or mount along our
2083 * path, then we can't be sure that ".." hasn't jumped
2084 * above nd->root (and so userspace should retry or use
2088 if (__read_seqcount_retry(&mount_lock
.seqcount
, nd
->m_seq
))
2089 return ERR_PTR(-EAGAIN
);
2090 if (__read_seqcount_retry(&rename_lock
.seqcount
, nd
->r_seq
))
2091 return ERR_PTR(-EAGAIN
);
2097 static const char *walk_component(struct nameidata
*nd
, int flags
)
2099 struct dentry
*dentry
;
2101 * "." and ".." are special - ".." especially so because it has
2102 * to be able to know about the current root directory and
2103 * parent relationships.
2105 if (unlikely(nd
->last_type
!= LAST_NORM
)) {
2106 if (!(flags
& WALK_MORE
) && nd
->depth
)
2108 return handle_dots(nd
, nd
->last_type
);
2110 dentry
= lookup_fast(nd
);
2112 return ERR_CAST(dentry
);
2113 if (unlikely(!dentry
)) {
2114 dentry
= lookup_slow(&nd
->last
, nd
->path
.dentry
, nd
->flags
);
2116 return ERR_CAST(dentry
);
2118 if (!(flags
& WALK_MORE
) && nd
->depth
)
2120 return step_into(nd
, flags
, dentry
);
2124 * We can do the critical dentry name comparison and hashing
2125 * operations one word at a time, but we are limited to:
2127 * - Architectures with fast unaligned word accesses. We could
2128 * do a "get_unaligned()" if this helps and is sufficiently
2131 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2132 * do not trap on the (extremely unlikely) case of a page
2133 * crossing operation.
2135 * - Furthermore, we need an efficient 64-bit compile for the
2136 * 64-bit case in order to generate the "number of bytes in
2137 * the final mask". Again, that could be replaced with a
2138 * efficient population count instruction or similar.
2140 #ifdef CONFIG_DCACHE_WORD_ACCESS
2142 #include <asm/word-at-a-time.h>
2146 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2148 #elif defined(CONFIG_64BIT)
2150 * Register pressure in the mixing function is an issue, particularly
2151 * on 32-bit x86, but almost any function requires one state value and
2152 * one temporary. Instead, use a function designed for two state values
2153 * and no temporaries.
2155 * This function cannot create a collision in only two iterations, so
2156 * we have two iterations to achieve avalanche. In those two iterations,
2157 * we have six layers of mixing, which is enough to spread one bit's
2158 * influence out to 2^6 = 64 state bits.
2160 * Rotate constants are scored by considering either 64 one-bit input
2161 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2162 * probability of that delta causing a change to each of the 128 output
2163 * bits, using a sample of random initial states.
2165 * The Shannon entropy of the computed probabilities is then summed
2166 * to produce a score. Ideally, any input change has a 50% chance of
2167 * toggling any given output bit.
2169 * Mixing scores (in bits) for (12,45):
2170 * Input delta: 1-bit 2-bit
2171 * 1 round: 713.3 42542.6
2172 * 2 rounds: 2753.7 140389.8
2173 * 3 rounds: 5954.1 233458.2
2174 * 4 rounds: 7862.6 256672.2
2175 * Perfect: 8192 258048
2176 * (64*128) (64*63/2 * 128)
2178 #define HASH_MIX(x, y, a) \
2180 y ^= x, x = rol64(x,12),\
2181 x += y, y = rol64(y,45),\
2185 * Fold two longs into one 32-bit hash value. This must be fast, but
2186 * latency isn't quite as critical, as there is a fair bit of additional
2187 * work done before the hash value is used.
2189 static inline unsigned int fold_hash(unsigned long x
, unsigned long y
)
2191 y
^= x
* GOLDEN_RATIO_64
;
2192 y
*= GOLDEN_RATIO_64
;
2196 #else /* 32-bit case */
2199 * Mixing scores (in bits) for (7,20):
2200 * Input delta: 1-bit 2-bit
2201 * 1 round: 330.3 9201.6
2202 * 2 rounds: 1246.4 25475.4
2203 * 3 rounds: 1907.1 31295.1
2204 * 4 rounds: 2042.3 31718.6
2205 * Perfect: 2048 31744
2206 * (32*64) (32*31/2 * 64)
2208 #define HASH_MIX(x, y, a) \
2210 y ^= x, x = rol32(x, 7),\
2211 x += y, y = rol32(y,20),\
2214 static inline unsigned int fold_hash(unsigned long x
, unsigned long y
)
2216 /* Use arch-optimized multiply if one exists */
2217 return __hash_32(y
^ __hash_32(x
));
2223 * Return the hash of a string of known length. This is carfully
2224 * designed to match hash_name(), which is the more critical function.
2225 * In particular, we must end by hashing a final word containing 0..7
2226 * payload bytes, to match the way that hash_name() iterates until it
2227 * finds the delimiter after the name.
2229 unsigned int full_name_hash(const void *salt
, const char *name
, unsigned int len
)
2231 unsigned long a
, x
= 0, y
= (unsigned long)salt
;
2236 a
= load_unaligned_zeropad(name
);
2237 if (len
< sizeof(unsigned long))
2240 name
+= sizeof(unsigned long);
2241 len
-= sizeof(unsigned long);
2243 x
^= a
& bytemask_from_count(len
);
2245 return fold_hash(x
, y
);
2247 EXPORT_SYMBOL(full_name_hash
);
2249 /* Return the "hash_len" (hash and length) of a null-terminated string */
2250 u64
hashlen_string(const void *salt
, const char *name
)
2252 unsigned long a
= 0, x
= 0, y
= (unsigned long)salt
;
2253 unsigned long adata
, mask
, len
;
2254 const struct word_at_a_time constants
= WORD_AT_A_TIME_CONSTANTS
;
2261 len
+= sizeof(unsigned long);
2263 a
= load_unaligned_zeropad(name
+len
);
2264 } while (!has_zero(a
, &adata
, &constants
));
2266 adata
= prep_zero_mask(a
, adata
, &constants
);
2267 mask
= create_zero_mask(adata
);
2268 x
^= a
& zero_bytemask(mask
);
2270 return hashlen_create(fold_hash(x
, y
), len
+ find_zero(mask
));
2272 EXPORT_SYMBOL(hashlen_string
);
2275 * Calculate the length and hash of the path component, and
2276 * return the length as the result.
2278 static inline const char *hash_name(struct nameidata
*nd
,
2280 unsigned long *lastword
)
2282 unsigned long a
, b
, x
, y
= (unsigned long)nd
->path
.dentry
;
2283 unsigned long adata
, bdata
, mask
, len
;
2284 const struct word_at_a_time constants
= WORD_AT_A_TIME_CONSTANTS
;
2287 * The first iteration is special, because it can result in
2288 * '.' and '..' and has no mixing other than the final fold.
2290 a
= load_unaligned_zeropad(name
);
2291 b
= a
^ REPEAT_BYTE('/');
2292 if (has_zero(a
, &adata
, &constants
) | has_zero(b
, &bdata
, &constants
)) {
2293 adata
= prep_zero_mask(a
, adata
, &constants
);
2294 bdata
= prep_zero_mask(b
, bdata
, &constants
);
2295 mask
= create_zero_mask(adata
| bdata
);
2296 a
&= zero_bytemask(mask
);
2298 len
= find_zero(mask
);
2299 nd
->last
.hash
= fold_hash(a
, y
);
2308 len
+= sizeof(unsigned long);
2309 a
= load_unaligned_zeropad(name
+len
);
2310 b
= a
^ REPEAT_BYTE('/');
2311 } while (!(has_zero(a
, &adata
, &constants
) | has_zero(b
, &bdata
, &constants
)));
2313 adata
= prep_zero_mask(a
, adata
, &constants
);
2314 bdata
= prep_zero_mask(b
, bdata
, &constants
);
2315 mask
= create_zero_mask(adata
| bdata
);
2316 a
&= zero_bytemask(mask
);
2318 len
+= find_zero(mask
);
2319 *lastword
= 0; // Multi-word components cannot be DOT or DOTDOT
2321 nd
->last
.hash
= fold_hash(x
, y
);
2327 * Note that the 'last' word is always zero-masked, but
2328 * was loaded as a possibly big-endian word.
2331 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2332 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2335 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2337 /* Return the hash of a string of known length */
2338 unsigned int full_name_hash(const void *salt
, const char *name
, unsigned int len
)
2340 unsigned long hash
= init_name_hash(salt
);
2342 hash
= partial_name_hash((unsigned char)*name
++, hash
);
2343 return end_name_hash(hash
);
2345 EXPORT_SYMBOL(full_name_hash
);
2347 /* Return the "hash_len" (hash and length) of a null-terminated string */
2348 u64
hashlen_string(const void *salt
, const char *name
)
2350 unsigned long hash
= init_name_hash(salt
);
2351 unsigned long len
= 0, c
;
2353 c
= (unsigned char)*name
;
2356 hash
= partial_name_hash(c
, hash
);
2357 c
= (unsigned char)name
[len
];
2359 return hashlen_create(end_name_hash(hash
), len
);
2361 EXPORT_SYMBOL(hashlen_string
);
2364 * We know there's a real path component here of at least
2367 static inline const char *hash_name(struct nameidata
*nd
, const char *name
, unsigned long *lastword
)
2369 unsigned long hash
= init_name_hash(nd
->path
.dentry
);
2370 unsigned long len
= 0, c
, last
= 0;
2372 c
= (unsigned char)*name
;
2374 last
= (last
<< 8) + c
;
2376 hash
= partial_name_hash(c
, hash
);
2377 c
= (unsigned char)name
[len
];
2378 } while (c
&& c
!= '/');
2380 // This is reliable for DOT or DOTDOT, since the component
2381 // cannot contain NUL characters - top bits being zero means
2382 // we cannot have had any other pathnames.
2384 nd
->last
.hash
= end_name_hash(hash
);
2391 #ifndef LAST_WORD_IS_DOT
2392 #define LAST_WORD_IS_DOT 0x2e
2393 #define LAST_WORD_IS_DOTDOT 0x2e2e
2398 * This is the basic name resolution function, turning a pathname into
2399 * the final dentry. We expect 'base' to be positive and a directory.
2401 * Returns 0 and nd will have valid dentry and mnt on success.
2402 * Returns error and drops reference to input namei data on failure.
2404 static int link_path_walk(const char *name
, struct nameidata
*nd
)
2406 int depth
= 0; // depth <= nd->depth
2409 nd
->last_type
= LAST_ROOT
;
2410 nd
->flags
|= LOOKUP_PARENT
;
2412 return PTR_ERR(name
);
2416 nd
->dir_mode
= 0; // short-circuit the 'hardening' idiocy
2420 /* At this point we know we have a real path component. */
2422 struct mnt_idmap
*idmap
;
2424 unsigned long lastword
;
2426 idmap
= mnt_idmap(nd
->path
.mnt
);
2427 err
= may_lookup(idmap
, nd
);
2431 nd
->last
.name
= name
;
2432 name
= hash_name(nd
, name
, &lastword
);
2435 case LAST_WORD_IS_DOTDOT
:
2436 nd
->last_type
= LAST_DOTDOT
;
2437 nd
->state
|= ND_JUMPED
;
2440 case LAST_WORD_IS_DOT
:
2441 nd
->last_type
= LAST_DOT
;
2445 nd
->last_type
= LAST_NORM
;
2446 nd
->state
&= ~ND_JUMPED
;
2448 struct dentry
*parent
= nd
->path
.dentry
;
2449 if (unlikely(parent
->d_flags
& DCACHE_OP_HASH
)) {
2450 err
= parent
->d_op
->d_hash(parent
, &nd
->last
);
2459 * If it wasn't NUL, we know it was '/'. Skip that
2460 * slash, and continue until no more slashes.
