1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * Extent allocs and frees
7 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/swap.h>
15 #include <linux/quotaops.h>
16 #include <linux/blkdev.h>
17 #include <linux/sched/signal.h>
19 #include <cluster/masklog.h>
25 #include "blockcheck.h"
27 #include "extent_map.h"
30 #include "localalloc.h"
37 #include "refcounttree.h"
38 #include "ocfs2_trace.h"
40 #include "buffer_head_io.h"
42 enum ocfs2_contig_type
{
49 static enum ocfs2_contig_type
50 ocfs2_extent_rec_contig(struct super_block
*sb
,
51 struct ocfs2_extent_rec
*ext
,
52 struct ocfs2_extent_rec
*insert_rec
);
54 * Operations for a specific extent tree type.
56 * To implement an on-disk btree (extent tree) type in ocfs2, add
57 * an ocfs2_extent_tree_operations structure and the matching
58 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
59 * for the allocation portion of the extent tree.
61 struct ocfs2_extent_tree_operations
{
63 * last_eb_blk is the block number of the right most leaf extent
64 * block. Most on-disk structures containing an extent tree store
65 * this value for fast access. The ->eo_set_last_eb_blk() and
66 * ->eo_get_last_eb_blk() operations access this value. They are
69 void (*eo_set_last_eb_blk
)(struct ocfs2_extent_tree
*et
,
71 u64 (*eo_get_last_eb_blk
)(struct ocfs2_extent_tree
*et
);
74 * The on-disk structure usually keeps track of how many total
75 * clusters are stored in this extent tree. This function updates
76 * that value. new_clusters is the delta, and must be
77 * added to the total. Required.
79 void (*eo_update_clusters
)(struct ocfs2_extent_tree
*et
,
83 * If this extent tree is supported by an extent map, insert
84 * a record into the map.
86 void (*eo_extent_map_insert
)(struct ocfs2_extent_tree
*et
,
87 struct ocfs2_extent_rec
*rec
);
90 * If this extent tree is supported by an extent map, truncate the
93 void (*eo_extent_map_truncate
)(struct ocfs2_extent_tree
*et
,
97 * If ->eo_insert_check() exists, it is called before rec is
98 * inserted into the extent tree. It is optional.
100 int (*eo_insert_check
)(struct ocfs2_extent_tree
*et
,
101 struct ocfs2_extent_rec
*rec
);
102 int (*eo_sanity_check
)(struct ocfs2_extent_tree
*et
);
105 * --------------------------------------------------------------
106 * The remaining are internal to ocfs2_extent_tree and don't have
111 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
114 void (*eo_fill_root_el
)(struct ocfs2_extent_tree
*et
);
117 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
118 * it exists. If it does not, et->et_max_leaf_clusters is set
119 * to 0 (unlimited). Optional.
121 void (*eo_fill_max_leaf_clusters
)(struct ocfs2_extent_tree
*et
);
124 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
125 * are contiguous or not. Optional. Don't need to set it if use
126 * ocfs2_extent_rec as the tree leaf.
128 enum ocfs2_contig_type
129 (*eo_extent_contig
)(struct ocfs2_extent_tree
*et
,
130 struct ocfs2_extent_rec
*ext
,
131 struct ocfs2_extent_rec
*insert_rec
);
136 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
139 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
);
140 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
142 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
144 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
145 struct ocfs2_extent_rec
*rec
);
146 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
148 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
149 struct ocfs2_extent_rec
*rec
);
150 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
);
151 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
);
153 static int ocfs2_reuse_blk_from_dealloc(handle_t
*handle
,
154 struct ocfs2_extent_tree
*et
,
155 struct buffer_head
**new_eb_bh
,
156 int blk_wanted
, int *blk_given
);
157 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree
*et
);
159 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops
= {
160 .eo_set_last_eb_blk
= ocfs2_dinode_set_last_eb_blk
,
161 .eo_get_last_eb_blk
= ocfs2_dinode_get_last_eb_blk
,
162 .eo_update_clusters
= ocfs2_dinode_update_clusters
,
163 .eo_extent_map_insert
= ocfs2_dinode_extent_map_insert
,
164 .eo_extent_map_truncate
= ocfs2_dinode_extent_map_truncate
,
165 .eo_insert_check
= ocfs2_dinode_insert_check
,
166 .eo_sanity_check
= ocfs2_dinode_sanity_check
,
167 .eo_fill_root_el
= ocfs2_dinode_fill_root_el
,
170 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
173 struct ocfs2_dinode
*di
= et
->et_object
;
175 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
176 di
->i_last_eb_blk
= cpu_to_le64(blkno
);
179 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
181 struct ocfs2_dinode
*di
= et
->et_object
;
183 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
184 return le64_to_cpu(di
->i_last_eb_blk
);
187 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
190 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
191 struct ocfs2_dinode
*di
= et
->et_object
;
193 le32_add_cpu(&di
->i_clusters
, clusters
);
194 spin_lock(&oi
->ip_lock
);
195 oi
->ip_clusters
= le32_to_cpu(di
->i_clusters
);
196 spin_unlock(&oi
->ip_lock
);
199 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
200 struct ocfs2_extent_rec
*rec
)
202 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
204 ocfs2_extent_map_insert_rec(inode
, rec
);
207 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
210 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
212 ocfs2_extent_map_trunc(inode
, clusters
);
215 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
216 struct ocfs2_extent_rec
*rec
)
218 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
219 struct ocfs2_super
*osb
= OCFS2_SB(oi
->vfs_inode
.i_sb
);
221 BUG_ON(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
222 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
223 (oi
->ip_clusters
!= le32_to_cpu(rec
->e_cpos
)),
224 "Device %s, asking for sparse allocation: inode %llu, "
225 "cpos %u, clusters %u\n",
227 (unsigned long long)oi
->ip_blkno
,
228 rec
->e_cpos
, oi
->ip_clusters
);
233 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
)
235 struct ocfs2_dinode
*di
= et
->et_object
;
237 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
238 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
243 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
)
245 struct ocfs2_dinode
*di
= et
->et_object
;
247 et
->et_root_el
= &di
->id2
.i_list
;
251 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree
*et
)
253 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
255 et
->et_root_el
= &vb
->vb_xv
->xr_list
;
258 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
261 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
263 vb
->vb_xv
->xr_last_eb_blk
= cpu_to_le64(blkno
);
266 static u64
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
268 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
270 return le64_to_cpu(vb
->vb_xv
->xr_last_eb_blk
);
273 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree
*et
,
276 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
278 le32_add_cpu(&vb
->vb_xv
->xr_clusters
, clusters
);
281 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops
= {
282 .eo_set_last_eb_blk
= ocfs2_xattr_value_set_last_eb_blk
,
283 .eo_get_last_eb_blk
= ocfs2_xattr_value_get_last_eb_blk
,
284 .eo_update_clusters
= ocfs2_xattr_value_update_clusters
,
285 .eo_fill_root_el
= ocfs2_xattr_value_fill_root_el
,
288 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
290 struct ocfs2_xattr_block
*xb
= et
->et_object
;
292 et
->et_root_el
= &xb
->xb_attrs
.xb_root
.xt_list
;
295 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree
*et
)
297 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
298 et
->et_max_leaf_clusters
=
299 ocfs2_clusters_for_bytes(sb
, OCFS2_MAX_XATTR_TREE_LEAF_SIZE
);
302 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
305 struct ocfs2_xattr_block
*xb
= et
->et_object
;
306 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
308 xt
->xt_last_eb_blk
= cpu_to_le64(blkno
);
311 static u64
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
313 struct ocfs2_xattr_block
*xb
= et
->et_object
;
314 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
316 return le64_to_cpu(xt
->xt_last_eb_blk
);
319 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree
*et
,
322 struct ocfs2_xattr_block
*xb
= et
->et_object
;
324 le32_add_cpu(&xb
->xb_attrs
.xb_root
.xt_clusters
, clusters
);
327 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops
= {
328 .eo_set_last_eb_blk
= ocfs2_xattr_tree_set_last_eb_blk
,
329 .eo_get_last_eb_blk
= ocfs2_xattr_tree_get_last_eb_blk
,
330 .eo_update_clusters
= ocfs2_xattr_tree_update_clusters
,
331 .eo_fill_root_el
= ocfs2_xattr_tree_fill_root_el
,
332 .eo_fill_max_leaf_clusters
= ocfs2_xattr_tree_fill_max_leaf_clusters
,
335 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
338 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
340 dx_root
->dr_last_eb_blk
= cpu_to_le64(blkno
);
343 static u64
ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
345 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
347 return le64_to_cpu(dx_root
->dr_last_eb_blk
);
350 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree
*et
,
353 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
355 le32_add_cpu(&dx_root
->dr_clusters
, clusters
);
358 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree
*et
)
360 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
362 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root
));
367 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree
*et
)
369 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
371 et
->et_root_el
= &dx_root
->dr_list
;
374 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops
= {
375 .eo_set_last_eb_blk
= ocfs2_dx_root_set_last_eb_blk
,
376 .eo_get_last_eb_blk
= ocfs2_dx_root_get_last_eb_blk
,
377 .eo_update_clusters
= ocfs2_dx_root_update_clusters
,
378 .eo_sanity_check
= ocfs2_dx_root_sanity_check
,
379 .eo_fill_root_el
= ocfs2_dx_root_fill_root_el
,
382 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
384 struct ocfs2_refcount_block
*rb
= et
->et_object
;
386 et
->et_root_el
= &rb
->rf_list
;
389 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
392 struct ocfs2_refcount_block
*rb
= et
->et_object
;
394 rb
->rf_last_eb_blk
= cpu_to_le64(blkno
);
397 static u64
ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
399 struct ocfs2_refcount_block
*rb
= et
->et_object
;
401 return le64_to_cpu(rb
->rf_last_eb_blk
);
404 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree
*et
,
407 struct ocfs2_refcount_block
*rb
= et
->et_object
;
409 le32_add_cpu(&rb
->rf_clusters
, clusters
);
412 static enum ocfs2_contig_type
413 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree
*et
,
414 struct ocfs2_extent_rec
*ext
,
415 struct ocfs2_extent_rec
*insert_rec
)
420 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops
= {
421 .eo_set_last_eb_blk
= ocfs2_refcount_tree_set_last_eb_blk
,
422 .eo_get_last_eb_blk
= ocfs2_refcount_tree_get_last_eb_blk
,
423 .eo_update_clusters
= ocfs2_refcount_tree_update_clusters
,
424 .eo_fill_root_el
= ocfs2_refcount_tree_fill_root_el
,
425 .eo_extent_contig
= ocfs2_refcount_tree_extent_contig
,
428 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree
*et
,
429 struct ocfs2_caching_info
*ci
,
430 struct buffer_head
*bh
,
431 ocfs2_journal_access_func access
,
433 const struct ocfs2_extent_tree_operations
*ops
)
438 et
->et_root_journal_access
= access
;
440 obj
= (void *)bh
->b_data
;
442 et
->et_dealloc
= NULL
;
444 et
->et_ops
->eo_fill_root_el(et
);
445 if (!et
->et_ops
->eo_fill_max_leaf_clusters
)
446 et
->et_max_leaf_clusters
= 0;
448 et
->et_ops
->eo_fill_max_leaf_clusters(et
);
451 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree
*et
,
452 struct ocfs2_caching_info
*ci
,
453 struct buffer_head
*bh
)
455 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_di
,
456 NULL
, &ocfs2_dinode_et_ops
);
459 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree
*et
,
460 struct ocfs2_caching_info
*ci
,
461 struct buffer_head
*bh
)
463 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_xb
,
464 NULL
, &ocfs2_xattr_tree_et_ops
);
467 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree
*et
,
468 struct ocfs2_caching_info
*ci
,
469 struct ocfs2_xattr_value_buf
*vb
)
471 __ocfs2_init_extent_tree(et
, ci
, vb
->vb_bh
, vb
->vb_access
, vb
,
472 &ocfs2_xattr_value_et_ops
);
475 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree
*et
,
476 struct ocfs2_caching_info
*ci
,
477 struct buffer_head
*bh
)
479 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_dr
,
480 NULL
, &ocfs2_dx_root_et_ops
);
483 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree
*et
,
484 struct ocfs2_caching_info
*ci
,
485 struct buffer_head
*bh
)
487 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_rb
,
488 NULL
, &ocfs2_refcount_tree_et_ops
);
491 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
494 et
->et_ops
->eo_set_last_eb_blk(et
, new_last_eb_blk
);
497 static inline u64
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
499 return et
->et_ops
->eo_get_last_eb_blk(et
);
502 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree
*et
,
505 et
->et_ops
->eo_update_clusters(et
, clusters
);
508 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree
*et
,
509 struct ocfs2_extent_rec
*rec
)
511 if (et
->et_ops
->eo_extent_map_insert
)
512 et
->et_ops
->eo_extent_map_insert(et
, rec
);
515 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree
*et
,
518 if (et
->et_ops
->eo_extent_map_truncate
)
519 et
->et_ops
->eo_extent_map_truncate(et
, clusters
);
522 static inline int ocfs2_et_root_journal_access(handle_t
*handle
,
523 struct ocfs2_extent_tree
*et
,
526 return et
->et_root_journal_access(handle
, et
->et_ci
, et
->et_root_bh
,
530 static inline enum ocfs2_contig_type
531 ocfs2_et_extent_contig(struct ocfs2_extent_tree
*et
,
532 struct ocfs2_extent_rec
*rec
,
533 struct ocfs2_extent_rec
*insert_rec
)
535 if (et
->et_ops
->eo_extent_contig
)
536 return et
->et_ops
->eo_extent_contig(et
, rec
, insert_rec
);
538 return ocfs2_extent_rec_contig(
539 ocfs2_metadata_cache_get_super(et
->et_ci
),
543 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree
*et
,
544 struct ocfs2_extent_rec
*rec
)
548 if (et
->et_ops
->eo_insert_check
)
549 ret
= et
->et_ops
->eo_insert_check(et
, rec
);
553 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree
*et
)
557 if (et
->et_ops
->eo_sanity_check
)
558 ret
= et
->et_ops
->eo_sanity_check(et
);
562 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
563 struct ocfs2_extent_block
*eb
);
564 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
565 struct ocfs2_extent_tree
*et
,
566 struct ocfs2_path
*path
,
567 struct ocfs2_extent_rec
*insert_rec
);
569 * Reset the actual path elements so that we can reuse the structure
570 * to build another path. Generally, this involves freeing the buffer
573 void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
575 int i
, start
= 0, depth
= 0;
576 struct ocfs2_path_item
*node
;
581 for(i
= start
; i
< path_num_items(path
); i
++) {
582 node
= &path
->p_node
[i
];
590 * Tree depth may change during truncate, or insert. If we're
591 * keeping the root extent list, then make sure that our path
592 * structure reflects the proper depth.
