Linux 6.14-rc1
[linux-stable.git] / fs / netfs / direct_write.c
blob42ce53cc216e9d44d74caa7c9f6fec6ee97fb385
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Unbuffered and direct write support.
4 * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
8 #include <linux/export.h>
9 #include <linux/uio.h>
10 #include "internal.h"
12 static void netfs_cleanup_dio_write(struct netfs_io_request *wreq)
14 struct inode *inode = wreq->inode;
15 unsigned long long end = wreq->start + wreq->transferred;
17 if (!wreq->error &&
18 i_size_read(inode) < end) {
19 if (wreq->netfs_ops->update_i_size)
20 wreq->netfs_ops->update_i_size(inode, end);
21 else
22 i_size_write(inode, end);
27 * Perform an unbuffered write where we may have to do an RMW operation on an
28 * encrypted file. This can also be used for direct I/O writes.
30 ssize_t netfs_unbuffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *iter,
31 struct netfs_group *netfs_group)
33 struct netfs_io_request *wreq;
34 unsigned long long start = iocb->ki_pos;
35 unsigned long long end = start + iov_iter_count(iter);
36 ssize_t ret, n;
37 size_t len = iov_iter_count(iter);
38 bool async = !is_sync_kiocb(iocb);
40 _enter("");
42 /* We're going to need a bounce buffer if what we transmit is going to
43 * be different in some way to the source buffer, e.g. because it gets
44 * encrypted/compressed or because it needs expanding to a block size.
46 // TODO
48 _debug("uw %llx-%llx", start, end);
50 wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp, start,
51 iocb->ki_flags & IOCB_DIRECT ?
52 NETFS_DIO_WRITE : NETFS_UNBUFFERED_WRITE);
53 if (IS_ERR(wreq))
54 return PTR_ERR(wreq);
56 wreq->io_streams[0].avail = true;
57 trace_netfs_write(wreq, (iocb->ki_flags & IOCB_DIRECT ?
58 netfs_write_trace_dio_write :
59 netfs_write_trace_unbuffered_write));
62 /* If this is an async op and we're not using a bounce buffer,
63 * we have to save the source buffer as the iterator is only
64 * good until we return. In such a case, extract an iterator
65 * to represent as much of the the output buffer as we can
66 * manage. Note that the extraction might not be able to
67 * allocate a sufficiently large bvec array and may shorten the
68 * request.
70 if (user_backed_iter(iter)) {
71 n = netfs_extract_user_iter(iter, len, &wreq->buffer.iter, 0);
72 if (n < 0) {
73 ret = n;
74 goto out;
76 wreq->direct_bv = (struct bio_vec *)wreq->buffer.iter.bvec;
77 wreq->direct_bv_count = n;
78 wreq->direct_bv_unpin = iov_iter_extract_will_pin(iter);
79 } else {
80 /* If this is a kernel-generated async DIO request,
81 * assume that any resources the iterator points to
82 * (eg. a bio_vec array) will persist till the end of
83 * the op.
85 wreq->buffer.iter = *iter;
89 __set_bit(NETFS_RREQ_USE_IO_ITER, &wreq->flags);
91 /* Copy the data into the bounce buffer and encrypt it. */
92 // TODO
94 /* Dispatch the write. */
95 __set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
96 if (async)
97 wreq->iocb = iocb;
98 wreq->len = iov_iter_count(&wreq->buffer.iter);
99 wreq->cleanup = netfs_cleanup_dio_write;
100 ret = netfs_unbuffered_write(wreq, is_sync_kiocb(iocb), wreq->len);
101 if (ret < 0) {
102 _debug("begin = %zd", ret);
103 goto out;
106 if (!async) {
107 trace_netfs_rreq(wreq, netfs_rreq_trace_wait_ip);
108 wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS,
109 TASK_UNINTERRUPTIBLE);
110 ret = wreq->error;
111 if (ret == 0) {
112 ret = wreq->transferred;
113 iocb->ki_pos += ret;
115 } else {
116 ret = -EIOCBQUEUED;
119 out:
120 netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
121 return ret;
123 EXPORT_SYMBOL(netfs_unbuffered_write_iter_locked);
126 * netfs_unbuffered_write_iter - Unbuffered write to a file
127 * @iocb: IO state structure
128 * @from: iov_iter with data to write
130 * Do an unbuffered write to a file, writing the data directly to the server
131 * and not lodging the data in the pagecache.
133 * Return:
134 * * Negative error code if no data has been written at all of
135 * vfs_fsync_range() failed for a synchronous write
136 * * Number of bytes written, even for truncated writes
138 ssize_t netfs_unbuffered_write_iter(struct kiocb *iocb, struct iov_iter *from)
140 struct file *file = iocb->ki_filp;
141 struct address_space *mapping = file->f_mapping;
142 struct inode *inode = mapping->host;
143 struct netfs_inode *ictx = netfs_inode(inode);
144 ssize_t ret;
145 loff_t pos = iocb->ki_pos;
146 unsigned long long end = pos + iov_iter_count(from) - 1;
148 _enter("%llx,%zx,%llx", pos, iov_iter_count(from), i_size_read(inode));
150 if (!iov_iter_count(from))
151 return 0;
153 trace_netfs_write_iter(iocb, from);
154 netfs_stat(&netfs_n_wh_dio_write);
156 ret = netfs_start_io_direct(inode);
157 if (ret < 0)
158 return ret;
159 ret = generic_write_checks(iocb, from);
160 if (ret <= 0)
161 goto out;
162 ret = file_remove_privs(file);
163 if (ret < 0)
164 goto out;
165 ret = file_update_time(file);
166 if (ret < 0)
167 goto out;
168 if (iocb->ki_flags & IOCB_NOWAIT) {
169 /* We could block if there are any pages in the range. */
170 ret = -EAGAIN;
171 if (filemap_range_has_page(mapping, pos, end))
172 if (filemap_invalidate_inode(inode, true, pos, end))
173 goto out;
174 } else {
175 ret = filemap_write_and_wait_range(mapping, pos, end);
176 if (ret < 0)
177 goto out;
181 * After a write we want buffered reads to be sure to go to disk to get
182 * the new data. We invalidate clean cached page from the region we're
183 * about to write. We do this *before* the write so that we can return
184 * without clobbering -EIOCBQUEUED from ->direct_IO().
186 ret = filemap_invalidate_inode(inode, true, pos, end);
187 if (ret < 0)
188 goto out;
189 end = iocb->ki_pos + iov_iter_count(from);
190 if (end > ictx->zero_point)
191 ictx->zero_point = end;
193 fscache_invalidate(netfs_i_cookie(ictx), NULL, i_size_read(inode),
194 FSCACHE_INVAL_DIO_WRITE);
195 ret = netfs_unbuffered_write_iter_locked(iocb, from, NULL);
196 out:
197 netfs_end_io_direct(inode);
198 return ret;
200 EXPORT_SYMBOL(netfs_unbuffered_write_iter);