2464 } while (unlikely(*name
== '/'));
2465 if (unlikely(!*name
)) {
2467 /* pathname or trailing symlink, done */
2469 nd
->dir_vfsuid
= i_uid_into_vfsuid(idmap
, nd
->inode
);
2470 nd
->dir_mode
= nd
->inode
->i_mode
;
2471 nd
->flags
&= ~LOOKUP_PARENT
;
2474 /* last component of nested symlink */
2475 name
= nd
->stack
[--depth
].name
;
2476 link
= walk_component(nd
, 0);
2478 /* not the last component */
2479 link
= walk_component(nd
, WALK_MORE
);
2481 if (unlikely(link
)) {
2483 return PTR_ERR(link
);
2484 /* a symlink to follow */
2485 nd
->stack
[depth
++].name
= name
;
2489 if (unlikely(!d_can_lookup(nd
->path
.dentry
))) {
2490 if (nd
->flags
& LOOKUP_RCU
) {
2491 if (!try_to_unlazy(nd
))
2499 /* must be paired with terminate_walk() */
2500 static const char *path_init(struct nameidata
*nd
, unsigned flags
)
2503 const char *s
= nd
->pathname
;
2505 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2506 if ((flags
& (LOOKUP_RCU
| LOOKUP_CACHED
)) == LOOKUP_CACHED
)
2507 return ERR_PTR(-EAGAIN
);
2510 flags
&= ~LOOKUP_RCU
;
2511 if (flags
& LOOKUP_RCU
)
2514 nd
->seq
= nd
->next_seq
= 0;
2517 nd
->state
|= ND_JUMPED
;
2519 nd
->m_seq
= __read_seqcount_begin(&mount_lock
.seqcount
);
2520 nd
->r_seq
= __read_seqcount_begin(&rename_lock
.seqcount
);
2523 if (nd
->state
& ND_ROOT_PRESET
) {
2524 struct dentry
*root
= nd
->root
.dentry
;
2525 struct inode
*inode
= root
->d_inode
;
2526 if (*s
&& unlikely(!d_can_lookup(root
)))
2527 return ERR_PTR(-ENOTDIR
);
2528 nd
->path
= nd
->root
;
2530 if (flags
& LOOKUP_RCU
) {
2531 nd
->seq
= read_seqcount_begin(&nd
->path
.dentry
->d_seq
);
2532 nd
->root_seq
= nd
->seq
;
2534 path_get(&nd
->path
);
2539 nd
->root
.mnt
= NULL
;
2541 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2542 if (*s
== '/' && !(flags
& LOOKUP_IN_ROOT
)) {
2543 error
= nd_jump_root(nd
);
2544 if (unlikely(error
))
2545 return ERR_PTR(error
);
2549 /* Relative pathname -- get the starting-point it is relative to. */
2550 if (nd
->dfd
== AT_FDCWD
) {
2551 if (flags
& LOOKUP_RCU
) {
2552 struct fs_struct
*fs
= current
->fs
;
2556 seq
= read_seqcount_begin(&fs
->seq
);
2558 nd
->inode
= nd
->path
.dentry
->d_inode
;
2559 nd
->seq
= __read_seqcount_begin(&nd
->path
.dentry
->d_seq
);
2560 } while (read_seqcount_retry(&fs
->seq
, seq
));
2562 get_fs_pwd(current
->fs
, &nd
->path
);
2563 nd
->inode
= nd
->path
.dentry
->d_inode
;
2566 /* Caller must check execute permissions on the starting path component */
2567 CLASS(fd_raw
, f
)(nd
->dfd
);
2568 struct dentry
*dentry
;
2571 return ERR_PTR(-EBADF
);
2573 if (flags
& LOOKUP_LINKAT_EMPTY
) {
2574 if (fd_file(f
)->f_cred
!= current_cred() &&
2575 !ns_capable(fd_file(f
)->f_cred
->user_ns
, CAP_DAC_READ_SEARCH
))
2576 return ERR_PTR(-ENOENT
);
2579 dentry
= fd_file(f
)->f_path
.dentry
;
2581 if (*s
&& unlikely(!d_can_lookup(dentry
)))
2582 return ERR_PTR(-ENOTDIR
);
2584 nd
->path
= fd_file(f
)->f_path
;
2585 if (flags
& LOOKUP_RCU
) {
2586 nd
->inode
= nd
->path
.dentry
->d_inode
;
2587 nd
->seq
= read_seqcount_begin(&nd
->path
.dentry
->d_seq
);
2589 path_get(&nd
->path
);
2590 nd
->inode
= nd
->path
.dentry
->d_inode
;
2594 /* For scoped-lookups we need to set the root to the dirfd as well. */
2595 if (flags
& LOOKUP_IS_SCOPED
) {
2596 nd
->root
= nd
->path
;
2597 if (flags
& LOOKUP_RCU
) {
2598 nd
->root_seq
= nd
->seq
;
2600 path_get(&nd
->root
);
2601 nd
->state
|= ND_ROOT_GRABBED
;
2607 static inline const char *lookup_last(struct nameidata
*nd
)
2609 if (nd
->last_type
== LAST_NORM
&& nd
->last
.name
[nd
->last
.len
])
2610 nd
->flags
|= LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
;
2612 return walk_component(nd
, WALK_TRAILING
);
2615 static int handle_lookup_down(struct nameidata
*nd
)
2617 if (!(nd
->flags
& LOOKUP_RCU
))
2618 dget(nd
->path
.dentry
);
2619 nd
->next_seq
= nd
->seq
;
2620 return PTR_ERR(step_into(nd
, WALK_NOFOLLOW
, nd
->path
.dentry
));
2623 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2624 static int path_lookupat(struct nameidata
*nd
, unsigned flags
, struct path
*path
)
2626 const char *s
= path_init(nd
, flags
);
2629 if (unlikely(flags
& LOOKUP_DOWN
) && !IS_ERR(s
)) {
2630 err
= handle_lookup_down(nd
);
2631 if (unlikely(err
< 0))
2635 while (!(err
= link_path_walk(s
, nd
)) &&
2636 (s
= lookup_last(nd
)) != NULL
)
2638 if (!err
&& unlikely(nd
->flags
& LOOKUP_MOUNTPOINT
)) {
2639 err
= handle_lookup_down(nd
);
2640 nd
->state
&= ~ND_JUMPED
; // no d_weak_revalidate(), please...
2643 err
= complete_walk(nd
);
2645 if (!err
&& nd
->flags
& LOOKUP_DIRECTORY
)
2646 if (!d_can_lookup(nd
->path
.dentry
))
2650 nd
->path
.mnt
= NULL
;
2651 nd
->path
.dentry
= NULL
;
2657 int filename_lookup(int dfd
, struct filename
*name
, unsigned flags
,
2658 struct path
*path
, struct path
*root
)
2661 struct nameidata nd
;
2663 return PTR_ERR(name
);
2664 set_nameidata(&nd
, dfd
, name
, root
);
2665 retval
= path_lookupat(&nd
, flags
| LOOKUP_RCU
, path
);
2666 if (unlikely(retval
== -ECHILD
))
2667 retval
= path_lookupat(&nd
, flags
, path
);
2668 if (unlikely(retval
== -ESTALE
))
2669 retval
= path_lookupat(&nd
, flags
| LOOKUP_REVAL
, path
);
2671 if (likely(!retval
))
2672 audit_inode(name
, path
->dentry
,
2673 flags
& LOOKUP_MOUNTPOINT
? AUDIT_INODE_NOEVAL
: 0);
2674 restore_nameidata();
2678 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2679 static int path_parentat(struct nameidata
*nd
, unsigned flags
,
2680 struct path
*parent
)
2682 const char *s
= path_init(nd
, flags
);
2683 int err
= link_path_walk(s
, nd
);
2685 err
= complete_walk(nd
);
2688 nd
->path
.mnt
= NULL
;
2689 nd
->path
.dentry
= NULL
;
2695 /* Note: this does not consume "name" */
2696 static int __filename_parentat(int dfd
, struct filename
*name
,
2697 unsigned int flags
, struct path
*parent
,
2698 struct qstr
*last
, int *type
,
2699 const struct path
*root
)
2702 struct nameidata nd
;
2705 return PTR_ERR(name
);
2706 set_nameidata(&nd
, dfd
, name
, root
);
2707 retval
= path_parentat(&nd
, flags
| LOOKUP_RCU
, parent
);
2708 if (unlikely(retval
== -ECHILD
))
2709 retval
= path_parentat(&nd
, flags
, parent
);
2710 if (unlikely(retval
== -ESTALE
))
2711 retval
= path_parentat(&nd
, flags
| LOOKUP_REVAL
, parent
);
2712 if (likely(!retval
)) {
2714 *type
= nd
.last_type
;
2715 audit_inode(name
, parent
->dentry
, AUDIT_INODE_PARENT
);
2717 restore_nameidata();
2721 static int filename_parentat(int dfd
, struct filename
*name
,
2722 unsigned int flags
, struct path
*parent
,
2723 struct qstr
*last
, int *type
)
2725 return __filename_parentat(dfd
, name
, flags
, parent
, last
, type
, NULL
);
2728 /* does lookup, returns the object with parent locked */
2729 static struct dentry
*__kern_path_locked(int dfd
, struct filename
*name
, struct path
*path
)
2735 error
= filename_parentat(dfd
, name
, 0, path
, &last
, &type
);
2737 return ERR_PTR(error
);
2738 if (unlikely(type
!= LAST_NORM
)) {
2740 return ERR_PTR(-EINVAL
);
2742 inode_lock_nested(path
->dentry
->d_inode
, I_MUTEX_PARENT
);
2743 d
= lookup_one_qstr_excl(&last
, path
->dentry
, 0);
2745 inode_unlock(path
->dentry
->d_inode
);
2751 struct dentry
*kern_path_locked(const char *name
, struct path
*path
)
2753 struct filename
*filename
= getname_kernel(name
);
2754 struct dentry
*res
= __kern_path_locked(AT_FDCWD
, filename
, path
);
2760 struct dentry
*user_path_locked_at(int dfd
, const char __user
*name
, struct path
*path
)
2762 struct filename
*filename
= getname(name
);
2763 struct dentry
*res
= __kern_path_locked(dfd
, filename
, path
);
2768 EXPORT_SYMBOL(user_path_locked_at
);
2770 int kern_path(const char *name
, unsigned int flags
, struct path
*path
)
2772 struct filename
*filename
= getname_kernel(name
);
2773 int ret
= filename_lookup(AT_FDCWD
, filename
, flags
, path
, NULL
);
2779 EXPORT_SYMBOL(kern_path
);
2782 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2783 * @filename: filename structure
2784 * @flags: lookup flags
2785 * @parent: pointer to struct path to fill
2786 * @last: last component
2787 * @type: type of the last component
2788 * @root: pointer to struct path of the base directory
2790 int vfs_path_parent_lookup(struct filename
*filename
, unsigned int flags
,
2791 struct path
*parent
, struct qstr
*last
, int *type
,
2792 const struct path
*root
)
2794 return __filename_parentat(AT_FDCWD
, filename
, flags
, parent
, last
,
2797 EXPORT_SYMBOL(vfs_path_parent_lookup
);
2800 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2801 * @dentry: pointer to dentry of the base directory
2802 * @mnt: pointer to vfs mount of the base directory
2803 * @name: pointer to file name
2804 * @flags: lookup flags
2805 * @path: pointer to struct path to fill
2807 int vfs_path_lookup(struct dentry
*dentry
, struct vfsmount
*mnt
,
2808 const char *name
, unsigned int flags
,
2811 struct filename
*filename
;
2812 struct path root
= {.mnt
= mnt
, .dentry
= dentry
};
2815 filename
= getname_kernel(name
);
2816 /* the first argument of filename_lookup() is ignored with root */
2817 ret
= filename_lookup(AT_FDCWD
, filename
, flags
, path
, &root
);
2821 EXPORT_SYMBOL(vfs_path_lookup
);
2823 static int lookup_one_common(struct mnt_idmap
*idmap
,
2824 const char *name
, struct dentry
*base
, int len
,
2829 this->hash
= full_name_hash(base
, name
, len
);
2833 if (is_dot_dotdot(name
, len
))
2837 unsigned int c
= *(const unsigned char *)name
++;
2838 if (c
== '/' || c
== '\0')
2842 * See if the low-level filesystem might want
2843 * to use its own hash..
2845 if (base
->d_flags
& DCACHE_OP_HASH
) {
2846 int err
= base
->d_op
->d_hash(base
, this);
2851 return inode_permission(idmap
, base
->d_inode
, MAY_EXEC
);
2855 * try_lookup_one_len - filesystem helper to lookup single pathname component
2856 * @name: pathname component to lookup
2857 * @base: base directory to lookup from
2858 * @len: maximum length @len should be interpreted to
2860 * Look up a dentry by name in the dcache, returning NULL if it does not
2861 * currently exist. The function does not try to create a dentry.
2863 * Note that this routine is purely a helper for filesystem usage and should
2864 * not be called by generic code.
2866 * The caller must hold base->i_mutex.
2868 struct dentry
*try_lookup_one_len(const char *name
, struct dentry
*base
, int len
)
2873 WARN_ON_ONCE(!inode_is_locked(base
->d_inode
));
2875 err
= lookup_one_common(&nop_mnt_idmap
, name
, base
, len
, &this);
2877 return ERR_PTR(err
);
2879 return lookup_dcache(&this, base
, 0);
2881 EXPORT_SYMBOL(try_lookup_one_len
);
2884 * lookup_one_len - filesystem helper to lookup single pathname component
2885 * @name: pathname component to lookup
2886 * @base: base directory to lookup from
2887 * @len: maximum length @len should be interpreted to
2889 * Note that this routine is purely a helper for filesystem usage and should
2890 * not be called by generic code.