595 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
597 path_root_access(path
) = NULL
;
599 path
->p_tree_depth
= depth
;
602 void ocfs2_free_path(struct ocfs2_path
*path
)
605 ocfs2_reinit_path(path
, 0);
611 * All the elements of src into dest. After this call, src could be freed
612 * without affecting dest.
614 * Both paths should have the same root. Any non-root elements of dest
617 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
621 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
622 BUG_ON(path_root_el(dest
) != path_root_el(src
));
623 BUG_ON(path_root_access(dest
) != path_root_access(src
));
625 ocfs2_reinit_path(dest
, 1);
627 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
628 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
629 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
631 if (dest
->p_node
[i
].bh
)
632 get_bh(dest
->p_node
[i
].bh
);
637 * Make the *dest path the same as src and re-initialize src path to
640 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
644 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
645 BUG_ON(path_root_access(dest
) != path_root_access(src
));
647 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
648 brelse(dest
->p_node
[i
].bh
);
650 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
651 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
653 src
->p_node
[i
].bh
= NULL
;
654 src
->p_node
[i
].el
= NULL
;
659 * Insert an extent block at given index.
661 * This will not take an additional reference on eb_bh.
663 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
664 struct buffer_head
*eb_bh
)
666 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
669 * Right now, no root bh is an extent block, so this helps
670 * catch code errors with dinode trees. The assertion can be
671 * safely removed if we ever need to insert extent block
672 * structures at the root.
676 path
->p_node
[index
].bh
= eb_bh
;
677 path
->p_node
[index
].el
= &eb
->h_list
;
680 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
681 struct ocfs2_extent_list
*root_el
,
682 ocfs2_journal_access_func access
)
684 struct ocfs2_path
*path
;
686 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
688 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
690 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
692 path_root_bh(path
) = root_bh
;
693 path_root_el(path
) = root_el
;
694 path_root_access(path
) = access
;
700 struct ocfs2_path
*ocfs2_new_path_from_path(struct ocfs2_path
*path
)
702 return ocfs2_new_path(path_root_bh(path
), path_root_el(path
),
703 path_root_access(path
));
706 struct ocfs2_path
*ocfs2_new_path_from_et(struct ocfs2_extent_tree
*et
)
708 return ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
,
709 et
->et_root_journal_access
);
713 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
714 * otherwise it's the root_access function.
716 * I don't like the way this function's name looks next to
717 * ocfs2_journal_access_path(), but I don't have a better one.
719 int ocfs2_path_bh_journal_access(handle_t
*handle
,
720 struct ocfs2_caching_info
*ci
,
721 struct ocfs2_path
*path
,
724 ocfs2_journal_access_func access
= path_root_access(path
);
727 access
= ocfs2_journal_access
;
730 access
= ocfs2_journal_access_eb
;
732 return access(handle
, ci
, path
->p_node
[idx
].bh
,
733 OCFS2_JOURNAL_ACCESS_WRITE
);
737 * Convenience function to journal all components in a path.
739 int ocfs2_journal_access_path(struct ocfs2_caching_info
*ci
,
741 struct ocfs2_path
*path
)
748 for(i
= 0; i
< path_num_items(path
); i
++) {
749 ret
= ocfs2_path_bh_journal_access(handle
, ci
, path
, i
);
761 * Return the index of the extent record which contains cluster #v_cluster.
762 * -1 is returned if it was not found.
764 * Should work fine on interior and exterior nodes.
766 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
770 struct ocfs2_extent_rec
*rec
;
771 u32 rec_end
, rec_start
, clusters
;
773 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
774 rec
= &el
->l_recs
[i
];
776 rec_start
= le32_to_cpu(rec
->e_cpos
);
777 clusters
= ocfs2_rec_clusters(el
, rec
);
779 rec_end
= rec_start
+ clusters
;
781 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
791 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
792 * ocfs2_extent_rec_contig only work properly against leaf nodes!
794 static int ocfs2_block_extent_contig(struct super_block
*sb
,
795 struct ocfs2_extent_rec
*ext
,
798 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
800 blk_end
+= ocfs2_clusters_to_blocks(sb
,
801 le16_to_cpu(ext
->e_leaf_clusters
));
803 return blkno
== blk_end
;
806 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
807 struct ocfs2_extent_rec
*right
)
811 left_range
= le32_to_cpu(left
->e_cpos
) +
812 le16_to_cpu(left
->e_leaf_clusters
);
814 return (left_range
== le32_to_cpu(right
->e_cpos
));
817 static enum ocfs2_contig_type
818 ocfs2_extent_rec_contig(struct super_block
*sb
,
819 struct ocfs2_extent_rec
*ext
,
820 struct ocfs2_extent_rec
*insert_rec
)
822 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
825 * Refuse to coalesce extent records with different flag
826 * fields - we don't want to mix unwritten extents with user
829 if (ext
->e_flags
!= insert_rec
->e_flags
)
832 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
833 ocfs2_block_extent_contig(sb
, ext
, blkno
))
836 blkno
= le64_to_cpu(ext
->e_blkno
);
837 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
838 ocfs2_block_extent_contig(sb
, insert_rec
, blkno
))
845 * NOTE: We can have pretty much any combination of contiguousness and
848 * The usefulness of APPEND_TAIL is more in that it lets us know that
849 * we'll have to update the path to that leaf.
851 enum ocfs2_append_type
{
856 enum ocfs2_split_type
{
862 struct ocfs2_insert_type
{
863 enum ocfs2_split_type ins_split
;
864 enum ocfs2_append_type ins_appending
;
865 enum ocfs2_contig_type ins_contig
;
866 int ins_contig_index
;
870 struct ocfs2_merge_ctxt
{
871 enum ocfs2_contig_type c_contig_type
;
872 int c_has_empty_extent
;
873 int c_split_covers_rec
;
876 static int ocfs2_validate_extent_block(struct super_block
*sb
,
877 struct buffer_head
*bh
)
880 struct ocfs2_extent_block
*eb
=
881 (struct ocfs2_extent_block
*)bh
->b_data
;
883 trace_ocfs2_validate_extent_block((unsigned long long)bh
->b_blocknr
);
885 BUG_ON(!buffer_uptodate(bh
));
888 * If the ecc fails, we return the error but otherwise
889 * leave the filesystem running. We know any error is
890 * local to this block.
892 rc
= ocfs2_validate_meta_ecc(sb
, bh
->b_data
, &eb
->h_check
);
894 mlog(ML_ERROR
, "Checksum failed for extent block %llu\n",
895 (unsigned long long)bh
->b_blocknr
);
900 * Errors after here are fatal.
903 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
905 "Extent block #%llu has bad signature %.*s\n",
906 (unsigned long long)bh
->b_blocknr
, 7,
911 if (le64_to_cpu(eb
->h_blkno
) != bh
->b_blocknr
) {
913 "Extent block #%llu has an invalid h_blkno of %llu\n",
914 (unsigned long long)bh
->b_blocknr
,
915 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
919 if (le32_to_cpu(eb
->h_fs_generation
) != OCFS2_SB(sb
)->fs_generation
)
921 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
922 (unsigned long long)bh
->b_blocknr
,
923 le32_to_cpu(eb
->h_fs_generation
));
928 int ocfs2_read_extent_block(struct ocfs2_caching_info
*ci
, u64 eb_blkno
,
929 struct buffer_head
**bh
)
932 struct buffer_head
*tmp
= *bh
;
934 rc
= ocfs2_read_block(ci
, eb_blkno
, &tmp
,
935 ocfs2_validate_extent_block
);
937 /* If ocfs2_read_block() got us a new bh, pass it up. */
946 * How many free extents have we got before we need more meta data?
948 int ocfs2_num_free_extents(struct ocfs2_extent_tree
*et
)
951 struct ocfs2_extent_list
*el
= NULL
;
952 struct ocfs2_extent_block
*eb
;
953 struct buffer_head
*eb_bh
= NULL
;
957 last_eb_blk
= ocfs2_et_get_last_eb_blk(et
);
960 retval
= ocfs2_read_extent_block(et
->et_ci
, last_eb_blk
,
966 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
970 if (el
->l_tree_depth
!= 0) {
971 retval
= ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
972 "Owner %llu has leaf extent block %llu with an invalid l_tree_depth of %u\n",
973 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
974 (unsigned long long)last_eb_blk
,
975 le16_to_cpu(el
->l_tree_depth
));
979 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
983 trace_ocfs2_num_free_extents(retval
);
987 /* expects array to already be allocated
989 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
992 static int ocfs2_create_new_meta_bhs(handle_t
*handle
,
993 struct ocfs2_extent_tree
*et
,
995 struct ocfs2_alloc_context
*meta_ac
,
996 struct buffer_head
*bhs
[])
998 int count
, status
, i
;
999 u16 suballoc_bit_start
;
1001 u64 suballoc_loc
, first_blkno
;
1002 struct ocfs2_super
*osb
=
1003 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
1004 struct ocfs2_extent_block
*eb
;
1007 while (count
< wanted
) {
1008 status
= ocfs2_claim_metadata(handle
,
1012 &suballoc_bit_start
,
1020 for(i
= count
; i
< (num_got
+ count
); i
++) {
1021 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
1022 if (bhs
[i
] == NULL
) {
1027 ocfs2_set_new_buffer_uptodate(et
->et_ci
, bhs
[i
]);
1029 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
1031 OCFS2_JOURNAL_ACCESS_CREATE
);
1037 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
1038 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
1039 /* Ok, setup the minimal stuff here. */
1040 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
1041 eb
->h_blkno
= cpu_to_le64(first_blkno
);
1042 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
1043 eb
->h_suballoc_slot
=
1044 cpu_to_le16(meta_ac
->ac_alloc_slot
);
1045 eb
->h_suballoc_loc
= cpu_to_le64(suballoc_loc
);
1046 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
1047 eb
->h_list
.l_count
=
1048 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
1050 suballoc_bit_start
++;
1053 /* We'll also be dirtied by the caller, so
1054 * this isn't absolutely necessary. */
1055 ocfs2_journal_dirty(handle
, bhs
[i
]);
1064 for(i
= 0; i
< wanted
; i
++) {
1073 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1075 * Returns the sum of the rightmost extent rec logical offset and
1078 * ocfs2_add_branch() uses this to determine what logical cluster
1079 * value should be populated into the leftmost new branch records.
1081 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1082 * value for the new topmost tree record.
1084 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
1088 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1090 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
1091 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
1095 * Change range of the branches in the right most path according to the leaf
1096 * extent block's rightmost record.
1098 static int ocfs2_adjust_rightmost_branch(handle_t
*handle
,
1099 struct ocfs2_extent_tree
*et
)
1102 struct ocfs2_path
*path
= NULL
;
1103 struct ocfs2_extent_list
*el
;
1104 struct ocfs2_extent_rec
*rec
;
1106 path
= ocfs2_new_path_from_et(et
);
1112 status
= ocfs2_find_path(et
->et_ci
, path
, UINT_MAX
);
1118 status
= ocfs2_extend_trans(handle
, path_num_items(path
));
1124 status
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
1130 el
= path_leaf_el(path
);
1131 rec
= &el
->l_recs
[le16_to_cpu(el
->l_next_free_rec
) - 1];
1133 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
1136 ocfs2_free_path(path
);
1141 * Add an entire tree branch to our inode. eb_bh is the extent block
1142 * to start at, if we don't want to start the branch at the root
1145 * last_eb_bh is required as we have to update it's next_leaf pointer
1146 * for the new last extent block.
1148 * the new branch will be 'empty' in the sense that every block will
1149 * contain a single record with cluster count == 0.
1151 static int ocfs2_add_branch(handle_t
*handle
,
1152 struct ocfs2_extent_tree
*et
,
1153 struct buffer_head
*eb_bh
,
1154 struct buffer_head
**last_eb_bh
,
1155 struct ocfs2_alloc_context
*meta_ac
)
1157 int status
, new_blocks
, i
, block_given
= 0;
1158 u64 next_blkno
, new_last_eb_blk
;
1159 struct buffer_head
*bh
;
1160 struct buffer_head
**new_eb_bhs
= NULL
;
1161 struct ocfs2_extent_block
*eb
;
1162 struct ocfs2_extent_list
*eb_el
;
1163 struct ocfs2_extent_list
*el
;
1164 u32 new_cpos
, root_end
;
1166 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
1169 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
1172 el
= et
->et_root_el
;
1174 /* we never add a branch to a leaf. */
1175 BUG_ON(!el
->l_tree_depth
);
1177 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
1179 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
1180 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
1181 root_end
= ocfs2_sum_rightmost_rec(et
->et_root_el
);
1184 * If there is a gap before the root end and the real end
1185 * of the rightmost leaf block, we need to remove the gap
1186 * between new_cpos and root_end first so that the tree
1187 * is consistent after we add a new branch(it will start
1190 if (root_end
> new_cpos
) {
1191 trace_ocfs2_adjust_rightmost_branch(
1192 (unsigned long long)
1193 ocfs2_metadata_cache_owner(et
->et_ci
),
1194 root_end
, new_cpos
);
1196 status
= ocfs2_adjust_rightmost_branch(handle
, et
);
1203 /* allocate the number of new eb blocks we need */
1204 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
1212 /* Firstyly, try to reuse dealloc since we have already estimated how
1213 * many extent blocks we may use.
1215 if (!ocfs2_is_dealloc_empty(et
)) {
1216 status
= ocfs2_reuse_blk_from_dealloc(handle
, et
,
1217 new_eb_bhs
, new_blocks
,
1225 BUG_ON(block_given
> new_blocks
);
1227 if (block_given
< new_blocks
) {
1229 status
= ocfs2_create_new_meta_bhs(handle
, et
,
1230 new_blocks
- block_given
,
1232 &new_eb_bhs
[block_given
]);
1239 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1240 * linked with the rest of the tree.
1241 * conversely, new_eb_bhs[0] is the new bottommost leaf.
1243 * when we leave the loop, new_last_eb_blk will point to the
1244 * newest leaf, and next_blkno will point to the topmost extent
1246 next_blkno
= new_last_eb_blk
= 0;
1247 for(i
= 0; i
< new_blocks
; i
++) {
1249 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1250 /* ocfs2_create_new_meta_bhs() should create it right! */
1251 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1252 eb_el
= &eb
->h_list
;
1254 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, bh
,
1255 OCFS2_JOURNAL_ACCESS_CREATE
);
1261 eb
->h_next_leaf_blk
= 0;
1262 eb_el
->l_tree_depth
= cpu_to_le16(i
);
1263 eb_el
->l_next_free_rec
= cpu_to_le16(1);
1265 * This actually counts as an empty extent as
1268 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
1269 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
1271 * eb_el isn't always an interior node, but even leaf
1272 * nodes want a zero'd flags and reserved field so
1273 * this gets the whole 32 bits regardless of use.
