Linux 6.14-rc1
[linux-stable.git] / fs / namei.c
blob3ab9440c5b9313bc4751ab97a1ae73194409188a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
8 /*
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
44 #include "internal.h"
45 #include "mount.h"
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
95 * [10-Sep-98 Alan Modra] Another symlink change.
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
128 struct filename *
129 getname_flags(const char __user *filename, int flags)
131 struct filename *result;
132 char *kname;
133 int len;
135 result = audit_reusename(filename);
136 if (result)
137 return result;
139 result = __getname();
140 if (unlikely(!result))
141 return ERR_PTR(-ENOMEM);
144 * First, try to embed the struct filename inside the names_cache
145 * allocation
147 kname = (char *)result->iname;
148 result->name = kname;
150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 * Handle both empty path and copy failure in one go.
154 if (unlikely(len <= 0)) {
155 if (unlikely(len < 0)) {
156 __putname(result);
157 return ERR_PTR(len);
160 /* The empty path is special. */
161 if (!(flags & LOOKUP_EMPTY)) {
162 __putname(result);
163 return ERR_PTR(-ENOENT);
168 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
169 * separate struct filename so we can dedicate the entire
170 * names_cache allocation for the pathname, and re-do the copy from
171 * userland.
173 if (unlikely(len == EMBEDDED_NAME_MAX)) {
174 const size_t size = offsetof(struct filename, iname[1]);
175 kname = (char *)result;
178 * size is chosen that way we to guarantee that
179 * result->iname[0] is within the same object and that
180 * kname can't be equal to result->iname, no matter what.
182 result = kzalloc(size, GFP_KERNEL);
183 if (unlikely(!result)) {
184 __putname(kname);
185 return ERR_PTR(-ENOMEM);
187 result->name = kname;
188 len = strncpy_from_user(kname, filename, PATH_MAX);
189 if (unlikely(len < 0)) {
190 __putname(kname);
191 kfree(result);
192 return ERR_PTR(len);
194 /* The empty path is special. */
195 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
196 __putname(kname);
197 kfree(result);
198 return ERR_PTR(-ENOENT);
200 if (unlikely(len == PATH_MAX)) {
201 __putname(kname);
202 kfree(result);
203 return ERR_PTR(-ENAMETOOLONG);
207 atomic_set(&result->refcnt, 1);
208 result->uptr = filename;
209 result->aname = NULL;
210 audit_getname(result);
211 return result;
214 struct filename *getname_uflags(const char __user *filename, int uflags)
216 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
218 return getname_flags(filename, flags);
221 struct filename *getname(const char __user * filename)
223 return getname_flags(filename, 0);
226 struct filename *__getname_maybe_null(const char __user *pathname)
228 struct filename *name;
229 char c;
231 /* try to save on allocations; loss on um, though */
232 if (get_user(c, pathname))
233 return ERR_PTR(-EFAULT);
234 if (!c)
235 return NULL;
237 name = getname_flags(pathname, LOOKUP_EMPTY);
238 if (!IS_ERR(name) && !(name->name[0])) {
239 putname(name);
240 name = NULL;
242 return name;
245 struct filename *getname_kernel(const char * filename)
247 struct filename *result;
248 int len = strlen(filename) + 1;
250 result = __getname();
251 if (unlikely(!result))
252 return ERR_PTR(-ENOMEM);
254 if (len <= EMBEDDED_NAME_MAX) {
255 result->name = (char *)result->iname;
256 } else if (len <= PATH_MAX) {
257 const size_t size = offsetof(struct filename, iname[1]);
258 struct filename *tmp;
260 tmp = kmalloc(size, GFP_KERNEL);
261 if (unlikely(!tmp)) {
262 __putname(result);
263 return ERR_PTR(-ENOMEM);
265 tmp->name = (char *)result;
266 result = tmp;
267 } else {
268 __putname(result);
269 return ERR_PTR(-ENAMETOOLONG);
271 memcpy((char *)result->name, filename, len);
272 result->uptr = NULL;
273 result->aname = NULL;
274 atomic_set(&result->refcnt, 1);
275 audit_getname(result);
277 return result;
279 EXPORT_SYMBOL(getname_kernel);
281 void putname(struct filename *name)
283 if (IS_ERR_OR_NULL(name))
284 return;
286 if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
287 return;
289 if (!atomic_dec_and_test(&name->refcnt))
290 return;
292 if (name->name != name->iname) {
293 __putname(name->name);
294 kfree(name);
295 } else
296 __putname(name);
298 EXPORT_SYMBOL(putname);
301 * check_acl - perform ACL permission checking
302 * @idmap: idmap of the mount the inode was found from
303 * @inode: inode to check permissions on
304 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306 * This function performs the ACL permission checking. Since this function
307 * retrieve POSIX acls it needs to know whether it is called from a blocking or
308 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310 * If the inode has been found through an idmapped mount the idmap of
311 * the vfsmount must be passed through @idmap. This function will then take
312 * care to map the inode according to @idmap before checking permissions.
313 * On non-idmapped mounts or if permission checking is to be performed on the
314 * raw inode simply pass @nop_mnt_idmap.
316 static int check_acl(struct mnt_idmap *idmap,
317 struct inode *inode, int mask)
319 #ifdef CONFIG_FS_POSIX_ACL
320 struct posix_acl *acl;
322 if (mask & MAY_NOT_BLOCK) {
323 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
324 if (!acl)
325 return -EAGAIN;
326 /* no ->get_inode_acl() calls in RCU mode... */
327 if (is_uncached_acl(acl))
328 return -ECHILD;
329 return posix_acl_permission(idmap, inode, acl, mask);
332 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
333 if (IS_ERR(acl))
334 return PTR_ERR(acl);
335 if (acl) {
336 int error = posix_acl_permission(idmap, inode, acl, mask);
337 posix_acl_release(acl);
338 return error;
340 #endif
342 return -EAGAIN;
346 * Very quick optimistic "we know we have no ACL's" check.
348 * Note that this is purely for ACL_TYPE_ACCESS, and purely
349 * for the "we have cached that there are no ACLs" case.
351 * If this returns true, we know there are no ACLs. But if
352 * it returns false, we might still not have ACLs (it could
353 * be the is_uncached_acl() case).
355 static inline bool no_acl_inode(struct inode *inode)
357 #ifdef CONFIG_FS_POSIX_ACL
358 return likely(!READ_ONCE(inode->i_acl));
359 #else
360 return true;
361 #endif
365 * acl_permission_check - perform basic UNIX permission checking
366 * @idmap: idmap of the mount the inode was found from
367 * @inode: inode to check permissions on
368 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370 * This function performs the basic UNIX permission checking. Since this
371 * function may retrieve POSIX acls it needs to know whether it is called from a
372 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374 * If the inode has been found through an idmapped mount the idmap of
375 * the vfsmount must be passed through @idmap. This function will then take
376 * care to map the inode according to @idmap before checking permissions.
377 * On non-idmapped mounts or if permission checking is to be performed on the
378 * raw inode simply pass @nop_mnt_idmap.
380 static int acl_permission_check(struct mnt_idmap *idmap,
381 struct inode *inode, int mask)
383 unsigned int mode = inode->i_mode;
384 vfsuid_t vfsuid;
387 * Common cheap case: everybody has the requested
388 * rights, and there are no ACLs to check. No need
389 * to do any owner/group checks in that case.
391 * - 'mask&7' is the requested permission bit set
392 * - multiplying by 0111 spreads them out to all of ugo
393 * - '& ~mode' looks for missing inode permission bits
394 * - the '!' is for "no missing permissions"
396 * After that, we just need to check that there are no
397 * ACL's on the inode - do the 'IS_POSIXACL()' check last
398 * because it will dereference the ->i_sb pointer and we
399 * want to avoid that if at all possible.
401 if (!((mask & 7) * 0111 & ~mode)) {
402 if (no_acl_inode(inode))
403 return 0;
404 if (!IS_POSIXACL(inode))
405 return 0;
408 /* Are we the owner? If so, ACL's don't matter */
409 vfsuid = i_uid_into_vfsuid(idmap, inode);
410 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
411 mask &= 7;
412 mode >>= 6;
413 return (mask & ~mode) ? -EACCES : 0;
416 /* Do we have ACL's? */
417 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
418 int error = check_acl(idmap, inode, mask);
419 if (error != -EAGAIN)
420 return error;
423 /* Only RWX matters for group/other mode bits */
424 mask &= 7;
427 * Are the group permissions different from
428 * the other permissions in the bits we care
429 * about? Need to check group ownership if so.
431 if (mask & (mode ^ (mode >> 3))) {
432 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
433 if (vfsgid_in_group_p(vfsgid))
434 mode >>= 3;
437 /* Bits in 'mode' clear that we require? */
438 return (mask & ~mode) ? -EACCES : 0;
442 * generic_permission - check for access rights on a Posix-like filesystem
443 * @idmap: idmap of the mount the inode was found from
444 * @inode: inode to check access rights for
445 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
446 * %MAY_NOT_BLOCK ...)
448 * Used to check for read/write/execute permissions on a file.
449 * We use "fsuid" for this, letting us set arbitrary permissions
450 * for filesystem access without changing the "normal" uids which
451 * are used for other things.
453 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
454 * request cannot be satisfied (eg. requires blocking or too much complexity).
455 * It would then be called again in ref-walk mode.
457 * If the inode has been found through an idmapped mount the idmap of
458 * the vfsmount must be passed through @idmap. This function will then take
459 * care to map the inode according to @idmap before checking permissions.
460 * On non-idmapped mounts or if permission checking is to be performed on the
461 * raw inode simply pass @nop_mnt_idmap.
463 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
464 int mask)
466 int ret;
469 * Do the basic permission checks.
471 ret = acl_permission_check(idmap, inode, mask);
472 if (ret != -EACCES)
473 return ret;
475 if (S_ISDIR(inode->i_mode)) {
476 /* DACs are overridable for directories */
477 if (!(mask & MAY_WRITE))
478 if (capable_wrt_inode_uidgid(idmap, inode,
479 CAP_DAC_READ_SEARCH))
480 return 0;
481 if (capable_wrt_inode_uidgid(idmap, inode,
482 CAP_DAC_OVERRIDE))
483 return 0;
484 return -EACCES;
488 * Searching includes executable on directories, else just read.
490 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
491 if (mask == MAY_READ)
492 if (capable_wrt_inode_uidgid(idmap, inode,
493 CAP_DAC_READ_SEARCH))
494 return 0;
496 * Read/write DACs are always overridable.
497 * Executable DACs are overridable when there is
498 * at least one exec bit set.
500 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
501 if (capable_wrt_inode_uidgid(idmap, inode,
502 CAP_DAC_OVERRIDE))
503 return 0;
505 return -EACCES;
507 EXPORT_SYMBOL(generic_permission);
510 * do_inode_permission - UNIX permission checking
511 * @idmap: idmap of the mount the inode was found from
512 * @inode: inode to check permissions on
513 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515 * We _really_ want to just do "generic_permission()" without
516 * even looking at the inode->i_op values. So we keep a cache
517 * flag in inode->i_opflags, that says "this has not special
518 * permission function, use the fast case".
520 static inline int do_inode_permission(struct mnt_idmap *idmap,
521 struct inode *inode, int mask)
523 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
524 if (likely(inode->i_op->permission))
525 return inode->i_op->permission(idmap, inode, mask);
527 /* This gets set once for the inode lifetime */
528 spin_lock(&inode->i_lock);
529 inode->i_opflags |= IOP_FASTPERM;
530 spin_unlock(&inode->i_lock);
532 return generic_permission(idmap, inode, mask);
536 * sb_permission - Check superblock-level permissions
537 * @sb: Superblock of inode to check permission on
538 * @inode: Inode to check permission on
539 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541 * Separate out file-system wide checks from inode-specific permission checks.
543 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
545 if (unlikely(mask & MAY_WRITE)) {
546 umode_t mode = inode->i_mode;
548 /* Nobody gets write access to a read-only fs. */
549 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
550 return -EROFS;
552 return 0;
556 * inode_permission - Check for access rights to a given inode
557 * @idmap: idmap of the mount the inode was found from
558 * @inode: Inode to check permission on
559 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
562 * this, letting us set arbitrary permissions for filesystem access without
563 * changing the "normal" UIDs which are used for other things.
565 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567 int inode_permission(struct mnt_idmap *idmap,
568 struct inode *inode, int mask)
570 int retval;
572 retval = sb_permission(inode->i_sb, inode, mask);
573 if (retval)
574 return retval;
576 if (unlikely(mask & MAY_WRITE)) {
578 * Nobody gets write access to an immutable file.
580 if (IS_IMMUTABLE(inode))
581 return -EPERM;
584 * Updating mtime will likely cause i_uid and i_gid to be
585 * written back improperly if their true value is unknown
586 * to the vfs.
588 if (HAS_UNMAPPED_ID(idmap, inode))
589 return -EACCES;
592 retval = do_inode_permission(idmap, inode, mask);
593 if (retval)
594 return retval;
596 retval = devcgroup_inode_permission(inode, mask);
597 if (retval)
598 return retval;
600 return security_inode_permission(inode, mask);
602 EXPORT_SYMBOL(inode_permission);
605 * path_get - get a reference to a path
606 * @path: path to get the reference to
608 * Given a path increment the reference count to the dentry and the vfsmount.
610 void path_get(const struct path *path)
612 mntget(path->mnt);
613 dget(path->dentry);
615 EXPORT_SYMBOL(path_get);
618 * path_put - put a reference to a path
619 * @path: path to put the reference to
621 * Given a path decrement the reference count to the dentry and the vfsmount.
623 void path_put(const struct path *path)
625 dput(path->dentry);
626 mntput(path->mnt);
628 EXPORT_SYMBOL(path_put);
630 #define EMBEDDED_LEVELS 2
631 struct nameidata {
632 struct path path;
633 struct qstr last;
634 struct path root;
635 struct inode *inode; /* path.dentry.d_inode */
636 unsigned int flags, state;
637 unsigned seq, next_seq, m_seq, r_seq;
638 int last_type;
639 unsigned depth;
640 int total_link_count;
641 struct saved {
642 struct path link;
643 struct delayed_call done;
644 const char *name;
645 unsigned seq;
646 } *stack, internal[EMBEDDED_LEVELS];
647 struct filename *name;
648 const char *pathname;
649 struct nameidata *saved;
650 unsigned root_seq;
651 int dfd;
652 vfsuid_t dir_vfsuid;
653 umode_t dir_mode;
654 } __randomize_layout;
656 #define ND_ROOT_PRESET 1
657 #define ND_ROOT_GRABBED 2
658 #define ND_JUMPED 4
660 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
662 struct nameidata *old = current->nameidata;
663 p->stack = p->internal;
664 p->depth = 0;
665 p->dfd = dfd;
666 p->name = name;
667 p->pathname = likely(name) ? name->name : "";
668 p->path.mnt = NULL;
669 p->path.dentry = NULL;
670 p->total_link_count = old ? old->total_link_count : 0;
671 p->saved = old;
672 current->nameidata = p;
675 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
676 const struct path *root)
678 __set_nameidata(p, dfd, name);
679 p->state = 0;
680 if (unlikely(root)) {
681 p->state = ND_ROOT_PRESET;
682 p->root = *root;
686 static void restore_nameidata(void)
688 struct nameidata *now = current->nameidata, *old = now->saved;
690 current->nameidata = old;
691 if (old)
692 old->total_link_count = now->total_link_count;
693 if (now->stack != now->internal)
694 kfree(now->stack);
697 static bool nd_alloc_stack(struct nameidata *nd)
699 struct saved *p;
701 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
702 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
703 if (unlikely(!p))
704 return false;
705 memcpy(p, nd->internal, sizeof(nd->internal));
706 nd->stack = p;
707 return true;
711 * path_connected - Verify that a dentry is below mnt.mnt_root
712 * @mnt: The mountpoint to check.
713 * @dentry: The dentry to check.
715 * Rename can sometimes move a file or directory outside of a bind
716 * mount, path_connected allows those cases to be detected.
718 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
720 struct super_block *sb = mnt->mnt_sb;
722 /* Bind mounts can have disconnected paths */
723 if (mnt->mnt_root == sb->s_root)
724 return true;
726 return is_subdir(dentry, mnt->mnt_root);
729 static void drop_links(struct nameidata *nd)
731 int i = nd->depth;
732 while (i--) {
733 struct saved *last = nd->stack + i;
734 do_delayed_call(&last->done);
735 clear_delayed_call(&last->done);
739 static void leave_rcu(struct nameidata *nd)
741 nd->flags &= ~LOOKUP_RCU;
742 nd->seq = nd->next_seq = 0;
743 rcu_read_unlock();
746 static void terminate_walk(struct nameidata *nd)
748 drop_links(nd);
749 if (!(nd->flags & LOOKUP_RCU)) {
750 int i;
751 path_put(&nd->path);
752 for (i = 0; i < nd->depth; i++)
753 path_put(&nd->stack[i].link);
754 if (nd->state & ND_ROOT_GRABBED) {
755 path_put(&nd->root);
756 nd->state &= ~ND_ROOT_GRABBED;
758 } else {
759 leave_rcu(nd);
761 nd->depth = 0;
762 nd->path.mnt = NULL;
763 nd->path.dentry = NULL;
766 /* path_put is needed afterwards regardless of success or failure */
767 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
769 int res = __legitimize_mnt(path->mnt, mseq);
770 if (unlikely(res)) {
771 if (res > 0)
772 path->mnt = NULL;
773 path->dentry = NULL;
774 return false;
776 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
777 path->dentry = NULL;
778 return false;
780 return !read_seqcount_retry(&path->dentry->d_seq, seq);
783 static inline bool legitimize_path(struct nameidata *nd,
784 struct path *path, unsigned seq)
786 return __legitimize_path(path, seq, nd->m_seq);
789 static bool legitimize_links(struct nameidata *nd)
791 int i;
792 if (unlikely(nd->flags & LOOKUP_CACHED)) {
793 drop_links(nd);
794 nd->depth = 0;
795 return false;
797 for (i = 0; i < nd->depth; i++) {
798 struct saved *last = nd->stack + i;
799 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
800 drop_links(nd);
801 nd->depth = i + 1;
802 return false;
805 return true;
808 static bool legitimize_root(struct nameidata *nd)
810 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
811 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
812 return true;
813 nd->state |= ND_ROOT_GRABBED;
814 return legitimize_path(nd, &nd->root, nd->root_seq);
818 * Path walking has 2 modes, rcu-walk and ref-walk (see
819 * Documentation/filesystems/path-lookup.txt). In situations when we can't
820 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
821 * normal reference counts on dentries and vfsmounts to transition to ref-walk
822 * mode. Refcounts are grabbed at the last known good point before rcu-walk
823 * got stuck, so ref-walk may continue from there. If this is not successful
824 * (eg. a seqcount has changed), then failure is returned and it's up to caller
825 * to restart the path walk from the beginning in ref-walk mode.