2892 * The caller must hold base->i_mutex.
2894 struct dentry
*lookup_one_len(const char *name
, struct dentry
*base
, int len
)
2896 struct dentry
*dentry
;
2900 WARN_ON_ONCE(!inode_is_locked(base
->d_inode
));
2902 err
= lookup_one_common(&nop_mnt_idmap
, name
, base
, len
, &this);
2904 return ERR_PTR(err
);
2906 dentry
= lookup_dcache(&this, base
, 0);
2907 return dentry
? dentry
: __lookup_slow(&this, base
, 0);
2909 EXPORT_SYMBOL(lookup_one_len
);
2912 * lookup_one - filesystem helper to lookup single pathname component
2913 * @idmap: idmap of the mount the lookup is performed from
2914 * @name: pathname component to lookup
2915 * @base: base directory to lookup from
2916 * @len: maximum length @len should be interpreted to
2918 * Note that this routine is purely a helper for filesystem usage and should
2919 * not be called by generic code.
2921 * The caller must hold base->i_mutex.
2923 struct dentry
*lookup_one(struct mnt_idmap
*idmap
, const char *name
,
2924 struct dentry
*base
, int len
)
2926 struct dentry
*dentry
;
2930 WARN_ON_ONCE(!inode_is_locked(base
->d_inode
));
2932 err
= lookup_one_common(idmap
, name
, base
, len
, &this);
2934 return ERR_PTR(err
);
2936 dentry
= lookup_dcache(&this, base
, 0);
2937 return dentry
? dentry
: __lookup_slow(&this, base
, 0);
2939 EXPORT_SYMBOL(lookup_one
);
2942 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2943 * @idmap: idmap of the mount the lookup is performed from
2944 * @name: pathname component to lookup
2945 * @base: base directory to lookup from
2946 * @len: maximum length @len should be interpreted to
2948 * Note that this routine is purely a helper for filesystem usage and should
2949 * not be called by generic code.
2951 * Unlike lookup_one_len, it should be called without the parent
2952 * i_mutex held, and will take the i_mutex itself if necessary.
2954 struct dentry
*lookup_one_unlocked(struct mnt_idmap
*idmap
,
2955 const char *name
, struct dentry
*base
,
2962 err
= lookup_one_common(idmap
, name
, base
, len
, &this);
2964 return ERR_PTR(err
);
2966 ret
= lookup_dcache(&this, base
, 0);
2968 ret
= lookup_slow(&this, base
, 0);
2971 EXPORT_SYMBOL(lookup_one_unlocked
);
2974 * lookup_one_positive_unlocked - filesystem helper to lookup single
2975 * pathname component
2976 * @idmap: idmap of the mount the lookup is performed from
2977 * @name: pathname component to lookup
2978 * @base: base directory to lookup from
2979 * @len: maximum length @len should be interpreted to
2981 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2982 * known positive or ERR_PTR(). This is what most of the users want.
2984 * Note that pinned negative with unlocked parent _can_ become positive at any
2985 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2986 * positives have >d_inode stable, so this one avoids such problems.
2988 * Note that this routine is purely a helper for filesystem usage and should
2989 * not be called by generic code.
2991 * The helper should be called without i_mutex held.
2993 struct dentry
*lookup_one_positive_unlocked(struct mnt_idmap
*idmap
,
2995 struct dentry
*base
, int len
)
2997 struct dentry
*ret
= lookup_one_unlocked(idmap
, name
, base
, len
);
2999 if (!IS_ERR(ret
) && d_flags_negative(smp_load_acquire(&ret
->d_flags
))) {
3001 ret
= ERR_PTR(-ENOENT
);
3005 EXPORT_SYMBOL(lookup_one_positive_unlocked
);
3008 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3009 * @name: pathname component to lookup
3010 * @base: base directory to lookup from
3011 * @len: maximum length @len should be interpreted to
3013 * Note that this routine is purely a helper for filesystem usage and should
3014 * not be called by generic code.
3016 * Unlike lookup_one_len, it should be called without the parent
3017 * i_mutex held, and will take the i_mutex itself if necessary.
3019 struct dentry
*lookup_one_len_unlocked(const char *name
,
3020 struct dentry
*base
, int len
)
3022 return lookup_one_unlocked(&nop_mnt_idmap
, name
, base
, len
);
3024 EXPORT_SYMBOL(lookup_one_len_unlocked
);
3027 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3028 * on negatives. Returns known positive or ERR_PTR(); that's what
3029 * most of the users want. Note that pinned negative with unlocked parent
3030 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3031 * need to be very careful; pinned positives have ->d_inode stable, so
3032 * this one avoids such problems.
3034 struct dentry
*lookup_positive_unlocked(const char *name
,
3035 struct dentry
*base
, int len
)
3037 return lookup_one_positive_unlocked(&nop_mnt_idmap
, name
, base
, len
);
3039 EXPORT_SYMBOL(lookup_positive_unlocked
);
3041 #ifdef CONFIG_UNIX98_PTYS
3042 int path_pts(struct path
*path
)
3044 /* Find something mounted on "pts" in the same directory as
3047 struct dentry
*parent
= dget_parent(path
->dentry
);
3048 struct dentry
*child
;
3049 struct qstr
this = QSTR_INIT("pts", 3);
3051 if (unlikely(!path_connected(path
->mnt
, parent
))) {
3056 path
->dentry
= parent
;
3057 child
= d_hash_and_lookup(parent
, &this);
3058 if (IS_ERR_OR_NULL(child
))
3061 path
->dentry
= child
;
3063 follow_down(path
, 0);
3068 int user_path_at(int dfd
, const char __user
*name
, unsigned flags
,
3071 struct filename
*filename
= getname_flags(name
, flags
);
3072 int ret
= filename_lookup(dfd
, filename
, flags
, path
, NULL
);
3077 EXPORT_SYMBOL(user_path_at
);
3079 int __check_sticky(struct mnt_idmap
*idmap
, struct inode
*dir
,
3080 struct inode
*inode
)
3082 kuid_t fsuid
= current_fsuid();
3084 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap
, inode
), fsuid
))
3086 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap
, dir
), fsuid
))
3088 return !capable_wrt_inode_uidgid(idmap
, inode
, CAP_FOWNER
);
3090 EXPORT_SYMBOL(__check_sticky
);
3093 * Check whether we can remove a link victim from directory dir, check
3094 * whether the type of victim is right.
3095 * 1. We can't do it if dir is read-only (done in permission())
3096 * 2. We should have write and exec permissions on dir
3097 * 3. We can't remove anything from append-only dir
3098 * 4. We can't do anything with immutable dir (done in permission())
3099 * 5. If the sticky bit on dir is set we should either
3100 * a. be owner of dir, or
3101 * b. be owner of victim, or
3102 * c. have CAP_FOWNER capability
3103 * 6. If the victim is append-only or immutable we can't do antyhing with
3104 * links pointing to it.
3105 * 7. If the victim has an unknown uid or gid we can't change the inode.
3106 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3107 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3108 * 10. We can't remove a root or mountpoint.
3109 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3110 * nfs_async_unlink().
3112 static int may_delete(struct mnt_idmap
*idmap
, struct inode
*dir
,
3113 struct dentry
*victim
, bool isdir
)
3115 struct inode
*inode
= d_backing_inode(victim
);
3118 if (d_is_negative(victim
))
3122 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
3124 /* Inode writeback is not safe when the uid or gid are invalid. */
3125 if (!vfsuid_valid(i_uid_into_vfsuid(idmap
, inode
)) ||
3126 !vfsgid_valid(i_gid_into_vfsgid(idmap
, inode
)))
3129 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
3131 error
= inode_permission(idmap
, dir
, MAY_WRITE
| MAY_EXEC
);
3137 if (check_sticky(idmap
, dir
, inode
) || IS_APPEND(inode
) ||
3138 IS_IMMUTABLE(inode
) || IS_SWAPFILE(inode
) ||
3139 HAS_UNMAPPED_ID(idmap
, inode
))
3142 if (!d_is_dir(victim
))
3144 if (IS_ROOT(victim
))
3146 } else if (d_is_dir(victim
))
3148 if (IS_DEADDIR(dir
))
3150 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
3155 /* Check whether we can create an object with dentry child in directory
3157 * 1. We can't do it if child already exists (open has special treatment for
3158 * this case, but since we are inlined it's OK)
3159 * 2. We can't do it if dir is read-only (done in permission())
3160 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3161 * 4. We should have write and exec permissions on dir
3162 * 5. We can't do it if dir is immutable (done in permission())
3164 static inline int may_create(struct mnt_idmap
*idmap
,
3165 struct inode
*dir
, struct dentry
*child
)
3167 audit_inode_child(dir
, child
, AUDIT_TYPE_CHILD_CREATE
);
3170 if (IS_DEADDIR(dir
))
3172 if (!fsuidgid_has_mapping(dir
->i_sb
, idmap
))
3175 return inode_permission(idmap
, dir
, MAY_WRITE
| MAY_EXEC
);
3178 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3179 static struct dentry
*lock_two_directories(struct dentry
*p1
, struct dentry
*p2
)
3181 struct dentry
*p
= p1
, *q
= p2
, *r
;
3183 while ((r
= p
->d_parent
) != p2
&& r
!= p
)
3186 // p is a child of p2 and an ancestor of p1 or p1 itself
3187 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT
);
3188 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT2
);
3191 // p is the root of connected component that contains p1
3192 // p2 does not occur on the path from p to p1
3193 while ((r
= q
->d_parent
) != p1
&& r
!= p
&& r
!= q
)
3196 // q is a child of p1 and an ancestor of p2 or p2 itself
3197 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT
);
3198 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT2
);
3200 } else if (likely(r
== p
)) {
3201 // both p2 and p1 are descendents of p
3202 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT
);
3203 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT2
);
3205 } else { // no common ancestor at the time we'd been called
3206 mutex_unlock(&p1
->d_sb
->s_vfs_rename_mutex
);
3207 return ERR_PTR(-EXDEV
);
3212 * p1 and p2 should be directories on the same fs.
3214 struct dentry
*lock_rename(struct dentry
*p1
, struct dentry
*p2
)
3217 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT
);
3221 mutex_lock(&p1
->d_sb
->s_vfs_rename_mutex
);
3222 return lock_two_directories(p1
, p2
);
3224 EXPORT_SYMBOL(lock_rename
);
3227 * c1 and p2 should be on the same fs.
3229 struct dentry
*lock_rename_child(struct dentry
*c1
, struct dentry
*p2
)
3231 if (READ_ONCE(c1
->d_parent
) == p2
) {
3233 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3235 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT
);
3237 * now that p2 is locked, nobody can move in or out of it,
3238 * so the test below is safe.
3240 if (likely(c1
->d_parent
== p2
))
3244 * c1 got moved out of p2 while we'd been taking locks;
3245 * unlock and fall back to slow case.
3247 inode_unlock(p2
->d_inode
);
3250 mutex_lock(&c1
->d_sb
->s_vfs_rename_mutex
);
3252 * nobody can move out of any directories on this fs.
3254 if (likely(c1
->d_parent
!= p2
))
3255 return lock_two_directories(c1
->d_parent
, p2
);
3258 * c1 got moved into p2 while we were taking locks;
3259 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3260 * for consistency with lock_rename().
3262 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT
);
3263 mutex_unlock(&c1
->d_sb
->s_vfs_rename_mutex
);
3266 EXPORT_SYMBOL(lock_rename_child
);
3268 void unlock_rename(struct dentry
*p1
, struct dentry
*p2
)
3270 inode_unlock(p1
->d_inode
);
3272 inode_unlock(p2
->d_inode
);
3273 mutex_unlock(&p1
->d_sb
->s_vfs_rename_mutex
);
3276 EXPORT_SYMBOL(unlock_rename
);
3279 * vfs_prepare_mode - prepare the mode to be used for a new inode
3280 * @idmap: idmap of the mount the inode was found from
3281 * @dir: parent directory of the new inode
3282 * @mode: mode of the new inode
3283 * @mask_perms: allowed permission by the vfs
3284 * @type: type of file to be created
3286 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3287 * object to be created.
3289 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3290 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3291 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3292 * POSIX ACL supporting filesystems.
3294 * Note that it's currently valid for @type to be 0 if a directory is created.
3295 * Filesystems raise that flag individually and we need to check whether each
3296 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3299 * Returns: mode to be passed to the filesystem
3301 static inline umode_t
vfs_prepare_mode(struct mnt_idmap
*idmap
,
3302 const struct inode
*dir
, umode_t mode
,
3303 umode_t mask_perms
, umode_t type
)
3305 mode
= mode_strip_sgid(idmap
, dir
, mode
);
3306 mode
= mode_strip_umask(dir
, mode
);
3309 * Apply the vfs mandated allowed permission mask and set the type of
3310 * file to be created before we call into the filesystem.