1275 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
1276 if (!eb_el
->l_tree_depth
)
1277 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
1279 ocfs2_journal_dirty(handle
, bh
);
1280 next_blkno
= le64_to_cpu(eb
->h_blkno
);
1283 /* This is a bit hairy. We want to update up to three blocks
1284 * here without leaving any of them in an inconsistent state
1285 * in case of error. We don't have to worry about
1286 * journal_dirty erroring as it won't unless we've aborted the
1287 * handle (in which case we would never be here) so reserving
1288 * the write with journal_access is all we need to do. */
1289 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, *last_eb_bh
,
1290 OCFS2_JOURNAL_ACCESS_WRITE
);
1295 status
= ocfs2_et_root_journal_access(handle
, et
,
1296 OCFS2_JOURNAL_ACCESS_WRITE
);
1302 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, eb_bh
,
1303 OCFS2_JOURNAL_ACCESS_WRITE
);
1310 /* Link the new branch into the rest of the tree (el will
1311 * either be on the root_bh, or the extent block passed in. */
1312 i
= le16_to_cpu(el
->l_next_free_rec
);
1313 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
1314 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
1315 el
->l_recs
[i
].e_int_clusters
= 0;
1316 le16_add_cpu(&el
->l_next_free_rec
, 1);
1318 /* fe needs a new last extent block pointer, as does the
1319 * next_leaf on the previously last-extent-block. */
1320 ocfs2_et_set_last_eb_blk(et
, new_last_eb_blk
);
1322 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
1323 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
1325 ocfs2_journal_dirty(handle
, *last_eb_bh
);
1326 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1328 ocfs2_journal_dirty(handle
, eb_bh
);
1331 * Some callers want to track the rightmost leaf so pass it
1334 brelse(*last_eb_bh
);
1335 get_bh(new_eb_bhs
[0]);
1336 *last_eb_bh
= new_eb_bhs
[0];
1341 for (i
= 0; i
< new_blocks
; i
++)
1342 brelse(new_eb_bhs
[i
]);
1350 * adds another level to the allocation tree.
1351 * returns back the new extent block so you can add a branch to it
1354 static int ocfs2_shift_tree_depth(handle_t
*handle
,
1355 struct ocfs2_extent_tree
*et
,
1356 struct ocfs2_alloc_context
*meta_ac
,
1357 struct buffer_head
**ret_new_eb_bh
)
1359 int status
, i
, block_given
= 0;
1361 struct buffer_head
*new_eb_bh
= NULL
;
1362 struct ocfs2_extent_block
*eb
;
1363 struct ocfs2_extent_list
*root_el
;
1364 struct ocfs2_extent_list
*eb_el
;
1366 if (!ocfs2_is_dealloc_empty(et
)) {
1367 status
= ocfs2_reuse_blk_from_dealloc(handle
, et
,
1370 } else if (meta_ac
) {
1371 status
= ocfs2_create_new_meta_bhs(handle
, et
, 1, meta_ac
,
1383 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
1384 /* ocfs2_create_new_meta_bhs() should create it right! */
1385 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1387 eb_el
= &eb
->h_list
;
1388 root_el
= et
->et_root_el
;
1390 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, new_eb_bh
,
1391 OCFS2_JOURNAL_ACCESS_CREATE
);
1397 /* copy the root extent list data into the new extent block */
1398 eb_el
->l_tree_depth
= root_el
->l_tree_depth
;
1399 eb_el
->l_next_free_rec
= root_el
->l_next_free_rec
;
1400 for (i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1401 eb_el
->l_recs
[i
] = root_el
->l_recs
[i
];
1403 ocfs2_journal_dirty(handle
, new_eb_bh
);
1405 status
= ocfs2_et_root_journal_access(handle
, et
,
1406 OCFS2_JOURNAL_ACCESS_WRITE
);
1412 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
1414 /* update root_bh now */
1415 le16_add_cpu(&root_el
->l_tree_depth
, 1);
1416 root_el
->l_recs
[0].e_cpos
= 0;
1417 root_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
1418 root_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
1419 for (i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1420 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
1421 root_el
->l_next_free_rec
= cpu_to_le16(1);
1423 /* If this is our 1st tree depth shift, then last_eb_blk
1424 * becomes the allocated extent block */
1425 if (root_el
->l_tree_depth
== cpu_to_le16(1))
1426 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
1428 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1430 *ret_new_eb_bh
= new_eb_bh
;
1440 * Should only be called when there is no space left in any of the
1441 * leaf nodes. What we want to do is find the lowest tree depth
1442 * non-leaf extent block with room for new records. There are three
1443 * valid results of this search:
1445 * 1) a lowest extent block is found, then we pass it back in
1446 * *lowest_eb_bh and return '0'
1448 * 2) the search fails to find anything, but the root_el has room. We
1449 * pass NULL back in *lowest_eb_bh, but still return '0'
1451 * 3) the search fails to find anything AND the root_el is full, in
1452 * which case we return > 0
1454 * return status < 0 indicates an error.
1456 static int ocfs2_find_branch_target(struct ocfs2_extent_tree
*et
,
1457 struct buffer_head
**target_bh
)
1461 struct ocfs2_extent_block
*eb
;
1462 struct ocfs2_extent_list
*el
;
1463 struct buffer_head
*bh
= NULL
;
1464 struct buffer_head
*lowest_bh
= NULL
;
1468 el
= et
->et_root_el
;
1470 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
1471 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1472 status
= ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1473 "Owner %llu has empty extent list (next_free_rec == 0)\n",
1474 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
1477 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1478 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1480 status
= ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1481 "Owner %llu has extent list where extent # %d has no physical block start\n",
1482 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
), i
);
1489 status
= ocfs2_read_extent_block(et
->et_ci
, blkno
, &bh
);
1495 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1498 if (le16_to_cpu(el
->l_next_free_rec
) <
1499 le16_to_cpu(el
->l_count
)) {
1506 /* If we didn't find one and the fe doesn't have any room,
1507 * then return '1' */
1508 el
= et
->et_root_el
;
1509 if (!lowest_bh
&& (el
->l_next_free_rec
== el
->l_count
))
1512 *target_bh
= lowest_bh
;
1520 * Grow a b-tree so that it has more records.
1522 * We might shift the tree depth in which case existing paths should
1523 * be considered invalid.
1525 * Tree depth after the grow is returned via *final_depth.
1527 * *last_eb_bh will be updated by ocfs2_add_branch().
1529 static int ocfs2_grow_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
1530 int *final_depth
, struct buffer_head
**last_eb_bh
,
1531 struct ocfs2_alloc_context
*meta_ac
)
1534 struct ocfs2_extent_list
*el
= et
->et_root_el
;
1535 int depth
= le16_to_cpu(el
->l_tree_depth
);
1536 struct buffer_head
*bh
= NULL
;
1538 BUG_ON(meta_ac
== NULL
&& ocfs2_is_dealloc_empty(et
));
1540 shift
= ocfs2_find_branch_target(et
, &bh
);
1547 /* We traveled all the way to the bottom of the allocation tree
1548 * and didn't find room for any more extents - we need to add
1549 * another tree level */
1552 trace_ocfs2_grow_tree(
1553 (unsigned long long)
1554 ocfs2_metadata_cache_owner(et
->et_ci
),
1557 /* ocfs2_shift_tree_depth will return us a buffer with
1558 * the new extent block (so we can pass that to
1559 * ocfs2_add_branch). */
1560 ret
= ocfs2_shift_tree_depth(handle
, et
, meta_ac
, &bh
);
1568 * Special case: we have room now if we shifted from
1569 * tree_depth 0, so no more work needs to be done.
1571 * We won't be calling add_branch, so pass
1572 * back *last_eb_bh as the new leaf. At depth
1573 * zero, it should always be null so there's
1574 * no reason to brelse.
1576 BUG_ON(*last_eb_bh
);
1583 /* call ocfs2_add_branch to add the final part of the tree with
1585 ret
= ocfs2_add_branch(handle
, et
, bh
, last_eb_bh
,
1592 *final_depth
= depth
;
1598 * This function will discard the rightmost extent record.
1600 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1602 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1603 int count
= le16_to_cpu(el
->l_count
);
1604 unsigned int num_bytes
;
1607 /* This will cause us to go off the end of our extent list. */
1608 BUG_ON(next_free
>= count
);
1610 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1612 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1615 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1616 struct ocfs2_extent_rec
*insert_rec
)
1618 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1619 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1620 struct ocfs2_extent_rec
*rec
;
1622 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1623 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1627 /* The tree code before us didn't allow enough room in the leaf. */
1628 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1631 * The easiest way to approach this is to just remove the
1632 * empty extent and temporarily decrement next_free.
1636 * If next_free was 1 (only an empty extent), this
1637 * loop won't execute, which is fine. We still want
1638 * the decrement above to happen.
1640 for(i
= 0; i
< (next_free
- 1); i
++)
1641 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1647 * Figure out what the new record index should be.
1649 for(i
= 0; i
< next_free
; i
++) {
1650 rec
= &el
->l_recs
[i
];
1652 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1657 trace_ocfs2_rotate_leaf(insert_cpos
, insert_index
,
1658 has_empty
, next_free
,
1659 le16_to_cpu(el
->l_count
));
1661 BUG_ON(insert_index
< 0);
1662 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1663 BUG_ON(insert_index
> next_free
);
1666 * No need to memmove if we're just adding to the tail.
1668 if (insert_index
!= next_free
) {
1669 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1671 num_bytes
= next_free
- insert_index
;
1672 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1673 memmove(&el
->l_recs
[insert_index
+ 1],
1674 &el
->l_recs
[insert_index
],
1679 * Either we had an empty extent, and need to re-increment or
1680 * there was no empty extent on a non full rightmost leaf node,
1681 * in which case we still need to increment.
1684 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1686 * Make sure none of the math above just messed up our tree.
1688 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1690 el
->l_recs
[insert_index
] = *insert_rec
;
1694 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1696 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1698 BUG_ON(num_recs
== 0);
1700 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1702 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1703 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1704 memset(&el
->l_recs
[num_recs
], 0,
1705 sizeof(struct ocfs2_extent_rec
));
1706 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1711 * Create an empty extent record .
1713 * l_next_free_rec may be updated.
1715 * If an empty extent already exists do nothing.
1717 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1719 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1721 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1726 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1729 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1730 "Asked to create an empty extent in a full list:\n"
1731 "count = %u, tree depth = %u",
1732 le16_to_cpu(el
->l_count
),
1733 le16_to_cpu(el
->l_tree_depth
));
1735 ocfs2_shift_records_right(el
);
1738 le16_add_cpu(&el
->l_next_free_rec
, 1);
1739 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1743 * For a rotation which involves two leaf nodes, the "root node" is
1744 * the lowest level tree node which contains a path to both leafs. This
1745 * resulting set of information can be used to form a complete "subtree"
1747 * This function is passed two full paths from the dinode down to a
1748 * pair of adjacent leaves. It's task is to figure out which path
1749 * index contains the subtree root - this can be the root index itself
1750 * in a worst-case rotation.
1752 * The array index of the subtree root is passed back.
1754 int ocfs2_find_subtree_root(struct ocfs2_extent_tree
*et
,
1755 struct ocfs2_path
*left
,
1756 struct ocfs2_path
*right
)
1761 * Check that the caller passed in two paths from the same tree.
1763 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1769 * The caller didn't pass two adjacent paths.
1771 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1772 "Owner %llu, left depth %u, right depth %u\n"
1773 "left leaf blk %llu, right leaf blk %llu\n",
1774 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
1775 left
->p_tree_depth
, right
->p_tree_depth
,
1776 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1777 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1778 } while (left
->p_node
[i
].bh
->b_blocknr
==
1779 right
->p_node
[i
].bh
->b_blocknr
);
1784 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1787 * Traverse a btree path in search of cpos, starting at root_el.
1789 * This code can be called with a cpos larger than the tree, in which
1790 * case it will return the rightmost path.
1792 static int __ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1793 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1794 path_insert_t
*func
, void *data
)
1799 struct buffer_head
*bh
= NULL
;
1800 struct ocfs2_extent_block
*eb
;
1801 struct ocfs2_extent_list
*el
;
1802 struct ocfs2_extent_rec
*rec
;
1805 while (el
->l_tree_depth
) {
1806 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1807 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1808 "Owner %llu has empty extent list at depth %u\n",
1809 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1810 le16_to_cpu(el
->l_tree_depth
));
1816 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1817 rec
= &el
->l_recs
[i
];
1820 * In the case that cpos is off the allocation
1821 * tree, this should just wind up returning the
1824 range
= le32_to_cpu(rec
->e_cpos
) +
1825 ocfs2_rec_clusters(el
, rec
);
1826 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1830 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1832 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1833 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1834 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1835 le16_to_cpu(el
->l_tree_depth
), i
);
1842 ret
= ocfs2_read_extent_block(ci
, blkno
, &bh
);
1848 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1851 if (le16_to_cpu(el
->l_next_free_rec
) >
1852 le16_to_cpu(el
->l_count
)) {
1853 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1854 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1855 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1856 (unsigned long long)bh
->b_blocknr
,
1857 le16_to_cpu(el
->l_next_free_rec
),
1858 le16_to_cpu(el
->l_count
));
1869 * Catch any trailing bh that the loop didn't handle.
1877 * Given an initialized path (that is, it has a valid root extent
1878 * list), this function will traverse the btree in search of the path
1879 * which would contain cpos.
1881 * The path traveled is recorded in the path structure.
1883 * Note that this will not do any comparisons on leaf node extent
1884 * records, so it will work fine in the case that we just added a tree
1887 struct find_path_data
{
1889 struct ocfs2_path
*path
;
1891 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1893 struct find_path_data
*fp
= data
;
1896 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1899 int ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1900 struct ocfs2_path
*path
, u32 cpos
)
1902 struct find_path_data data
;
1906 return __ocfs2_find_path(ci
, path_root_el(path
), cpos
,
1907 find_path_ins
, &data
);
1910 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1912 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1913 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1914 struct buffer_head
**ret
= data
;
1916 /* We want to retain only the leaf block. */
1917 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1923 * Find the leaf block in the tree which would contain cpos. No
1924 * checking of the actual leaf is done.
1926 * Some paths want to call this instead of allocating a path structure
1927 * and calling ocfs2_find_path().
1929 * This function doesn't handle non btree extent lists.
1931 int ocfs2_find_leaf(struct ocfs2_caching_info
*ci
,
1932 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1933 struct buffer_head
**leaf_bh
)
1936 struct buffer_head
*bh
= NULL
;
1938 ret
= __ocfs2_find_path(ci
, root_el
, cpos
, find_leaf_ins
, &bh
);
1950 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1952 * Basically, we've moved stuff around at the bottom of the tree and
1953 * we need to fix up the extent records above the changes to reflect
1956 * left_rec: the record on the left.
1957 * right_rec: the record to the right of left_rec
1958 * right_child_el: is the child list pointed to by right_rec
1960 * By definition, this only works on interior nodes.