829 * try_to_unlazy - try to switch to ref-walk mode.
830 * @nd: nameidata pathwalk data
831 * Returns: true on success, false on failure
833 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
834 * for ref-walk mode.
835 * Must be called from rcu-walk context.
836 * Nothing should touch nameidata between try_to_unlazy() failure and
837 * terminate_walk().
839 static bool try_to_unlazy(struct nameidata *nd)
841 struct dentry *parent = nd->path.dentry;
843 BUG_ON(!(nd->flags & LOOKUP_RCU));
845 if (unlikely(!legitimize_links(nd)))
846 goto out1;
847 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
848 goto out;
849 if (unlikely(!legitimize_root(nd)))
850 goto out;
851 leave_rcu(nd);
852 BUG_ON(nd->inode != parent->d_inode);
853 return true;
855 out1:
856 nd->path.mnt = NULL;
857 nd->path.dentry = NULL;
858 out:
859 leave_rcu(nd);
860 return false;
864 * try_to_unlazy_next - try to switch to ref-walk mode.
865 * @nd: nameidata pathwalk data
866 * @dentry: next dentry to step into
867 * Returns: true on success, false on failure
869 * Similar to try_to_unlazy(), but here we have the next dentry already
870 * picked by rcu-walk and want to legitimize that in addition to the current
871 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
872 * Nothing should touch nameidata between try_to_unlazy_next() failure and
873 * terminate_walk().
875 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
877 int res;
878 BUG_ON(!(nd->flags & LOOKUP_RCU));
880 if (unlikely(!legitimize_links(nd)))
881 goto out2;
882 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
883 if (unlikely(res)) {
884 if (res > 0)
885 goto out2;
886 goto out1;
888 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
889 goto out1;
892 * We need to move both the parent and the dentry from the RCU domain
893 * to be properly refcounted. And the sequence number in the dentry
894 * validates *both* dentry counters, since we checked the sequence
895 * number of the parent after we got the child sequence number. So we
896 * know the parent must still be valid if the child sequence number is
898 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
899 goto out;
900 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
901 goto out_dput;
903 * Sequence counts matched. Now make sure that the root is
904 * still valid and get it if required.
906 if (unlikely(!legitimize_root(nd)))
907 goto out_dput;
908 leave_rcu(nd);
909 return true;
911 out2:
912 nd->path.mnt = NULL;
913 out1:
914 nd->path.dentry = NULL;
915 out:
916 leave_rcu(nd);
917 return false;
918 out_dput:
919 leave_rcu(nd);
920 dput(dentry);
921 return false;
924 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
925 struct dentry *dentry, unsigned int flags)
927 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
928 return dentry->d_op->d_revalidate(dir, name, dentry, flags);
929 else
930 return 1;
934 * complete_walk - successful completion of path walk
935 * @nd: pointer nameidata
937 * If we had been in RCU mode, drop out of it and legitimize nd->path.
938 * Revalidate the final result, unless we'd already done that during
939 * the path walk or the filesystem doesn't ask for it. Return 0 on
940 * success, -error on failure. In case of failure caller does not
941 * need to drop nd->path.
943 static int complete_walk(struct nameidata *nd)
945 struct dentry *dentry = nd->path.dentry;
946 int status;
948 if (nd->flags & LOOKUP_RCU) {
950 * We don't want to zero nd->root for scoped-lookups or
951 * externally-managed nd->root.
953 if (!(nd->state & ND_ROOT_PRESET))
954 if (!(nd->flags & LOOKUP_IS_SCOPED))
955 nd->root.mnt = NULL;
956 nd->flags &= ~LOOKUP_CACHED;
957 if (!try_to_unlazy(nd))
958 return -ECHILD;
961 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
963 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
964 * ever step outside the root during lookup" and should already
965 * be guaranteed by the rest of namei, we want to avoid a namei
966 * BUG resulting in userspace being given a path that was not
967 * scoped within the root at some point during the lookup.
969 * So, do a final sanity-check to make sure that in the
970 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
971 * we won't silently return an fd completely outside of the
972 * requested root to userspace.
974 * Userspace could move the path outside the root after this
975 * check, but as discussed elsewhere this is not a concern (the
976 * resolved file was inside the root at some point).
978 if (!path_is_under(&nd->path, &nd->root))
979 return -EXDEV;
982 if (likely(!(nd->state & ND_JUMPED)))
983 return 0;
985 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
986 return 0;
988 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
989 if (status > 0)
990 return 0;
992 if (!status)
993 status = -ESTALE;
995 return status;
998 static int set_root(struct nameidata *nd)
1000 struct fs_struct *fs = current->fs;
1003 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1004 * still have to ensure it doesn't happen because it will cause a breakout
1005 * from the dirfd.
1007 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1008 return -ENOTRECOVERABLE;
1010 if (nd->flags & LOOKUP_RCU) {
1011 unsigned seq;
1013 do {
1014 seq = read_seqcount_begin(&fs->seq);
1015 nd->root = fs->root;
1016 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1017 } while (read_seqcount_retry(&fs->seq, seq));
1018 } else {
1019 get_fs_root(fs, &nd->root);
1020 nd->state |= ND_ROOT_GRABBED;
1022 return 0;
1025 static int nd_jump_root(struct nameidata *nd)
1027 if (unlikely(nd->flags & LOOKUP_BENEATH))
1028 return -EXDEV;
1029 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1030 /* Absolute path arguments to path_init() are allowed. */
1031 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1032 return -EXDEV;
1034 if (!nd->root.mnt) {
1035 int error = set_root(nd);
1036 if (error)
1037 return error;
1039 if (nd->flags & LOOKUP_RCU) {
1040 struct dentry *d;
1041 nd->path = nd->root;
1042 d = nd->path.dentry;
1043 nd->inode = d->d_inode;
1044 nd->seq = nd->root_seq;
1045 if (read_seqcount_retry(&d->d_seq, nd->seq))
1046 return -ECHILD;
1047 } else {
1048 path_put(&nd->path);
1049 nd->path = nd->root;
1050 path_get(&nd->path);
1051 nd->inode = nd->path.dentry->d_inode;
1053 nd->state |= ND_JUMPED;
1054 return 0;
1058 * Helper to directly jump to a known parsed path from ->get_link,
1059 * caller must have taken a reference to path beforehand.
1061 int nd_jump_link(const struct path *path)
1063 int error = -ELOOP;
1064 struct nameidata *nd = current->nameidata;
1066 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1067 goto err;
1069 error = -EXDEV;
1070 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1071 if (nd->path.mnt != path->mnt)
1072 goto err;
1074 /* Not currently safe for scoped-lookups. */
1075 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1076 goto err;
1078 path_put(&nd->path);
1079 nd->path = *path;
1080 nd->inode = nd->path.dentry->d_inode;
1081 nd->state |= ND_JUMPED;
1082 return 0;
1084 err:
1085 path_put(path);
1086 return error;
1089 static inline void put_link(struct nameidata *nd)
1091 struct saved *last = nd->stack + --nd->depth;
1092 do_delayed_call(&last->done);
1093 if (!(nd->flags & LOOKUP_RCU))
1094 path_put(&last->link);
1097 static int sysctl_protected_symlinks __read_mostly;
1098 static int sysctl_protected_hardlinks __read_mostly;
1099 static int sysctl_protected_fifos __read_mostly;
1100 static int sysctl_protected_regular __read_mostly;
1102 #ifdef CONFIG_SYSCTL
1103 static const struct ctl_table namei_sysctls[] = {
1105 .procname = "protected_symlinks",
1106 .data = &sysctl_protected_symlinks,
1107 .maxlen = sizeof(int),
1108 .mode = 0644,
1109 .proc_handler = proc_dointvec_minmax,
1110 .extra1 = SYSCTL_ZERO,
1111 .extra2 = SYSCTL_ONE,
1114 .procname = "protected_hardlinks",
1115 .data = &sysctl_protected_hardlinks,
1116 .maxlen = sizeof(int),
1117 .mode = 0644,
1118 .proc_handler = proc_dointvec_minmax,
1119 .extra1 = SYSCTL_ZERO,
1120 .extra2 = SYSCTL_ONE,
1123 .procname = "protected_fifos",
1124 .data = &sysctl_protected_fifos,
1125 .maxlen = sizeof(int),
1126 .mode = 0644,
1127 .proc_handler = proc_dointvec_minmax,
1128 .extra1 = SYSCTL_ZERO,
1129 .extra2 = SYSCTL_TWO,
1132 .procname = "protected_regular",
1133 .data = &sysctl_protected_regular,
1134 .maxlen = sizeof(int),
1135 .mode = 0644,
1136 .proc_handler = proc_dointvec_minmax,
1137 .extra1 = SYSCTL_ZERO,
1138 .extra2 = SYSCTL_TWO,
1142 static int __init init_fs_namei_sysctls(void)
1144 register_sysctl_init("fs", namei_sysctls);
1145 return 0;
1147 fs_initcall(init_fs_namei_sysctls);
1149 #endif /* CONFIG_SYSCTL */
1152 * may_follow_link - Check symlink following for unsafe situations
1153 * @nd: nameidata pathwalk data
1154 * @inode: Used for idmapping.
1156 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1157 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1158 * in a sticky world-writable directory. This is to protect privileged
1159 * processes from failing races against path names that may change out
1160 * from under them by way of other users creating malicious symlinks.
1161 * It will permit symlinks to be followed only when outside a sticky
1162 * world-writable directory, or when the uid of the symlink and follower
1163 * match, or when the directory owner matches the symlink's owner.
1165 * Returns 0 if following the symlink is allowed, -ve on error.
1167 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1169 struct mnt_idmap *idmap;
1170 vfsuid_t vfsuid;
1172 if (!sysctl_protected_symlinks)
1173 return 0;
1175 idmap = mnt_idmap(nd->path.mnt);
1176 vfsuid = i_uid_into_vfsuid(idmap, inode);
1177 /* Allowed if owner and follower match. */
1178 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1179 return 0;
1181 /* Allowed if parent directory not sticky and world-writable. */
1182 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1183 return 0;
1185 /* Allowed if parent directory and link owner match. */
1186 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1187 return 0;
1189 if (nd->flags & LOOKUP_RCU)
1190 return -ECHILD;
1192 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1193 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1194 return -EACCES;
1198 * safe_hardlink_source - Check for safe hardlink conditions
1199 * @idmap: idmap of the mount the inode was found from
1200 * @inode: the source inode to hardlink from
1202 * Return false if at least one of the following conditions:
1203 * - inode is not a regular file
1204 * - inode is setuid
1205 * - inode is setgid and group-exec
1206 * - access failure for read and write
1208 * Otherwise returns true.
1210 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1211 struct inode *inode)
1213 umode_t mode = inode->i_mode;
1215 /* Special files should not get pinned to the filesystem. */
1216 if (!S_ISREG(mode))
1217 return false;
1219 /* Setuid files should not get pinned to the filesystem. */
1220 if (mode & S_ISUID)
1221 return false;
1223 /* Executable setgid files should not get pinned to the filesystem. */
1224 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1225 return false;
1227 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1228 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1229 return false;
1231 return true;
1235 * may_linkat - Check permissions for creating a hardlink
1236 * @idmap: idmap of the mount the inode was found from
1237 * @link: the source to hardlink from
1239 * Block hardlink when all of:
1240 * - sysctl_protected_hardlinks enabled
1241 * - fsuid does not match inode
1242 * - hardlink source is unsafe (see safe_hardlink_source() above)
1243 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1245 * If the inode has been found through an idmapped mount the idmap of
1246 * the vfsmount must be passed through @idmap. This function will then take
1247 * care to map the inode according to @idmap before checking permissions.
1248 * On non-idmapped mounts or if permission checking is to be performed on the
1249 * raw inode simply pass @nop_mnt_idmap.
1251 * Returns 0 if successful, -ve on error.
1253 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1255 struct inode *inode = link->dentry->d_inode;
1257 /* Inode writeback is not safe when the uid or gid are invalid. */
1258 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1259 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1260 return -EOVERFLOW;
1262 if (!sysctl_protected_hardlinks)
1263 return 0;
1265 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1266 * otherwise, it must be a safe source.
1268 if (safe_hardlink_source(idmap, inode) ||
1269 inode_owner_or_capable(idmap, inode))
1270 return 0;
1272 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1273 return -EPERM;
1277 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1278 * should be allowed, or not, on files that already
1279 * exist.
1280 * @idmap: idmap of the mount the inode was found from
1281 * @nd: nameidata pathwalk data
1282 * @inode: the inode of the file to open
1284 * Block an O_CREAT open of a FIFO (or a regular file) when:
1285 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1286 * - the file already exists
1287 * - we are in a sticky directory
1288 * - we don't own the file
1289 * - the owner of the directory doesn't own the file
1290 * - the directory is world writable
1291 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1292 * the directory doesn't have to be world writable: being group writable will
1293 * be enough.
1295 * If the inode has been found through an idmapped mount the idmap of
1296 * the vfsmount must be passed through @idmap. This function will then take
1297 * care to map the inode according to @idmap before checking permissions.
1298 * On non-idmapped mounts or if permission checking is to be performed on the
1299 * raw inode simply pass @nop_mnt_idmap.
1301 * Returns 0 if the open is allowed, -ve on error.
1303 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1304 struct inode *const inode)
1306 umode_t dir_mode = nd->dir_mode;
1307 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1309 if (likely(!(dir_mode & S_ISVTX)))
1310 return 0;
1312 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1313 return 0;
1315 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1316 return 0;
1318 i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1320 if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1321 return 0;
1323 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1324 return 0;
1326 if (likely(dir_mode & 0002)) {
1327 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1328 return -EACCES;
1331 if (dir_mode & 0020) {
1332 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1333 audit_log_path_denied(AUDIT_ANOM_CREAT,
1334 "sticky_create_fifo");
1335 return -EACCES;
1338 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1339 audit_log_path_denied(AUDIT_ANOM_CREAT,
1340 "sticky_create_regular");
1341 return -EACCES;
1345 return 0;
1349 * follow_up - Find the mountpoint of path's vfsmount
1351 * Given a path, find the mountpoint of its source file system.
1352 * Replace @path with the path of the mountpoint in the parent mount.
1353 * Up is towards /.
1355 * Return 1 if we went up a level and 0 if we were already at the
1356 * root.
1358 int follow_up(struct path *path)
1360 struct mount *mnt = real_mount(path->mnt);
1361 struct mount *parent;
1362 struct dentry *mountpoint;
1364 read_seqlock_excl(&mount_lock);
1365 parent = mnt->mnt_parent;
1366 if (parent == mnt) {
1367 read_sequnlock_excl(&mount_lock);
1368 return 0;
1370 mntget(&parent->mnt);
1371 mountpoint = dget(mnt->mnt_mountpoint);
1372 read_sequnlock_excl(&mount_lock);
1373 dput(path->dentry);
1374 path->dentry = mountpoint;
1375 mntput(path->mnt);
1376 path->mnt = &parent->mnt;
1377 return 1;
1379 EXPORT_SYMBOL(follow_up);
1381 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1382 struct path *path, unsigned *seqp)
1384 while (mnt_has_parent(m)) {
1385 struct dentry *mountpoint = m->mnt_mountpoint;
1387 m = m->mnt_parent;
1388 if (unlikely(root->dentry == mountpoint &&
1389 root->mnt == &m->mnt))
1390 break;
1391 if (mountpoint != m->mnt.mnt_root) {
1392 path->mnt = &m->mnt;
1393 path->dentry = mountpoint;
1394 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1395 return true;
1398 return false;
1401 static bool choose_mountpoint(struct mount *m, const struct path *root,
1402 struct path *path)
1404 bool found;
1406 rcu_read_lock();
1407 while (1) {
1408 unsigned seq, mseq = read_seqbegin(&mount_lock);
1410 found = choose_mountpoint_rcu(m, root, path, &seq);
1411 if (unlikely(!found)) {
1412 if (!read_seqretry(&mount_lock, mseq))
1413 break;
1414 } else {
1415 if (likely(__legitimize_path(path, seq, mseq)))
1416 break;
1417 rcu_read_unlock();
1418 path_put(path);
1419 rcu_read_lock();
1422 rcu_read_unlock();
1423 return found;
1427 * Perform an automount
1428 * - return -EISDIR to tell follow_managed() to stop and return the path we
1429 * were called with.
1431 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1433 struct dentry *dentry = path->dentry;
1435 /* We don't want to mount if someone's just doing a stat -
1436 * unless they're stat'ing a directory and appended a '/' to
1437 * the name.
1439 * We do, however, want to mount if someone wants to open or
1440 * create a file of any type under the mountpoint, wants to
1441 * traverse through the mountpoint or wants to open the
1442 * mounted directory. Also, autofs may mark negative dentries
1443 * as being automount points. These will need the attentions
1444 * of the daemon to instantiate them before they can be used.
1446 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1447 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1448 dentry->d_inode)
1449 return -EISDIR;
1451 if (count && (*count)++ >= MAXSYMLINKS)
1452 return -ELOOP;
1454 return finish_automount(dentry->d_op->d_automount(path), path);
1458 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1459 * dentries are pinned but not locked here, so negative dentry can go
1460 * positive right under us. Use of smp_load_acquire() provides a barrier
1461 * sufficient for ->d_inode and ->d_flags consistency.