3312 mode
&= (mask_perms
& ~S_IFMT
);
3313 mode
|= (type
& S_IFMT
);
3319 * vfs_create - create new file
3320 * @idmap: idmap of the mount the inode was found from
3321 * @dir: inode of the parent directory
3322 * @dentry: dentry of the child file
3323 * @mode: mode of the child file
3324 * @want_excl: whether the file must not yet exist
3326 * Create a new file.
3328 * If the inode has been found through an idmapped mount the idmap of
3329 * the vfsmount must be passed through @idmap. This function will then take
3330 * care to map the inode according to @idmap before checking permissions.
3331 * On non-idmapped mounts or if permission checking is to be performed on the
3332 * raw inode simply pass @nop_mnt_idmap.
3334 int vfs_create(struct mnt_idmap
*idmap
, struct inode
*dir
,
3335 struct dentry
*dentry
, umode_t mode
, bool want_excl
)
3339 error
= may_create(idmap
, dir
, dentry
);
3343 if (!dir
->i_op
->create
)
3344 return -EACCES
; /* shouldn't it be ENOSYS? */
3346 mode
= vfs_prepare_mode(idmap
, dir
, mode
, S_IALLUGO
, S_IFREG
);
3347 error
= security_inode_create(dir
, dentry
, mode
);
3350 error
= dir
->i_op
->create(idmap
, dir
, dentry
, mode
, want_excl
);
3352 fsnotify_create(dir
, dentry
);
3355 EXPORT_SYMBOL(vfs_create
);
3357 int vfs_mkobj(struct dentry
*dentry
, umode_t mode
,
3358 int (*f
)(struct dentry
*, umode_t
, void *),
3361 struct inode
*dir
= dentry
->d_parent
->d_inode
;
3362 int error
= may_create(&nop_mnt_idmap
, dir
, dentry
);
3368 error
= security_inode_create(dir
, dentry
, mode
);
3371 error
= f(dentry
, mode
, arg
);
3373 fsnotify_create(dir
, dentry
);
3376 EXPORT_SYMBOL(vfs_mkobj
);
3378 bool may_open_dev(const struct path
*path
)
3380 return !(path
->mnt
->mnt_flags
& MNT_NODEV
) &&
3381 !(path
->mnt
->mnt_sb
->s_iflags
& SB_I_NODEV
);
3384 static int may_open(struct mnt_idmap
*idmap
, const struct path
*path
,
3385 int acc_mode
, int flag
)
3387 struct dentry
*dentry
= path
->dentry
;
3388 struct inode
*inode
= dentry
->d_inode
;
3394 switch (inode
->i_mode
& S_IFMT
) {
3398 if (acc_mode
& MAY_WRITE
)
3400 if (acc_mode
& MAY_EXEC
)
3405 if (!may_open_dev(path
))
3410 if (acc_mode
& MAY_EXEC
)
3415 if ((acc_mode
& MAY_EXEC
) && path_noexec(path
))
3420 error
= inode_permission(idmap
, inode
, MAY_OPEN
| acc_mode
);
3425 * An append-only file must be opened in append mode for writing.
3427 if (IS_APPEND(inode
)) {
3428 if ((flag
& O_ACCMODE
) != O_RDONLY
&& !(flag
& O_APPEND
))
3434 /* O_NOATIME can only be set by the owner or superuser */
3435 if (flag
& O_NOATIME
&& !inode_owner_or_capable(idmap
, inode
))
3441 static int handle_truncate(struct mnt_idmap
*idmap
, struct file
*filp
)
3443 const struct path
*path
= &filp
->f_path
;
3444 struct inode
*inode
= path
->dentry
->d_inode
;
3445 int error
= get_write_access(inode
);
3449 error
= security_file_truncate(filp
);
3451 error
= do_truncate(idmap
, path
->dentry
, 0,
3452 ATTR_MTIME
|ATTR_CTIME
|ATTR_OPEN
,
3455 put_write_access(inode
);
3459 static inline int open_to_namei_flags(int flag
)
3461 if ((flag
& O_ACCMODE
) == 3)
3466 static int may_o_create(struct mnt_idmap
*idmap
,
3467 const struct path
*dir
, struct dentry
*dentry
,
3470 int error
= security_path_mknod(dir
, dentry
, mode
, 0);
3474 if (!fsuidgid_has_mapping(dir
->dentry
->d_sb
, idmap
))
3477 error
= inode_permission(idmap
, dir
->dentry
->d_inode
,
3478 MAY_WRITE
| MAY_EXEC
);
3482 return security_inode_create(dir
->dentry
->d_inode
, dentry
, mode
);
3486 * Attempt to atomically look up, create and open a file from a negative
3489 * Returns 0 if successful. The file will have been created and attached to
3490 * @file by the filesystem calling finish_open().
3492 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3493 * be set. The caller will need to perform the open themselves. @path will
3494 * have been updated to point to the new dentry. This may be negative.
3496 * Returns an error code otherwise.
3498 static struct dentry
*atomic_open(struct nameidata
*nd
, struct dentry
*dentry
,
3500 int open_flag
, umode_t mode
)
3502 struct dentry
*const DENTRY_NOT_SET
= (void *) -1UL;
3503 struct inode
*dir
= nd
->path
.dentry
->d_inode
;
3506 if (nd
->flags
& LOOKUP_DIRECTORY
)
3507 open_flag
|= O_DIRECTORY
;
3509 file
->f_path
.dentry
= DENTRY_NOT_SET
;
3510 file
->f_path
.mnt
= nd
->path
.mnt
;
3511 error
= dir
->i_op
->atomic_open(dir
, dentry
, file
,
3512 open_to_namei_flags(open_flag
), mode
);
3513 d_lookup_done(dentry
);
3515 if (file
->f_mode
& FMODE_OPENED
) {
3516 if (unlikely(dentry
!= file
->f_path
.dentry
)) {
3518 dentry
= dget(file
->f_path
.dentry
);
3520 } else if (WARN_ON(file
->f_path
.dentry
== DENTRY_NOT_SET
)) {
3523 if (file
->f_path
.dentry
) {
3525 dentry
= file
->f_path
.dentry
;
3527 if (unlikely(d_is_negative(dentry
)))
3533 dentry
= ERR_PTR(error
);
3539 * Look up and maybe create and open the last component.
3541 * Must be called with parent locked (exclusive in O_CREAT case).
3543 * Returns 0 on success, that is, if
3544 * the file was successfully atomically created (if necessary) and opened, or
3545 * the file was not completely opened at this time, though lookups and
3546 * creations were performed.
3547 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3548 * In the latter case dentry returned in @path might be negative if O_CREAT
3549 * hadn't been specified.
3551 * An error code is returned on failure.
3553 static struct dentry
*lookup_open(struct nameidata
*nd
, struct file
*file
,
3554 const struct open_flags
*op
,
3557 struct mnt_idmap
*idmap
;
3558 struct dentry
*dir
= nd
->path
.dentry
;
3559 struct inode
*dir_inode
= dir
->d_inode
;
3560 int open_flag
= op
->open_flag
;
3561 struct dentry
*dentry
;
3562 int error
, create_error
= 0;
3563 umode_t mode
= op
->mode
;
3564 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
3566 if (unlikely(IS_DEADDIR(dir_inode
)))
3567 return ERR_PTR(-ENOENT
);
3569 file
->f_mode
&= ~FMODE_CREATED
;
3570 dentry
= d_lookup(dir
, &nd
->last
);
3573 dentry
= d_alloc_parallel(dir
, &nd
->last
, &wq
);
3577 if (d_in_lookup(dentry
))
3580 error
= d_revalidate(dir_inode
, &nd
->last
, dentry
, nd
->flags
);
3581 if (likely(error
> 0))
3585 d_invalidate(dentry
);
3589 if (dentry
->d_inode
) {
3590 /* Cached positive dentry: will open in f_op->open */
3594 if (open_flag
& O_CREAT
)
3595 audit_inode(nd
->name
, dir
, AUDIT_INODE_PARENT
);
3598 * Checking write permission is tricky, bacuse we don't know if we are
3599 * going to actually need it: O_CREAT opens should work as long as the
3600 * file exists. But checking existence breaks atomicity. The trick is
3601 * to check access and if not granted clear O_CREAT from the flags.
3603 * Another problem is returing the "right" error value (e.g. for an
3604 * O_EXCL open we want to return EEXIST not EROFS).
3606 if (unlikely(!got_write
))
3607 open_flag
&= ~O_TRUNC
;
3608 idmap
= mnt_idmap(nd
->path
.mnt
);
3609 if (open_flag
& O_CREAT
) {
3610 if (open_flag
& O_EXCL
)
3611 open_flag
&= ~O_TRUNC
;
3612 mode
= vfs_prepare_mode(idmap
, dir
->d_inode
, mode
, mode
, mode
);
3613 if (likely(got_write
))
3614 create_error
= may_o_create(idmap
, &nd
->path
,
3617 create_error
= -EROFS
;
3620 open_flag
&= ~O_CREAT
;
3621 if (dir_inode
->i_op
->atomic_open
) {
3622 dentry
= atomic_open(nd
, dentry
, file
, open_flag
, mode
);
3623 if (unlikely(create_error
) && dentry
== ERR_PTR(-ENOENT
))
3624 dentry
= ERR_PTR(create_error
);
3628 if (d_in_lookup(dentry
)) {
3629 struct dentry
*res
= dir_inode
->i_op
->lookup(dir_inode
, dentry
,
3631 d_lookup_done(dentry
);
3632 if (unlikely(res
)) {
3634 error
= PTR_ERR(res
);
3642 /* Negative dentry, just create the file */
3643 if (!dentry
->d_inode
&& (open_flag
& O_CREAT
)) {
3644 file
->f_mode
|= FMODE_CREATED
;
3645 audit_inode_child(dir_inode
, dentry
, AUDIT_TYPE_CHILD_CREATE
);
3646 if (!dir_inode
->i_op
->create
) {
3651 error
= dir_inode
->i_op
->create(idmap
, dir_inode
, dentry
,
3652 mode
, open_flag
& O_EXCL
);
3656 if (unlikely(create_error
) && !dentry
->d_inode
) {
3657 error
= create_error
;
3664 return ERR_PTR(error
);
3667 static inline bool trailing_slashes(struct nameidata
*nd
)
3669 return (bool)nd
->last
.name
[nd
->last
.len
];
3672 static struct dentry
*lookup_fast_for_open(struct nameidata
*nd
, int open_flag
)
3674 struct dentry
*dentry
;
3676 if (open_flag
& O_CREAT
) {
3677 if (trailing_slashes(nd
))
3678 return ERR_PTR(-EISDIR
);
3680 /* Don't bother on an O_EXCL create */
3681 if (open_flag
& O_EXCL
)
3685 if (trailing_slashes(nd
))
3686 nd
->flags
|= LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
;
3688 dentry
= lookup_fast(nd
);
3689 if (IS_ERR_OR_NULL(dentry
))
3692 if (open_flag
& O_CREAT
) {
3693 /* Discard negative dentries. Need inode_lock to do the create */
3694 if (!dentry
->d_inode
) {
3695 if (!(nd
->flags
& LOOKUP_RCU
))
3703 static const char *open_last_lookups(struct nameidata
*nd
,
3704 struct file
*file
, const struct open_flags
*op
)
3706 struct dentry
*dir
= nd
->path
.dentry
;
3707 int open_flag
= op
->open_flag
;
3708 bool got_write
= false;
3709 struct dentry
*dentry
;
3712 nd
->flags
|= op
->intent
;
3714 if (nd
->last_type
!= LAST_NORM
) {
3717 return handle_dots(nd
, nd
->last_type
);
3720 /* We _can_ be in RCU mode here */
3721 dentry
= lookup_fast_for_open(nd
, open_flag
);
3723 return ERR_CAST(dentry
);
3728 if (!(open_flag
& O_CREAT
)) {
3729 if (WARN_ON_ONCE(nd
->flags
& LOOKUP_RCU
))
3730 return ERR_PTR(-ECHILD
);
3732 if (nd
->flags
& LOOKUP_RCU
) {
3733 if (!try_to_unlazy(nd
))
3734 return ERR_PTR(-ECHILD
);
3738 if (open_flag
& (O_CREAT
| O_TRUNC
| O_WRONLY
| O_RDWR
)) {
3739 got_write
= !mnt_want_write(nd
->path
.mnt
);
3741 * do _not_ fail yet - we might not need that or fail with
3742 * a different error; let lookup_open() decide; we'll be
3743 * dropping this one anyway.