1962 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1963 struct ocfs2_extent_rec
*right_rec
,
1964 struct ocfs2_extent_list
*right_child_el
)
1966 u32 left_clusters
, right_end
;
1969 * Interior nodes never have holes. Their cpos is the cpos of
1970 * the leftmost record in their child list. Their cluster
1971 * count covers the full theoretical range of their child list
1972 * - the range between their cpos and the cpos of the record
1973 * immediately to their right.
1975 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1976 if (!ocfs2_rec_clusters(right_child_el
, &right_child_el
->l_recs
[0])) {
1977 BUG_ON(right_child_el
->l_tree_depth
);
1978 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1979 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1981 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1982 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1985 * Calculate the rightmost cluster count boundary before
1986 * moving cpos - we will need to adjust clusters after
1987 * updating e_cpos to keep the same highest cluster count.
1989 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1990 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1992 right_rec
->e_cpos
= left_rec
->e_cpos
;
1993 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1995 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1996 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
2000 * Adjust the adjacent root node records involved in a
2001 * rotation. left_el_blkno is passed in as a key so that we can easily
2002 * find it's index in the root list.
2004 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
2005 struct ocfs2_extent_list
*left_el
,
2006 struct ocfs2_extent_list
*right_el
,
2011 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
2012 le16_to_cpu(left_el
->l_tree_depth
));
2014 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
2015 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
2020 * The path walking code should have never returned a root and
2021 * two paths which are not adjacent.
2023 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
2025 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
],
2026 &root_el
->l_recs
[i
+ 1], right_el
);
2030 * We've changed a leaf block (in right_path) and need to reflect that
2031 * change back up the subtree.
2033 * This happens in multiple places:
2034 * - When we've moved an extent record from the left path leaf to the right
2035 * path leaf to make room for an empty extent in the left path leaf.
2036 * - When our insert into the right path leaf is at the leftmost edge
2037 * and requires an update of the path immediately to it's left. This
2038 * can occur at the end of some types of rotation and appending inserts.
2039 * - When we've adjusted the last extent record in the left path leaf and the
2040 * 1st extent record in the right path leaf during cross extent block merge.
2042 static void ocfs2_complete_edge_insert(handle_t
*handle
,
2043 struct ocfs2_path
*left_path
,
2044 struct ocfs2_path
*right_path
,
2048 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
2049 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
2050 struct buffer_head
*root_bh
;
2053 * Update the counts and position values within all the
2054 * interior nodes to reflect the leaf rotation we just did.
2056 * The root node is handled below the loop.
2058 * We begin the loop with right_el and left_el pointing to the
2059 * leaf lists and work our way up.
2061 * NOTE: within this loop, left_el and right_el always refer
2062 * to the *child* lists.
2064 left_el
= path_leaf_el(left_path
);
2065 right_el
= path_leaf_el(right_path
);
2066 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
2067 trace_ocfs2_complete_edge_insert(i
);
2070 * One nice property of knowing that all of these
2071 * nodes are below the root is that we only deal with
2072 * the leftmost right node record and the rightmost
2075 el
= left_path
->p_node
[i
].el
;
2076 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2077 left_rec
= &el
->l_recs
[idx
];
2079 el
= right_path
->p_node
[i
].el
;
2080 right_rec
= &el
->l_recs
[0];
2082 ocfs2_adjust_adjacent_records(left_rec
, right_rec
, right_el
);
2084 ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
2085 ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
2088 * Setup our list pointers now so that the current
2089 * parents become children in the next iteration.
2091 left_el
= left_path
->p_node
[i
].el
;
2092 right_el
= right_path
->p_node
[i
].el
;
2096 * At the root node, adjust the two adjacent records which
2097 * begin our path to the leaves.
2100 el
= left_path
->p_node
[subtree_index
].el
;
2101 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
2102 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
2104 ocfs2_adjust_root_records(el
, left_el
, right_el
,
2105 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
2107 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2109 ocfs2_journal_dirty(handle
, root_bh
);
2112 static int ocfs2_rotate_subtree_right(handle_t
*handle
,
2113 struct ocfs2_extent_tree
*et
,
2114 struct ocfs2_path
*left_path
,
2115 struct ocfs2_path
*right_path
,
2119 struct buffer_head
*right_leaf_bh
;
2120 struct buffer_head
*left_leaf_bh
= NULL
;
2121 struct buffer_head
*root_bh
;
2122 struct ocfs2_extent_list
*right_el
, *left_el
;
2123 struct ocfs2_extent_rec move_rec
;
2125 left_leaf_bh
= path_leaf_bh(left_path
);
2126 left_el
= path_leaf_el(left_path
);
2128 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
2129 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
2130 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2131 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2132 (unsigned long long)left_leaf_bh
->b_blocknr
,
2133 le16_to_cpu(left_el
->l_next_free_rec
));
2138 * This extent block may already have an empty record, so we
2139 * return early if so.
2141 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
2144 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2145 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2147 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2154 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2155 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2162 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2170 right_leaf_bh
= path_leaf_bh(right_path
);
2171 right_el
= path_leaf_el(right_path
);
2173 /* This is a code error, not a disk corruption. */
2174 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
2175 "because rightmost leaf block %llu is empty\n",
2176 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2177 (unsigned long long)right_leaf_bh
->b_blocknr
);
2179 ocfs2_create_empty_extent(right_el
);
2181 ocfs2_journal_dirty(handle
, right_leaf_bh
);
2183 /* Do the copy now. */
2184 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2185 move_rec
= left_el
->l_recs
[i
];
2186 right_el
->l_recs
[0] = move_rec
;
2189 * Clear out the record we just copied and shift everything
2190 * over, leaving an empty extent in the left leaf.
2192 * We temporarily subtract from next_free_rec so that the
2193 * shift will lose the tail record (which is now defunct).
2195 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
2196 ocfs2_shift_records_right(left_el
);
2197 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2198 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
2200 ocfs2_journal_dirty(handle
, left_leaf_bh
);
2202 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2210 * Given a full path, determine what cpos value would return us a path
2211 * containing the leaf immediately to the left of the current one.
2213 * Will return zero if the path passed in is already the leftmost path.
2215 int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
2216 struct ocfs2_path
*path
, u32
*cpos
)
2220 struct ocfs2_extent_list
*el
;
2222 BUG_ON(path
->p_tree_depth
== 0);
2226 blkno
= path_leaf_bh(path
)->b_blocknr
;
2228 /* Start at the tree node just above the leaf and work our way up. */
2229 i
= path
->p_tree_depth
- 1;
2231 el
= path
->p_node
[i
].el
;
2234 * Find the extent record just before the one in our
2237 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2238 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2242 * We've determined that the
2243 * path specified is already
2244 * the leftmost one - return a
2250 * The leftmost record points to our
2251 * leaf - we need to travel up the
2257 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
2258 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
2259 &el
->l_recs
[j
- 1]);
2266 * If we got here, we never found a valid node where
2267 * the tree indicated one should be.
2269 ocfs2_error(sb
, "Invalid extent tree at extent block %llu\n",
2270 (unsigned long long)blkno
);
2275 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2284 * Extend the transaction by enough credits to complete the rotation,
2285 * and still leave at least the original number of credits allocated
2286 * to this transaction.
2288 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
2290 struct ocfs2_path
*path
)
2293 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
2295 if (jbd2_handle_buffer_credits(handle
) < credits
)
2296 ret
= ocfs2_extend_trans(handle
,
2297 credits
- jbd2_handle_buffer_credits(handle
));
2303 * Trap the case where we're inserting into the theoretical range past
2304 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2305 * whose cpos is less than ours into the right leaf.
2307 * It's only necessary to look at the rightmost record of the left
2308 * leaf because the logic that calls us should ensure that the
2309 * theoretical ranges in the path components above the leaves are
2312 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
2315 struct ocfs2_extent_list
*left_el
;
2316 struct ocfs2_extent_rec
*rec
;
2319 left_el
= path_leaf_el(left_path
);
2320 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
2321 rec
= &left_el
->l_recs
[next_free
- 1];
2323 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
2328 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
2330 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
2332 struct ocfs2_extent_rec
*rec
;
2337 rec
= &el
->l_recs
[0];
2338 if (ocfs2_is_empty_extent(rec
)) {
2342 rec
= &el
->l_recs
[1];
2345 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2346 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
2352 * Rotate all the records in a btree right one record, starting at insert_cpos.
2354 * The path to the rightmost leaf should be passed in.
2356 * The array is assumed to be large enough to hold an entire path (tree depth).
2358 * Upon successful return from this function:
2360 * - The 'right_path' array will contain a path to the leaf block
2361 * whose range contains e_cpos.
2362 * - That leaf block will have a single empty extent in list index 0.
2363 * - In the case that the rotation requires a post-insert update,
2364 * *ret_left_path will contain a valid path which can be passed to
2365 * ocfs2_insert_path().
2367 static int ocfs2_rotate_tree_right(handle_t
*handle
,
2368 struct ocfs2_extent_tree
*et
,
2369 enum ocfs2_split_type split
,
2371 struct ocfs2_path
*right_path
,
2372 struct ocfs2_path
**ret_left_path
)
2374 int ret
, start
, orig_credits
= jbd2_handle_buffer_credits(handle
);
2376 struct ocfs2_path
*left_path
= NULL
;
2377 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2379 *ret_left_path
= NULL
;
2381 left_path
= ocfs2_new_path_from_path(right_path
);
2388 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2394 trace_ocfs2_rotate_tree_right(
2395 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2399 * What we want to do here is:
2401 * 1) Start with the rightmost path.
2403 * 2) Determine a path to the leaf block directly to the left
2406 * 3) Determine the 'subtree root' - the lowest level tree node
2407 * which contains a path to both leaves.
2409 * 4) Rotate the subtree.
2411 * 5) Find the next subtree by considering the left path to be
2412 * the new right path.
2414 * The check at the top of this while loop also accepts
2415 * insert_cpos == cpos because cpos is only a _theoretical_
2416 * value to get us the left path - insert_cpos might very well
2417 * be filling that hole.
2419 * Stop at a cpos of '0' because we either started at the
2420 * leftmost branch (i.e., a tree with one branch and a
2421 * rotation inside of it), or we've gone as far as we can in
2422 * rotating subtrees.
2424 while (cpos
&& insert_cpos
<= cpos
) {
2425 trace_ocfs2_rotate_tree_right(
2426 (unsigned long long)
2427 ocfs2_metadata_cache_owner(et
->et_ci
),
2430 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
2436 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
2437 path_leaf_bh(right_path
),
2438 "Owner %llu: error during insert of %u "
2439 "(left path cpos %u) results in two identical "
2440 "paths ending at %llu\n",
2441 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2443 (unsigned long long)
2444 path_leaf_bh(left_path
)->b_blocknr
);
2446 if (split
== SPLIT_NONE
&&
2447 ocfs2_rotate_requires_path_adjustment(left_path
,
2451 * We've rotated the tree as much as we
2452 * should. The rest is up to
2453 * ocfs2_insert_path() to complete, after the
2454 * record insertion. We indicate this
2455 * situation by returning the left path.
2457 * The reason we don't adjust the records here
2458 * before the record insert is that an error
2459 * later might break the rule where a parent
2460 * record e_cpos will reflect the actual
2461 * e_cpos of the 1st nonempty record of the
2464 *ret_left_path
= left_path
;
2468 start
= ocfs2_find_subtree_root(et
, left_path
, right_path
);
2470 trace_ocfs2_rotate_subtree(start
,
2471 (unsigned long long)
2472 right_path
->p_node
[start
].bh
->b_blocknr
,
2473 right_path
->p_tree_depth
);
2475 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
2476 orig_credits
, right_path
);
2482 ret
= ocfs2_rotate_subtree_right(handle
, et
, left_path
,
2489 if (split
!= SPLIT_NONE
&&
2490 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
2493 * A rotate moves the rightmost left leaf
2494 * record over to the leftmost right leaf
2495 * slot. If we're doing an extent split
2496 * instead of a real insert, then we have to
2497 * check that the extent to be split wasn't
2498 * just moved over. If it was, then we can
2499 * exit here, passing left_path back -
2500 * ocfs2_split_extent() is smart enough to
2501 * search both leaves.
2503 *ret_left_path
= left_path
;
2508 * There is no need to re-read the next right path
2509 * as we know that it'll be our current left
2510 * path. Optimize by copying values instead.
2512 ocfs2_mv_path(right_path
, left_path
);
2514 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2522 ocfs2_free_path(left_path
);
2528 static int ocfs2_update_edge_lengths(handle_t
*handle
,
2529 struct ocfs2_extent_tree
*et
,
2530 struct ocfs2_path
*path
)
2533 struct ocfs2_extent_rec
*rec
;
2534 struct ocfs2_extent_list
*el
;
2535 struct ocfs2_extent_block
*eb
;
2538 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
2544 /* Path should always be rightmost. */
2545 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2546 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
2549 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
2550 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2551 rec
= &el
->l_recs
[idx
];
2552 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2554 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
2555 el
= path
->p_node
[i
].el
;
2556 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2557 rec
= &el
->l_recs
[idx
];
2559 rec
->e_int_clusters
= cpu_to_le32(range
);
2560 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
2562 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
2568 static void ocfs2_unlink_path(handle_t
*handle
,
2569 struct ocfs2_extent_tree
*et
,
2570 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2571 struct ocfs2_path
*path
, int unlink_start
)
2574 struct ocfs2_extent_block
*eb
;
2575 struct ocfs2_extent_list
*el
;
2576 struct buffer_head
*bh
;
2578 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
2579 bh
= path
->p_node
[i
].bh
;
2581 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2583 * Not all nodes might have had their final count
2584 * decremented by the caller - handle this here.
2587 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2589 "Inode %llu, attempted to remove extent block "
2590 "%llu with %u records\n",
2591 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2592 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2593 le16_to_cpu(el
->l_next_free_rec
));
2595 ocfs2_journal_dirty(handle
, bh
);
2596 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2600 el
->l_next_free_rec
= 0;
2601 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2603 ocfs2_journal_dirty(handle
, bh
);
2605 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2609 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2613 static void ocfs2_unlink_subtree(handle_t
*handle
,
2614 struct ocfs2_extent_tree
*et
,
2615 struct ocfs2_path
*left_path
,
2616 struct ocfs2_path
*right_path
,
2618 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2621 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2622 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2623 struct ocfs2_extent_block
*eb
;
2625 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2627 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2628 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2631 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2633 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2634 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2636 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2637 eb
->h_next_leaf_blk
= 0;
2639 ocfs2_journal_dirty(handle
, root_bh
);
2640 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2642 ocfs2_unlink_path(handle
, et
, dealloc
, right_path
,
2646 static int ocfs2_rotate_subtree_left(handle_t
*handle
,
2647 struct ocfs2_extent_tree
*et
,
2648 struct ocfs2_path
*left_path
,
2649 struct ocfs2_path
*right_path
,
2651 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2654 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2655 struct buffer_head
*root_bh
, *et_root_bh
= path_root_bh(right_path
);
2656 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2657 struct ocfs2_extent_block
*eb
;
2661 right_leaf_el
= path_leaf_el(right_path
);
2662 left_leaf_el
= path_leaf_el(left_path
);
2663 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2664 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2666 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2669 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2670 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2672 * It's legal for us to proceed if the right leaf is
2673 * the rightmost one and it has an empty extent. There
2674 * are two cases to handle - whether the leaf will be
2675 * empty after removal or not. If the leaf isn't empty
2676 * then just remove the empty extent up front. The
2677 * next block will handle empty leaves by flagging
2680 * Non rightmost leaves will throw -EAGAIN and the
2681 * caller can manually move the subtree and retry.