1463 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1464 int *count, unsigned lookup_flags)
1466 struct vfsmount *mnt = path->mnt;
1467 bool need_mntput = false;
1468 int ret = 0;
1470 while (flags & DCACHE_MANAGED_DENTRY) {
1471 /* Allow the filesystem to manage the transit without i_mutex
1472 * being held. */
1473 if (flags & DCACHE_MANAGE_TRANSIT) {
1474 ret = path->dentry->d_op->d_manage(path, false);
1475 flags = smp_load_acquire(&path->dentry->d_flags);
1476 if (ret < 0)
1477 break;
1480 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1481 struct vfsmount *mounted = lookup_mnt(path);
1482 if (mounted) { // ... in our namespace
1483 dput(path->dentry);
1484 if (need_mntput)
1485 mntput(path->mnt);
1486 path->mnt = mounted;
1487 path->dentry = dget(mounted->mnt_root);
1488 // here we know it's positive
1489 flags = path->dentry->d_flags;
1490 need_mntput = true;
1491 continue;
1495 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1496 break;
1498 // uncovered automount point
1499 ret = follow_automount(path, count, lookup_flags);
1500 flags = smp_load_acquire(&path->dentry->d_flags);
1501 if (ret < 0)
1502 break;
1505 if (ret == -EISDIR)
1506 ret = 0;
1507 // possible if you race with several mount --move
1508 if (need_mntput && path->mnt == mnt)
1509 mntput(path->mnt);
1510 if (!ret && unlikely(d_flags_negative(flags)))
1511 ret = -ENOENT;
1512 *jumped = need_mntput;
1513 return ret;
1516 static inline int traverse_mounts(struct path *path, bool *jumped,
1517 int *count, unsigned lookup_flags)
1519 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1521 /* fastpath */
1522 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1523 *jumped = false;
1524 if (unlikely(d_flags_negative(flags)))
1525 return -ENOENT;
1526 return 0;
1528 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1531 int follow_down_one(struct path *path)
1533 struct vfsmount *mounted;
1535 mounted = lookup_mnt(path);
1536 if (mounted) {
1537 dput(path->dentry);
1538 mntput(path->mnt);
1539 path->mnt = mounted;
1540 path->dentry = dget(mounted->mnt_root);
1541 return 1;
1543 return 0;
1545 EXPORT_SYMBOL(follow_down_one);
1548 * Follow down to the covering mount currently visible to userspace. At each
1549 * point, the filesystem owning that dentry may be queried as to whether the
1550 * caller is permitted to proceed or not.
1552 int follow_down(struct path *path, unsigned int flags)
1554 struct vfsmount *mnt = path->mnt;
1555 bool jumped;
1556 int ret = traverse_mounts(path, &jumped, NULL, flags);
1558 if (path->mnt != mnt)
1559 mntput(mnt);
1560 return ret;
1562 EXPORT_SYMBOL(follow_down);
1565 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1566 * we meet a managed dentry that would need blocking.
1568 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1570 struct dentry *dentry = path->dentry;
1571 unsigned int flags = dentry->d_flags;
1573 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1574 return true;
1576 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1577 return false;
1579 for (;;) {
1581 * Don't forget we might have a non-mountpoint managed dentry
1582 * that wants to block transit.
1584 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1585 int res = dentry->d_op->d_manage(path, true);
1586 if (res)
1587 return res == -EISDIR;
1588 flags = dentry->d_flags;
1591 if (flags & DCACHE_MOUNTED) {
1592 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1593 if (mounted) {
1594 path->mnt = &mounted->mnt;
1595 dentry = path->dentry = mounted->mnt.mnt_root;
1596 nd->state |= ND_JUMPED;
1597 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1598 flags = dentry->d_flags;
1599 // makes sure that non-RCU pathwalk could reach
1600 // this state.
1601 if (read_seqretry(&mount_lock, nd->m_seq))
1602 return false;
1603 continue;
1605 if (read_seqretry(&mount_lock, nd->m_seq))
1606 return false;
1608 return !(flags & DCACHE_NEED_AUTOMOUNT);
1612 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1613 struct path *path)
1615 bool jumped;
1616 int ret;
1618 path->mnt = nd->path.mnt;
1619 path->dentry = dentry;
1620 if (nd->flags & LOOKUP_RCU) {
1621 unsigned int seq = nd->next_seq;
1622 if (likely(__follow_mount_rcu(nd, path)))
1623 return 0;
1624 // *path and nd->next_seq might've been clobbered
1625 path->mnt = nd->path.mnt;
1626 path->dentry = dentry;
1627 nd->next_seq = seq;
1628 if (!try_to_unlazy_next(nd, dentry))
1629 return -ECHILD;
1631 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1632 if (jumped) {
1633 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1634 ret = -EXDEV;
1635 else
1636 nd->state |= ND_JUMPED;
1638 if (unlikely(ret)) {
1639 dput(path->dentry);
1640 if (path->mnt != nd->path.mnt)
1641 mntput(path->mnt);
1643 return ret;
1647 * This looks up the name in dcache and possibly revalidates the found dentry.
1648 * NULL is returned if the dentry does not exist in the cache.
1650 static struct dentry *lookup_dcache(const struct qstr *name,
1651 struct dentry *dir,
1652 unsigned int flags)
1654 struct dentry *dentry = d_lookup(dir, name);
1655 if (dentry) {
1656 int error = d_revalidate(dir->d_inode, name, dentry, flags);
1657 if (unlikely(error <= 0)) {
1658 if (!error)
1659 d_invalidate(dentry);
1660 dput(dentry);
1661 return ERR_PTR(error);
1664 return dentry;
1668 * Parent directory has inode locked exclusive. This is one
1669 * and only case when ->lookup() gets called on non in-lookup
1670 * dentries - as the matter of fact, this only gets called
1671 * when directory is guaranteed to have no in-lookup children
1672 * at all.
1674 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1675 struct dentry *base,
1676 unsigned int flags)
1678 struct dentry *dentry = lookup_dcache(name, base, flags);
1679 struct dentry *old;
1680 struct inode *dir = base->d_inode;
1682 if (dentry)
1683 return dentry;
1685 /* Don't create child dentry for a dead directory. */
1686 if (unlikely(IS_DEADDIR(dir)))
1687 return ERR_PTR(-ENOENT);
1689 dentry = d_alloc(base, name);
1690 if (unlikely(!dentry))
1691 return ERR_PTR(-ENOMEM);
1693 old = dir->i_op->lookup(dir, dentry, flags);
1694 if (unlikely(old)) {
1695 dput(dentry);
1696 dentry = old;
1698 return dentry;
1700 EXPORT_SYMBOL(lookup_one_qstr_excl);
1703 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1704 * @nd: current nameidata
1706 * Do a fast, but racy lookup in the dcache for the given dentry, and
1707 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1708 * found. On error, an ERR_PTR will be returned.
1710 * If this function returns a valid dentry and the walk is no longer
1711 * lazy, the dentry will carry a reference that must later be put. If
1712 * RCU mode is still in force, then this is not the case and the dentry
1713 * must be legitimized before use. If this returns NULL, then the walk
1714 * will no longer be in RCU mode.
1716 static struct dentry *lookup_fast(struct nameidata *nd)
1718 struct dentry *dentry, *parent = nd->path.dentry;
1719 int status = 1;
1722 * Rename seqlock is not required here because in the off chance
1723 * of a false negative due to a concurrent rename, the caller is
1724 * going to fall back to non-racy lookup.
1726 if (nd->flags & LOOKUP_RCU) {
1727 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1728 if (unlikely(!dentry)) {
1729 if (!try_to_unlazy(nd))
1730 return ERR_PTR(-ECHILD);
1731 return NULL;
1735 * This sequence count validates that the parent had no
1736 * changes while we did the lookup of the dentry above.
1738 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1739 return ERR_PTR(-ECHILD);
1741 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1742 if (likely(status > 0))
1743 return dentry;
1744 if (!try_to_unlazy_next(nd, dentry))
1745 return ERR_PTR(-ECHILD);
1746 if (status == -ECHILD)
1747 /* we'd been told to redo it in non-rcu mode */
1748 status = d_revalidate(nd->inode, &nd->last,
1749 dentry, nd->flags);
1750 } else {
1751 dentry = __d_lookup(parent, &nd->last);
1752 if (unlikely(!dentry))
1753 return NULL;
1754 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1756 if (unlikely(status <= 0)) {
1757 if (!status)
1758 d_invalidate(dentry);
1759 dput(dentry);
1760 return ERR_PTR(status);
1762 return dentry;
1765 /* Fast lookup failed, do it the slow way */
1766 static struct dentry *__lookup_slow(const struct qstr *name,
1767 struct dentry *dir,
1768 unsigned int flags)
1770 struct dentry *dentry, *old;
1771 struct inode *inode = dir->d_inode;
1772 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1774 /* Don't go there if it's already dead */
1775 if (unlikely(IS_DEADDIR(inode)))
1776 return ERR_PTR(-ENOENT);
1777 again:
1778 dentry = d_alloc_parallel(dir, name, &wq);
1779 if (IS_ERR(dentry))
1780 return dentry;
1781 if (unlikely(!d_in_lookup(dentry))) {
1782 int error = d_revalidate(inode, name, dentry, flags);
1783 if (unlikely(error <= 0)) {
1784 if (!error) {
1785 d_invalidate(dentry);
1786 dput(dentry);
1787 goto again;
1789 dput(dentry);
1790 dentry = ERR_PTR(error);
1792 } else {
1793 old = inode->i_op->lookup(inode, dentry, flags);
1794 d_lookup_done(dentry);
1795 if (unlikely(old)) {
1796 dput(dentry);
1797 dentry = old;
1800 return dentry;
1803 static struct dentry *lookup_slow(const struct qstr *name,
1804 struct dentry *dir,
1805 unsigned int flags)
1807 struct inode *inode = dir->d_inode;
1808 struct dentry *res;
1809 inode_lock_shared(inode);
1810 res = __lookup_slow(name, dir, flags);
1811 inode_unlock_shared(inode);
1812 return res;
1815 static inline int may_lookup(struct mnt_idmap *idmap,
1816 struct nameidata *restrict nd)
1818 int err, mask;
1820 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1821 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1822 if (likely(!err))
1823 return 0;
1825 // If we failed, and we weren't in LOOKUP_RCU, it's final
1826 if (!(nd->flags & LOOKUP_RCU))
1827 return err;
1829 // Drop out of RCU mode to make sure it wasn't transient
1830 if (!try_to_unlazy(nd))
1831 return -ECHILD; // redo it all non-lazy
1833 if (err != -ECHILD) // hard error
1834 return err;
1836 return inode_permission(idmap, nd->inode, MAY_EXEC);
1839 static int reserve_stack(struct nameidata *nd, struct path *link)
1841 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1842 return -ELOOP;
1844 if (likely(nd->depth != EMBEDDED_LEVELS))
1845 return 0;
1846 if (likely(nd->stack != nd->internal))
1847 return 0;
1848 if (likely(nd_alloc_stack(nd)))
1849 return 0;
1851 if (nd->flags & LOOKUP_RCU) {
1852 // we need to grab link before we do unlazy. And we can't skip
1853 // unlazy even if we fail to grab the link - cleanup needs it
1854 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1856 if (!try_to_unlazy(nd) || !grabbed_link)
1857 return -ECHILD;
1859 if (nd_alloc_stack(nd))
1860 return 0;
1862 return -ENOMEM;
1865 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1867 static const char *pick_link(struct nameidata *nd, struct path *link,
1868 struct inode *inode, int flags)
1870 struct saved *last;
1871 const char *res;
1872 int error = reserve_stack(nd, link);
1874 if (unlikely(error)) {
1875 if (!(nd->flags & LOOKUP_RCU))
1876 path_put(link);
1877 return ERR_PTR(error);
1879 last = nd->stack + nd->depth++;
1880 last->link = *link;
1881 clear_delayed_call(&last->done);
1882 last->seq = nd->next_seq;
1884 if (flags & WALK_TRAILING) {
1885 error = may_follow_link(nd, inode);
1886 if (unlikely(error))
1887 return ERR_PTR(error);
1890 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1891 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1892 return ERR_PTR(-ELOOP);
1894 if (!(nd->flags & LOOKUP_RCU)) {
1895 touch_atime(&last->link);
1896 cond_resched();
1897 } else if (atime_needs_update(&last->link, inode)) {
1898 if (!try_to_unlazy(nd))
1899 return ERR_PTR(-ECHILD);
1900 touch_atime(&last->link);
1903 error = security_inode_follow_link(link->dentry, inode,
1904 nd->flags & LOOKUP_RCU);
1905 if (unlikely(error))
1906 return ERR_PTR(error);
1908 res = READ_ONCE(inode->i_link);
1909 if (!res) {
1910 const char * (*get)(struct dentry *, struct inode *,
1911 struct delayed_call *);
1912 get = inode->i_op->get_link;
1913 if (nd->flags & LOOKUP_RCU) {
1914 res = get(NULL, inode, &last->done);
1915 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1916 res = get(link->dentry, inode, &last->done);
1917 } else {
1918 res = get(link->dentry, inode, &last->done);
1920 if (!res)
1921 goto all_done;
1922 if (IS_ERR(res))
1923 return res;
1925 if (*res == '/') {
1926 error = nd_jump_root(nd);
1927 if (unlikely(error))
1928 return ERR_PTR(error);
1929 while (unlikely(*++res == '/'))
1932 if (*res)
1933 return res;
1934 all_done: // pure jump
1935 put_link(nd);
1936 return NULL;
1940 * Do we need to follow links? We _really_ want to be able
1941 * to do this check without having to look at inode->i_op,
1942 * so we keep a cache of "no, this doesn't need follow_link"
1943 * for the common case.
1945 * NOTE: dentry must be what nd->next_seq had been sampled from.
1947 static const char *step_into(struct nameidata *nd, int flags,
1948 struct dentry *dentry)
1950 struct path path;
1951 struct inode *inode;
1952 int err = handle_mounts(nd, dentry, &path);
1954 if (err < 0)
1955 return ERR_PTR(err);
1956 inode = path.dentry->d_inode;
1957 if (likely(!d_is_symlink(path.dentry)) ||
1958 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1959 (flags & WALK_NOFOLLOW)) {
1960 /* not a symlink or should not follow */
1961 if (nd->flags & LOOKUP_RCU) {
1962 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1963 return ERR_PTR(-ECHILD);
1964 if (unlikely(!inode))
1965 return ERR_PTR(-ENOENT);
1966 } else {
1967 dput(nd->path.dentry);
1968 if (nd->path.mnt != path.mnt)
1969 mntput(nd->path.mnt);
1971 nd->path = path;
1972 nd->inode = inode;
1973 nd->seq = nd->next_seq;
1974 return NULL;
1976 if (nd->flags & LOOKUP_RCU) {
1977 /* make sure that d_is_symlink above matches inode */
1978 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1979 return ERR_PTR(-ECHILD);
1980 } else {
1981 if (path.mnt == nd->path.mnt)
1982 mntget(path.mnt);
1984 return pick_link(nd, &path, inode, flags);
1987 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1989 struct dentry *parent, *old;
1991 if (path_equal(&nd->path, &nd->root))
1992 goto in_root;
1993 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1994 struct path path;
1995 unsigned seq;
1996 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1997 &nd->root, &path, &seq))
1998 goto in_root;
1999 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2000 return ERR_PTR(-ECHILD);
2001 nd->path = path;
2002 nd->inode = path.dentry->d_inode;
2003 nd->seq = seq;
2004 // makes sure that non-RCU pathwalk could reach this state
2005 if (read_seqretry(&mount_lock, nd->m_seq))
2006 return ERR_PTR(-ECHILD);
2007 /* we know that mountpoint was pinned */
2009 old = nd->path.dentry;
2010 parent = old->d_parent;
2011 nd->next_seq = read_seqcount_begin(&parent->d_seq);
2012 // makes sure that non-RCU pathwalk could reach this state
2013 if (read_seqcount_retry(&old->d_seq, nd->seq))
2014 return ERR_PTR(-ECHILD);
2015 if (unlikely(!path_connected(nd->path.mnt, parent)))
2016 return ERR_PTR(-ECHILD);
2017 return parent;
2018 in_root:
2019 if (read_seqretry(&mount_lock, nd->m_seq))
2020 return ERR_PTR(-ECHILD);
2021 if (unlikely(nd->flags & LOOKUP_BENEATH))
2022 return ERR_PTR(-ECHILD);
2023 nd->next_seq = nd->seq;
2024 return nd->path.dentry;
2027 static struct dentry *follow_dotdot(struct nameidata *nd)
2029 struct dentry *parent;
2031 if (path_equal(&nd->path, &nd->root))
2032 goto in_root;
2033 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2034 struct path path;
2036 if (!choose_mountpoint(real_mount(nd->path.mnt),
2037 &nd->root, &path))
2038 goto in_root;
2039 path_put(&nd->path);
2040 nd->path = path;
2041 nd->inode = path.dentry->d_inode;
2042 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2043 return ERR_PTR(-EXDEV);
2045 /* rare case of legitimate dget_parent()... */
2046 parent = dget_parent(nd->path.dentry);
2047 if (unlikely(!path_connected(nd->path.mnt, parent))) {
2048 dput(parent);
2049 return ERR_PTR(-ENOENT);
2051 return parent;
2053 in_root:
2054 if (unlikely(nd->flags & LOOKUP_BENEATH))
2055 return ERR_PTR(-EXDEV);
2056 return dget(nd->path.dentry);
2059 static const char *handle_dots(struct nameidata *nd, int type)
2061 if (type == LAST_DOTDOT) {
2062 const char *error = NULL;
2063 struct dentry *parent;
2065 if (!nd->root.mnt) {
2066 error = ERR_PTR(set_root(nd));
2067 if (error)
2068 return error;
2070 if (nd->flags & LOOKUP_RCU)
2071 parent = follow_dotdot_rcu(nd);
2072 else
2073 parent = follow_dotdot(nd);
2074 if (IS_ERR(parent))
2075 return ERR_CAST(parent);
2076 error = step_into(nd, WALK_NOFOLLOW, parent);
2077 if (unlikely(error))
2078 return error;
2080 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2082 * If there was a racing rename or mount along our
2083 * path, then we can't be sure that ".." hasn't jumped
2084 * above nd->root (and so userspace should retry or use
2085 * some fallback).
2087 smp_rmb();
2088 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2089 return ERR_PTR(-EAGAIN);
2090 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2091 return ERR_PTR(-EAGAIN);
2094 return NULL;
2097 static const char *walk_component(struct nameidata *nd, int flags)
2099 struct dentry *dentry;
2101 * "." and ".." are special - ".." especially so because it has
2102 * to be able to know about the current root directory and
2103 * parent relationships.
2105 if (unlikely(nd->last_type != LAST_NORM)) {
2106 if (!(flags & WALK_MORE) && nd->depth)
2107 put_link(nd);
2108 return handle_dots(nd, nd->last_type);
2110 dentry = lookup_fast(nd);
2111 if (IS_ERR(dentry))
2112 return ERR_CAST(dentry);
2113 if (unlikely(!dentry)) {
2114 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2115 if (IS_ERR(dentry))
2116 return ERR_CAST(dentry);
2118 if (!(flags & WALK_MORE) && nd->depth)
2119 put_link(nd);
2120 return step_into(nd, flags, dentry);
2124 * We can do the critical dentry name comparison and hashing
2125 * operations one word at a time, but we are limited to:
2127 * - Architectures with fast unaligned word accesses. We could
2128 * do a "get_unaligned()" if this helps and is sufficiently
2129 * fast.