3746 if (open_flag
& O_CREAT
)
3747 inode_lock(dir
->d_inode
);
3749 inode_lock_shared(dir
->d_inode
);
3750 dentry
= lookup_open(nd
, file
, op
, got_write
);
3751 if (!IS_ERR(dentry
)) {
3752 if (file
->f_mode
& FMODE_CREATED
)
3753 fsnotify_create(dir
->d_inode
, dentry
);
3754 if (file
->f_mode
& FMODE_OPENED
)
3755 fsnotify_open(file
);
3757 if (open_flag
& O_CREAT
)
3758 inode_unlock(dir
->d_inode
);
3760 inode_unlock_shared(dir
->d_inode
);
3763 mnt_drop_write(nd
->path
.mnt
);
3766 return ERR_CAST(dentry
);
3768 if (file
->f_mode
& (FMODE_OPENED
| FMODE_CREATED
)) {
3769 dput(nd
->path
.dentry
);
3770 nd
->path
.dentry
= dentry
;
3777 res
= step_into(nd
, WALK_TRAILING
, dentry
);
3779 nd
->flags
&= ~(LOOKUP_OPEN
|LOOKUP_CREATE
|LOOKUP_EXCL
);
3784 * Handle the last step of open()
3786 static int do_open(struct nameidata
*nd
,
3787 struct file
*file
, const struct open_flags
*op
)
3789 struct mnt_idmap
*idmap
;
3790 int open_flag
= op
->open_flag
;
3795 if (!(file
->f_mode
& (FMODE_OPENED
| FMODE_CREATED
))) {
3796 error
= complete_walk(nd
);
3800 if (!(file
->f_mode
& FMODE_CREATED
))
3801 audit_inode(nd
->name
, nd
->path
.dentry
, 0);
3802 idmap
= mnt_idmap(nd
->path
.mnt
);
3803 if (open_flag
& O_CREAT
) {
3804 if ((open_flag
& O_EXCL
) && !(file
->f_mode
& FMODE_CREATED
))
3806 if (d_is_dir(nd
->path
.dentry
))
3808 error
= may_create_in_sticky(idmap
, nd
,
3809 d_backing_inode(nd
->path
.dentry
));
3810 if (unlikely(error
))
3813 if ((nd
->flags
& LOOKUP_DIRECTORY
) && !d_can_lookup(nd
->path
.dentry
))
3816 do_truncate
= false;
3817 acc_mode
= op
->acc_mode
;
3818 if (file
->f_mode
& FMODE_CREATED
) {
3819 /* Don't check for write permission, don't truncate */
3820 open_flag
&= ~O_TRUNC
;
3822 } else if (d_is_reg(nd
->path
.dentry
) && open_flag
& O_TRUNC
) {
3823 error
= mnt_want_write(nd
->path
.mnt
);
3828 error
= may_open(idmap
, &nd
->path
, acc_mode
, open_flag
);
3829 if (!error
&& !(file
->f_mode
& FMODE_OPENED
))
3830 error
= vfs_open(&nd
->path
, file
);
3832 error
= security_file_post_open(file
, op
->acc_mode
);
3833 if (!error
&& do_truncate
)
3834 error
= handle_truncate(idmap
, file
);
3835 if (unlikely(error
> 0)) {
3840 mnt_drop_write(nd
->path
.mnt
);
3845 * vfs_tmpfile - create tmpfile
3846 * @idmap: idmap of the mount the inode was found from
3847 * @parentpath: pointer to the path of the base directory
3848 * @file: file descriptor of the new tmpfile
3849 * @mode: mode of the new tmpfile
3851 * Create a temporary file.
3853 * If the inode has been found through an idmapped mount the idmap of
3854 * the vfsmount must be passed through @idmap. This function will then take
3855 * care to map the inode according to @idmap before checking permissions.
3856 * On non-idmapped mounts or if permission checking is to be performed on the
3857 * raw inode simply pass @nop_mnt_idmap.
3859 int vfs_tmpfile(struct mnt_idmap
*idmap
,
3860 const struct path
*parentpath
,
3861 struct file
*file
, umode_t mode
)
3863 struct dentry
*child
;
3864 struct inode
*dir
= d_inode(parentpath
->dentry
);
3865 struct inode
*inode
;
3867 int open_flag
= file
->f_flags
;
3869 /* we want directory to be writable */
3870 error
= inode_permission(idmap
, dir
, MAY_WRITE
| MAY_EXEC
);
3873 if (!dir
->i_op
->tmpfile
)
3875 child
= d_alloc(parentpath
->dentry
, &slash_name
);
3876 if (unlikely(!child
))
3878 file
->f_path
.mnt
= parentpath
->mnt
;
3879 file
->f_path
.dentry
= child
;
3880 mode
= vfs_prepare_mode(idmap
, dir
, mode
, mode
, mode
);
3881 error
= dir
->i_op
->tmpfile(idmap
, dir
, file
, mode
);
3883 if (file
->f_mode
& FMODE_OPENED
)
3884 fsnotify_open(file
);
3887 /* Don't check for other permissions, the inode was just created */
3888 error
= may_open(idmap
, &file
->f_path
, 0, file
->f_flags
);
3891 inode
= file_inode(file
);
3892 if (!(open_flag
& O_EXCL
)) {
3893 spin_lock(&inode
->i_lock
);
3894 inode
->i_state
|= I_LINKABLE
;
3895 spin_unlock(&inode
->i_lock
);
3897 security_inode_post_create_tmpfile(idmap
, inode
);
3902 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3903 * @idmap: idmap of the mount the inode was found from
3904 * @parentpath: path of the base directory
3905 * @mode: mode of the new tmpfile
3907 * @cred: credentials for open
3909 * Create and open a temporary file. The file is not accounted in nr_files,
3910 * hence this is only for kernel internal use, and must not be installed into
3911 * file tables or such.
3913 struct file
*kernel_tmpfile_open(struct mnt_idmap
*idmap
,
3914 const struct path
*parentpath
,
3915 umode_t mode
, int open_flag
,
3916 const struct cred
*cred
)
3921 file
= alloc_empty_file_noaccount(open_flag
, cred
);
3925 error
= vfs_tmpfile(idmap
, parentpath
, file
, mode
);
3928 file
= ERR_PTR(error
);
3932 EXPORT_SYMBOL(kernel_tmpfile_open
);
3934 static int do_tmpfile(struct nameidata
*nd
, unsigned flags
,
3935 const struct open_flags
*op
,
3939 int error
= path_lookupat(nd
, flags
| LOOKUP_DIRECTORY
, &path
);
3941 if (unlikely(error
))
3943 error
= mnt_want_write(path
.mnt
);
3944 if (unlikely(error
))
3946 error
= vfs_tmpfile(mnt_idmap(path
.mnt
), &path
, file
, op
->mode
);
3949 audit_inode(nd
->name
, file
->f_path
.dentry
, 0);
3951 mnt_drop_write(path
.mnt
);
3957 static int do_o_path(struct nameidata
*nd
, unsigned flags
, struct file
*file
)
3960 int error
= path_lookupat(nd
, flags
, &path
);
3962 audit_inode(nd
->name
, path
.dentry
, 0);
3963 error
= vfs_open(&path
, file
);
3969 static struct file
*path_openat(struct nameidata
*nd
,
3970 const struct open_flags
*op
, unsigned flags
)
3975 file
= alloc_empty_file(op
->open_flag
, current_cred());
3979 if (unlikely(file
->f_flags
& __O_TMPFILE
)) {
3980 error
= do_tmpfile(nd
, flags
, op
, file
);
3981 } else if (unlikely(file
->f_flags
& O_PATH
)) {
3982 error
= do_o_path(nd
, flags
, file
);
3984 const char *s
= path_init(nd
, flags
);
3985 while (!(error
= link_path_walk(s
, nd
)) &&
3986 (s
= open_last_lookups(nd
, file
, op
)) != NULL
)
3989 error
= do_open(nd
, file
, op
);
3992 if (likely(!error
)) {
3993 if (likely(file
->f_mode
& FMODE_OPENED
))
3999 if (error
== -EOPENSTALE
) {
4000 if (flags
& LOOKUP_RCU
)
4005 return ERR_PTR(error
);
4008 struct file
*do_filp_open(int dfd
, struct filename
*pathname
,
4009 const struct open_flags
*op
)
4011 struct nameidata nd
;
4012 int flags
= op
->lookup_flags
;
4015 set_nameidata(&nd
, dfd
, pathname
, NULL
);
4016 filp
= path_openat(&nd
, op
, flags
| LOOKUP_RCU
);
4017 if (unlikely(filp
== ERR_PTR(-ECHILD
)))
4018 filp
= path_openat(&nd
, op
, flags
);
4019 if (unlikely(filp
== ERR_PTR(-ESTALE
)))
4020 filp
= path_openat(&nd
, op
, flags
| LOOKUP_REVAL
);
4021 restore_nameidata();
4025 struct file
*do_file_open_root(const struct path
*root
,
4026 const char *name
, const struct open_flags
*op
)
4028 struct nameidata nd
;
4030 struct filename
*filename
;
4031 int flags
= op
->lookup_flags
;
4033 if (d_is_symlink(root
->dentry
) && op
->intent
& LOOKUP_OPEN
)
4034 return ERR_PTR(-ELOOP
);
4036 filename
= getname_kernel(name
);
4037 if (IS_ERR(filename
))
4038 return ERR_CAST(filename
);
4040 set_nameidata(&nd
, -1, filename
, root
);
4041 file
= path_openat(&nd
, op
, flags
| LOOKUP_RCU
);
4042 if (unlikely(file
== ERR_PTR(-ECHILD
)))
4043 file
= path_openat(&nd
, op
, flags
);
4044 if (unlikely(file
== ERR_PTR(-ESTALE
)))
4045 file
= path_openat(&nd
, op
, flags
| LOOKUP_REVAL
);
4046 restore_nameidata();
4051 static struct dentry
*filename_create(int dfd
, struct filename
*name
,
4052 struct path
*path
, unsigned int lookup_flags
)
4054 struct dentry
*dentry
= ERR_PTR(-EEXIST
);
4056 bool want_dir
= lookup_flags
& LOOKUP_DIRECTORY
;
4057 unsigned int reval_flag
= lookup_flags
& LOOKUP_REVAL
;
4058 unsigned int create_flags
= LOOKUP_CREATE
| LOOKUP_EXCL
;
4063 error
= filename_parentat(dfd
, name
, reval_flag
, path
, &last
, &type
);
4065 return ERR_PTR(error
);
4068 * Yucky last component or no last component at all?
4069 * (foo/., foo/.., /////)
4071 if (unlikely(type
!= LAST_NORM
))
4074 /* don't fail immediately if it's r/o, at least try to report other errors */
4075 err2
= mnt_want_write(path
->mnt
);
4077 * Do the final lookup. Suppress 'create' if there is a trailing
4078 * '/', and a directory wasn't requested.
4080 if (last
.name
[last
.len
] && !want_dir
)
4082 inode_lock_nested(path
->dentry
->d_inode
, I_MUTEX_PARENT
);
4083 dentry
= lookup_one_qstr_excl(&last
, path
->dentry
,
4084 reval_flag
| create_flags
);
4089 if (d_is_positive(dentry
))
4093 * Special case - lookup gave negative, but... we had foo/bar/
4094 * From the vfs_mknod() POV we just have a negative dentry -
4095 * all is fine. Let's be bastards - you had / on the end, you've
4096 * been asking for (non-existent) directory. -ENOENT for you.
4098 if (unlikely(!create_flags
)) {
4102 if (unlikely(err2
)) {
4109 dentry
= ERR_PTR(error
);
4111 inode_unlock(path
->dentry
->d_inode
);
4113 mnt_drop_write(path
->mnt
);
4119 struct dentry
*kern_path_create(int dfd
, const char *pathname
,
4120 struct path
*path
, unsigned int lookup_flags
)
4122 struct filename
*filename
= getname_kernel(pathname
);
4123 struct dentry
*res
= filename_create(dfd
, filename
, path
, lookup_flags
);
4128 EXPORT_SYMBOL(kern_path_create
);
4130 void done_path_create(struct path
*path
, struct dentry
*dentry
)
4133 inode_unlock(path
->dentry
->d_inode
);
4134 mnt_drop_write(path
->mnt
);
4137 EXPORT_SYMBOL(done_path_create
);
4139 inline struct dentry
*user_path_create(int dfd
, const char __user
*pathname
,
4140 struct path
*path
, unsigned int lookup_flags
)
4142 struct filename
*filename
= getname(pathname
);
4143 struct dentry
*res
= filename_create(dfd
, filename
, path
, lookup_flags
);
4148 EXPORT_SYMBOL(user_path_create
);
4151 * vfs_mknod - create device node or file
4152 * @idmap: idmap of the mount the inode was found from
4153 * @dir: inode of the parent directory
4154 * @dentry: dentry of the child device node
4155 * @mode: mode of the child device node
4156 * @dev: device number of device to create
4158 * Create a device node or file.