2684 if (eb
->h_next_leaf_blk
!= 0ULL)
2687 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2688 ret
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
2689 path_leaf_bh(right_path
),
2690 OCFS2_JOURNAL_ACCESS_WRITE
);
2696 ocfs2_remove_empty_extent(right_leaf_el
);
2698 right_has_empty
= 1;
2701 if (eb
->h_next_leaf_blk
== 0ULL &&
2702 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2704 * We have to update i_last_eb_blk during the meta
2707 ret
= ocfs2_et_root_journal_access(handle
, et
,
2708 OCFS2_JOURNAL_ACCESS_WRITE
);
2714 del_right_subtree
= 1;
2718 * Getting here with an empty extent in the right path implies
2719 * that it's the rightmost path and will be deleted.
2721 BUG_ON(right_has_empty
&& !del_right_subtree
);
2723 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2730 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2731 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2738 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2746 if (!right_has_empty
) {
2748 * Only do this if we're moving a real
2749 * record. Otherwise, the action is delayed until
2750 * after removal of the right path in which case we
2751 * can do a simple shift to remove the empty extent.
2753 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2754 memset(&right_leaf_el
->l_recs
[0], 0,
2755 sizeof(struct ocfs2_extent_rec
));
2757 if (eb
->h_next_leaf_blk
== 0ULL) {
2759 * Move recs over to get rid of empty extent, decrease
2760 * next_free. This is allowed to remove the last
2761 * extent in our leaf (setting l_next_free_rec to
2762 * zero) - the delete code below won't care.
2764 ocfs2_remove_empty_extent(right_leaf_el
);
2767 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2768 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2770 if (del_right_subtree
) {
2771 ocfs2_unlink_subtree(handle
, et
, left_path
, right_path
,
2772 subtree_index
, dealloc
);
2773 ret
= ocfs2_update_edge_lengths(handle
, et
, left_path
);
2779 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2780 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2783 * Removal of the extent in the left leaf was skipped
2784 * above so we could delete the right path
2787 if (right_has_empty
)
2788 ocfs2_remove_empty_extent(left_leaf_el
);
2790 ocfs2_journal_dirty(handle
, et_root_bh
);
2794 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2802 * Given a full path, determine what cpos value would return us a path
2803 * containing the leaf immediately to the right of the current one.
2805 * Will return zero if the path passed in is already the rightmost path.
2807 * This looks similar, but is subtly different to
2808 * ocfs2_find_cpos_for_left_leaf().
2810 int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2811 struct ocfs2_path
*path
, u32
*cpos
)
2815 struct ocfs2_extent_list
*el
;
2819 if (path
->p_tree_depth
== 0)
2822 blkno
= path_leaf_bh(path
)->b_blocknr
;
2824 /* Start at the tree node just above the leaf and work our way up. */
2825 i
= path
->p_tree_depth
- 1;
2829 el
= path
->p_node
[i
].el
;
2832 * Find the extent record just after the one in our
2835 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2836 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2837 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2838 if (j
== (next_free
- 1)) {
2841 * We've determined that the
2842 * path specified is already
2843 * the rightmost one - return a
2849 * The rightmost record points to our
2850 * leaf - we need to travel up the
2856 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2862 * If we got here, we never found a valid node where
2863 * the tree indicated one should be.
2865 ocfs2_error(sb
, "Invalid extent tree at extent block %llu\n",
2866 (unsigned long long)blkno
);
2871 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2879 static int ocfs2_rotate_rightmost_leaf_left(handle_t
*handle
,
2880 struct ocfs2_extent_tree
*et
,
2881 struct ocfs2_path
*path
)
2884 struct buffer_head
*bh
= path_leaf_bh(path
);
2885 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
2887 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2890 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
2891 path_num_items(path
) - 1);
2897 ocfs2_remove_empty_extent(el
);
2898 ocfs2_journal_dirty(handle
, bh
);
2904 static int __ocfs2_rotate_tree_left(handle_t
*handle
,
2905 struct ocfs2_extent_tree
*et
,
2907 struct ocfs2_path
*path
,
2908 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2909 struct ocfs2_path
**empty_extent_path
)
2911 int ret
, subtree_root
, deleted
;
2913 struct ocfs2_path
*left_path
= NULL
;
2914 struct ocfs2_path
*right_path
= NULL
;
2915 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2917 if (!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])))
2920 *empty_extent_path
= NULL
;
2922 ret
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
2928 left_path
= ocfs2_new_path_from_path(path
);
2935 ocfs2_cp_path(left_path
, path
);
2937 right_path
= ocfs2_new_path_from_path(path
);
2944 while (right_cpos
) {
2945 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
2951 subtree_root
= ocfs2_find_subtree_root(et
, left_path
,
2954 trace_ocfs2_rotate_subtree(subtree_root
,
2955 (unsigned long long)
2956 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2957 right_path
->p_tree_depth
);
2959 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
2960 orig_credits
, left_path
);
2967 * Caller might still want to make changes to the
2968 * tree root, so re-add it to the journal here.
2970 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2977 ret
= ocfs2_rotate_subtree_left(handle
, et
, left_path
,
2978 right_path
, subtree_root
,
2980 if (ret
== -EAGAIN
) {
2982 * The rotation has to temporarily stop due to
2983 * the right subtree having an empty
2984 * extent. Pass it back to the caller for a
2987 *empty_extent_path
= right_path
;
2997 * The subtree rotate might have removed records on
2998 * the rightmost edge. If so, then rotation is
3004 ocfs2_mv_path(left_path
, right_path
);
3006 ret
= ocfs2_find_cpos_for_right_leaf(sb
, left_path
,
3015 ocfs2_free_path(right_path
);
3016 ocfs2_free_path(left_path
);
3021 static int ocfs2_remove_rightmost_path(handle_t
*handle
,
3022 struct ocfs2_extent_tree
*et
,
3023 struct ocfs2_path
*path
,
3024 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3026 int ret
, subtree_index
;
3028 struct ocfs2_path
*left_path
= NULL
;
3029 struct ocfs2_extent_block
*eb
;
3030 struct ocfs2_extent_list
*el
;
3032 ret
= ocfs2_et_sanity_check(et
);
3036 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
3042 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3051 * We have a path to the left of this one - it needs
3054 left_path
= ocfs2_new_path_from_path(path
);
3061 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
3067 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
3073 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
3075 ocfs2_unlink_subtree(handle
, et
, left_path
, path
,
3076 subtree_index
, dealloc
);
3077 ret
= ocfs2_update_edge_lengths(handle
, et
, left_path
);
3083 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
3084 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
3087 * 'path' is also the leftmost path which
3088 * means it must be the only one. This gets
3089 * handled differently because we want to
3090 * revert the root back to having extents
3093 ocfs2_unlink_path(handle
, et
, dealloc
, path
, 1);
3095 el
= et
->et_root_el
;
3096 el
->l_tree_depth
= 0;
3097 el
->l_next_free_rec
= 0;
3098 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3100 ocfs2_et_set_last_eb_blk(et
, 0);
3103 ocfs2_journal_dirty(handle
, path_root_bh(path
));
3106 ocfs2_free_path(left_path
);
3110 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super
*osb
,
3111 struct ocfs2_extent_tree
*et
,
3112 struct ocfs2_path
*path
,
3113 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3117 int credits
= path
->p_tree_depth
* 2 + 1;
3119 handle
= ocfs2_start_trans(osb
, credits
);
3120 if (IS_ERR(handle
)) {
3121 ret
= PTR_ERR(handle
);
3126 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
, dealloc
);
3130 ocfs2_commit_trans(osb
, handle
);
3135 * Left rotation of btree records.
3137 * In many ways, this is (unsurprisingly) the opposite of right
3138 * rotation. We start at some non-rightmost path containing an empty
3139 * extent in the leaf block. The code works its way to the rightmost
3140 * path by rotating records to the left in every subtree.
3142 * This is used by any code which reduces the number of extent records
3143 * in a leaf. After removal, an empty record should be placed in the
3144 * leftmost list position.
3146 * This won't handle a length update of the rightmost path records if
3147 * the rightmost tree leaf record is removed so the caller is
3148 * responsible for detecting and correcting that.
3150 static int ocfs2_rotate_tree_left(handle_t
*handle
,
3151 struct ocfs2_extent_tree
*et
,
3152 struct ocfs2_path
*path
,
3153 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3155 int ret
, orig_credits
= jbd2_handle_buffer_credits(handle
);
3156 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
3157 struct ocfs2_extent_block
*eb
;
3158 struct ocfs2_extent_list
*el
;
3160 el
= path_leaf_el(path
);
3161 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
3164 if (path
->p_tree_depth
== 0) {
3165 rightmost_no_delete
:
3167 * Inline extents. This is trivially handled, so do
3170 ret
= ocfs2_rotate_rightmost_leaf_left(handle
, et
, path
);
3177 * Handle rightmost branch now. There's several cases:
3178 * 1) simple rotation leaving records in there. That's trivial.
3179 * 2) rotation requiring a branch delete - there's no more
3180 * records left. Two cases of this:
3181 * a) There are branches to the left.
3182 * b) This is also the leftmost (the only) branch.
3184 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3185 * 2a) we need the left branch so that we can update it with the unlink
3186 * 2b) we need to bring the root back to inline extents.
3189 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
3191 if (eb
->h_next_leaf_blk
== 0) {
3193 * This gets a bit tricky if we're going to delete the
3194 * rightmost path. Get the other cases out of the way
3197 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
3198 goto rightmost_no_delete
;
3200 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
3201 ret
= ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3202 "Owner %llu has empty extent block at %llu\n",
3203 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
3204 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
3209 * XXX: The caller can not trust "path" any more after
3210 * this as it will have been deleted. What do we do?
3212 * In theory the rotate-for-merge code will never get
3213 * here because it'll always ask for a rotate in a
3217 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
,
3225 * Now we can loop, remembering the path we get from -EAGAIN
3226 * and restarting from there.
3229 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
, path
,
3230 dealloc
, &restart_path
);
3231 if (ret
&& ret
!= -EAGAIN
) {
3236 while (ret
== -EAGAIN
) {
3237 tmp_path
= restart_path
;
3238 restart_path
= NULL
;
3240 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
,
3243 if (ret
&& ret
!= -EAGAIN
) {
3248 ocfs2_free_path(tmp_path
);
3256 ocfs2_free_path(tmp_path
);
3257 ocfs2_free_path(restart_path
);
3261 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
3264 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
3267 if (rec
->e_leaf_clusters
== 0) {
3269 * We consumed all of the merged-from record. An empty
3270 * extent cannot exist anywhere but the 1st array
3271 * position, so move things over if the merged-from
3272 * record doesn't occupy that position.
3274 * This creates a new empty extent so the caller
3275 * should be smart enough to have removed any existing
3279 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3280 size
= index
* sizeof(struct ocfs2_extent_rec
);
3281 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
3285 * Always memset - the caller doesn't check whether it
3286 * created an empty extent, so there could be junk in
3289 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3293 static int ocfs2_get_right_path(struct ocfs2_extent_tree
*et
,
3294 struct ocfs2_path
*left_path
,
3295 struct ocfs2_path
**ret_right_path
)
3299 struct ocfs2_path
*right_path
= NULL
;
3300 struct ocfs2_extent_list
*left_el
;
3302 *ret_right_path
= NULL
;
3304 /* This function shouldn't be called for non-trees. */
3305 BUG_ON(left_path
->p_tree_depth
== 0);
3307 left_el
= path_leaf_el(left_path
);
3308 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
3310 ret
= ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3311 left_path
, &right_cpos
);
3317 /* This function shouldn't be called for the rightmost leaf. */
3318 BUG_ON(right_cpos
== 0);
3320 right_path
= ocfs2_new_path_from_path(left_path
);
3327 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
3333 *ret_right_path
= right_path
;
3336 ocfs2_free_path(right_path
);
3341 * Remove split_rec clusters from the record at index and merge them
3342 * onto the beginning of the record "next" to it.
3343 * For index < l_count - 1, the next means the extent rec at index + 1.
3344 * For index == l_count - 1, the "next" means the 1st extent rec of the
3345 * next extent block.
3347 static int ocfs2_merge_rec_right(struct ocfs2_path
*left_path
,
3349 struct ocfs2_extent_tree
*et
,
3350 struct ocfs2_extent_rec
*split_rec
,
3353 int ret
, next_free
, i
;
3354 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3355 struct ocfs2_extent_rec
*left_rec
;
3356 struct ocfs2_extent_rec
*right_rec
;
3357 struct ocfs2_extent_list
*right_el
;
3358 struct ocfs2_path
*right_path
= NULL
;
3359 int subtree_index
= 0;
3360 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
3361 struct buffer_head
*bh
= path_leaf_bh(left_path
);
3362 struct buffer_head
*root_bh
= NULL
;
3364 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
3365 left_rec
= &el
->l_recs
[index
];
3367 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
3368 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
3369 /* we meet with a cross extent block merge. */
3370 ret
= ocfs2_get_right_path(et
, left_path
, &right_path
);
3376 right_el
= path_leaf_el(right_path
);
3377 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
3378 BUG_ON(next_free
<= 0);
3379 right_rec
= &right_el
->l_recs
[0];
3380 if (ocfs2_is_empty_extent(right_rec
)) {
3381 BUG_ON(next_free
<= 1);
3382 right_rec
= &right_el
->l_recs
[1];
3385 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3386 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3387 le32_to_cpu(right_rec
->e_cpos
));
3389 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3392 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3393 jbd2_handle_buffer_credits(handle
),
3400 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3401 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3403 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3410 for (i
= subtree_index
+ 1;
3411 i
< path_num_items(right_path
); i
++) {
3412 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3419 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3428 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
3429 right_rec
= &el
->l_recs
[index
+ 1];
3432 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, left_path
,
3433 path_num_items(left_path
) - 1);
3439 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
3441 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
3442 le64_add_cpu(&right_rec
->e_blkno
,
3443 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3445 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
3447 ocfs2_cleanup_merge(el
, index
);
3449 ocfs2_journal_dirty(handle
, bh
);
3451 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
3452 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
3456 ocfs2_free_path(right_path
);
3460 static int ocfs2_get_left_path(struct ocfs2_extent_tree
*et
,
3461 struct ocfs2_path
*right_path
,
3462 struct ocfs2_path
**ret_left_path
)
3466 struct ocfs2_path
*left_path
= NULL
;
3468 *ret_left_path
= NULL
;
3470 /* This function shouldn't be called for non-trees. */
3471 BUG_ON(right_path
->p_tree_depth
== 0);
3473 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3474 right_path
, &left_cpos
);
3480 /* This function shouldn't be called for the leftmost leaf. */
3481 BUG_ON(left_cpos
== 0);
3483 left_path
= ocfs2_new_path_from_path(right_path
);
3490 ret
= ocfs2_find_path(et
->et_ci
, left_path
, left_cpos
);
3496 *ret_left_path
= left_path
;
3499 ocfs2_free_path(left_path
);
3504 * Remove split_rec clusters from the record at index and merge them
3505 * onto the tail of the record "before" it.