2131 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2132 * do not trap on the (extremely unlikely) case of a page
2133 * crossing operation.
2135 * - Furthermore, we need an efficient 64-bit compile for the
2136 * 64-bit case in order to generate the "number of bytes in
2137 * the final mask". Again, that could be replaced with a
2138 * efficient population count instruction or similar.
2140 #ifdef CONFIG_DCACHE_WORD_ACCESS
2142 #include <asm/word-at-a-time.h>
2144 #ifdef HASH_MIX
2146 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2148 #elif defined(CONFIG_64BIT)
2150 * Register pressure in the mixing function is an issue, particularly
2151 * on 32-bit x86, but almost any function requires one state value and
2152 * one temporary. Instead, use a function designed for two state values
2153 * and no temporaries.
2155 * This function cannot create a collision in only two iterations, so
2156 * we have two iterations to achieve avalanche. In those two iterations,
2157 * we have six layers of mixing, which is enough to spread one bit's
2158 * influence out to 2^6 = 64 state bits.
2160 * Rotate constants are scored by considering either 64 one-bit input
2161 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2162 * probability of that delta causing a change to each of the 128 output
2163 * bits, using a sample of random initial states.
2165 * The Shannon entropy of the computed probabilities is then summed
2166 * to produce a score. Ideally, any input change has a 50% chance of
2167 * toggling any given output bit.
2169 * Mixing scores (in bits) for (12,45):
2170 * Input delta: 1-bit 2-bit
2171 * 1 round: 713.3 42542.6
2172 * 2 rounds: 2753.7 140389.8
2173 * 3 rounds: 5954.1 233458.2
2174 * 4 rounds: 7862.6 256672.2
2175 * Perfect: 8192 258048
2176 * (64*128) (64*63/2 * 128)
2178 #define HASH_MIX(x, y, a) \
2179 ( x ^= (a), \
2180 y ^= x, x = rol64(x,12),\
2181 x += y, y = rol64(y,45),\
2182 y *= 9 )
2185 * Fold two longs into one 32-bit hash value. This must be fast, but
2186 * latency isn't quite as critical, as there is a fair bit of additional
2187 * work done before the hash value is used.
2189 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2191 y ^= x * GOLDEN_RATIO_64;
2192 y *= GOLDEN_RATIO_64;
2193 return y >> 32;
2196 #else /* 32-bit case */
2199 * Mixing scores (in bits) for (7,20):
2200 * Input delta: 1-bit 2-bit
2201 * 1 round: 330.3 9201.6
2202 * 2 rounds: 1246.4 25475.4
2203 * 3 rounds: 1907.1 31295.1
2204 * 4 rounds: 2042.3 31718.6
2205 * Perfect: 2048 31744
2206 * (32*64) (32*31/2 * 64)
2208 #define HASH_MIX(x, y, a) \
2209 ( x ^= (a), \
2210 y ^= x, x = rol32(x, 7),\
2211 x += y, y = rol32(y,20),\
2212 y *= 9 )
2214 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2216 /* Use arch-optimized multiply if one exists */
2217 return __hash_32(y ^ __hash_32(x));
2220 #endif
2223 * Return the hash of a string of known length. This is carfully
2224 * designed to match hash_name(), which is the more critical function.
2225 * In particular, we must end by hashing a final word containing 0..7
2226 * payload bytes, to match the way that hash_name() iterates until it
2227 * finds the delimiter after the name.
2229 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2231 unsigned long a, x = 0, y = (unsigned long)salt;
2233 for (;;) {
2234 if (!len)
2235 goto done;
2236 a = load_unaligned_zeropad(name);
2237 if (len < sizeof(unsigned long))
2238 break;
2239 HASH_MIX(x, y, a);
2240 name += sizeof(unsigned long);
2241 len -= sizeof(unsigned long);
2243 x ^= a & bytemask_from_count(len);
2244 done:
2245 return fold_hash(x, y);
2247 EXPORT_SYMBOL(full_name_hash);
2249 /* Return the "hash_len" (hash and length) of a null-terminated string */
2250 u64 hashlen_string(const void *salt, const char *name)
2252 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2253 unsigned long adata, mask, len;
2254 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2256 len = 0;
2257 goto inside;
2259 do {
2260 HASH_MIX(x, y, a);
2261 len += sizeof(unsigned long);
2262 inside:
2263 a = load_unaligned_zeropad(name+len);
2264 } while (!has_zero(a, &adata, &constants));
2266 adata = prep_zero_mask(a, adata, &constants);
2267 mask = create_zero_mask(adata);
2268 x ^= a & zero_bytemask(mask);
2270 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2272 EXPORT_SYMBOL(hashlen_string);
2275 * Calculate the length and hash of the path component, and
2276 * return the length as the result.
2278 static inline const char *hash_name(struct nameidata *nd,
2279 const char *name,
2280 unsigned long *lastword)
2282 unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2283 unsigned long adata, bdata, mask, len;
2284 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2287 * The first iteration is special, because it can result in
2288 * '.' and '..' and has no mixing other than the final fold.
2290 a = load_unaligned_zeropad(name);
2291 b = a ^ REPEAT_BYTE('/');
2292 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2293 adata = prep_zero_mask(a, adata, &constants);
2294 bdata = prep_zero_mask(b, bdata, &constants);
2295 mask = create_zero_mask(adata | bdata);
2296 a &= zero_bytemask(mask);
2297 *lastword = a;
2298 len = find_zero(mask);
2299 nd->last.hash = fold_hash(a, y);
2300 nd->last.len = len;
2301 return name + len;
2304 len = 0;
2305 x = 0;
2306 do {
2307 HASH_MIX(x, y, a);
2308 len += sizeof(unsigned long);
2309 a = load_unaligned_zeropad(name+len);
2310 b = a ^ REPEAT_BYTE('/');
2311 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2313 adata = prep_zero_mask(a, adata, &constants);
2314 bdata = prep_zero_mask(b, bdata, &constants);
2315 mask = create_zero_mask(adata | bdata);
2316 a &= zero_bytemask(mask);
2317 x ^= a;
2318 len += find_zero(mask);
2319 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT
2321 nd->last.hash = fold_hash(x, y);
2322 nd->last.len = len;
2323 return name + len;
2327 * Note that the 'last' word is always zero-masked, but
2328 * was loaded as a possibly big-endian word.
2330 #ifdef __BIG_ENDIAN
2331 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2332 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2333 #endif
2335 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2337 /* Return the hash of a string of known length */
2338 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2340 unsigned long hash = init_name_hash(salt);
2341 while (len--)
2342 hash = partial_name_hash((unsigned char)*name++, hash);
2343 return end_name_hash(hash);
2345 EXPORT_SYMBOL(full_name_hash);
2347 /* Return the "hash_len" (hash and length) of a null-terminated string */
2348 u64 hashlen_string(const void *salt, const char *name)
2350 unsigned long hash = init_name_hash(salt);
2351 unsigned long len = 0, c;
2353 c = (unsigned char)*name;
2354 while (c) {
2355 len++;
2356 hash = partial_name_hash(c, hash);
2357 c = (unsigned char)name[len];
2359 return hashlen_create(end_name_hash(hash), len);
2361 EXPORT_SYMBOL(hashlen_string);
2364 * We know there's a real path component here of at least
2365 * one character.
2367 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2369 unsigned long hash = init_name_hash(nd->path.dentry);
2370 unsigned long len = 0, c, last = 0;
2372 c = (unsigned char)*name;
2373 do {
2374 last = (last << 8) + c;
2375 len++;
2376 hash = partial_name_hash(c, hash);
2377 c = (unsigned char)name[len];
2378 } while (c && c != '/');
2380 // This is reliable for DOT or DOTDOT, since the component
2381 // cannot contain NUL characters - top bits being zero means
2382 // we cannot have had any other pathnames.
2383 *lastword = last;
2384 nd->last.hash = end_name_hash(hash);
2385 nd->last.len = len;
2386 return name + len;
2389 #endif
2391 #ifndef LAST_WORD_IS_DOT
2392 #define LAST_WORD_IS_DOT 0x2e
2393 #define LAST_WORD_IS_DOTDOT 0x2e2e
2394 #endif
2397 * Name resolution.
2398 * This is the basic name resolution function, turning a pathname into
2399 * the final dentry. We expect 'base' to be positive and a directory.
2401 * Returns 0 and nd will have valid dentry and mnt on success.
2402 * Returns error and drops reference to input namei data on failure.
2404 static int link_path_walk(const char *name, struct nameidata *nd)
2406 int depth = 0; // depth <= nd->depth
2407 int err;
2409 nd->last_type = LAST_ROOT;
2410 nd->flags |= LOOKUP_PARENT;
2411 if (IS_ERR(name))
2412 return PTR_ERR(name);
2413 while (*name=='/')
2414 name++;
2415 if (!*name) {
2416 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2417 return 0;
2420 /* At this point we know we have a real path component. */
2421 for(;;) {
2422 struct mnt_idmap *idmap;
2423 const char *link;
2424 unsigned long lastword;
2426 idmap = mnt_idmap(nd->path.mnt);
2427 err = may_lookup(idmap, nd);
2428 if (err)
2429 return err;
2431 nd->last.name = name;
2432 name = hash_name(nd, name, &lastword);
2434 switch(lastword) {
2435 case LAST_WORD_IS_DOTDOT:
2436 nd->last_type = LAST_DOTDOT;
2437 nd->state |= ND_JUMPED;
2438 break;
2440 case LAST_WORD_IS_DOT:
2441 nd->last_type = LAST_DOT;
2442 break;
2444 default:
2445 nd->last_type = LAST_NORM;
2446 nd->state &= ~ND_JUMPED;
2448 struct dentry *parent = nd->path.dentry;
2449 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2450 err = parent->d_op->d_hash(parent, &nd->last);
2451 if (err < 0)
2452 return err;
2456 if (!*name)
2457 goto OK;
2459 * If it wasn't NUL, we know it was '/'. Skip that
2460 * slash, and continue until no more slashes.
2462 do {
2463 name++;
2464 } while (unlikely(*name == '/'));
2465 if (unlikely(!*name)) {
2467 /* pathname or trailing symlink, done */
2468 if (!depth) {
2469 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2470 nd->dir_mode = nd->inode->i_mode;
2471 nd->flags &= ~LOOKUP_PARENT;
2472 return 0;
2474 /* last component of nested symlink */
2475 name = nd->stack[--depth].name;
2476 link = walk_component(nd, 0);
2477 } else {
2478 /* not the last component */
2479 link = walk_component(nd, WALK_MORE);
2481 if (unlikely(link)) {
2482 if (IS_ERR(link))
2483 return PTR_ERR(link);
2484 /* a symlink to follow */
2485 nd->stack[depth++].name = name;
2486 name = link;
2487 continue;
2489 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2490 if (nd->flags & LOOKUP_RCU) {
2491 if (!try_to_unlazy(nd))
2492 return -ECHILD;
2494 return -ENOTDIR;
2499 /* must be paired with terminate_walk() */
2500 static const char *path_init(struct nameidata *nd, unsigned flags)
2502 int error;
2503 const char *s = nd->pathname;
2505 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2506 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2507 return ERR_PTR(-EAGAIN);
2509 if (!*s)
2510 flags &= ~LOOKUP_RCU;
2511 if (flags & LOOKUP_RCU)
2512 rcu_read_lock();
2513 else
2514 nd->seq = nd->next_seq = 0;
2516 nd->flags = flags;
2517 nd->state |= ND_JUMPED;
2519 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2520 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2521 smp_rmb();
2523 if (nd->state & ND_ROOT_PRESET) {
2524 struct dentry *root = nd->root.dentry;
2525 struct inode *inode = root->d_inode;
2526 if (*s && unlikely(!d_can_lookup(root)))
2527 return ERR_PTR(-ENOTDIR);
2528 nd->path = nd->root;
2529 nd->inode = inode;
2530 if (flags & LOOKUP_RCU) {
2531 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2532 nd->root_seq = nd->seq;
2533 } else {
2534 path_get(&nd->path);
2536 return s;
2539 nd->root.mnt = NULL;
2541 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2542 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2543 error = nd_jump_root(nd);
2544 if (unlikely(error))
2545 return ERR_PTR(error);
2546 return s;
2549 /* Relative pathname -- get the starting-point it is relative to. */
2550 if (nd->dfd == AT_FDCWD) {
2551 if (flags & LOOKUP_RCU) {
2552 struct fs_struct *fs = current->fs;
2553 unsigned seq;
2555 do {
2556 seq = read_seqcount_begin(&fs->seq);
2557 nd->path = fs->pwd;
2558 nd->inode = nd->path.dentry->d_inode;
2559 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2560 } while (read_seqcount_retry(&fs->seq, seq));
2561 } else {
2562 get_fs_pwd(current->fs, &nd->path);
2563 nd->inode = nd->path.dentry->d_inode;
2565 } else {
2566 /* Caller must check execute permissions on the starting path component */
2567 CLASS(fd_raw, f)(nd->dfd);
2568 struct dentry *dentry;
2570 if (fd_empty(f))
2571 return ERR_PTR(-EBADF);
2573 if (flags & LOOKUP_LINKAT_EMPTY) {
2574 if (fd_file(f)->f_cred != current_cred() &&
2575 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2576 return ERR_PTR(-ENOENT);
2579 dentry = fd_file(f)->f_path.dentry;
2581 if (*s && unlikely(!d_can_lookup(dentry)))
2582 return ERR_PTR(-ENOTDIR);
2584 nd->path = fd_file(f)->f_path;
2585 if (flags & LOOKUP_RCU) {
2586 nd->inode = nd->path.dentry->d_inode;
2587 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2588 } else {
2589 path_get(&nd->path);
2590 nd->inode = nd->path.dentry->d_inode;
2594 /* For scoped-lookups we need to set the root to the dirfd as well. */
2595 if (flags & LOOKUP_IS_SCOPED) {
2596 nd->root = nd->path;
2597 if (flags & LOOKUP_RCU) {
2598 nd->root_seq = nd->seq;
2599 } else {
2600 path_get(&nd->root);
2601 nd->state |= ND_ROOT_GRABBED;
2604 return s;
2607 static inline const char *lookup_last(struct nameidata *nd)
2609 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2610 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2612 return walk_component(nd, WALK_TRAILING);
2615 static int handle_lookup_down(struct nameidata *nd)
2617 if (!(nd->flags & LOOKUP_RCU))
2618 dget(nd->path.dentry);
2619 nd->next_seq = nd->seq;
2620 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2623 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2624 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2626 const char *s = path_init(nd, flags);
2627 int err;
2629 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2630 err = handle_lookup_down(nd);
2631 if (unlikely(err < 0))
2632 s = ERR_PTR(err);
2635 while (!(err = link_path_walk(s, nd)) &&
2636 (s = lookup_last(nd)) != NULL)
2638 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2639 err = handle_lookup_down(nd);
2640 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2642 if (!err)
2643 err = complete_walk(nd);
2645 if (!err && nd->flags & LOOKUP_DIRECTORY)
2646 if (!d_can_lookup(nd->path.dentry))
2647 err = -ENOTDIR;
2648 if (!err) {
2649 *path = nd->path;
2650 nd->path.mnt = NULL;
2651 nd->path.dentry = NULL;
2653 terminate_walk(nd);
2654 return err;
2657 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2658 struct path *path, struct path *root)
2660 int retval;
2661 struct nameidata nd;
2662 if (IS_ERR(name))
2663 return PTR_ERR(name);
2664 set_nameidata(&nd, dfd, name, root);
2665 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2666 if (unlikely(retval == -ECHILD))
2667 retval = path_lookupat(&nd, flags, path);
2668 if (unlikely(retval == -ESTALE))
2669 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2671 if (likely(!retval))
2672 audit_inode(name, path->dentry,
2673 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2674 restore_nameidata();
2675 return retval;
2678 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2679 static int path_parentat(struct nameidata *nd, unsigned flags,
2680 struct path *parent)
2682 const char *s = path_init(nd, flags);
2683 int err = link_path_walk(s, nd);
2684 if (!err)
2685 err = complete_walk(nd);
2686 if (!err) {
2687 *parent = nd->path;
2688 nd->path.mnt = NULL;
2689 nd->path.dentry = NULL;
2691 terminate_walk(nd);
2692 return err;
2695 /* Note: this does not consume "name" */
2696 static int __filename_parentat(int dfd, struct filename *name,
2697 unsigned int flags, struct path *parent,
2698 struct qstr *last, int *type,
2699 const struct path *root)
2701 int retval;
2702 struct nameidata nd;
2704 if (IS_ERR(name))
2705 return PTR_ERR(name);
2706 set_nameidata(&nd, dfd, name, root);
2707 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2708 if (unlikely(retval == -ECHILD))
2709 retval = path_parentat(&nd, flags, parent);
2710 if (unlikely(retval == -ESTALE))
2711 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2712 if (likely(!retval)) {
2713 *last = nd.last;
2714 *type = nd.last_type;
2715 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2717 restore_nameidata();
2718 return retval;
2721 static int filename_parentat(int dfd, struct filename *name,
2722 unsigned int flags, struct path *parent,
2723 struct qstr *last, int *type)
2725 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2728 /* does lookup, returns the object with parent locked */
2729 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2731 struct dentry *d;
2732 struct qstr last;
2733 int type, error;
2735 error = filename_parentat(dfd, name, 0, path, &last, &type);
2736 if (error)
2737 return ERR_PTR(error);
2738 if (unlikely(type != LAST_NORM)) {
2739 path_put(path);
2740 return ERR_PTR(-EINVAL);
2742 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2743 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2744 if (IS_ERR(d)) {
2745 inode_unlock(path->dentry->d_inode);
2746 path_put(path);
2748 return d;
2751 struct dentry *kern_path_locked(const char *name, struct path *path)
2753 struct filename *filename = getname_kernel(name);
2754 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2756 putname(filename);
2757 return res;
2760 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2762 struct filename *filename = getname(name);
2763 struct dentry *res = __kern_path_locked(dfd, filename, path);
2765 putname(filename);
2766 return res;
2768 EXPORT_SYMBOL(user_path_locked_at);
2770 int kern_path(const char *name, unsigned int flags, struct path *path)
2772 struct filename *filename = getname_kernel(name);
2773 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2775 putname(filename);
2776 return ret;
2779 EXPORT_SYMBOL(kern_path);
2782 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2783 * @filename: filename structure
2784 * @flags: lookup flags
2785 * @parent: pointer to struct path to fill
2786 * @last: last component
2787 * @type: type of the last component
2788 * @root: pointer to struct path of the base directory
2790 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2791 struct path *parent, struct qstr *last, int *type,
2792 const struct path *root)
2794 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2795 type, root);
2797 EXPORT_SYMBOL(vfs_path_parent_lookup);
2800 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2801 * @dentry: pointer to dentry of the base directory
2802 * @mnt: pointer to vfs mount of the base directory
2803 * @name: pointer to file name
2804 * @flags: lookup flags
2805 * @path: pointer to struct path to fill
2807 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2808 const char *name, unsigned int flags,
2809 struct path *path)
2811 struct filename *filename;
2812 struct path root = {.mnt = mnt, .dentry = dentry};
2813 int ret;
2815 filename = getname_kernel(name);
2816 /* the first argument of filename_lookup() is ignored with root */
2817 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2818 putname(filename);
2819 return ret;
2821 EXPORT_SYMBOL(vfs_path_lookup);
2823 static int lookup_one_common(struct mnt_idmap *idmap,
2824 const char *name, struct dentry *base, int len,
2825 struct qstr *this)
2827 this->name = name;
2828 this->len = len;
2829 this->hash = full_name_hash(base, name, len);
2830 if (!len)
2831 return -EACCES;
2833 if (is_dot_dotdot(name, len))
2834 return -EACCES;
2836 while (len--) {
2837 unsigned int c = *(const unsigned char *)name++;
2838 if (c == '/' || c == '\0')
2839 return -EACCES;
2842 * See if the low-level filesystem might want
2843 * to use its own hash..