4160 * If the inode has been found through an idmapped mount the idmap of
4161 * the vfsmount must be passed through @idmap. This function will then take
4162 * care to map the inode according to @idmap before checking permissions.
4163 * On non-idmapped mounts or if permission checking is to be performed on the
4164 * raw inode simply pass @nop_mnt_idmap.
4166 int vfs_mknod(struct mnt_idmap
*idmap
, struct inode
*dir
,
4167 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
4169 bool is_whiteout
= S_ISCHR(mode
) && dev
== WHITEOUT_DEV
;
4170 int error
= may_create(idmap
, dir
, dentry
);
4175 if ((S_ISCHR(mode
) || S_ISBLK(mode
)) && !is_whiteout
&&
4176 !capable(CAP_MKNOD
))
4179 if (!dir
->i_op
->mknod
)
4182 mode
= vfs_prepare_mode(idmap
, dir
, mode
, mode
, mode
);
4183 error
= devcgroup_inode_mknod(mode
, dev
);
4187 error
= security_inode_mknod(dir
, dentry
, mode
, dev
);
4191 error
= dir
->i_op
->mknod(idmap
, dir
, dentry
, mode
, dev
);
4193 fsnotify_create(dir
, dentry
);
4196 EXPORT_SYMBOL(vfs_mknod
);
4198 static int may_mknod(umode_t mode
)
4200 switch (mode
& S_IFMT
) {
4206 case 0: /* zero mode translates to S_IFREG */
4215 static int do_mknodat(int dfd
, struct filename
*name
, umode_t mode
,
4218 struct mnt_idmap
*idmap
;
4219 struct dentry
*dentry
;
4222 unsigned int lookup_flags
= 0;
4224 error
= may_mknod(mode
);
4228 dentry
= filename_create(dfd
, name
, &path
, lookup_flags
);
4229 error
= PTR_ERR(dentry
);
4233 error
= security_path_mknod(&path
, dentry
,
4234 mode_strip_umask(path
.dentry
->d_inode
, mode
), dev
);
4238 idmap
= mnt_idmap(path
.mnt
);
4239 switch (mode
& S_IFMT
) {
4240 case 0: case S_IFREG
:
4241 error
= vfs_create(idmap
, path
.dentry
->d_inode
,
4242 dentry
, mode
, true);
4244 security_path_post_mknod(idmap
, dentry
);
4246 case S_IFCHR
: case S_IFBLK
:
4247 error
= vfs_mknod(idmap
, path
.dentry
->d_inode
,
4248 dentry
, mode
, new_decode_dev(dev
));
4250 case S_IFIFO
: case S_IFSOCK
:
4251 error
= vfs_mknod(idmap
, path
.dentry
->d_inode
,
4256 done_path_create(&path
, dentry
);
4257 if (retry_estale(error
, lookup_flags
)) {
4258 lookup_flags
|= LOOKUP_REVAL
;
4266 SYSCALL_DEFINE4(mknodat
, int, dfd
, const char __user
*, filename
, umode_t
, mode
,
4269 return do_mknodat(dfd
, getname(filename
), mode
, dev
);
4272 SYSCALL_DEFINE3(mknod
, const char __user
*, filename
, umode_t
, mode
, unsigned, dev
)
4274 return do_mknodat(AT_FDCWD
, getname(filename
), mode
, dev
);
4278 * vfs_mkdir - create directory
4279 * @idmap: idmap of the mount the inode was found from
4280 * @dir: inode of the parent directory
4281 * @dentry: dentry of the child directory
4282 * @mode: mode of the child directory
4284 * Create a directory.
4286 * If the inode has been found through an idmapped mount the idmap of
4287 * the vfsmount must be passed through @idmap. This function will then take
4288 * care to map the inode according to @idmap before checking permissions.
4289 * On non-idmapped mounts or if permission checking is to be performed on the
4290 * raw inode simply pass @nop_mnt_idmap.
4292 int vfs_mkdir(struct mnt_idmap
*idmap
, struct inode
*dir
,
4293 struct dentry
*dentry
, umode_t mode
)
4296 unsigned max_links
= dir
->i_sb
->s_max_links
;
4298 error
= may_create(idmap
, dir
, dentry
);
4302 if (!dir
->i_op
->mkdir
)
4305 mode
= vfs_prepare_mode(idmap
, dir
, mode
, S_IRWXUGO
| S_ISVTX
, 0);
4306 error
= security_inode_mkdir(dir
, dentry
, mode
);
4310 if (max_links
&& dir
->i_nlink
>= max_links
)
4313 error
= dir
->i_op
->mkdir(idmap
, dir
, dentry
, mode
);
4315 fsnotify_mkdir(dir
, dentry
);
4318 EXPORT_SYMBOL(vfs_mkdir
);
4320 int do_mkdirat(int dfd
, struct filename
*name
, umode_t mode
)
4322 struct dentry
*dentry
;
4325 unsigned int lookup_flags
= LOOKUP_DIRECTORY
;
4328 dentry
= filename_create(dfd
, name
, &path
, lookup_flags
);
4329 error
= PTR_ERR(dentry
);
4333 error
= security_path_mkdir(&path
, dentry
,
4334 mode_strip_umask(path
.dentry
->d_inode
, mode
));
4336 error
= vfs_mkdir(mnt_idmap(path
.mnt
), path
.dentry
->d_inode
,
4339 done_path_create(&path
, dentry
);
4340 if (retry_estale(error
, lookup_flags
)) {
4341 lookup_flags
|= LOOKUP_REVAL
;
4349 SYSCALL_DEFINE3(mkdirat
, int, dfd
, const char __user
*, pathname
, umode_t
, mode
)
4351 return do_mkdirat(dfd
, getname(pathname
), mode
);
4354 SYSCALL_DEFINE2(mkdir
, const char __user
*, pathname
, umode_t
, mode
)
4356 return do_mkdirat(AT_FDCWD
, getname(pathname
), mode
);
4360 * vfs_rmdir - remove directory
4361 * @idmap: idmap of the mount the inode was found from
4362 * @dir: inode of the parent directory
4363 * @dentry: dentry of the child directory
4365 * Remove a directory.
4367 * If the inode has been found through an idmapped mount the idmap of
4368 * the vfsmount must be passed through @idmap. This function will then take
4369 * care to map the inode according to @idmap before checking permissions.
4370 * On non-idmapped mounts or if permission checking is to be performed on the
4371 * raw inode simply pass @nop_mnt_idmap.
4373 int vfs_rmdir(struct mnt_idmap
*idmap
, struct inode
*dir
,
4374 struct dentry
*dentry
)
4376 int error
= may_delete(idmap
, dir
, dentry
, 1);
4381 if (!dir
->i_op
->rmdir
)
4385 inode_lock(dentry
->d_inode
);
4388 if (is_local_mountpoint(dentry
) ||
4389 (dentry
->d_inode
->i_flags
& S_KERNEL_FILE
))
4392 error
= security_inode_rmdir(dir
, dentry
);
4396 error
= dir
->i_op
->rmdir(dir
, dentry
);
4400 shrink_dcache_parent(dentry
);
4401 dentry
->d_inode
->i_flags
|= S_DEAD
;
4403 detach_mounts(dentry
);
4406 inode_unlock(dentry
->d_inode
);
4409 d_delete_notify(dir
, dentry
);
4412 EXPORT_SYMBOL(vfs_rmdir
);
4414 int do_rmdir(int dfd
, struct filename
*name
)
4417 struct dentry
*dentry
;
4421 unsigned int lookup_flags
= 0;
4423 error
= filename_parentat(dfd
, name
, lookup_flags
, &path
, &last
, &type
);
4439 error
= mnt_want_write(path
.mnt
);
4443 inode_lock_nested(path
.dentry
->d_inode
, I_MUTEX_PARENT
);
4444 dentry
= lookup_one_qstr_excl(&last
, path
.dentry
, lookup_flags
);
4445 error
= PTR_ERR(dentry
);
4448 if (!dentry
->d_inode
) {
4452 error
= security_path_rmdir(&path
, dentry
);
4455 error
= vfs_rmdir(mnt_idmap(path
.mnt
), path
.dentry
->d_inode
, dentry
);
4459 inode_unlock(path
.dentry
->d_inode
);
4460 mnt_drop_write(path
.mnt
);
4463 if (retry_estale(error
, lookup_flags
)) {
4464 lookup_flags
|= LOOKUP_REVAL
;
4472 SYSCALL_DEFINE1(rmdir
, const char __user
*, pathname
)
4474 return do_rmdir(AT_FDCWD
, getname(pathname
));
4478 * vfs_unlink - unlink a filesystem object
4479 * @idmap: idmap of the mount the inode was found from
4480 * @dir: parent directory
4482 * @delegated_inode: returns victim inode, if the inode is delegated.
4484 * The caller must hold dir->i_mutex.
4486 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4487 * return a reference to the inode in delegated_inode. The caller
4488 * should then break the delegation on that inode and retry. Because
4489 * breaking a delegation may take a long time, the caller should drop
4490 * dir->i_mutex before doing so.
4492 * Alternatively, a caller may pass NULL for delegated_inode. This may
4493 * be appropriate for callers that expect the underlying filesystem not
4494 * to be NFS exported.
4496 * If the inode has been found through an idmapped mount the idmap of
4497 * the vfsmount must be passed through @idmap. This function will then take
4498 * care to map the inode according to @idmap before checking permissions.
4499 * On non-idmapped mounts or if permission checking is to be performed on the
4500 * raw inode simply pass @nop_mnt_idmap.
4502 int vfs_unlink(struct mnt_idmap
*idmap
, struct inode
*dir
,
4503 struct dentry
*dentry
, struct inode
**delegated_inode
)
4505 struct inode
*target
= dentry
->d_inode
;
4506 int error
= may_delete(idmap
, dir
, dentry
, 0);
4511 if (!dir
->i_op
->unlink
)
4515 if (IS_SWAPFILE(target
))
4517 else if (is_local_mountpoint(dentry
))
4520 error
= security_inode_unlink(dir
, dentry
);
4522 error
= try_break_deleg(target
, delegated_inode
);
4525 error
= dir
->i_op
->unlink(dir
, dentry
);
4528 detach_mounts(dentry
);
4533 inode_unlock(target
);
4535 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4536 if (!error
&& dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
4537 fsnotify_unlink(dir
, dentry
);
4538 } else if (!error
) {
4539 fsnotify_link_count(target
);
4540 d_delete_notify(dir
, dentry
);
4545 EXPORT_SYMBOL(vfs_unlink
);
4548 * Make sure that the actual truncation of the file will occur outside its
4549 * directory's i_mutex. Truncate can take a long time if there is a lot of
4550 * writeout happening, and we don't want to prevent access to the directory
4551 * while waiting on the I/O.
4553 int do_unlinkat(int dfd
, struct filename
*name
)
4556 struct dentry
*dentry
;
4560 struct inode
*inode
= NULL
;
4561 struct inode
*delegated_inode
= NULL
;
4562 unsigned int lookup_flags
= 0;
4564 error
= filename_parentat(dfd
, name
, lookup_flags
, &path
, &last
, &type
);
4569 if (type
!= LAST_NORM
)
4572 error
= mnt_want_write(path
.mnt
);
4576 inode_lock_nested(path
.dentry
->d_inode
, I_MUTEX_PARENT
);
4577 dentry
= lookup_one_qstr_excl(&last
, path
.dentry
, lookup_flags
);
4578 error
= PTR_ERR(dentry
);
4579 if (!IS_ERR(dentry
)) {
4581 /* Why not before? Because we want correct error value */
4582 if (last
.name
[last
.len
] || d_is_negative(dentry
))
4584 inode
= dentry
->d_inode
;
4586 error
= security_path_unlink(&path
, dentry
);
4589 error
= vfs_unlink(mnt_idmap(path
.mnt
), path
.dentry
->d_inode
,
4590 dentry
, &delegated_inode
);
4594 inode_unlock(path
.dentry
->d_inode
);
4596 iput(inode
); /* truncate the inode here */
4598 if (delegated_inode
) {
4599 error
= break_deleg_wait(&delegated_inode
);
4603 mnt_drop_write(path
.mnt
);
4606 if (retry_estale(error
, lookup_flags
)) {
4607 lookup_flags
|= LOOKUP_REVAL
;
4616 if (d_is_negative(dentry
))
4618 else if (d_is_dir(dentry
))
4625 SYSCALL_DEFINE3(unlinkat
, int, dfd
, const char __user
*, pathname
, int, flag
)
4627 if ((flag
& ~AT_REMOVEDIR
) != 0)
4630 if (flag
& AT_REMOVEDIR
)
4631 return do_rmdir(dfd
, getname(pathname
));
4632 return do_unlinkat(dfd
, getname(pathname
));
4635 SYSCALL_DEFINE1(unlink
, const char __user
*, pathname
)
4637 return do_unlinkat(AT_FDCWD
, getname(pathname
));
4641 * vfs_symlink - create symlink
4642 * @idmap: idmap of the mount the inode was found from
4643 * @dir: inode of the parent directory
4644 * @dentry: dentry of the child symlink file
4645 * @oldname: name of the file to link to
4649 * If the inode has been found through an idmapped mount the idmap of
4650 * the vfsmount must be passed through @idmap. This function will then take
4651 * care to map the inode according to @idmap before checking permissions.