3506 * For index > 0, the "before" means the extent rec at index - 1.
3508 * For index == 0, the "before" means the last record of the previous
3509 * extent block. And there is also a situation that we may need to
3510 * remove the rightmost leaf extent block in the right_path and change
3511 * the right path to indicate the new rightmost path.
3513 static int ocfs2_merge_rec_left(struct ocfs2_path
*right_path
,
3515 struct ocfs2_extent_tree
*et
,
3516 struct ocfs2_extent_rec
*split_rec
,
3517 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3520 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
3521 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3522 struct ocfs2_extent_rec
*left_rec
;
3523 struct ocfs2_extent_rec
*right_rec
;
3524 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
3525 struct buffer_head
*bh
= path_leaf_bh(right_path
);
3526 struct buffer_head
*root_bh
= NULL
;
3527 struct ocfs2_path
*left_path
= NULL
;
3528 struct ocfs2_extent_list
*left_el
;
3532 right_rec
= &el
->l_recs
[index
];
3534 /* we meet with a cross extent block merge. */
3535 ret
= ocfs2_get_left_path(et
, right_path
, &left_path
);
3541 left_el
= path_leaf_el(left_path
);
3542 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
3543 le16_to_cpu(left_el
->l_count
));
3545 left_rec
= &left_el
->l_recs
[
3546 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
3547 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3548 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3549 le32_to_cpu(split_rec
->e_cpos
));
3551 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3554 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3555 jbd2_handle_buffer_credits(handle
),
3562 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3563 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3565 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3572 for (i
= subtree_index
+ 1;
3573 i
< path_num_items(right_path
); i
++) {
3574 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3581 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3589 left_rec
= &el
->l_recs
[index
- 1];
3590 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3591 has_empty_extent
= 1;
3594 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3595 path_num_items(right_path
) - 1);
3601 if (has_empty_extent
&& index
== 1) {
3603 * The easy case - we can just plop the record right in.
3605 *left_rec
= *split_rec
;
3607 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3609 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3610 le64_add_cpu(&right_rec
->e_blkno
,
3611 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3613 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3615 ocfs2_cleanup_merge(el
, index
);
3617 ocfs2_journal_dirty(handle
, bh
);
3619 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3622 * In the situation that the right_rec is empty and the extent
3623 * block is empty also, ocfs2_complete_edge_insert can't handle
3624 * it and we need to delete the right extent block.
3626 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3627 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3628 /* extend credit for ocfs2_remove_rightmost_path */
3629 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3630 jbd2_handle_buffer_credits(handle
),
3637 ret
= ocfs2_remove_rightmost_path(handle
, et
,
3645 /* Now the rightmost extent block has been deleted.
3646 * So we use the new rightmost path.
3648 ocfs2_mv_path(right_path
, left_path
);
3651 ocfs2_complete_edge_insert(handle
, left_path
,
3652 right_path
, subtree_index
);
3655 ocfs2_free_path(left_path
);
3659 static int ocfs2_try_to_merge_extent(handle_t
*handle
,
3660 struct ocfs2_extent_tree
*et
,
3661 struct ocfs2_path
*path
,
3663 struct ocfs2_extent_rec
*split_rec
,
3664 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3665 struct ocfs2_merge_ctxt
*ctxt
)
3668 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3669 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3671 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3673 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3674 /* extend credit for ocfs2_remove_rightmost_path */
3675 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3676 jbd2_handle_buffer_credits(handle
),
3683 * The merge code will need to create an empty
3684 * extent to take the place of the newly
3685 * emptied slot. Remove any pre-existing empty
3686 * extents - having more than one in a leaf is
3689 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3695 rec
= &el
->l_recs
[split_index
];
3698 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3700 * Left-right contig implies this.
3702 BUG_ON(!ctxt
->c_split_covers_rec
);
3705 * Since the leftright insert always covers the entire
3706 * extent, this call will delete the insert record
3707 * entirely, resulting in an empty extent record added to
3710 * Since the adding of an empty extent shifts
3711 * everything back to the right, there's no need to
3712 * update split_index here.
3714 * When the split_index is zero, we need to merge it to the
3715 * previous extent block. It is more efficient and easier
3716 * if we do merge_right first and merge_left later.
3718 ret
= ocfs2_merge_rec_right(path
, handle
, et
, split_rec
,
3726 * We can only get this from logic error above.
3728 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3730 /* extend credit for ocfs2_remove_rightmost_path */
3731 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3732 jbd2_handle_buffer_credits(handle
),
3739 /* The merge left us with an empty extent, remove it. */
3740 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3746 rec
= &el
->l_recs
[split_index
];
3749 * Note that we don't pass split_rec here on purpose -
3750 * we've merged it into the rec already.
3752 ret
= ocfs2_merge_rec_left(path
, handle
, et
, rec
,
3753 dealloc
, split_index
);
3760 /* extend credit for ocfs2_remove_rightmost_path */
3761 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3762 jbd2_handle_buffer_credits(handle
),
3769 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3771 * Error from this last rotate is not critical, so
3772 * print but don't bubble it up.
3779 * Merge a record to the left or right.
3781 * 'contig_type' is relative to the existing record,
3782 * so for example, if we're "right contig", it's to
3783 * the record on the left (hence the left merge).
3785 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3786 ret
= ocfs2_merge_rec_left(path
, handle
, et
,
3794 ret
= ocfs2_merge_rec_right(path
, handle
,
3803 if (ctxt
->c_split_covers_rec
) {
3804 /* extend credit for ocfs2_remove_rightmost_path */
3805 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3806 jbd2_handle_buffer_credits(handle
),
3815 * The merge may have left an empty extent in
3816 * our leaf. Try to rotate it away.
3818 ret
= ocfs2_rotate_tree_left(handle
, et
, path
,
3830 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3831 enum ocfs2_split_type split
,
3832 struct ocfs2_extent_rec
*rec
,
3833 struct ocfs2_extent_rec
*split_rec
)
3837 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3838 le16_to_cpu(split_rec
->e_leaf_clusters
));
3840 if (split
== SPLIT_LEFT
) {
3842 * Region is on the left edge of the existing
3845 le32_add_cpu(&rec
->e_cpos
,
3846 le16_to_cpu(split_rec
->e_leaf_clusters
));
3847 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3848 le16_add_cpu(&rec
->e_leaf_clusters
,
3849 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3852 * Region is on the right edge of the existing
3855 le16_add_cpu(&rec
->e_leaf_clusters
,
3856 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3861 * Do the final bits of extent record insertion at the target leaf
3862 * list. If this leaf is part of an allocation tree, it is assumed
3863 * that the tree above has been prepared.
3865 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree
*et
,
3866 struct ocfs2_extent_rec
*insert_rec
,
3867 struct ocfs2_extent_list
*el
,
3868 struct ocfs2_insert_type
*insert
)
3870 int i
= insert
->ins_contig_index
;
3872 struct ocfs2_extent_rec
*rec
;
3874 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3876 if (insert
->ins_split
!= SPLIT_NONE
) {
3877 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3879 rec
= &el
->l_recs
[i
];
3880 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
3881 insert
->ins_split
, rec
,
3887 * Contiguous insert - either left or right.
3889 if (insert
->ins_contig
!= CONTIG_NONE
) {
3890 rec
= &el
->l_recs
[i
];
3891 if (insert
->ins_contig
== CONTIG_LEFT
) {
3892 rec
->e_blkno
= insert_rec
->e_blkno
;
3893 rec
->e_cpos
= insert_rec
->e_cpos
;
3895 le16_add_cpu(&rec
->e_leaf_clusters
,
3896 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3901 * Handle insert into an empty leaf.
3903 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3904 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3905 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3906 el
->l_recs
[0] = *insert_rec
;
3907 el
->l_next_free_rec
= cpu_to_le16(1);
3914 if (insert
->ins_appending
== APPEND_TAIL
) {
3915 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3916 rec
= &el
->l_recs
[i
];
3917 range
= le32_to_cpu(rec
->e_cpos
)
3918 + le16_to_cpu(rec
->e_leaf_clusters
);
3919 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3921 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3922 le16_to_cpu(el
->l_count
),
3923 "owner %llu, depth %u, count %u, next free %u, "
3924 "rec.cpos %u, rec.clusters %u, "
3925 "insert.cpos %u, insert.clusters %u\n",
3926 ocfs2_metadata_cache_owner(et
->et_ci
),
3927 le16_to_cpu(el
->l_tree_depth
),
3928 le16_to_cpu(el
->l_count
),
3929 le16_to_cpu(el
->l_next_free_rec
),
3930 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3931 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3932 le32_to_cpu(insert_rec
->e_cpos
),
3933 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3935 el
->l_recs
[i
] = *insert_rec
;
3936 le16_add_cpu(&el
->l_next_free_rec
, 1);
3942 * Ok, we have to rotate.
3944 * At this point, it is safe to assume that inserting into an
3945 * empty leaf and appending to a leaf have both been handled
3948 * This leaf needs to have space, either by the empty 1st
3949 * extent record, or by virtue of an l_next_free_rec < l_count.
3951 ocfs2_rotate_leaf(el
, insert_rec
);
3954 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
3955 struct ocfs2_extent_tree
*et
,
3956 struct ocfs2_path
*path
,
3957 struct ocfs2_extent_rec
*insert_rec
)
3960 struct buffer_head
*bh
;
3961 struct ocfs2_extent_list
*el
;
3962 struct ocfs2_extent_rec
*rec
;
3965 * Update everything except the leaf block.
3967 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3968 bh
= path
->p_node
[i
].bh
;
3969 el
= path
->p_node
[i
].el
;
3971 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3972 if (next_free
== 0) {
3973 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3974 "Owner %llu has a bad extent list\n",
3975 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
3979 rec
= &el
->l_recs
[next_free
- 1];
3981 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3982 le32_add_cpu(&rec
->e_int_clusters
,
3983 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3984 le32_add_cpu(&rec
->e_int_clusters
,
3985 -le32_to_cpu(rec
->e_cpos
));
3987 ocfs2_journal_dirty(handle
, bh
);
3991 static int ocfs2_append_rec_to_path(handle_t
*handle
,
3992 struct ocfs2_extent_tree
*et
,
3993 struct ocfs2_extent_rec
*insert_rec
,
3994 struct ocfs2_path
*right_path
,
3995 struct ocfs2_path
**ret_left_path
)
3998 struct ocfs2_extent_list
*el
;
3999 struct ocfs2_path
*left_path
= NULL
;
4001 *ret_left_path
= NULL
;
4004 * This shouldn't happen for non-trees. The extent rec cluster
4005 * count manipulation below only works for interior nodes.
4007 BUG_ON(right_path
->p_tree_depth
== 0);
4010 * If our appending insert is at the leftmost edge of a leaf,
4011 * then we might need to update the rightmost records of the
4014 el
= path_leaf_el(right_path
);
4015 next_free
= le16_to_cpu(el
->l_next_free_rec
);
4016 if (next_free
== 0 ||
4017 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
4020 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
4021 right_path
, &left_cpos
);
4027 trace_ocfs2_append_rec_to_path(
4028 (unsigned long long)
4029 ocfs2_metadata_cache_owner(et
->et_ci
),
4030 le32_to_cpu(insert_rec
->e_cpos
),
4034 * No need to worry if the append is already in the
4038 left_path
= ocfs2_new_path_from_path(right_path
);
4045 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
4053 * ocfs2_insert_path() will pass the left_path to the
4059 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4065 ocfs2_adjust_rightmost_records(handle
, et
, right_path
, insert_rec
);
4067 *ret_left_path
= left_path
;
4071 ocfs2_free_path(left_path
);
4076 static void ocfs2_split_record(struct ocfs2_extent_tree
*et
,
4077 struct ocfs2_path
*left_path
,
4078 struct ocfs2_path
*right_path
,
4079 struct ocfs2_extent_rec
*split_rec
,
4080 enum ocfs2_split_type split
)
4083 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
4084 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
4085 struct ocfs2_extent_rec
*rec
, *tmprec
;
4087 right_el
= path_leaf_el(right_path
);
4089 left_el
= path_leaf_el(left_path
);
4092 insert_el
= right_el
;
4093 index
= ocfs2_search_extent_list(el
, cpos
);
4095 if (index
== 0 && left_path
) {
4096 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
4099 * This typically means that the record
4100 * started in the left path but moved to the
4101 * right as a result of rotation. We either
4102 * move the existing record to the left, or we
4103 * do the later insert there.
4105 * In this case, the left path should always
4106 * exist as the rotate code will have passed
4107 * it back for a post-insert update.
4110 if (split
== SPLIT_LEFT
) {
4112 * It's a left split. Since we know
4113 * that the rotate code gave us an
4114 * empty extent in the left path, we
4115 * can just do the insert there.
4117 insert_el
= left_el
;
4120 * Right split - we have to move the
4121 * existing record over to the left
4122 * leaf. The insert will be into the
4123 * newly created empty extent in the
4126 tmprec
= &right_el
->l_recs
[index
];
4127 ocfs2_rotate_leaf(left_el
, tmprec
);
4130 memset(tmprec
, 0, sizeof(*tmprec
));
4131 index
= ocfs2_search_extent_list(left_el
, cpos
);
4132 BUG_ON(index
== -1);
4137 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
4139 * Left path is easy - we can just allow the insert to
4143 insert_el
= left_el
;
4144 index
= ocfs2_search_extent_list(el
, cpos
);
4145 BUG_ON(index
== -1);
4148 rec
= &el
->l_recs
[index
];
4149 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4150 split
, rec
, split_rec
);
4151 ocfs2_rotate_leaf(insert_el
, split_rec
);
4155 * This function only does inserts on an allocation b-tree. For tree
4156 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4158 * right_path is the path we want to do the actual insert
4159 * in. left_path should only be passed in if we need to update that
4160 * portion of the tree after an edge insert.