2845 if (base->d_flags & DCACHE_OP_HASH) {
2846 int err = base->d_op->d_hash(base, this);
2847 if (err < 0)
2848 return err;
2851 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2855 * try_lookup_one_len - filesystem helper to lookup single pathname component
2856 * @name: pathname component to lookup
2857 * @base: base directory to lookup from
2858 * @len: maximum length @len should be interpreted to
2860 * Look up a dentry by name in the dcache, returning NULL if it does not
2861 * currently exist. The function does not try to create a dentry.
2863 * Note that this routine is purely a helper for filesystem usage and should
2864 * not be called by generic code.
2866 * The caller must hold base->i_mutex.
2868 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2870 struct qstr this;
2871 int err;
2873 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2875 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2876 if (err)
2877 return ERR_PTR(err);
2879 return lookup_dcache(&this, base, 0);
2881 EXPORT_SYMBOL(try_lookup_one_len);
2884 * lookup_one_len - filesystem helper to lookup single pathname component
2885 * @name: pathname component to lookup
2886 * @base: base directory to lookup from
2887 * @len: maximum length @len should be interpreted to
2889 * Note that this routine is purely a helper for filesystem usage and should
2890 * not be called by generic code.
2892 * The caller must hold base->i_mutex.
2894 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2896 struct dentry *dentry;
2897 struct qstr this;
2898 int err;
2900 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2902 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2903 if (err)
2904 return ERR_PTR(err);
2906 dentry = lookup_dcache(&this, base, 0);
2907 return dentry ? dentry : __lookup_slow(&this, base, 0);
2909 EXPORT_SYMBOL(lookup_one_len);
2912 * lookup_one - filesystem helper to lookup single pathname component
2913 * @idmap: idmap of the mount the lookup is performed from
2914 * @name: pathname component to lookup
2915 * @base: base directory to lookup from
2916 * @len: maximum length @len should be interpreted to
2918 * Note that this routine is purely a helper for filesystem usage and should
2919 * not be called by generic code.
2921 * The caller must hold base->i_mutex.
2923 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2924 struct dentry *base, int len)
2926 struct dentry *dentry;
2927 struct qstr this;
2928 int err;
2930 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2932 err = lookup_one_common(idmap, name, base, len, &this);
2933 if (err)
2934 return ERR_PTR(err);
2936 dentry = lookup_dcache(&this, base, 0);
2937 return dentry ? dentry : __lookup_slow(&this, base, 0);
2939 EXPORT_SYMBOL(lookup_one);
2942 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2943 * @idmap: idmap of the mount the lookup is performed from
2944 * @name: pathname component to lookup
2945 * @base: base directory to lookup from
2946 * @len: maximum length @len should be interpreted to
2948 * Note that this routine is purely a helper for filesystem usage and should
2949 * not be called by generic code.
2951 * Unlike lookup_one_len, it should be called without the parent
2952 * i_mutex held, and will take the i_mutex itself if necessary.
2954 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2955 const char *name, struct dentry *base,
2956 int len)
2958 struct qstr this;
2959 int err;
2960 struct dentry *ret;
2962 err = lookup_one_common(idmap, name, base, len, &this);
2963 if (err)
2964 return ERR_PTR(err);
2966 ret = lookup_dcache(&this, base, 0);
2967 if (!ret)
2968 ret = lookup_slow(&this, base, 0);
2969 return ret;
2971 EXPORT_SYMBOL(lookup_one_unlocked);
2974 * lookup_one_positive_unlocked - filesystem helper to lookup single
2975 * pathname component
2976 * @idmap: idmap of the mount the lookup is performed from
2977 * @name: pathname component to lookup
2978 * @base: base directory to lookup from
2979 * @len: maximum length @len should be interpreted to
2981 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2982 * known positive or ERR_PTR(). This is what most of the users want.
2984 * Note that pinned negative with unlocked parent _can_ become positive at any
2985 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2986 * positives have >d_inode stable, so this one avoids such problems.
2988 * Note that this routine is purely a helper for filesystem usage and should
2989 * not be called by generic code.
2991 * The helper should be called without i_mutex held.
2993 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2994 const char *name,
2995 struct dentry *base, int len)
2997 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2999 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3000 dput(ret);
3001 ret = ERR_PTR(-ENOENT);
3003 return ret;
3005 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3008 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3009 * @name: pathname component to lookup
3010 * @base: base directory to lookup from
3011 * @len: maximum length @len should be interpreted to
3013 * Note that this routine is purely a helper for filesystem usage and should
3014 * not be called by generic code.
3016 * Unlike lookup_one_len, it should be called without the parent
3017 * i_mutex held, and will take the i_mutex itself if necessary.
3019 struct dentry *lookup_one_len_unlocked(const char *name,
3020 struct dentry *base, int len)
3022 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
3024 EXPORT_SYMBOL(lookup_one_len_unlocked);
3027 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3028 * on negatives. Returns known positive or ERR_PTR(); that's what
3029 * most of the users want. Note that pinned negative with unlocked parent
3030 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3031 * need to be very careful; pinned positives have ->d_inode stable, so
3032 * this one avoids such problems.
3034 struct dentry *lookup_positive_unlocked(const char *name,
3035 struct dentry *base, int len)
3037 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
3039 EXPORT_SYMBOL(lookup_positive_unlocked);
3041 #ifdef CONFIG_UNIX98_PTYS
3042 int path_pts(struct path *path)
3044 /* Find something mounted on "pts" in the same directory as
3045 * the input path.
3047 struct dentry *parent = dget_parent(path->dentry);
3048 struct dentry *child;
3049 struct qstr this = QSTR_INIT("pts", 3);
3051 if (unlikely(!path_connected(path->mnt, parent))) {
3052 dput(parent);
3053 return -ENOENT;
3055 dput(path->dentry);
3056 path->dentry = parent;
3057 child = d_hash_and_lookup(parent, &this);
3058 if (IS_ERR_OR_NULL(child))
3059 return -ENOENT;
3061 path->dentry = child;
3062 dput(parent);
3063 follow_down(path, 0);
3064 return 0;
3066 #endif
3068 int user_path_at(int dfd, const char __user *name, unsigned flags,
3069 struct path *path)
3071 struct filename *filename = getname_flags(name, flags);
3072 int ret = filename_lookup(dfd, filename, flags, path, NULL);
3074 putname(filename);
3075 return ret;
3077 EXPORT_SYMBOL(user_path_at);
3079 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3080 struct inode *inode)
3082 kuid_t fsuid = current_fsuid();
3084 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3085 return 0;
3086 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3087 return 0;
3088 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3090 EXPORT_SYMBOL(__check_sticky);
3093 * Check whether we can remove a link victim from directory dir, check
3094 * whether the type of victim is right.
3095 * 1. We can't do it if dir is read-only (done in permission())
3096 * 2. We should have write and exec permissions on dir
3097 * 3. We can't remove anything from append-only dir
3098 * 4. We can't do anything with immutable dir (done in permission())
3099 * 5. If the sticky bit on dir is set we should either
3100 * a. be owner of dir, or
3101 * b. be owner of victim, or
3102 * c. have CAP_FOWNER capability
3103 * 6. If the victim is append-only or immutable we can't do antyhing with
3104 * links pointing to it.
3105 * 7. If the victim has an unknown uid or gid we can't change the inode.
3106 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3107 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3108 * 10. We can't remove a root or mountpoint.
3109 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3110 * nfs_async_unlink().
3112 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3113 struct dentry *victim, bool isdir)
3115 struct inode *inode = d_backing_inode(victim);
3116 int error;
3118 if (d_is_negative(victim))
3119 return -ENOENT;
3120 BUG_ON(!inode);
3122 BUG_ON(victim->d_parent->d_inode != dir);
3124 /* Inode writeback is not safe when the uid or gid are invalid. */
3125 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3126 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3127 return -EOVERFLOW;
3129 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3131 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3132 if (error)
3133 return error;
3134 if (IS_APPEND(dir))
3135 return -EPERM;
3137 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3138 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3139 HAS_UNMAPPED_ID(idmap, inode))
3140 return -EPERM;
3141 if (isdir) {
3142 if (!d_is_dir(victim))
3143 return -ENOTDIR;
3144 if (IS_ROOT(victim))
3145 return -EBUSY;
3146 } else if (d_is_dir(victim))
3147 return -EISDIR;
3148 if (IS_DEADDIR(dir))
3149 return -ENOENT;
3150 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3151 return -EBUSY;
3152 return 0;
3155 /* Check whether we can create an object with dentry child in directory
3156 * dir.
3157 * 1. We can't do it if child already exists (open has special treatment for
3158 * this case, but since we are inlined it's OK)
3159 * 2. We can't do it if dir is read-only (done in permission())
3160 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3161 * 4. We should have write and exec permissions on dir
3162 * 5. We can't do it if dir is immutable (done in permission())
3164 static inline int may_create(struct mnt_idmap *idmap,
3165 struct inode *dir, struct dentry *child)
3167 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3168 if (child->d_inode)
3169 return -EEXIST;
3170 if (IS_DEADDIR(dir))
3171 return -ENOENT;
3172 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3173 return -EOVERFLOW;
3175 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3178 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3179 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3181 struct dentry *p = p1, *q = p2, *r;
3183 while ((r = p->d_parent) != p2 && r != p)
3184 p = r;
3185 if (r == p2) {
3186 // p is a child of p2 and an ancestor of p1 or p1 itself
3187 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3188 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3189 return p;
3191 // p is the root of connected component that contains p1
3192 // p2 does not occur on the path from p to p1
3193 while ((r = q->d_parent) != p1 && r != p && r != q)
3194 q = r;
3195 if (r == p1) {
3196 // q is a child of p1 and an ancestor of p2 or p2 itself
3197 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3198 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3199 return q;
3200 } else if (likely(r == p)) {
3201 // both p2 and p1 are descendents of p
3202 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3203 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3204 return NULL;
3205 } else { // no common ancestor at the time we'd been called
3206 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3207 return ERR_PTR(-EXDEV);
3212 * p1 and p2 should be directories on the same fs.
3214 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3216 if (p1 == p2) {
3217 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3218 return NULL;
3221 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3222 return lock_two_directories(p1, p2);
3224 EXPORT_SYMBOL(lock_rename);
3227 * c1 and p2 should be on the same fs.
3229 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3231 if (READ_ONCE(c1->d_parent) == p2) {
3233 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3235 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3237 * now that p2 is locked, nobody can move in or out of it,
3238 * so the test below is safe.
3240 if (likely(c1->d_parent == p2))
3241 return NULL;
3244 * c1 got moved out of p2 while we'd been taking locks;
3245 * unlock and fall back to slow case.
3247 inode_unlock(p2->d_inode);
3250 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3252 * nobody can move out of any directories on this fs.
3254 if (likely(c1->d_parent != p2))
3255 return lock_two_directories(c1->d_parent, p2);
3258 * c1 got moved into p2 while we were taking locks;
3259 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3260 * for consistency with lock_rename().
3262 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3263 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3264 return NULL;
3266 EXPORT_SYMBOL(lock_rename_child);
3268 void unlock_rename(struct dentry *p1, struct dentry *p2)
3270 inode_unlock(p1->d_inode);
3271 if (p1 != p2) {
3272 inode_unlock(p2->d_inode);
3273 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3276 EXPORT_SYMBOL(unlock_rename);
3279 * vfs_prepare_mode - prepare the mode to be used for a new inode
3280 * @idmap: idmap of the mount the inode was found from
3281 * @dir: parent directory of the new inode
3282 * @mode: mode of the new inode
3283 * @mask_perms: allowed permission by the vfs
3284 * @type: type of file to be created
3286 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3287 * object to be created.
3289 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3290 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3291 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3292 * POSIX ACL supporting filesystems.
3294 * Note that it's currently valid for @type to be 0 if a directory is created.
3295 * Filesystems raise that flag individually and we need to check whether each
3296 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3297 * non-zero type.
3299 * Returns: mode to be passed to the filesystem
3301 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3302 const struct inode *dir, umode_t mode,
3303 umode_t mask_perms, umode_t type)
3305 mode = mode_strip_sgid(idmap, dir, mode);
3306 mode = mode_strip_umask(dir, mode);
3309 * Apply the vfs mandated allowed permission mask and set the type of
3310 * file to be created before we call into the filesystem.
3312 mode &= (mask_perms & ~S_IFMT);
3313 mode |= (type & S_IFMT);
3315 return mode;
3319 * vfs_create - create new file
3320 * @idmap: idmap of the mount the inode was found from
3321 * @dir: inode of the parent directory
3322 * @dentry: dentry of the child file
3323 * @mode: mode of the child file
3324 * @want_excl: whether the file must not yet exist
3326 * Create a new file.
3328 * If the inode has been found through an idmapped mount the idmap of
3329 * the vfsmount must be passed through @idmap. This function will then take
3330 * care to map the inode according to @idmap before checking permissions.
3331 * On non-idmapped mounts or if permission checking is to be performed on the
3332 * raw inode simply pass @nop_mnt_idmap.
3334 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3335 struct dentry *dentry, umode_t mode, bool want_excl)
3337 int error;
3339 error = may_create(idmap, dir, dentry);
3340 if (error)
3341 return error;
3343 if (!dir->i_op->create)
3344 return -EACCES; /* shouldn't it be ENOSYS? */
3346 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3347 error = security_inode_create(dir, dentry, mode);
3348 if (error)
3349 return error;
3350 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3351 if (!error)
3352 fsnotify_create(dir, dentry);
3353 return error;
3355 EXPORT_SYMBOL(vfs_create);
3357 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3358 int (*f)(struct dentry *, umode_t, void *),
3359 void *arg)
3361 struct inode *dir = dentry->d_parent->d_inode;
3362 int error = may_create(&nop_mnt_idmap, dir, dentry);
3363 if (error)
3364 return error;
3366 mode &= S_IALLUGO;
3367 mode |= S_IFREG;
3368 error = security_inode_create(dir, dentry, mode);
3369 if (error)
3370 return error;
3371 error = f(dentry, mode, arg);
3372 if (!error)
3373 fsnotify_create(dir, dentry);
3374 return error;
3376 EXPORT_SYMBOL(vfs_mkobj);
3378 bool may_open_dev(const struct path *path)
3380 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3381 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3384 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3385 int acc_mode, int flag)
3387 struct dentry *dentry = path->dentry;
3388 struct inode *inode = dentry->d_inode;
3389 int error;
3391 if (!inode)
3392 return -ENOENT;
3394 switch (inode->i_mode & S_IFMT) {
3395 case S_IFLNK:
3396 return -ELOOP;
3397 case S_IFDIR:
3398 if (acc_mode & MAY_WRITE)
3399 return -EISDIR;
3400 if (acc_mode & MAY_EXEC)
3401 return -EACCES;
3402 break;
3403 case S_IFBLK:
3404 case S_IFCHR:
3405 if (!may_open_dev(path))
3406 return -EACCES;
3407 fallthrough;
3408 case S_IFIFO:
3409 case S_IFSOCK:
3410 if (acc_mode & MAY_EXEC)
3411 return -EACCES;
3412 flag &= ~O_TRUNC;
3413 break;
3414 case S_IFREG:
3415 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3416 return -EACCES;
3417 break;
3420 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3421 if (error)
3422 return error;
3425 * An append-only file must be opened in append mode for writing.
3427 if (IS_APPEND(inode)) {
3428 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3429 return -EPERM;
3430 if (flag & O_TRUNC)
3431 return -EPERM;
3434 /* O_NOATIME can only be set by the owner or superuser */
3435 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3436 return -EPERM;
3438 return 0;
3441 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3443 const struct path *path = &filp->f_path;
3444 struct inode *inode = path->dentry->d_inode;
3445 int error = get_write_access(inode);
3446 if (error)
3447 return error;
3449 error = security_file_truncate(filp);
3450 if (!error) {
3451 error = do_truncate(idmap, path->dentry, 0,
3452 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3453 filp);
3455 put_write_access(inode);
3456 return error;
3459 static inline int open_to_namei_flags(int flag)
3461 if ((flag & O_ACCMODE) == 3)
3462 flag--;
3463 return flag;
3466 static int may_o_create(struct mnt_idmap *idmap,
3467 const struct path *dir, struct dentry *dentry,
3468 umode_t mode)
3470 int error = security_path_mknod(dir, dentry, mode, 0);
3471 if (error)
3472 return error;
3474 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3475 return -EOVERFLOW;
3477 error = inode_permission(idmap, dir->dentry->d_inode,
3478 MAY_WRITE | MAY_EXEC);
3479 if (error)
3480 return error;
3482 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3486 * Attempt to atomically look up, create and open a file from a negative
3487 * dentry.