4652 * On non-idmapped mounts or if permission checking is to be performed on the
4653 * raw inode simply pass @nop_mnt_idmap.
4655 int vfs_symlink(struct mnt_idmap
*idmap
, struct inode
*dir
,
4656 struct dentry
*dentry
, const char *oldname
)
4660 error
= may_create(idmap
, dir
, dentry
);
4664 if (!dir
->i_op
->symlink
)
4667 error
= security_inode_symlink(dir
, dentry
, oldname
);
4671 error
= dir
->i_op
->symlink(idmap
, dir
, dentry
, oldname
);
4673 fsnotify_create(dir
, dentry
);
4676 EXPORT_SYMBOL(vfs_symlink
);
4678 int do_symlinkat(struct filename
*from
, int newdfd
, struct filename
*to
)
4681 struct dentry
*dentry
;
4683 unsigned int lookup_flags
= 0;
4686 error
= PTR_ERR(from
);
4690 dentry
= filename_create(newdfd
, to
, &path
, lookup_flags
);
4691 error
= PTR_ERR(dentry
);
4695 error
= security_path_symlink(&path
, dentry
, from
->name
);
4697 error
= vfs_symlink(mnt_idmap(path
.mnt
), path
.dentry
->d_inode
,
4698 dentry
, from
->name
);
4699 done_path_create(&path
, dentry
);
4700 if (retry_estale(error
, lookup_flags
)) {
4701 lookup_flags
|= LOOKUP_REVAL
;
4710 SYSCALL_DEFINE3(symlinkat
, const char __user
*, oldname
,
4711 int, newdfd
, const char __user
*, newname
)
4713 return do_symlinkat(getname(oldname
), newdfd
, getname(newname
));
4716 SYSCALL_DEFINE2(symlink
, const char __user
*, oldname
, const char __user
*, newname
)
4718 return do_symlinkat(getname(oldname
), AT_FDCWD
, getname(newname
));
4722 * vfs_link - create a new link
4723 * @old_dentry: object to be linked
4724 * @idmap: idmap of the mount
4726 * @new_dentry: where to create the new link
4727 * @delegated_inode: returns inode needing a delegation break
4729 * The caller must hold dir->i_mutex
4731 * If vfs_link discovers a delegation on the to-be-linked file in need
4732 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4733 * inode in delegated_inode. The caller should then break the delegation
4734 * and retry. Because breaking a delegation may take a long time, the
4735 * caller should drop the i_mutex before doing so.
4737 * Alternatively, a caller may pass NULL for delegated_inode. This may
4738 * be appropriate for callers that expect the underlying filesystem not
4739 * to be NFS exported.
4741 * If the inode has been found through an idmapped mount the idmap of
4742 * the vfsmount must be passed through @idmap. This function will then take
4743 * care to map the inode according to @idmap before checking permissions.
4744 * On non-idmapped mounts or if permission checking is to be performed on the
4745 * raw inode simply pass @nop_mnt_idmap.
4747 int vfs_link(struct dentry
*old_dentry
, struct mnt_idmap
*idmap
,
4748 struct inode
*dir
, struct dentry
*new_dentry
,
4749 struct inode
**delegated_inode
)
4751 struct inode
*inode
= old_dentry
->d_inode
;
4752 unsigned max_links
= dir
->i_sb
->s_max_links
;
4758 error
= may_create(idmap
, dir
, new_dentry
);
4762 if (dir
->i_sb
!= inode
->i_sb
)
4766 * A link to an append-only or immutable file cannot be created.
4768 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4771 * Updating the link count will likely cause i_uid and i_gid to
4772 * be writen back improperly if their true value is unknown to
4775 if (HAS_UNMAPPED_ID(idmap
, inode
))
4777 if (!dir
->i_op
->link
)
4779 if (S_ISDIR(inode
->i_mode
))
4782 error
= security_inode_link(old_dentry
, dir
, new_dentry
);
4787 /* Make sure we don't allow creating hardlink to an unlinked file */
4788 if (inode
->i_nlink
== 0 && !(inode
->i_state
& I_LINKABLE
))
4790 else if (max_links
&& inode
->i_nlink
>= max_links
)
4793 error
= try_break_deleg(inode
, delegated_inode
);
4795 error
= dir
->i_op
->link(old_dentry
, dir
, new_dentry
);
4798 if (!error
&& (inode
->i_state
& I_LINKABLE
)) {
4799 spin_lock(&inode
->i_lock
);
4800 inode
->i_state
&= ~I_LINKABLE
;
4801 spin_unlock(&inode
->i_lock
);
4803 inode_unlock(inode
);
4805 fsnotify_link(dir
, inode
, new_dentry
);
4808 EXPORT_SYMBOL(vfs_link
);
4811 * Hardlinks are often used in delicate situations. We avoid
4812 * security-related surprises by not following symlinks on the
4815 * We don't follow them on the oldname either to be compatible
4816 * with linux 2.0, and to avoid hard-linking to directories
4817 * and other special files. --ADM
4819 int do_linkat(int olddfd
, struct filename
*old
, int newdfd
,
4820 struct filename
*new, int flags
)
4822 struct mnt_idmap
*idmap
;
4823 struct dentry
*new_dentry
;
4824 struct path old_path
, new_path
;
4825 struct inode
*delegated_inode
= NULL
;
4829 if ((flags
& ~(AT_SYMLINK_FOLLOW
| AT_EMPTY_PATH
)) != 0) {
4834 * To use null names we require CAP_DAC_READ_SEARCH or
4835 * that the open-time creds of the dfd matches current.
4836 * This ensures that not everyone will be able to create
4837 * a hardlink using the passed file descriptor.
4839 if (flags
& AT_EMPTY_PATH
)
4840 how
|= LOOKUP_LINKAT_EMPTY
;
4842 if (flags
& AT_SYMLINK_FOLLOW
)
4843 how
|= LOOKUP_FOLLOW
;
4845 error
= filename_lookup(olddfd
, old
, how
, &old_path
, NULL
);
4849 new_dentry
= filename_create(newdfd
, new, &new_path
,
4850 (how
& LOOKUP_REVAL
));
4851 error
= PTR_ERR(new_dentry
);
4852 if (IS_ERR(new_dentry
))
4856 if (old_path
.mnt
!= new_path
.mnt
)
4858 idmap
= mnt_idmap(new_path
.mnt
);
4859 error
= may_linkat(idmap
, &old_path
);
4860 if (unlikely(error
))
4862 error
= security_path_link(old_path
.dentry
, &new_path
, new_dentry
);
4865 error
= vfs_link(old_path
.dentry
, idmap
, new_path
.dentry
->d_inode
,
4866 new_dentry
, &delegated_inode
);
4868 done_path_create(&new_path
, new_dentry
);
4869 if (delegated_inode
) {
4870 error
= break_deleg_wait(&delegated_inode
);
4872 path_put(&old_path
);
4876 if (retry_estale(error
, how
)) {
4877 path_put(&old_path
);
4878 how
|= LOOKUP_REVAL
;
4882 path_put(&old_path
);
4890 SYSCALL_DEFINE5(linkat
, int, olddfd
, const char __user
*, oldname
,
4891 int, newdfd
, const char __user
*, newname
, int, flags
)
4893 return do_linkat(olddfd
, getname_uflags(oldname
, flags
),
4894 newdfd
, getname(newname
), flags
);
4897 SYSCALL_DEFINE2(link
, const char __user
*, oldname
, const char __user
*, newname
)
4899 return do_linkat(AT_FDCWD
, getname(oldname
), AT_FDCWD
, getname(newname
), 0);
4903 * vfs_rename - rename a filesystem object
4904 * @rd: pointer to &struct renamedata info
4906 * The caller must hold multiple mutexes--see lock_rename()).
4908 * If vfs_rename discovers a delegation in need of breaking at either
4909 * the source or destination, it will return -EWOULDBLOCK and return a
4910 * reference to the inode in delegated_inode. The caller should then
4911 * break the delegation and retry. Because breaking a delegation may
4912 * take a long time, the caller should drop all locks before doing
4915 * Alternatively, a caller may pass NULL for delegated_inode. This may
4916 * be appropriate for callers that expect the underlying filesystem not
4917 * to be NFS exported.
4919 * The worst of all namespace operations - renaming directory. "Perverted"
4920 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4923 * a) we can get into loop creation.
4924 * b) race potential - two innocent renames can create a loop together.
4925 * That's where 4.4BSD screws up. Current fix: serialization on
4926 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4928 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4929 * and source (if it's a non-directory or a subdirectory that moves to
4930 * different parent).
4931 * And that - after we got ->i_mutex on parents (until then we don't know
4932 * whether the target exists). Solution: try to be smart with locking
4933 * order for inodes. We rely on the fact that tree topology may change
4934 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4935 * move will be locked. Thus we can rank directories by the tree
4936 * (ancestors first) and rank all non-directories after them.
4937 * That works since everybody except rename does "lock parent, lookup,
4938 * lock child" and rename is under ->s_vfs_rename_mutex.
4939 * HOWEVER, it relies on the assumption that any object with ->lookup()
4940 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4941 * we'd better make sure that there's no link(2) for them.
4942 * d) conversion from fhandle to dentry may come in the wrong moment - when
4943 * we are removing the target. Solution: we will have to grab ->i_mutex
4944 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4945 * ->i_mutex on parents, which works but leads to some truly excessive
4948 int vfs_rename(struct renamedata
*rd
)
4951 struct inode
*old_dir
= rd
->old_dir
, *new_dir
= rd
->new_dir
;
4952 struct dentry
*old_dentry
= rd
->old_dentry
;
4953 struct dentry
*new_dentry
= rd
->new_dentry
;
4954 struct inode
**delegated_inode
= rd
->delegated_inode
;
4955 unsigned int flags
= rd
->flags
;
4956 bool is_dir
= d_is_dir(old_dentry
);
4957 struct inode
*source
= old_dentry
->d_inode
;
4958 struct inode
*target
= new_dentry
->d_inode
;
4959 bool new_is_dir
= false;
4960 unsigned max_links
= new_dir
->i_sb
->s_max_links
;
4961 struct name_snapshot old_name
;
4962 bool lock_old_subdir
, lock_new_subdir
;
4964 if (source
== target
)
4967 error
= may_delete(rd
->old_mnt_idmap
, old_dir
, old_dentry
, is_dir
);
4972 error
= may_create(rd
->new_mnt_idmap
, new_dir
, new_dentry
);
4974 new_is_dir
= d_is_dir(new_dentry
);
4976 if (!(flags
& RENAME_EXCHANGE
))
4977 error
= may_delete(rd
->new_mnt_idmap
, new_dir
,
4978 new_dentry
, is_dir
);
4980 error
= may_delete(rd
->new_mnt_idmap
, new_dir
,
4981 new_dentry
, new_is_dir
);
4986 if (!old_dir
->i_op
->rename
)
4990 * If we are going to change the parent - check write permissions,
4991 * we'll need to flip '..'.
4993 if (new_dir
!= old_dir
) {
4995 error
= inode_permission(rd
->old_mnt_idmap
, source
,
5000 if ((flags
& RENAME_EXCHANGE
) && new_is_dir
) {
5001 error
= inode_permission(rd
->new_mnt_idmap
, target
,
5008 error
= security_inode_rename(old_dir
, old_dentry
, new_dir
, new_dentry
,
5013 take_dentry_name_snapshot(&old_name
, old_dentry
);
5017 * The source subdirectory needs to be locked on cross-directory
5018 * rename or cross-directory exchange since its parent changes.
5019 * The target subdirectory needs to be locked on cross-directory
5020 * exchange due to parent change and on any rename due to becoming
5022 * Non-directories need locking in all cases (for NFS reasons);
5023 * they get locked after any subdirectories (in inode address order).