4162 static int ocfs2_insert_path(handle_t
*handle
,
4163 struct ocfs2_extent_tree
*et
,
4164 struct ocfs2_path
*left_path
,
4165 struct ocfs2_path
*right_path
,
4166 struct ocfs2_extent_rec
*insert_rec
,
4167 struct ocfs2_insert_type
*insert
)
4169 int ret
, subtree_index
;
4170 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
4174 * There's a chance that left_path got passed back to
4175 * us without being accounted for in the
4176 * journal. Extend our transaction here to be sure we
4177 * can change those blocks.
4179 ret
= ocfs2_extend_trans(handle
, left_path
->p_tree_depth
);
4185 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
4193 * Pass both paths to the journal. The majority of inserts
4194 * will be touching all components anyway.
4196 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4202 if (insert
->ins_split
!= SPLIT_NONE
) {
4204 * We could call ocfs2_insert_at_leaf() for some types
4205 * of splits, but it's easier to just let one separate
4206 * function sort it all out.
4208 ocfs2_split_record(et
, left_path
, right_path
,
4209 insert_rec
, insert
->ins_split
);
4212 * Split might have modified either leaf and we don't
4213 * have a guarantee that the later edge insert will
4214 * dirty this for us.
4217 ocfs2_journal_dirty(handle
,
4218 path_leaf_bh(left_path
));
4220 ocfs2_insert_at_leaf(et
, insert_rec
, path_leaf_el(right_path
),
4223 ocfs2_journal_dirty(handle
, leaf_bh
);
4227 * The rotate code has indicated that we need to fix
4228 * up portions of the tree after the insert.
4230 * XXX: Should we extend the transaction here?
4232 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
4234 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
4243 static int ocfs2_do_insert_extent(handle_t
*handle
,
4244 struct ocfs2_extent_tree
*et
,
4245 struct ocfs2_extent_rec
*insert_rec
,
4246 struct ocfs2_insert_type
*type
)
4248 int ret
, rotate
= 0;
4250 struct ocfs2_path
*right_path
= NULL
;
4251 struct ocfs2_path
*left_path
= NULL
;
4252 struct ocfs2_extent_list
*el
;
4254 el
= et
->et_root_el
;
4256 ret
= ocfs2_et_root_journal_access(handle
, et
,
4257 OCFS2_JOURNAL_ACCESS_WRITE
);
4263 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
4264 ocfs2_insert_at_leaf(et
, insert_rec
, el
, type
);
4265 goto out_update_clusters
;
4268 right_path
= ocfs2_new_path_from_et(et
);
4276 * Determine the path to start with. Rotations need the
4277 * rightmost path, everything else can go directly to the
4280 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4281 if (type
->ins_appending
== APPEND_NONE
&&
4282 type
->ins_contig
== CONTIG_NONE
) {
4287 ret
= ocfs2_find_path(et
->et_ci
, right_path
, cpos
);
4294 * Rotations and appends need special treatment - they modify
4295 * parts of the tree's above them.
4297 * Both might pass back a path immediate to the left of the
4298 * one being inserted to. This will be cause
4299 * ocfs2_insert_path() to modify the rightmost records of
4300 * left_path to account for an edge insert.
4302 * XXX: When modifying this code, keep in mind that an insert
4303 * can wind up skipping both of these two special cases...
4306 ret
= ocfs2_rotate_tree_right(handle
, et
, type
->ins_split
,
4307 le32_to_cpu(insert_rec
->e_cpos
),
4308 right_path
, &left_path
);
4315 * ocfs2_rotate_tree_right() might have extended the
4316 * transaction without re-journaling our tree root.
4318 ret
= ocfs2_et_root_journal_access(handle
, et
,
4319 OCFS2_JOURNAL_ACCESS_WRITE
);
4324 } else if (type
->ins_appending
== APPEND_TAIL
4325 && type
->ins_contig
!= CONTIG_LEFT
) {
4326 ret
= ocfs2_append_rec_to_path(handle
, et
, insert_rec
,
4327 right_path
, &left_path
);
4334 ret
= ocfs2_insert_path(handle
, et
, left_path
, right_path
,
4341 out_update_clusters
:
4342 if (type
->ins_split
== SPLIT_NONE
)
4343 ocfs2_et_update_clusters(et
,
4344 le16_to_cpu(insert_rec
->e_leaf_clusters
));
4346 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4349 ocfs2_free_path(left_path
);
4350 ocfs2_free_path(right_path
);
4355 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree
*et
,
4356 struct ocfs2_path
*path
,
4357 struct ocfs2_extent_list
*el
, int index
,
4358 struct ocfs2_extent_rec
*split_rec
,
4359 struct ocfs2_merge_ctxt
*ctxt
)
4362 enum ocfs2_contig_type ret
= CONTIG_NONE
;
4363 u32 left_cpos
, right_cpos
;
4364 struct ocfs2_extent_rec
*rec
= NULL
;
4365 struct ocfs2_extent_list
*new_el
;
4366 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
4367 struct buffer_head
*bh
;
4368 struct ocfs2_extent_block
*eb
;
4369 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
4372 rec
= &el
->l_recs
[index
- 1];
4373 } else if (path
->p_tree_depth
> 0) {
4374 status
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
4378 if (left_cpos
!= 0) {
4379 left_path
= ocfs2_new_path_from_path(path
);
4386 status
= ocfs2_find_path(et
->et_ci
, left_path
,
4389 goto free_left_path
;
4391 new_el
= path_leaf_el(left_path
);
4393 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
4394 le16_to_cpu(new_el
->l_count
)) {
4395 bh
= path_leaf_bh(left_path
);
4396 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4397 status
= ocfs2_error(sb
,
4398 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n",
4399 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4400 le16_to_cpu(new_el
->l_next_free_rec
),
4401 le16_to_cpu(new_el
->l_count
));
4402 goto free_left_path
;
4404 rec
= &new_el
->l_recs
[
4405 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
4410 * We're careful to check for an empty extent record here -
4411 * the merge code will know what to do if it sees one.
4414 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
4415 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
4418 ret
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4423 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
4424 rec
= &el
->l_recs
[index
+ 1];
4425 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
4426 path
->p_tree_depth
> 0) {
4427 status
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
4429 goto free_left_path
;
4431 if (right_cpos
== 0)
4432 goto free_left_path
;
4434 right_path
= ocfs2_new_path_from_path(path
);
4438 goto free_left_path
;
4441 status
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
4443 goto free_right_path
;
4445 new_el
= path_leaf_el(right_path
);
4446 rec
= &new_el
->l_recs
[0];
4447 if (ocfs2_is_empty_extent(rec
)) {
4448 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
4449 bh
= path_leaf_bh(right_path
);
4450 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4451 status
= ocfs2_error(sb
,
4452 "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4453 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4454 le16_to_cpu(new_el
->l_next_free_rec
));
4455 goto free_right_path
;
4457 rec
= &new_el
->l_recs
[1];
4462 enum ocfs2_contig_type contig_type
;
4464 contig_type
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4466 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
4467 ret
= CONTIG_LEFTRIGHT
;
4468 else if (ret
== CONTIG_NONE
)
4473 ocfs2_free_path(right_path
);
4475 ocfs2_free_path(left_path
);
4478 ctxt
->c_contig_type
= ret
;
4483 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree
*et
,
4484 struct ocfs2_insert_type
*insert
,
4485 struct ocfs2_extent_list
*el
,
4486 struct ocfs2_extent_rec
*insert_rec
)
4489 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
4491 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4493 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
4494 contig_type
= ocfs2_et_extent_contig(et
, &el
->l_recs
[i
],
4496 if (contig_type
!= CONTIG_NONE
) {
4497 insert
->ins_contig_index
= i
;
4501 insert
->ins_contig
= contig_type
;
4503 if (insert
->ins_contig
!= CONTIG_NONE
) {
4504 struct ocfs2_extent_rec
*rec
=
4505 &el
->l_recs
[insert
->ins_contig_index
];
4506 unsigned int len
= le16_to_cpu(rec
->e_leaf_clusters
) +
4507 le16_to_cpu(insert_rec
->e_leaf_clusters
);
4510 * Caller might want us to limit the size of extents, don't
4511 * calculate contiguousness if we might exceed that limit.
4513 if (et
->et_max_leaf_clusters
&&
4514 (len
> et
->et_max_leaf_clusters
))
4515 insert
->ins_contig
= CONTIG_NONE
;
4520 * This should only be called against the rightmost leaf extent list.
4522 * ocfs2_figure_appending_type() will figure out whether we'll have to
4523 * insert at the tail of the rightmost leaf.
4525 * This should also work against the root extent list for tree's with 0
4526 * depth. If we consider the root extent list to be the rightmost leaf node
4527 * then the logic here makes sense.
4529 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
4530 struct ocfs2_extent_list
*el
,
4531 struct ocfs2_extent_rec
*insert_rec
)
4534 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4535 struct ocfs2_extent_rec
*rec
;
4537 insert
->ins_appending
= APPEND_NONE
;
4539 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4541 if (!el
->l_next_free_rec
)
4542 goto set_tail_append
;
4544 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
4545 /* Were all records empty? */
4546 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
4547 goto set_tail_append
;
4550 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
4551 rec
= &el
->l_recs
[i
];
4554 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
4555 goto set_tail_append
;
4560 insert
->ins_appending
= APPEND_TAIL
;
4564 * Helper function called at the beginning of an insert.
4566 * This computes a few things that are commonly used in the process of
4567 * inserting into the btree:
4568 * - Whether the new extent is contiguous with an existing one.
4569 * - The current tree depth.
4570 * - Whether the insert is an appending one.
4571 * - The total # of free records in the tree.
4573 * All of the information is stored on the ocfs2_insert_type
4576 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree
*et
,
4577 struct buffer_head
**last_eb_bh
,
4578 struct ocfs2_extent_rec
*insert_rec
,
4580 struct ocfs2_insert_type
*insert
)
4583 struct ocfs2_extent_block
*eb
;
4584 struct ocfs2_extent_list
*el
;
4585 struct ocfs2_path
*path
= NULL
;
4586 struct buffer_head
*bh
= NULL
;
4588 insert
->ins_split
= SPLIT_NONE
;
4590 el
= et
->et_root_el
;
4591 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
4593 if (el
->l_tree_depth
) {
4595 * If we have tree depth, we read in the
4596 * rightmost extent block ahead of time as
4597 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4598 * may want it later.
4600 ret
= ocfs2_read_extent_block(et
->et_ci
,
4601 ocfs2_et_get_last_eb_blk(et
),
4607 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4612 * Unless we have a contiguous insert, we'll need to know if
4613 * there is room left in our allocation tree for another
4616 * XXX: This test is simplistic, we can search for empty
4617 * extent records too.
4619 *free_records
= le16_to_cpu(el
->l_count
) -
4620 le16_to_cpu(el
->l_next_free_rec
);
4622 if (!insert
->ins_tree_depth
) {
4623 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4624 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4628 path
= ocfs2_new_path_from_et(et
);
4636 * In the case that we're inserting past what the tree
4637 * currently accounts for, ocfs2_find_path() will return for
4638 * us the rightmost tree path. This is accounted for below in
4639 * the appending code.
4641 ret
= ocfs2_find_path(et
->et_ci
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4647 el
= path_leaf_el(path
);
4650 * Now that we have the path, there's two things we want to determine:
4651 * 1) Contiguousness (also set contig_index if this is so)
4653 * 2) Are we doing an append? We can trivially break this up
4654 * into two types of appends: simple record append, or a
4655 * rotate inside the tail leaf.
4657 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4660 * The insert code isn't quite ready to deal with all cases of
4661 * left contiguousness. Specifically, if it's an insert into
4662 * the 1st record in a leaf, it will require the adjustment of
4663 * cluster count on the last record of the path directly to it's
4664 * left. For now, just catch that case and fool the layers
4665 * above us. This works just fine for tree_depth == 0, which
4666 * is why we allow that above.
4668 if (insert
->ins_contig
== CONTIG_LEFT
&&
4669 insert
->ins_contig_index
== 0)
4670 insert
->ins_contig
= CONTIG_NONE
;
4673 * Ok, so we can simply compare against last_eb to figure out
4674 * whether the path doesn't exist. This will only happen in
4675 * the case that we're doing a tail append, so maybe we can
4676 * take advantage of that information somehow.
4678 if (ocfs2_et_get_last_eb_blk(et
) ==
4679 path_leaf_bh(path
)->b_blocknr
) {
4681 * Ok, ocfs2_find_path() returned us the rightmost
4682 * tree path. This might be an appending insert. There are
4684 * 1) We're doing a true append at the tail:
4685 * -This might even be off the end of the leaf
4686 * 2) We're "appending" by rotating in the tail
4688 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4692 ocfs2_free_path(path
);
4702 * Insert an extent into a btree.
4704 * The caller needs to update the owning btree's cluster count.
4706 int ocfs2_insert_extent(handle_t
*handle
,
4707 struct ocfs2_extent_tree
*et
,
4712 struct ocfs2_alloc_context
*meta_ac
)
4716 struct buffer_head
*last_eb_bh
= NULL
;
4717 struct ocfs2_insert_type insert
= {0, };
4718 struct ocfs2_extent_rec rec
;
4720 trace_ocfs2_insert_extent_start(
4721 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4722 cpos
, new_clusters
);
4724 memset(&rec
, 0, sizeof(rec
));
4725 rec
.e_cpos
= cpu_to_le32(cpos
);
4726 rec
.e_blkno
= cpu_to_le64(start_blk
);
4727 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4728 rec
.e_flags
= flags
;
4729 status
= ocfs2_et_insert_check(et
, &rec
);
4735 status
= ocfs2_figure_insert_type(et
, &last_eb_bh
, &rec
,
4736 &free_records
, &insert
);
4742 trace_ocfs2_insert_extent(insert
.ins_appending
, insert
.ins_contig
,
4743 insert
.ins_contig_index
, free_records
,
4744 insert
.ins_tree_depth
);
4746 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4747 status
= ocfs2_grow_tree(handle
, et
,
4748 &insert
.ins_tree_depth
, &last_eb_bh
,
4756 /* Finally, we can add clusters. This might rotate the tree for us. */
4757 status
= ocfs2_do_insert_extent(handle
, et
, &rec
, &insert
);
4761 ocfs2_et_extent_map_insert(et
, &rec
);
4770 * Allocate and add clusters into the extent b-tree.
4771 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4772 * The extent b-tree's root is specified by et, and
4773 * it is not limited to the file storage. Any extent tree can use this
4774 * function if it implements the proper ocfs2_extent_tree.