3489 * Returns 0 if successful. The file will have been created and attached to
3490 * @file by the filesystem calling finish_open().
3492 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3493 * be set. The caller will need to perform the open themselves. @path will
3494 * have been updated to point to the new dentry. This may be negative.
3496 * Returns an error code otherwise.
3498 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3499 struct file *file,
3500 int open_flag, umode_t mode)
3502 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3503 struct inode *dir = nd->path.dentry->d_inode;
3504 int error;
3506 if (nd->flags & LOOKUP_DIRECTORY)
3507 open_flag |= O_DIRECTORY;
3509 file->f_path.dentry = DENTRY_NOT_SET;
3510 file->f_path.mnt = nd->path.mnt;
3511 error = dir->i_op->atomic_open(dir, dentry, file,
3512 open_to_namei_flags(open_flag), mode);
3513 d_lookup_done(dentry);
3514 if (!error) {
3515 if (file->f_mode & FMODE_OPENED) {
3516 if (unlikely(dentry != file->f_path.dentry)) {
3517 dput(dentry);
3518 dentry = dget(file->f_path.dentry);
3520 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3521 error = -EIO;
3522 } else {
3523 if (file->f_path.dentry) {
3524 dput(dentry);
3525 dentry = file->f_path.dentry;
3527 if (unlikely(d_is_negative(dentry)))
3528 error = -ENOENT;
3531 if (error) {
3532 dput(dentry);
3533 dentry = ERR_PTR(error);
3535 return dentry;
3539 * Look up and maybe create and open the last component.
3541 * Must be called with parent locked (exclusive in O_CREAT case).
3543 * Returns 0 on success, that is, if
3544 * the file was successfully atomically created (if necessary) and opened, or
3545 * the file was not completely opened at this time, though lookups and
3546 * creations were performed.
3547 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3548 * In the latter case dentry returned in @path might be negative if O_CREAT
3549 * hadn't been specified.
3551 * An error code is returned on failure.
3553 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3554 const struct open_flags *op,
3555 bool got_write)
3557 struct mnt_idmap *idmap;
3558 struct dentry *dir = nd->path.dentry;
3559 struct inode *dir_inode = dir->d_inode;
3560 int open_flag = op->open_flag;
3561 struct dentry *dentry;
3562 int error, create_error = 0;
3563 umode_t mode = op->mode;
3564 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3566 if (unlikely(IS_DEADDIR(dir_inode)))
3567 return ERR_PTR(-ENOENT);
3569 file->f_mode &= ~FMODE_CREATED;
3570 dentry = d_lookup(dir, &nd->last);
3571 for (;;) {
3572 if (!dentry) {
3573 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3574 if (IS_ERR(dentry))
3575 return dentry;
3577 if (d_in_lookup(dentry))
3578 break;
3580 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3581 if (likely(error > 0))
3582 break;
3583 if (error)
3584 goto out_dput;
3585 d_invalidate(dentry);
3586 dput(dentry);
3587 dentry = NULL;
3589 if (dentry->d_inode) {
3590 /* Cached positive dentry: will open in f_op->open */
3591 return dentry;
3594 if (open_flag & O_CREAT)
3595 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3598 * Checking write permission is tricky, bacuse we don't know if we are
3599 * going to actually need it: O_CREAT opens should work as long as the
3600 * file exists. But checking existence breaks atomicity. The trick is
3601 * to check access and if not granted clear O_CREAT from the flags.
3603 * Another problem is returing the "right" error value (e.g. for an
3604 * O_EXCL open we want to return EEXIST not EROFS).
3606 if (unlikely(!got_write))
3607 open_flag &= ~O_TRUNC;
3608 idmap = mnt_idmap(nd->path.mnt);
3609 if (open_flag & O_CREAT) {
3610 if (open_flag & O_EXCL)
3611 open_flag &= ~O_TRUNC;
3612 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3613 if (likely(got_write))
3614 create_error = may_o_create(idmap, &nd->path,
3615 dentry, mode);
3616 else
3617 create_error = -EROFS;
3619 if (create_error)
3620 open_flag &= ~O_CREAT;
3621 if (dir_inode->i_op->atomic_open) {
3622 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3623 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3624 dentry = ERR_PTR(create_error);
3625 return dentry;
3628 if (d_in_lookup(dentry)) {
3629 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3630 nd->flags);
3631 d_lookup_done(dentry);
3632 if (unlikely(res)) {
3633 if (IS_ERR(res)) {
3634 error = PTR_ERR(res);
3635 goto out_dput;
3637 dput(dentry);
3638 dentry = res;
3642 /* Negative dentry, just create the file */
3643 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3644 file->f_mode |= FMODE_CREATED;
3645 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3646 if (!dir_inode->i_op->create) {
3647 error = -EACCES;
3648 goto out_dput;
3651 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3652 mode, open_flag & O_EXCL);
3653 if (error)
3654 goto out_dput;
3656 if (unlikely(create_error) && !dentry->d_inode) {
3657 error = create_error;
3658 goto out_dput;
3660 return dentry;
3662 out_dput:
3663 dput(dentry);
3664 return ERR_PTR(error);
3667 static inline bool trailing_slashes(struct nameidata *nd)
3669 return (bool)nd->last.name[nd->last.len];
3672 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3674 struct dentry *dentry;
3676 if (open_flag & O_CREAT) {
3677 if (trailing_slashes(nd))
3678 return ERR_PTR(-EISDIR);
3680 /* Don't bother on an O_EXCL create */
3681 if (open_flag & O_EXCL)
3682 return NULL;
3685 if (trailing_slashes(nd))
3686 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3688 dentry = lookup_fast(nd);
3689 if (IS_ERR_OR_NULL(dentry))
3690 return dentry;
3692 if (open_flag & O_CREAT) {
3693 /* Discard negative dentries. Need inode_lock to do the create */
3694 if (!dentry->d_inode) {
3695 if (!(nd->flags & LOOKUP_RCU))
3696 dput(dentry);
3697 dentry = NULL;
3700 return dentry;
3703 static const char *open_last_lookups(struct nameidata *nd,
3704 struct file *file, const struct open_flags *op)
3706 struct dentry *dir = nd->path.dentry;
3707 int open_flag = op->open_flag;
3708 bool got_write = false;
3709 struct dentry *dentry;
3710 const char *res;
3712 nd->flags |= op->intent;
3714 if (nd->last_type != LAST_NORM) {
3715 if (nd->depth)
3716 put_link(nd);
3717 return handle_dots(nd, nd->last_type);
3720 /* We _can_ be in RCU mode here */
3721 dentry = lookup_fast_for_open(nd, open_flag);
3722 if (IS_ERR(dentry))
3723 return ERR_CAST(dentry);
3725 if (likely(dentry))
3726 goto finish_lookup;
3728 if (!(open_flag & O_CREAT)) {
3729 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3730 return ERR_PTR(-ECHILD);
3731 } else {
3732 if (nd->flags & LOOKUP_RCU) {
3733 if (!try_to_unlazy(nd))
3734 return ERR_PTR(-ECHILD);
3738 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3739 got_write = !mnt_want_write(nd->path.mnt);
3741 * do _not_ fail yet - we might not need that or fail with
3742 * a different error; let lookup_open() decide; we'll be
3743 * dropping this one anyway.
3746 if (open_flag & O_CREAT)
3747 inode_lock(dir->d_inode);
3748 else
3749 inode_lock_shared(dir->d_inode);
3750 dentry = lookup_open(nd, file, op, got_write);
3751 if (!IS_ERR(dentry)) {
3752 if (file->f_mode & FMODE_CREATED)
3753 fsnotify_create(dir->d_inode, dentry);
3754 if (file->f_mode & FMODE_OPENED)
3755 fsnotify_open(file);
3757 if (open_flag & O_CREAT)
3758 inode_unlock(dir->d_inode);
3759 else
3760 inode_unlock_shared(dir->d_inode);
3762 if (got_write)
3763 mnt_drop_write(nd->path.mnt);
3765 if (IS_ERR(dentry))
3766 return ERR_CAST(dentry);
3768 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3769 dput(nd->path.dentry);
3770 nd->path.dentry = dentry;
3771 return NULL;
3774 finish_lookup:
3775 if (nd->depth)
3776 put_link(nd);
3777 res = step_into(nd, WALK_TRAILING, dentry);
3778 if (unlikely(res))
3779 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3780 return res;
3784 * Handle the last step of open()
3786 static int do_open(struct nameidata *nd,
3787 struct file *file, const struct open_flags *op)
3789 struct mnt_idmap *idmap;
3790 int open_flag = op->open_flag;
3791 bool do_truncate;
3792 int acc_mode;
3793 int error;
3795 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3796 error = complete_walk(nd);
3797 if (error)
3798 return error;
3800 if (!(file->f_mode & FMODE_CREATED))
3801 audit_inode(nd->name, nd->path.dentry, 0);
3802 idmap = mnt_idmap(nd->path.mnt);
3803 if (open_flag & O_CREAT) {
3804 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3805 return -EEXIST;
3806 if (d_is_dir(nd->path.dentry))
3807 return -EISDIR;
3808 error = may_create_in_sticky(idmap, nd,
3809 d_backing_inode(nd->path.dentry));
3810 if (unlikely(error))
3811 return error;
3813 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3814 return -ENOTDIR;
3816 do_truncate = false;
3817 acc_mode = op->acc_mode;
3818 if (file->f_mode & FMODE_CREATED) {
3819 /* Don't check for write permission, don't truncate */
3820 open_flag &= ~O_TRUNC;
3821 acc_mode = 0;
3822 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3823 error = mnt_want_write(nd->path.mnt);
3824 if (error)
3825 return error;
3826 do_truncate = true;
3828 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3829 if (!error && !(file->f_mode & FMODE_OPENED))
3830 error = vfs_open(&nd->path, file);
3831 if (!error)
3832 error = security_file_post_open(file, op->acc_mode);
3833 if (!error && do_truncate)
3834 error = handle_truncate(idmap, file);
3835 if (unlikely(error > 0)) {
3836 WARN_ON(1);
3837 error = -EINVAL;
3839 if (do_truncate)
3840 mnt_drop_write(nd->path.mnt);
3841 return error;
3845 * vfs_tmpfile - create tmpfile
3846 * @idmap: idmap of the mount the inode was found from
3847 * @parentpath: pointer to the path of the base directory
3848 * @file: file descriptor of the new tmpfile
3849 * @mode: mode of the new tmpfile
3851 * Create a temporary file.
3853 * If the inode has been found through an idmapped mount the idmap of
3854 * the vfsmount must be passed through @idmap. This function will then take
3855 * care to map the inode according to @idmap before checking permissions.
3856 * On non-idmapped mounts or if permission checking is to be performed on the
3857 * raw inode simply pass @nop_mnt_idmap.
3859 int vfs_tmpfile(struct mnt_idmap *idmap,
3860 const struct path *parentpath,
3861 struct file *file, umode_t mode)
3863 struct dentry *child;
3864 struct inode *dir = d_inode(parentpath->dentry);
3865 struct inode *inode;
3866 int error;
3867 int open_flag = file->f_flags;
3869 /* we want directory to be writable */
3870 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3871 if (error)
3872 return error;
3873 if (!dir->i_op->tmpfile)
3874 return -EOPNOTSUPP;
3875 child = d_alloc(parentpath->dentry, &slash_name);
3876 if (unlikely(!child))
3877 return -ENOMEM;
3878 file->f_path.mnt = parentpath->mnt;
3879 file->f_path.dentry = child;
3880 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3881 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3882 dput(child);
3883 if (file->f_mode & FMODE_OPENED)
3884 fsnotify_open(file);
3885 if (error)
3886 return error;
3887 /* Don't check for other permissions, the inode was just created */
3888 error = may_open(idmap, &file->f_path, 0, file->f_flags);
3889 if (error)
3890 return error;
3891 inode = file_inode(file);
3892 if (!(open_flag & O_EXCL)) {
3893 spin_lock(&inode->i_lock);
3894 inode->i_state |= I_LINKABLE;
3895 spin_unlock(&inode->i_lock);
3897 security_inode_post_create_tmpfile(idmap, inode);
3898 return 0;
3902 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3903 * @idmap: idmap of the mount the inode was found from
3904 * @parentpath: path of the base directory
3905 * @mode: mode of the new tmpfile
3906 * @open_flag: flags
3907 * @cred: credentials for open
3909 * Create and open a temporary file. The file is not accounted in nr_files,
3910 * hence this is only for kernel internal use, and must not be installed into
3911 * file tables or such.
3913 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3914 const struct path *parentpath,
3915 umode_t mode, int open_flag,
3916 const struct cred *cred)
3918 struct file *file;
3919 int error;
3921 file = alloc_empty_file_noaccount(open_flag, cred);
3922 if (IS_ERR(file))
3923 return file;
3925 error = vfs_tmpfile(idmap, parentpath, file, mode);
3926 if (error) {
3927 fput(file);
3928 file = ERR_PTR(error);
3930 return file;
3932 EXPORT_SYMBOL(kernel_tmpfile_open);
3934 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3935 const struct open_flags *op,
3936 struct file *file)
3938 struct path path;
3939 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3941 if (unlikely(error))
3942 return error;
3943 error = mnt_want_write(path.mnt);
3944 if (unlikely(error))
3945 goto out;
3946 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3947 if (error)
3948 goto out2;
3949 audit_inode(nd->name, file->f_path.dentry, 0);
3950 out2:
3951 mnt_drop_write(path.mnt);
3952 out:
3953 path_put(&path);
3954 return error;
3957 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3959 struct path path;
3960 int error = path_lookupat(nd, flags, &path);
3961 if (!error) {
3962 audit_inode(nd->name, path.dentry, 0);
3963 error = vfs_open(&path, file);
3964 path_put(&path);
3966 return error;
3969 static struct file *path_openat(struct nameidata *nd,
3970 const struct open_flags *op, unsigned flags)
3972 struct file *file;
3973 int error;
3975 file = alloc_empty_file(op->open_flag, current_cred());
3976 if (IS_ERR(file))
3977 return file;
3979 if (unlikely(file->f_flags & __O_TMPFILE)) {
3980 error = do_tmpfile(nd, flags, op, file);
3981 } else if (unlikely(file->f_flags & O_PATH)) {
3982 error = do_o_path(nd, flags, file);
3983 } else {
3984 const char *s = path_init(nd, flags);
3985 while (!(error = link_path_walk(s, nd)) &&
3986 (s = open_last_lookups(nd, file, op)) != NULL)
3988 if (!error)
3989 error = do_open(nd, file, op);
3990 terminate_walk(nd);
3992 if (likely(!error)) {
3993 if (likely(file->f_mode & FMODE_OPENED))
3994 return file;
3995 WARN_ON(1);
3996 error = -EINVAL;
3998 fput(file);
3999 if (error == -EOPENSTALE) {
4000 if (flags & LOOKUP_RCU)
4001 error = -ECHILD;
4002 else
4003 error = -ESTALE;
4005 return ERR_PTR(error);
4008 struct file *do_filp_open(int dfd, struct filename *pathname,
4009 const struct open_flags *op)
4011 struct nameidata nd;
4012 int flags = op->lookup_flags;
4013 struct file *filp;
4015 set_nameidata(&nd, dfd, pathname, NULL);
4016 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4017 if (unlikely(filp == ERR_PTR(-ECHILD)))
4018 filp = path_openat(&nd, op, flags);
4019 if (unlikely(filp == ERR_PTR(-ESTALE)))
4020 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4021 restore_nameidata();
4022 return filp;
4025 struct file *do_file_open_root(const struct path *root,
4026 const char *name, const struct open_flags *op)
4028 struct nameidata nd;
4029 struct file *file;
4030 struct filename *filename;
4031 int flags = op->lookup_flags;
4033 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4034 return ERR_PTR(-ELOOP);
4036 filename = getname_kernel(name);
4037 if (IS_ERR(filename))
4038 return ERR_CAST(filename);
4040 set_nameidata(&nd, -1, filename, root);
4041 file = path_openat(&nd, op, flags | LOOKUP_RCU);
4042 if (unlikely(file == ERR_PTR(-ECHILD)))
4043 file = path_openat(&nd, op, flags);
4044 if (unlikely(file == ERR_PTR(-ESTALE)))
4045 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4046 restore_nameidata();
4047 putname(filename);
4048 return file;
4051 static struct dentry *filename_create(int dfd, struct filename *name,
4052 struct path *path, unsigned int lookup_flags)
4054 struct dentry *dentry = ERR_PTR(-EEXIST);
4055 struct qstr last;
4056 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4057 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4058 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4059 int type;
4060 int err2;
4061 int error;
4063 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4064 if (error)
4065 return ERR_PTR(error);
4068 * Yucky last component or no last component at all?
4069 * (foo/., foo/.., /////)
4071 if (unlikely(type != LAST_NORM))
4072 goto out;
4074 /* don't fail immediately if it's r/o, at least try to report other errors */
4075 err2 = mnt_want_write(path->mnt);
4077 * Do the final lookup. Suppress 'create' if there is a trailing
4078 * '/', and a directory wasn't requested.
4080 if (last.name[last.len] && !want_dir)
4081 create_flags = 0;
4082 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4083 dentry = lookup_one_qstr_excl(&last, path->dentry,
4084 reval_flag | create_flags);
4085 if (IS_ERR(dentry))
4086 goto unlock;
4088 error = -EEXIST;
4089 if (d_is_positive(dentry))
4090 goto fail;
4093 * Special case - lookup gave negative, but... we had foo/bar/
4094 * From the vfs_mknod() POV we just have a negative dentry -
4095 * all is fine. Let's be bastards - you had / on the end, you've
4096 * been asking for (non-existent) directory. -ENOENT for you.