5025 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5026 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5028 lock_old_subdir
= new_dir
!= old_dir
;
5029 lock_new_subdir
= new_dir
!= old_dir
|| !(flags
& RENAME_EXCHANGE
);
5031 if (lock_old_subdir
)
5032 inode_lock_nested(source
, I_MUTEX_CHILD
);
5033 if (target
&& (!new_is_dir
|| lock_new_subdir
))
5035 } else if (new_is_dir
) {
5036 if (lock_new_subdir
)
5037 inode_lock_nested(target
, I_MUTEX_CHILD
);
5040 lock_two_nondirectories(source
, target
);
5044 if (IS_SWAPFILE(source
) || (target
&& IS_SWAPFILE(target
)))
5048 if (is_local_mountpoint(old_dentry
) || is_local_mountpoint(new_dentry
))
5051 if (max_links
&& new_dir
!= old_dir
) {
5053 if (is_dir
&& !new_is_dir
&& new_dir
->i_nlink
>= max_links
)
5055 if ((flags
& RENAME_EXCHANGE
) && !is_dir
&& new_is_dir
&&
5056 old_dir
->i_nlink
>= max_links
)
5060 error
= try_break_deleg(source
, delegated_inode
);
5064 if (target
&& !new_is_dir
) {
5065 error
= try_break_deleg(target
, delegated_inode
);
5069 error
= old_dir
->i_op
->rename(rd
->new_mnt_idmap
, old_dir
, old_dentry
,
5070 new_dir
, new_dentry
, flags
);
5074 if (!(flags
& RENAME_EXCHANGE
) && target
) {
5076 shrink_dcache_parent(new_dentry
);
5077 target
->i_flags
|= S_DEAD
;
5079 dont_mount(new_dentry
);
5080 detach_mounts(new_dentry
);
5082 if (!(old_dir
->i_sb
->s_type
->fs_flags
& FS_RENAME_DOES_D_MOVE
)) {
5083 if (!(flags
& RENAME_EXCHANGE
))
5084 d_move(old_dentry
, new_dentry
);
5086 d_exchange(old_dentry
, new_dentry
);
5089 if (!is_dir
|| lock_old_subdir
)
5090 inode_unlock(source
);
5091 if (target
&& (!new_is_dir
|| lock_new_subdir
))
5092 inode_unlock(target
);
5095 fsnotify_move(old_dir
, new_dir
, &old_name
.name
, is_dir
,
5096 !(flags
& RENAME_EXCHANGE
) ? target
: NULL
, old_dentry
);
5097 if (flags
& RENAME_EXCHANGE
) {
5098 fsnotify_move(new_dir
, old_dir
, &old_dentry
->d_name
,
5099 new_is_dir
, NULL
, new_dentry
);
5102 release_dentry_name_snapshot(&old_name
);
5106 EXPORT_SYMBOL(vfs_rename
);
5108 int do_renameat2(int olddfd
, struct filename
*from
, int newdfd
,
5109 struct filename
*to
, unsigned int flags
)
5111 struct renamedata rd
;
5112 struct dentry
*old_dentry
, *new_dentry
;
5113 struct dentry
*trap
;
5114 struct path old_path
, new_path
;
5115 struct qstr old_last
, new_last
;
5116 int old_type
, new_type
;
5117 struct inode
*delegated_inode
= NULL
;
5118 unsigned int lookup_flags
= 0, target_flags
= LOOKUP_RENAME_TARGET
;
5119 bool should_retry
= false;
5120 int error
= -EINVAL
;
5122 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
5125 if ((flags
& (RENAME_NOREPLACE
| RENAME_WHITEOUT
)) &&
5126 (flags
& RENAME_EXCHANGE
))
5129 if (flags
& RENAME_EXCHANGE
)
5133 error
= filename_parentat(olddfd
, from
, lookup_flags
, &old_path
,
5134 &old_last
, &old_type
);
5138 error
= filename_parentat(newdfd
, to
, lookup_flags
, &new_path
, &new_last
,
5144 if (old_path
.mnt
!= new_path
.mnt
)
5148 if (old_type
!= LAST_NORM
)
5151 if (flags
& RENAME_NOREPLACE
)
5153 if (new_type
!= LAST_NORM
)
5156 error
= mnt_want_write(old_path
.mnt
);
5161 trap
= lock_rename(new_path
.dentry
, old_path
.dentry
);
5163 error
= PTR_ERR(trap
);
5164 goto exit_lock_rename
;
5167 old_dentry
= lookup_one_qstr_excl(&old_last
, old_path
.dentry
,
5169 error
= PTR_ERR(old_dentry
);
5170 if (IS_ERR(old_dentry
))
5172 /* source must exist */
5174 if (d_is_negative(old_dentry
))
5176 new_dentry
= lookup_one_qstr_excl(&new_last
, new_path
.dentry
,
5177 lookup_flags
| target_flags
);
5178 error
= PTR_ERR(new_dentry
);
5179 if (IS_ERR(new_dentry
))
5182 if ((flags
& RENAME_NOREPLACE
) && d_is_positive(new_dentry
))
5184 if (flags
& RENAME_EXCHANGE
) {
5186 if (d_is_negative(new_dentry
))
5189 if (!d_is_dir(new_dentry
)) {
5191 if (new_last
.name
[new_last
.len
])
5195 /* unless the source is a directory trailing slashes give -ENOTDIR */
5196 if (!d_is_dir(old_dentry
)) {
5198 if (old_last
.name
[old_last
.len
])
5200 if (!(flags
& RENAME_EXCHANGE
) && new_last
.name
[new_last
.len
])
5203 /* source should not be ancestor of target */
5205 if (old_dentry
== trap
)
5207 /* target should not be an ancestor of source */
5208 if (!(flags
& RENAME_EXCHANGE
))
5210 if (new_dentry
== trap
)
5213 error
= security_path_rename(&old_path
, old_dentry
,
5214 &new_path
, new_dentry
, flags
);
5218 rd
.old_dir
= old_path
.dentry
->d_inode
;
5219 rd
.old_dentry
= old_dentry
;
5220 rd
.old_mnt_idmap
= mnt_idmap(old_path
.mnt
);
5221 rd
.new_dir
= new_path
.dentry
->d_inode
;
5222 rd
.new_dentry
= new_dentry
;
5223 rd
.new_mnt_idmap
= mnt_idmap(new_path
.mnt
);
5224 rd
.delegated_inode
= &delegated_inode
;
5226 error
= vfs_rename(&rd
);
5232 unlock_rename(new_path
.dentry
, old_path
.dentry
);
5234 if (delegated_inode
) {
5235 error
= break_deleg_wait(&delegated_inode
);
5239 mnt_drop_write(old_path
.mnt
);
5241 if (retry_estale(error
, lookup_flags
))
5242 should_retry
= true;
5243 path_put(&new_path
);
5245 path_put(&old_path
);
5247 should_retry
= false;
5248 lookup_flags
|= LOOKUP_REVAL
;
5257 SYSCALL_DEFINE5(renameat2
, int, olddfd
, const char __user
*, oldname
,
5258 int, newdfd
, const char __user
*, newname
, unsigned int, flags
)
5260 return do_renameat2(olddfd
, getname(oldname
), newdfd
, getname(newname
),
5264 SYSCALL_DEFINE4(renameat
, int, olddfd
, const char __user
*, oldname
,
5265 int, newdfd
, const char __user
*, newname
)
5267 return do_renameat2(olddfd
, getname(oldname
), newdfd
, getname(newname
),
5271 SYSCALL_DEFINE2(rename
, const char __user
*, oldname
, const char __user
*, newname
)
5273 return do_renameat2(AT_FDCWD
, getname(oldname
), AT_FDCWD
,
5274 getname(newname
), 0);
5277 int readlink_copy(char __user
*buffer
, int buflen
, const char *link
, int linklen
)
5282 if (unlikely(copylen
> (unsigned) buflen
))
5284 if (copy_to_user(buffer
, link
, copylen
))
5290 * vfs_readlink - copy symlink body into userspace buffer
5291 * @dentry: dentry on which to get symbolic link
5292 * @buffer: user memory pointer
5293 * @buflen: size of buffer
5295 * Does not touch atime. That's up to the caller if necessary
5297 * Does not call security hook.
5299 int vfs_readlink(struct dentry
*dentry
, char __user
*buffer
, int buflen
)
5301 struct inode
*inode
= d_inode(dentry
);
5302 DEFINE_DELAYED_CALL(done
);
5306 if (inode
->i_opflags
& IOP_CACHED_LINK
)
5307 return readlink_copy(buffer
, buflen
, inode
->i_link
, inode
->i_linklen
);
5309 if (unlikely(!(inode
->i_opflags
& IOP_DEFAULT_READLINK
))) {
5310 if (unlikely(inode
->i_op
->readlink
))
5311 return inode
->i_op
->readlink(dentry
, buffer
, buflen
);
5313 if (!d_is_symlink(dentry
))
5316 spin_lock(&inode
->i_lock
);
5317 inode
->i_opflags
|= IOP_DEFAULT_READLINK
;
5318 spin_unlock(&inode
->i_lock
);
5321 link
= READ_ONCE(inode
->i_link
);
5323 link
= inode
->i_op
->get_link(dentry
, inode
, &done
);
5325 return PTR_ERR(link
);
5327 res
= readlink_copy(buffer
, buflen
, link
, strlen(link
));
5328 do_delayed_call(&done
);
5331 EXPORT_SYMBOL(vfs_readlink
);
5334 * vfs_get_link - get symlink body
5335 * @dentry: dentry on which to get symbolic link
5336 * @done: caller needs to free returned data with this
5338 * Calls security hook and i_op->get_link() on the supplied inode.
5340 * It does not touch atime. That's up to the caller if necessary.
5342 * Does not work on "special" symlinks like /proc/$$/fd/N
5344 const char *vfs_get_link(struct dentry
*dentry
, struct delayed_call
*done
)
5346 const char *res
= ERR_PTR(-EINVAL
);
5347 struct inode
*inode
= d_inode(dentry
);
5349 if (d_is_symlink(dentry
)) {
5350 res
= ERR_PTR(security_inode_readlink(dentry
));
5352 res
= inode
->i_op
->get_link(dentry
, inode
, done
);
5356 EXPORT_SYMBOL(vfs_get_link
);
5358 /* get the link contents into pagecache */
5359 const char *page_get_link(struct dentry
*dentry
, struct inode
*inode
,
5360 struct delayed_call
*callback
)
5364 struct address_space
*mapping
= inode
->i_mapping
;
5367 page
= find_get_page(mapping
, 0);
5369 return ERR_PTR(-ECHILD
);
5370 if (!PageUptodate(page
)) {
5372 return ERR_PTR(-ECHILD
);
5375 page
= read_mapping_page(mapping
, 0, NULL
);
5379 set_delayed_call(callback
, page_put_link
, page
);
5380 BUG_ON(mapping_gfp_mask(mapping
) & __GFP_HIGHMEM
);
5381 kaddr
= page_address(page
);
5382 nd_terminate_link(kaddr
, inode
->i_size
, PAGE_SIZE
- 1);
5386 EXPORT_SYMBOL(page_get_link
);
5388 void page_put_link(void *arg
)
5392 EXPORT_SYMBOL(page_put_link
);
5394 int page_readlink(struct dentry
*dentry
, char __user
*buffer
, int buflen
)
5399 DEFINE_DELAYED_CALL(done
);
5400 link
= page_get_link(dentry
, d_inode(dentry
), &done
);
5401 res
= PTR_ERR(link
);
5403 res
= readlink_copy(buffer
, buflen
, link
, strlen(link
));
5404 do_delayed_call(&done
);
5407 EXPORT_SYMBOL(page_readlink
);
5409 int page_symlink(struct inode
*inode
, const char *symname
, int len
)
5411 struct address_space
*mapping
= inode
->i_mapping
;
5412 const struct address_space_operations
*aops
= mapping
->a_ops
;
5413 bool nofs
= !mapping_gfp_constraint(mapping
, __GFP_FS
);
5414 struct folio
*folio
;
5415 void *fsdata
= NULL
;
5421 flags
= memalloc_nofs_save();
5422 err
= aops
->write_begin(NULL
, mapping
, 0, len
-1, &folio
, &fsdata
);
5424 memalloc_nofs_restore(flags
);
5428 memcpy(folio_address(folio
), symname
, len
- 1);
5430 err
= aops
->write_end(NULL
, mapping
, 0, len
- 1, len
- 1,
5437 mark_inode_dirty(inode
);
5442 EXPORT_SYMBOL(page_symlink
);
5444 const struct inode_operations page_symlink_inode_operations
= {
5445 .get_link
= page_get_link
,
5447 EXPORT_SYMBOL(page_symlink_inode_operations
);