4098 if (unlikely(!create_flags)) {
4099 error = -ENOENT;
4100 goto fail;
4102 if (unlikely(err2)) {
4103 error = err2;
4104 goto fail;
4106 return dentry;
4107 fail:
4108 dput(dentry);
4109 dentry = ERR_PTR(error);
4110 unlock:
4111 inode_unlock(path->dentry->d_inode);
4112 if (!err2)
4113 mnt_drop_write(path->mnt);
4114 out:
4115 path_put(path);
4116 return dentry;
4119 struct dentry *kern_path_create(int dfd, const char *pathname,
4120 struct path *path, unsigned int lookup_flags)
4122 struct filename *filename = getname_kernel(pathname);
4123 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4125 putname(filename);
4126 return res;
4128 EXPORT_SYMBOL(kern_path_create);
4130 void done_path_create(struct path *path, struct dentry *dentry)
4132 dput(dentry);
4133 inode_unlock(path->dentry->d_inode);
4134 mnt_drop_write(path->mnt);
4135 path_put(path);
4137 EXPORT_SYMBOL(done_path_create);
4139 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4140 struct path *path, unsigned int lookup_flags)
4142 struct filename *filename = getname(pathname);
4143 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4145 putname(filename);
4146 return res;
4148 EXPORT_SYMBOL(user_path_create);
4151 * vfs_mknod - create device node or file
4152 * @idmap: idmap of the mount the inode was found from
4153 * @dir: inode of the parent directory
4154 * @dentry: dentry of the child device node
4155 * @mode: mode of the child device node
4156 * @dev: device number of device to create
4158 * Create a device node or file.
4160 * If the inode has been found through an idmapped mount the idmap of
4161 * the vfsmount must be passed through @idmap. This function will then take
4162 * care to map the inode according to @idmap before checking permissions.
4163 * On non-idmapped mounts or if permission checking is to be performed on the
4164 * raw inode simply pass @nop_mnt_idmap.
4166 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4167 struct dentry *dentry, umode_t mode, dev_t dev)
4169 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4170 int error = may_create(idmap, dir, dentry);
4172 if (error)
4173 return error;
4175 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4176 !capable(CAP_MKNOD))
4177 return -EPERM;
4179 if (!dir->i_op->mknod)
4180 return -EPERM;
4182 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4183 error = devcgroup_inode_mknod(mode, dev);
4184 if (error)
4185 return error;
4187 error = security_inode_mknod(dir, dentry, mode, dev);
4188 if (error)
4189 return error;
4191 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4192 if (!error)
4193 fsnotify_create(dir, dentry);
4194 return error;
4196 EXPORT_SYMBOL(vfs_mknod);
4198 static int may_mknod(umode_t mode)
4200 switch (mode & S_IFMT) {
4201 case S_IFREG:
4202 case S_IFCHR:
4203 case S_IFBLK:
4204 case S_IFIFO:
4205 case S_IFSOCK:
4206 case 0: /* zero mode translates to S_IFREG */
4207 return 0;
4208 case S_IFDIR:
4209 return -EPERM;
4210 default:
4211 return -EINVAL;
4215 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4216 unsigned int dev)
4218 struct mnt_idmap *idmap;
4219 struct dentry *dentry;
4220 struct path path;
4221 int error;
4222 unsigned int lookup_flags = 0;
4224 error = may_mknod(mode);
4225 if (error)
4226 goto out1;
4227 retry:
4228 dentry = filename_create(dfd, name, &path, lookup_flags);
4229 error = PTR_ERR(dentry);
4230 if (IS_ERR(dentry))
4231 goto out1;
4233 error = security_path_mknod(&path, dentry,
4234 mode_strip_umask(path.dentry->d_inode, mode), dev);
4235 if (error)
4236 goto out2;
4238 idmap = mnt_idmap(path.mnt);
4239 switch (mode & S_IFMT) {
4240 case 0: case S_IFREG:
4241 error = vfs_create(idmap, path.dentry->d_inode,
4242 dentry, mode, true);
4243 if (!error)
4244 security_path_post_mknod(idmap, dentry);
4245 break;
4246 case S_IFCHR: case S_IFBLK:
4247 error = vfs_mknod(idmap, path.dentry->d_inode,
4248 dentry, mode, new_decode_dev(dev));
4249 break;
4250 case S_IFIFO: case S_IFSOCK:
4251 error = vfs_mknod(idmap, path.dentry->d_inode,
4252 dentry, mode, 0);
4253 break;
4255 out2:
4256 done_path_create(&path, dentry);
4257 if (retry_estale(error, lookup_flags)) {
4258 lookup_flags |= LOOKUP_REVAL;
4259 goto retry;
4261 out1:
4262 putname(name);
4263 return error;
4266 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4267 unsigned int, dev)
4269 return do_mknodat(dfd, getname(filename), mode, dev);
4272 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4274 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4278 * vfs_mkdir - create directory
4279 * @idmap: idmap of the mount the inode was found from
4280 * @dir: inode of the parent directory
4281 * @dentry: dentry of the child directory
4282 * @mode: mode of the child directory
4284 * Create a directory.
4286 * If the inode has been found through an idmapped mount the idmap of
4287 * the vfsmount must be passed through @idmap. This function will then take
4288 * care to map the inode according to @idmap before checking permissions.
4289 * On non-idmapped mounts or if permission checking is to be performed on the
4290 * raw inode simply pass @nop_mnt_idmap.
4292 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4293 struct dentry *dentry, umode_t mode)
4295 int error;
4296 unsigned max_links = dir->i_sb->s_max_links;
4298 error = may_create(idmap, dir, dentry);
4299 if (error)
4300 return error;
4302 if (!dir->i_op->mkdir)
4303 return -EPERM;
4305 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4306 error = security_inode_mkdir(dir, dentry, mode);
4307 if (error)
4308 return error;
4310 if (max_links && dir->i_nlink >= max_links)
4311 return -EMLINK;
4313 error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4314 if (!error)
4315 fsnotify_mkdir(dir, dentry);
4316 return error;
4318 EXPORT_SYMBOL(vfs_mkdir);
4320 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4322 struct dentry *dentry;
4323 struct path path;
4324 int error;
4325 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4327 retry:
4328 dentry = filename_create(dfd, name, &path, lookup_flags);
4329 error = PTR_ERR(dentry);
4330 if (IS_ERR(dentry))
4331 goto out_putname;
4333 error = security_path_mkdir(&path, dentry,
4334 mode_strip_umask(path.dentry->d_inode, mode));
4335 if (!error) {
4336 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4337 dentry, mode);
4339 done_path_create(&path, dentry);
4340 if (retry_estale(error, lookup_flags)) {
4341 lookup_flags |= LOOKUP_REVAL;
4342 goto retry;
4344 out_putname:
4345 putname(name);
4346 return error;
4349 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4351 return do_mkdirat(dfd, getname(pathname), mode);
4354 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4356 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4360 * vfs_rmdir - remove directory
4361 * @idmap: idmap of the mount the inode was found from
4362 * @dir: inode of the parent directory
4363 * @dentry: dentry of the child directory
4365 * Remove a directory.
4367 * If the inode has been found through an idmapped mount the idmap of
4368 * the vfsmount must be passed through @idmap. This function will then take
4369 * care to map the inode according to @idmap before checking permissions.
4370 * On non-idmapped mounts or if permission checking is to be performed on the
4371 * raw inode simply pass @nop_mnt_idmap.
4373 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4374 struct dentry *dentry)
4376 int error = may_delete(idmap, dir, dentry, 1);
4378 if (error)
4379 return error;
4381 if (!dir->i_op->rmdir)
4382 return -EPERM;
4384 dget(dentry);
4385 inode_lock(dentry->d_inode);
4387 error = -EBUSY;
4388 if (is_local_mountpoint(dentry) ||
4389 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4390 goto out;
4392 error = security_inode_rmdir(dir, dentry);
4393 if (error)
4394 goto out;
4396 error = dir->i_op->rmdir(dir, dentry);
4397 if (error)
4398 goto out;
4400 shrink_dcache_parent(dentry);
4401 dentry->d_inode->i_flags |= S_DEAD;
4402 dont_mount(dentry);
4403 detach_mounts(dentry);
4405 out:
4406 inode_unlock(dentry->d_inode);
4407 dput(dentry);
4408 if (!error)
4409 d_delete_notify(dir, dentry);
4410 return error;
4412 EXPORT_SYMBOL(vfs_rmdir);
4414 int do_rmdir(int dfd, struct filename *name)
4416 int error;
4417 struct dentry *dentry;
4418 struct path path;
4419 struct qstr last;
4420 int type;
4421 unsigned int lookup_flags = 0;
4422 retry:
4423 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4424 if (error)
4425 goto exit1;
4427 switch (type) {
4428 case LAST_DOTDOT:
4429 error = -ENOTEMPTY;
4430 goto exit2;
4431 case LAST_DOT:
4432 error = -EINVAL;
4433 goto exit2;
4434 case LAST_ROOT:
4435 error = -EBUSY;
4436 goto exit2;
4439 error = mnt_want_write(path.mnt);
4440 if (error)
4441 goto exit2;
4443 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4444 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4445 error = PTR_ERR(dentry);
4446 if (IS_ERR(dentry))
4447 goto exit3;
4448 if (!dentry->d_inode) {
4449 error = -ENOENT;
4450 goto exit4;
4452 error = security_path_rmdir(&path, dentry);
4453 if (error)
4454 goto exit4;
4455 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4456 exit4:
4457 dput(dentry);
4458 exit3:
4459 inode_unlock(path.dentry->d_inode);
4460 mnt_drop_write(path.mnt);
4461 exit2:
4462 path_put(&path);
4463 if (retry_estale(error, lookup_flags)) {
4464 lookup_flags |= LOOKUP_REVAL;
4465 goto retry;
4467 exit1:
4468 putname(name);
4469 return error;
4472 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4474 return do_rmdir(AT_FDCWD, getname(pathname));
4478 * vfs_unlink - unlink a filesystem object
4479 * @idmap: idmap of the mount the inode was found from
4480 * @dir: parent directory
4481 * @dentry: victim
4482 * @delegated_inode: returns victim inode, if the inode is delegated.
4484 * The caller must hold dir->i_mutex.
4486 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4487 * return a reference to the inode in delegated_inode. The caller
4488 * should then break the delegation on that inode and retry. Because
4489 * breaking a delegation may take a long time, the caller should drop
4490 * dir->i_mutex before doing so.
4492 * Alternatively, a caller may pass NULL for delegated_inode. This may
4493 * be appropriate for callers that expect the underlying filesystem not
4494 * to be NFS exported.
4496 * If the inode has been found through an idmapped mount the idmap of
4497 * the vfsmount must be passed through @idmap. This function will then take
4498 * care to map the inode according to @idmap before checking permissions.
4499 * On non-idmapped mounts or if permission checking is to be performed on the
4500 * raw inode simply pass @nop_mnt_idmap.
4502 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4503 struct dentry *dentry, struct inode **delegated_inode)
4505 struct inode *target = dentry->d_inode;
4506 int error = may_delete(idmap, dir, dentry, 0);
4508 if (error)
4509 return error;
4511 if (!dir->i_op->unlink)
4512 return -EPERM;
4514 inode_lock(target);
4515 if (IS_SWAPFILE(target))
4516 error = -EPERM;
4517 else if (is_local_mountpoint(dentry))
4518 error = -EBUSY;
4519 else {
4520 error = security_inode_unlink(dir, dentry);
4521 if (!error) {
4522 error = try_break_deleg(target, delegated_inode);
4523 if (error)
4524 goto out;
4525 error = dir->i_op->unlink(dir, dentry);
4526 if (!error) {
4527 dont_mount(dentry);
4528 detach_mounts(dentry);
4532 out:
4533 inode_unlock(target);
4535 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4536 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4537 fsnotify_unlink(dir, dentry);
4538 } else if (!error) {
4539 fsnotify_link_count(target);
4540 d_delete_notify(dir, dentry);
4543 return error;
4545 EXPORT_SYMBOL(vfs_unlink);
4548 * Make sure that the actual truncation of the file will occur outside its
4549 * directory's i_mutex. Truncate can take a long time if there is a lot of
4550 * writeout happening, and we don't want to prevent access to the directory
4551 * while waiting on the I/O.
4553 int do_unlinkat(int dfd, struct filename *name)
4555 int error;
4556 struct dentry *dentry;
4557 struct path path;
4558 struct qstr last;
4559 int type;
4560 struct inode *inode = NULL;
4561 struct inode *delegated_inode = NULL;
4562 unsigned int lookup_flags = 0;
4563 retry:
4564 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4565 if (error)
4566 goto exit1;
4568 error = -EISDIR;
4569 if (type != LAST_NORM)
4570 goto exit2;
4572 error = mnt_want_write(path.mnt);
4573 if (error)
4574 goto exit2;
4575 retry_deleg:
4576 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4577 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4578 error = PTR_ERR(dentry);
4579 if (!IS_ERR(dentry)) {
4581 /* Why not before? Because we want correct error value */
4582 if (last.name[last.len] || d_is_negative(dentry))
4583 goto slashes;
4584 inode = dentry->d_inode;
4585 ihold(inode);
4586 error = security_path_unlink(&path, dentry);
4587 if (error)
4588 goto exit3;
4589 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4590 dentry, &delegated_inode);
4591 exit3:
4592 dput(dentry);
4594 inode_unlock(path.dentry->d_inode);
4595 if (inode)
4596 iput(inode); /* truncate the inode here */
4597 inode = NULL;
4598 if (delegated_inode) {
4599 error = break_deleg_wait(&delegated_inode);
4600 if (!error)
4601 goto retry_deleg;
4603 mnt_drop_write(path.mnt);
4604 exit2:
4605 path_put(&path);
4606 if (retry_estale(error, lookup_flags)) {
4607 lookup_flags |= LOOKUP_REVAL;
4608 inode = NULL;
4609 goto retry;
4611 exit1:
4612 putname(name);
4613 return error;
4615 slashes:
4616 if (d_is_negative(dentry))
4617 error = -ENOENT;
4618 else if (d_is_dir(dentry))
4619 error = -EISDIR;
4620 else
4621 error = -ENOTDIR;
4622 goto exit3;
4625 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4627 if ((flag & ~AT_REMOVEDIR) != 0)
4628 return -EINVAL;
4630 if (flag & AT_REMOVEDIR)
4631 return do_rmdir(dfd, getname(pathname));
4632 return do_unlinkat(dfd, getname(pathname));
4635 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4637 return do_unlinkat(AT_FDCWD, getname(pathname));
4641 * vfs_symlink - create symlink
4642 * @idmap: idmap of the mount the inode was found from
4643 * @dir: inode of the parent directory
4644 * @dentry: dentry of the child symlink file
4645 * @oldname: name of the file to link to
4647 * Create a symlink.
4649 * If the inode has been found through an idmapped mount the idmap of
4650 * the vfsmount must be passed through @idmap. This function will then take
4651 * care to map the inode according to @idmap before checking permissions.
4652 * On non-idmapped mounts or if permission checking is to be performed on the
4653 * raw inode simply pass @nop_mnt_idmap.
4655 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4656 struct dentry *dentry, const char *oldname)
4658 int error;
4660 error = may_create(idmap, dir, dentry);
4661 if (error)
4662 return error;
4664 if (!dir->i_op->symlink)
4665 return -EPERM;
4667 error = security_inode_symlink(dir, dentry, oldname);
4668 if (error)
4669 return error;
4671 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4672 if (!error)
4673 fsnotify_create(dir, dentry);
4674 return error;
4676 EXPORT_SYMBOL(vfs_symlink);
4678 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4680 int error;
4681 struct dentry *dentry;
4682 struct path path;
4683 unsigned int lookup_flags = 0;
4685 if (IS_ERR(from)) {
4686 error = PTR_ERR(from);
4687 goto out_putnames;
4689 retry:
4690 dentry = filename_create(newdfd, to, &path, lookup_flags);
4691 error = PTR_ERR(dentry);
4692 if (IS_ERR(dentry))
4693 goto out_putnames;
4695 error = security_path_symlink(&path, dentry, from->name);
4696 if (!error)
4697 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4698 dentry, from->name);
4699 done_path_create(&path, dentry);
4700 if (retry_estale(error, lookup_flags)) {
4701 lookup_flags |= LOOKUP_REVAL;
4702 goto retry;
4704 out_putnames:
4705 putname(to);
4706 putname(from);
4707 return error;
4710 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4711 int, newdfd, const char __user *, newname)
4713 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4716 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4718 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4722 * vfs_link - create a new link
4723 * @old_dentry: object to be linked
4724 * @idmap: idmap of the mount
4725 * @dir: new parent
4726 * @new_dentry: where to create the new link
4727 * @delegated_inode: returns inode needing a delegation break
4729 * The caller must hold dir->i_mutex
4731 * If vfs_link discovers a delegation on the to-be-linked file in need
4732 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4733 * inode in delegated_inode. The caller should then break the delegation
4734 * and retry. Because breaking a delegation may take a long time, the
4735 * caller should drop the i_mutex before doing so.
4737 * Alternatively, a caller may pass NULL for delegated_inode. This may
4738 * be appropriate for callers that expect the underlying filesystem not
4739 * to be NFS exported.
4741 * If the inode has been found through an idmapped mount the idmap of
4742 * the vfsmount must be passed through @idmap. This function will then take
4743 * care to map the inode according to @idmap before checking permissions.
4744 * On non-idmapped mounts or if permission checking is to be performed on the
4745 * raw inode simply pass @nop_mnt_idmap.
4747 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4748 struct inode *dir, struct dentry *new_dentry,
4749 struct inode **delegated_inode)
4751 struct inode *inode = old_dentry->d_inode;
4752 unsigned max_links = dir->i_sb->s_max_links;
4753 int error;
4755 if (!inode)
4756 return -ENOENT;
4758 error = may_create(idmap, dir, new_dentry);
4759 if (error)
4760 return error;
4762 if (dir->i_sb != inode->i_sb)
4763 return -EXDEV;
4766 * A link to an append-only or immutable file cannot be created.
4768 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4769 return -EPERM;
4771 * Updating the link count will likely cause i_uid and i_gid to
4772 * be writen back improperly if their true value is unknown to
4773 * the vfs.
4775 if (HAS_UNMAPPED_ID(idmap, inode))
4776 return -EPERM;
4777 if (!dir->i_op->link)
4778 return -EPERM;
4779 if (S_ISDIR(inode->i_mode))
4780 return -EPERM;
4782 error = security_inode_link(old_dentry, dir, new_dentry);
4783 if (error)
4784 return error;
4786 inode_lock(inode);
4787 /* Make sure we don't allow creating hardlink to an unlinked file */
4788 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4789 error = -ENOENT;
4790 else if (max_links && inode->i_nlink >= max_links)
4791 error = -EMLINK;
4792 else {
4793 error = try_break_deleg(inode, delegated_inode);
4794 if (!error)
4795 error = dir->i_op->link(old_dentry, dir, new_dentry);
4798 if (!error && (inode->i_state & I_LINKABLE)) {
4799 spin_lock(&inode->i_lock);
4800 inode->i_state &= ~I_LINKABLE;
4801 spin_unlock(&inode->i_lock);
4803 inode_unlock(inode);
4804 if (!error)
4805 fsnotify_link(dir, inode, new_dentry);
4806 return error;
4808 EXPORT_SYMBOL(vfs_link);
4811 * Hardlinks are often used in delicate situations. We avoid
4812 * security-related surprises by not following symlinks on the
4813 * newname. --KAB
4815 * We don't follow them on the oldname either to be compatible
4816 * with linux 2.0, and to avoid hard-linking to directories
4817 * and other special files. --ADM
4819 int do_linkat(int olddfd, struct filename *old, int newdfd,
4820 struct filename *new, int flags)
4822 struct mnt_idmap *idmap;
4823 struct dentry *new_dentry;
4824 struct path old_path, new_path;
4825 struct inode *delegated_inode = NULL;
4826 int how = 0;
4827 int error;
4829 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4830 error = -EINVAL;
4831 goto out_putnames;
4834 * To use null names we require CAP_DAC_READ_SEARCH or
4835 * that the open-time creds of the dfd matches current.
4836 * This ensures that not everyone will be able to create
4837 * a hardlink using the passed file descriptor.
4839 if (flags & AT_EMPTY_PATH)
4840 how |= LOOKUP_LINKAT_EMPTY;
4842 if (flags & AT_SYMLINK_FOLLOW)
4843 how |= LOOKUP_FOLLOW;
4844 retry:
4845 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4846 if (error)
4847 goto out_putnames;
4849 new_dentry = filename_create(newdfd, new, &new_path,
4850 (how & LOOKUP_REVAL));
4851 error = PTR_ERR(new_dentry);
4852 if (IS_ERR(new_dentry))
4853 goto out_putpath;
4855 error = -EXDEV;
4856 if (old_path.mnt != new_path.mnt)
4857 goto out_dput;
4858 idmap = mnt_idmap(new_path.mnt);
4859 error = may_linkat(idmap, &old_path);
4860 if (unlikely(error))
4861 goto out_dput;
4862 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4863 if (error)
4864 goto out_dput;
4865 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4866 new_dentry, &delegated_inode);
4867 out_dput:
4868 done_path_create(&new_path, new_dentry);
4869 if (delegated_inode) {
4870 error = break_deleg_wait(&delegated_inode);
4871 if (!error) {
4872 path_put(&old_path);
4873 goto retry;
4876 if (retry_estale(error, how)) {
4877 path_put(&old_path);
4878 how |= LOOKUP_REVAL;
4879 goto retry;
4881 out_putpath:
4882 path_put(&old_path);
4883 out_putnames:
4884 putname(old);
4885 putname(new);
4887 return error;
4890 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4891 int, newdfd, const char __user *, newname, int, flags)
4893 return do_linkat(olddfd, getname_uflags(oldname, flags),
4894 newdfd, getname(newname), flags);
4897 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4899 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4903 * vfs_rename - rename a filesystem object
4904 * @rd: pointer to &struct renamedata info
4906 * The caller must hold multiple mutexes--see lock_rename()).
4908 * If vfs_rename discovers a delegation in need of breaking at either
4909 * the source or destination, it will return -EWOULDBLOCK and return a
4910 * reference to the inode in delegated_inode. The caller should then
4911 * break the delegation and retry. Because breaking a delegation may
4912 * take a long time, the caller should drop all locks before doing
4913 * so.
4915 * Alternatively, a caller may pass NULL for delegated_inode. This may
4916 * be appropriate for callers that expect the underlying filesystem not
4917 * to be NFS exported.
4919 * The worst of all namespace operations - renaming directory. "Perverted"
4920 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4921 * Problems:
4923 * a) we can get into loop creation.
4924 * b) race potential - two innocent renames can create a loop together.
4925 * That's where 4.4BSD screws up. Current fix: serialization on
4926 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4927 * story.
4928 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4929 * and source (if it's a non-directory or a subdirectory that moves to
4930 * different parent).
4931 * And that - after we got ->i_mutex on parents (until then we don't know
4932 * whether the target exists). Solution: try to be smart with locking
4933 * order for inodes. We rely on the fact that tree topology may change
4934 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4935 * move will be locked. Thus we can rank directories by the tree
4936 * (ancestors first) and rank all non-directories after them.
4937 * That works since everybody except rename does "lock parent, lookup,
4938 * lock child" and rename is under ->s_vfs_rename_mutex.
4939 * HOWEVER, it relies on the assumption that any object with ->lookup()
4940 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4941 * we'd better make sure that there's no link(2) for them.
4942 * d) conversion from fhandle to dentry may come in the wrong moment - when
4943 * we are removing the target. Solution: we will have to grab ->i_mutex
4944 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4945 * ->i_mutex on parents, which works but leads to some truly excessive
4946 * locking].
4948 int vfs_rename(struct renamedata *rd)
4950 int error;
4951 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4952 struct dentry *old_dentry = rd->old_dentry;
4953 struct dentry *new_dentry = rd->new_dentry;
4954 struct inode **delegated_inode = rd->delegated_inode;
4955 unsigned int flags = rd->flags;
4956 bool is_dir = d_is_dir(old_dentry);
4957 struct inode *source = old_dentry->d_inode;
4958 struct inode *target = new_dentry->d_inode;
4959 bool new_is_dir = false;
4960 unsigned max_links = new_dir->i_sb->s_max_links;
4961 struct name_snapshot old_name;
4962 bool lock_old_subdir, lock_new_subdir;
4964 if (source == target)
4965 return 0;
4967 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4968 if (error)
4969 return error;
4971 if (!target) {
4972 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4973 } else {
4974 new_is_dir = d_is_dir(new_dentry);
4976 if (!(flags & RENAME_EXCHANGE))
4977 error = may_delete(rd->new_mnt_idmap, new_dir,
4978 new_dentry, is_dir);
4979 else
4980 error = may_delete(rd->new_mnt_idmap, new_dir,
4981 new_dentry, new_is_dir);
4983 if (error)
4984 return error;
4986 if (!old_dir->i_op->rename)
4987 return -EPERM;
4990 * If we are going to change the parent - check write permissions,
4991 * we'll need to flip '..'.
4993 if (new_dir != old_dir) {
4994 if (is_dir) {
4995 error = inode_permission(rd->old_mnt_idmap, source,
4996 MAY_WRITE);
4997 if (error)
4998 return error;
5000 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5001 error = inode_permission(rd->new_mnt_idmap, target,
5002 MAY_WRITE);
5003 if (error)
5004 return error;
5008 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5009 flags);
5010 if (error)
5011 return error;
5013 take_dentry_name_snapshot(&old_name, old_dentry);
5014 dget(new_dentry);
5016 * Lock children.
5017 * The source subdirectory needs to be locked on cross-directory
5018 * rename or cross-directory exchange since its parent changes.
5019 * The target subdirectory needs to be locked on cross-directory
5020 * exchange due to parent change and on any rename due to becoming
5021 * a victim.
5022 * Non-directories need locking in all cases (for NFS reasons);
5023 * they get locked after any subdirectories (in inode address order).
5025 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5026 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5028 lock_old_subdir = new_dir != old_dir;
5029 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5030 if (is_dir) {
5031 if (lock_old_subdir)
5032 inode_lock_nested(source, I_MUTEX_CHILD);
5033 if (target && (!new_is_dir || lock_new_subdir))
5034 inode_lock(target);
5035 } else if (new_is_dir) {
5036 if (lock_new_subdir)
5037 inode_lock_nested(target, I_MUTEX_CHILD);
5038 inode_lock(source);
5039 } else {
5040 lock_two_nondirectories(source, target);
5043 error = -EPERM;
5044 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5045 goto out;
5047 error = -EBUSY;
5048 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5049 goto out;
5051 if (max_links && new_dir != old_dir) {
5052 error = -EMLINK;
5053 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5054 goto out;
5055 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5056 old_dir->i_nlink >= max_links)
5057 goto out;
5059 if (!is_dir) {
5060 error = try_break_deleg(source, delegated_inode);
5061 if (error)
5062 goto out;
5064 if (target && !new_is_dir) {
5065 error = try_break_deleg(target, delegated_inode);
5066 if (error)
5067 goto out;
5069 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5070 new_dir, new_dentry, flags);
5071 if (error)
5072 goto out;
5074 if (!(flags & RENAME_EXCHANGE) && target) {
5075 if (is_dir) {
5076 shrink_dcache_parent(new_dentry);
5077 target->i_flags |= S_DEAD;
5079 dont_mount(new_dentry);
5080 detach_mounts(new_dentry);
5082 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5083 if (!(flags & RENAME_EXCHANGE))
5084 d_move(old_dentry, new_dentry);
5085 else
5086 d_exchange(old_dentry, new_dentry);
5088 out:
5089 if (!is_dir || lock_old_subdir)
5090 inode_unlock(source);
5091 if (target && (!new_is_dir || lock_new_subdir))
5092 inode_unlock(target);
5093 dput(new_dentry);
5094 if (!error) {
5095 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5096 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5097 if (flags & RENAME_EXCHANGE) {
5098 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5099 new_is_dir, NULL, new_dentry);
5102 release_dentry_name_snapshot(&old_name);
5104 return error;
5106 EXPORT_SYMBOL(vfs_rename);
5108 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5109 struct filename *to, unsigned int flags)
5111 struct renamedata rd;
5112 struct dentry *old_dentry, *new_dentry;
5113 struct dentry *trap;
5114 struct path old_path, new_path;
5115 struct qstr old_last, new_last;
5116 int old_type, new_type;
5117 struct inode *delegated_inode = NULL;
5118 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
5119 bool should_retry = false;
5120 int error = -EINVAL;
5122 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5123 goto put_names;
5125 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5126 (flags & RENAME_EXCHANGE))
5127 goto put_names;
5129 if (flags & RENAME_EXCHANGE)
5130 target_flags = 0;
5132 retry:
5133 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5134 &old_last, &old_type);
5135 if (error)
5136 goto put_names;
5138 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5139 &new_type);
5140 if (error)
5141 goto exit1;
5143 error = -EXDEV;
5144 if (old_path.mnt != new_path.mnt)
5145 goto exit2;
5147 error = -EBUSY;
5148 if (old_type != LAST_NORM)
5149 goto exit2;
5151 if (flags & RENAME_NOREPLACE)
5152 error = -EEXIST;
5153 if (new_type != LAST_NORM)
5154 goto exit2;
5156 error = mnt_want_write(old_path.mnt);
5157 if (error)
5158 goto exit2;
5160 retry_deleg:
5161 trap = lock_rename(new_path.dentry, old_path.dentry);
5162 if (IS_ERR(trap)) {
5163 error = PTR_ERR(trap);
5164 goto exit_lock_rename;
5167 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5168 lookup_flags);
5169 error = PTR_ERR(old_dentry);
5170 if (IS_ERR(old_dentry))
5171 goto exit3;
5172 /* source must exist */
5173 error = -ENOENT;
5174 if (d_is_negative(old_dentry))
5175 goto exit4;
5176 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5177 lookup_flags | target_flags);
5178 error = PTR_ERR(new_dentry);
5179 if (IS_ERR(new_dentry))
5180 goto exit4;
5181 error = -EEXIST;
5182 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
5183 goto exit5;
5184 if (flags & RENAME_EXCHANGE) {
5185 error = -ENOENT;
5186 if (d_is_negative(new_dentry))
5187 goto exit5;
5189 if (!d_is_dir(new_dentry)) {
5190 error = -ENOTDIR;
5191 if (new_last.name[new_last.len])
5192 goto exit5;
5195 /* unless the source is a directory trailing slashes give -ENOTDIR */
5196 if (!d_is_dir(old_dentry)) {
5197 error = -ENOTDIR;
5198 if (old_last.name[old_last.len])
5199 goto exit5;
5200 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5201 goto exit5;
5203 /* source should not be ancestor of target */
5204 error = -EINVAL;
5205 if (old_dentry == trap)
5206 goto exit5;
5207 /* target should not be an ancestor of source */
5208 if (!(flags & RENAME_EXCHANGE))
5209 error = -ENOTEMPTY;
5210 if (new_dentry == trap)
5211 goto exit5;
5213 error = security_path_rename(&old_path, old_dentry,
5214 &new_path, new_dentry, flags);
5215 if (error)
5216 goto exit5;
5218 rd.old_dir = old_path.dentry->d_inode;
5219 rd.old_dentry = old_dentry;
5220 rd.old_mnt_idmap = mnt_idmap(old_path.mnt);
5221 rd.new_dir = new_path.dentry->d_inode;
5222 rd.new_dentry = new_dentry;
5223 rd.new_mnt_idmap = mnt_idmap(new_path.mnt);
5224 rd.delegated_inode = &delegated_inode;
5225 rd.flags = flags;
5226 error = vfs_rename(&rd);
5227 exit5:
5228 dput(new_dentry);
5229 exit4:
5230 dput(old_dentry);
5231 exit3:
5232 unlock_rename(new_path.dentry, old_path.dentry);
5233 exit_lock_rename:
5234 if (delegated_inode) {
5235 error = break_deleg_wait(&delegated_inode);
5236 if (!error)
5237 goto retry_deleg;
5239 mnt_drop_write(old_path.mnt);
5240 exit2:
5241 if (retry_estale(error, lookup_flags))
5242 should_retry = true;
5243 path_put(&new_path);
5244 exit1:
5245 path_put(&old_path);
5246 if (should_retry) {
5247 should_retry = false;
5248 lookup_flags |= LOOKUP_REVAL;
5249 goto retry;
5251 put_names:
5252 putname(from);
5253 putname(to);
5254 return error;
5257 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5258 int, newdfd, const char __user *, newname, unsigned int, flags)
5260 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5261 flags);
5264 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5265 int, newdfd, const char __user *, newname)
5267 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5271 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5273 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5274 getname(newname), 0);
5277 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5279 int copylen;
5281 copylen = linklen;
5282 if (unlikely(copylen > (unsigned) buflen))
5283 copylen = buflen;
5284 if (copy_to_user(buffer, link, copylen))
5285 copylen = -EFAULT;
5286 return copylen;
5290 * vfs_readlink - copy symlink body into userspace buffer
5291 * @dentry: dentry on which to get symbolic link
5292 * @buffer: user memory pointer
5293 * @buflen: size of buffer
5295 * Does not touch atime. That's up to the caller if necessary
5297 * Does not call security hook.
5299 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5301 struct inode *inode = d_inode(dentry);
5302 DEFINE_DELAYED_CALL(done);
5303 const char *link;
5304 int res;
5306 if (inode->i_opflags & IOP_CACHED_LINK)
5307 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5309 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5310 if (unlikely(inode->i_op->readlink))
5311 return inode->i_op->readlink(dentry, buffer, buflen);
5313 if (!d_is_symlink(dentry))
5314 return -EINVAL;
5316 spin_lock(&inode->i_lock);
5317 inode->i_opflags |= IOP_DEFAULT_READLINK;
5318 spin_unlock(&inode->i_lock);
5321 link = READ_ONCE(inode->i_link);
5322 if (!link) {
5323 link = inode->i_op->get_link(dentry, inode, &done);
5324 if (IS_ERR(link))
5325 return PTR_ERR(link);
5327 res = readlink_copy(buffer, buflen, link, strlen(link));
5328 do_delayed_call(&done);
5329 return res;
5331 EXPORT_SYMBOL(vfs_readlink);
5334 * vfs_get_link - get symlink body
5335 * @dentry: dentry on which to get symbolic link
5336 * @done: caller needs to free returned data with this
5338 * Calls security hook and i_op->get_link() on the supplied inode.
5340 * It does not touch atime. That's up to the caller if necessary.
5342 * Does not work on "special" symlinks like /proc/$$/fd/N
5344 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5346 const char *res = ERR_PTR(-EINVAL);
5347 struct inode *inode = d_inode(dentry);
5349 if (d_is_symlink(dentry)) {
5350 res = ERR_PTR(security_inode_readlink(dentry));
5351 if (!res)
5352 res = inode->i_op->get_link(dentry, inode, done);
5354 return res;
5356 EXPORT_SYMBOL(vfs_get_link);
5358 /* get the link contents into pagecache */
5359 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5360 struct delayed_call *callback)
5362 char *kaddr;
5363 struct page *page;
5364 struct address_space *mapping = inode->i_mapping;
5366 if (!dentry) {
5367 page = find_get_page(mapping, 0);
5368 if (!page)
5369 return ERR_PTR(-ECHILD);
5370 if (!PageUptodate(page)) {
5371 put_page(page);
5372 return ERR_PTR(-ECHILD);
5374 } else {
5375 page = read_mapping_page(mapping, 0, NULL);
5376 if (IS_ERR(page))
5377 return (char*)page;
5379 set_delayed_call(callback, page_put_link, page);
5380 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5381 kaddr = page_address(page);
5382 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5383 return kaddr;
5386 EXPORT_SYMBOL(page_get_link);
5388 void page_put_link(void *arg)
5390 put_page(arg);
5392 EXPORT_SYMBOL(page_put_link);
5394 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5396 const char *link;
5397 int res;
5399 DEFINE_DELAYED_CALL(done);
5400 link = page_get_link(dentry, d_inode(dentry), &done);
5401 res = PTR_ERR(link);
5402 if (!IS_ERR(link))
5403 res = readlink_copy(buffer, buflen, link, strlen(link));
5404 do_delayed_call(&done);
5405 return res;
5407 EXPORT_SYMBOL(page_readlink);
5409 int page_symlink(struct inode *inode, const char *symname, int len)
5411 struct address_space *mapping = inode->i_mapping;
5412 const struct address_space_operations *aops = mapping->a_ops;
5413 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5414 struct folio *folio;
5415 void *fsdata = NULL;
5416 int err;
5417 unsigned int flags;
5419 retry:
5420 if (nofs)
5421 flags = memalloc_nofs_save();
5422 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5423 if (nofs)
5424 memalloc_nofs_restore(flags);
5425 if (err)
5426 goto fail;
5428 memcpy(folio_address(folio), symname, len - 1);
5430 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5431 folio, fsdata);
5432 if (err < 0)
5433 goto fail;
5434 if (err < len-1)
5435 goto retry;
5437 mark_inode_dirty(inode);
5438 return 0;
5439 fail:
5440 return err;
5442 EXPORT_SYMBOL(page_symlink);
5444 const struct inode_operations page_symlink_inode_operations = {
5445 .get_link = page_get_link,
5447 EXPORT_SYMBOL(page_symlink_inode_operations);