4776 int ocfs2_add_clusters_in_btree(handle_t
*handle
,
4777 struct ocfs2_extent_tree
*et
,
4778 u32
*logical_offset
,
4779 u32 clusters_to_add
,
4781 struct ocfs2_alloc_context
*data_ac
,
4782 struct ocfs2_alloc_context
*meta_ac
,
4783 enum ocfs2_alloc_restarted
*reason_ret
)
4785 int status
= 0, err
= 0;
4788 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
4789 u32 bit_off
, num_bits
;
4792 struct ocfs2_super
*osb
=
4793 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
4795 BUG_ON(!clusters_to_add
);
4798 flags
= OCFS2_EXT_UNWRITTEN
;
4800 free_extents
= ocfs2_num_free_extents(et
);
4801 if (free_extents
< 0) {
4802 status
= free_extents
;
4807 /* there are two cases which could cause us to EAGAIN in the
4808 * we-need-more-metadata case:
4809 * 1) we haven't reserved *any*
4810 * 2) we are so fragmented, we've needed to add metadata too
4812 if (!free_extents
&& !meta_ac
) {
4815 reason
= RESTART_META
;
4817 } else if ((!free_extents
)
4818 && (ocfs2_alloc_context_bits_left(meta_ac
)
4819 < ocfs2_extend_meta_needed(et
->et_root_el
))) {
4822 reason
= RESTART_META
;
4826 status
= __ocfs2_claim_clusters(handle
, data_ac
, 1,
4827 clusters_to_add
, &bit_off
, &num_bits
);
4829 if (status
!= -ENOSPC
)
4834 BUG_ON(num_bits
> clusters_to_add
);
4836 /* reserve our write early -- insert_extent may update the tree root */
4837 status
= ocfs2_et_root_journal_access(handle
, et
,
4838 OCFS2_JOURNAL_ACCESS_WRITE
);
4845 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
4846 trace_ocfs2_add_clusters_in_btree(
4847 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4849 status
= ocfs2_insert_extent(handle
, et
, *logical_offset
, block
,
4850 num_bits
, flags
, meta_ac
);
4857 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4859 clusters_to_add
-= num_bits
;
4860 *logical_offset
+= num_bits
;
4862 if (clusters_to_add
) {
4863 err
= clusters_to_add
;
4865 reason
= RESTART_TRANS
;
4870 if (data_ac
->ac_which
== OCFS2_AC_USE_LOCAL
)
4871 ocfs2_free_local_alloc_bits(osb
, handle
, data_ac
,
4874 ocfs2_free_clusters(handle
,
4877 ocfs2_clusters_to_blocks(osb
->sb
, bit_off
),
4883 *reason_ret
= reason
;
4884 trace_ocfs2_add_clusters_in_btree_ret(status
, reason
, err
);
4888 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4889 struct ocfs2_extent_rec
*split_rec
,
4891 struct ocfs2_extent_rec
*rec
)
4893 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4894 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4896 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4898 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4899 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4901 split_rec
->e_blkno
= rec
->e_blkno
;
4902 le64_add_cpu(&split_rec
->e_blkno
,
4903 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4905 split_rec
->e_flags
= rec
->e_flags
;
4908 static int ocfs2_split_and_insert(handle_t
*handle
,
4909 struct ocfs2_extent_tree
*et
,
4910 struct ocfs2_path
*path
,
4911 struct buffer_head
**last_eb_bh
,
4913 struct ocfs2_extent_rec
*orig_split_rec
,
4914 struct ocfs2_alloc_context
*meta_ac
)
4917 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4918 struct ocfs2_extent_rec tmprec
;
4919 struct ocfs2_extent_list
*rightmost_el
;
4920 struct ocfs2_extent_rec rec
;
4921 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4922 struct ocfs2_insert_type insert
;
4923 struct ocfs2_extent_block
*eb
;
4927 * Store a copy of the record on the stack - it might move
4928 * around as the tree is manipulated below.
4930 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4932 rightmost_el
= et
->et_root_el
;
4934 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4936 BUG_ON(!(*last_eb_bh
));
4937 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4938 rightmost_el
= &eb
->h_list
;
4941 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4942 le16_to_cpu(rightmost_el
->l_count
)) {
4943 ret
= ocfs2_grow_tree(handle
, et
,
4944 &depth
, last_eb_bh
, meta_ac
);
4951 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4952 insert
.ins_appending
= APPEND_NONE
;
4953 insert
.ins_contig
= CONTIG_NONE
;
4954 insert
.ins_tree_depth
= depth
;
4956 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4957 le16_to_cpu(split_rec
.e_leaf_clusters
);
4958 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4959 le16_to_cpu(rec
.e_leaf_clusters
);
4961 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4962 insert
.ins_split
= SPLIT_LEFT
;
4963 } else if (insert_range
== rec_range
) {
4964 insert
.ins_split
= SPLIT_RIGHT
;
4967 * Left/right split. We fake this as a right split
4968 * first and then make a second pass as a left split.
4970 insert
.ins_split
= SPLIT_RIGHT
;
4972 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4973 &tmprec
, insert_range
, &rec
);
4977 BUG_ON(do_leftright
);
4981 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
4987 if (do_leftright
== 1) {
4989 struct ocfs2_extent_list
*el
;
4992 split_rec
= *orig_split_rec
;
4994 ocfs2_reinit_path(path
, 1);
4996 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4997 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5003 el
= path_leaf_el(path
);
5004 split_index
= ocfs2_search_extent_list(el
, cpos
);
5005 if (split_index
== -1) {
5006 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5007 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5008 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5020 static int ocfs2_replace_extent_rec(handle_t
*handle
,
5021 struct ocfs2_extent_tree
*et
,
5022 struct ocfs2_path
*path
,
5023 struct ocfs2_extent_list
*el
,
5025 struct ocfs2_extent_rec
*split_rec
)
5029 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
5030 path_num_items(path
) - 1);
5036 el
->l_recs
[split_index
] = *split_rec
;
5038 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5044 * Split part or all of the extent record at split_index in the leaf
5045 * pointed to by path. Merge with the contiguous extent record if needed.
5047 * Care is taken to handle contiguousness so as to not grow the tree.
5049 * meta_ac is not strictly necessary - we only truly need it if growth
5050 * of the tree is required. All other cases will degrade into a less
5051 * optimal tree layout.
5053 * last_eb_bh should be the rightmost leaf block for any extent
5054 * btree. Since a split may grow the tree or a merge might shrink it,
5055 * the caller cannot trust the contents of that buffer after this call.
5057 * This code is optimized for readability - several passes might be
5058 * made over certain portions of the tree. All of those blocks will
5059 * have been brought into cache (and pinned via the journal), so the
5060 * extra overhead is not expressed in terms of disk reads.
5062 int ocfs2_split_extent(handle_t
*handle
,
5063 struct ocfs2_extent_tree
*et
,
5064 struct ocfs2_path
*path
,
5066 struct ocfs2_extent_rec
*split_rec
,
5067 struct ocfs2_alloc_context
*meta_ac
,
5068 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5071 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5072 struct buffer_head
*last_eb_bh
= NULL
;
5073 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
5074 struct ocfs2_merge_ctxt ctxt
;
5076 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
5077 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
5078 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
5084 ret
= ocfs2_figure_merge_contig_type(et
, path
, el
,
5094 * The core merge / split code wants to know how much room is
5095 * left in this allocation tree, so we pass the
5096 * rightmost extent list.
5098 if (path
->p_tree_depth
) {
5099 ret
= ocfs2_read_extent_block(et
->et_ci
,
5100 ocfs2_et_get_last_eb_blk(et
),
5108 if (rec
->e_cpos
== split_rec
->e_cpos
&&
5109 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
5110 ctxt
.c_split_covers_rec
= 1;
5112 ctxt
.c_split_covers_rec
= 0;
5114 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
5116 trace_ocfs2_split_extent(split_index
, ctxt
.c_contig_type
,
5117 ctxt
.c_has_empty_extent
,
5118 ctxt
.c_split_covers_rec
);
5120 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
5121 if (ctxt
.c_split_covers_rec
)
5122 ret
= ocfs2_replace_extent_rec(handle
, et
, path
, el
,
5123 split_index
, split_rec
);
5125 ret
= ocfs2_split_and_insert(handle
, et
, path
,
5126 &last_eb_bh
, split_index
,
5127 split_rec
, meta_ac
);
5131 ret
= ocfs2_try_to_merge_extent(handle
, et
, path
,
5132 split_index
, split_rec
,
5144 * Change the flags of the already-existing extent at cpos for len clusters.
5146 * new_flags: the flags we want to set.
5147 * clear_flags: the flags we want to clear.
5148 * phys: the new physical offset we want this new extent starts from.
5150 * If the existing extent is larger than the request, initiate a
5151 * split. An attempt will be made at merging with adjacent extents.
5153 * The caller is responsible for passing down meta_ac if we'll need it.
5155 int ocfs2_change_extent_flag(handle_t
*handle
,
5156 struct ocfs2_extent_tree
*et
,
5157 u32 cpos
, u32 len
, u32 phys
,
5158 struct ocfs2_alloc_context
*meta_ac
,
5159 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5160 int new_flags
, int clear_flags
)
5163 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5164 u64 start_blkno
= ocfs2_clusters_to_blocks(sb
, phys
);
5165 struct ocfs2_extent_rec split_rec
;
5166 struct ocfs2_path
*left_path
= NULL
;
5167 struct ocfs2_extent_list
*el
;
5168 struct ocfs2_extent_rec
*rec
;
5170 left_path
= ocfs2_new_path_from_et(et
);
5177 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
5182 el
= path_leaf_el(left_path
);
5184 index
= ocfs2_search_extent_list(el
, cpos
);
5187 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5188 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5195 rec
= &el
->l_recs
[index
];
5196 if (new_flags
&& (rec
->e_flags
& new_flags
)) {
5197 mlog(ML_ERROR
, "Owner %llu tried to set %d flags on an "
5198 "extent that already had them\n",
5199 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5204 if (clear_flags
&& !(rec
->e_flags
& clear_flags
)) {
5205 mlog(ML_ERROR
, "Owner %llu tried to clear %d flags on an "
5206 "extent that didn't have them\n",
5207 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5212 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
5213 split_rec
.e_cpos
= cpu_to_le32(cpos
);
5214 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
5215 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
5216 split_rec
.e_flags
= rec
->e_flags
;
5218 split_rec
.e_flags
|= new_flags
;
5220 split_rec
.e_flags
&= ~clear_flags
;
5222 ret
= ocfs2_split_extent(handle
, et
, left_path
,
5223 index
, &split_rec
, meta_ac
,
5229 ocfs2_free_path(left_path
);
5235 * Mark the already-existing extent at cpos as written for len clusters.
5236 * This removes the unwritten extent flag.
5238 * If the existing extent is larger than the request, initiate a
5239 * split. An attempt will be made at merging with adjacent extents.
5241 * The caller is responsible for passing down meta_ac if we'll need it.
5243 int ocfs2_mark_extent_written(struct inode
*inode
,
5244 struct ocfs2_extent_tree
*et
,
5245 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
5246 struct ocfs2_alloc_context
*meta_ac
,
5247 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5251 trace_ocfs2_mark_extent_written(
5252 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5255 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
5256 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5257 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
5263 * XXX: This should be fixed up so that we just re-insert the
5264 * next extent records.
5266 ocfs2_et_extent_map_truncate(et
, 0);
5268 ret
= ocfs2_change_extent_flag(handle
, et
, cpos
,
5269 len
, phys
, meta_ac
, dealloc
,
5270 0, OCFS2_EXT_UNWRITTEN
);
5278 static int ocfs2_split_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
5279 struct ocfs2_path
*path
,
5280 int index
, u32 new_range
,
5281 struct ocfs2_alloc_context
*meta_ac
)
5283 int ret
, depth
, credits
;
5284 struct buffer_head
*last_eb_bh
= NULL
;
5285 struct ocfs2_extent_block
*eb
;
5286 struct ocfs2_extent_list
*rightmost_el
, *el
;
5287 struct ocfs2_extent_rec split_rec
;
5288 struct ocfs2_extent_rec
*rec
;
5289 struct ocfs2_insert_type insert
;
5292 * Setup the record to split before we grow the tree.
5294 el
= path_leaf_el(path
);
5295 rec
= &el
->l_recs
[index
];
5296 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
5297 &split_rec
, new_range
, rec
);
5299 depth
= path
->p_tree_depth
;
5301 ret
= ocfs2_read_extent_block(et
->et_ci
,
5302 ocfs2_et_get_last_eb_blk(et
),
5309 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5310 rightmost_el
= &eb
->h_list
;
5312 rightmost_el
= path_leaf_el(path
);
5314 credits
= path
->p_tree_depth
+
5315 ocfs2_extend_meta_needed(et
->et_root_el
);
5316 ret
= ocfs2_extend_trans(handle
, credits
);
5322 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
5323 le16_to_cpu(rightmost_el
->l_count
)) {
5324 ret
= ocfs2_grow_tree(handle
, et
, &depth
, &last_eb_bh
,
5332 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
5333 insert
.ins_appending
= APPEND_NONE
;
5334 insert
.ins_contig
= CONTIG_NONE
;
5335 insert
.ins_split
= SPLIT_RIGHT
;
5336 insert
.ins_tree_depth
= depth
;
5338 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
5347 static int ocfs2_truncate_rec(handle_t
*handle
,
5348 struct ocfs2_extent_tree
*et
,
5349 struct ocfs2_path
*path
, int index
,
5350 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5354 u32 left_cpos
, rec_range
, trunc_range
;
5355 int is_rightmost_tree_rec
= 0;
5356 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5357 struct ocfs2_path
*left_path
= NULL
;
5358 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5359 struct ocfs2_extent_rec
*rec
;
5360 struct ocfs2_extent_block
*eb
;
5362 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
5363 /* extend credit for ocfs2_remove_rightmost_path */
5364 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5365 jbd2_handle_buffer_credits(handle
),
5372 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5381 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
5382 path
->p_tree_depth
) {
5384 * Check whether this is the rightmost tree record. If
5385 * we remove all of this record or part of its right
5386 * edge then an update of the record lengths above it
5389 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
5390 if (eb
->h_next_leaf_blk
== 0)
5391 is_rightmost_tree_rec
= 1;
5394 rec
= &el
->l_recs
[index
];
5395 if (index
== 0 && path
->p_tree_depth
&&
5396 le32_to_cpu(rec
->e_cpos
) == cpos
) {
5398 * Changing the leftmost offset (via partial or whole
5399 * record truncate) of an interior (or rightmost) path
5400 * means we have to update the subtree that is formed
5401 * by this leaf and the one to it's left.
5403 * There are two cases we can skip:
5404 * 1) Path is the leftmost one in our btree.
5405 * 2) The leaf is rightmost and will be empty after
5406 * we remove the extent record - the rotate code
5407 * knows how to update the newly formed edge.
5410 ret
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
5416 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
5417 left_path
= ocfs2_new_path_from_path(path
);
5424 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
5433 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5434 jbd2_handle_buffer_credits(handle
),
5441 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
5447 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
5453 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5454 trunc_range
= cpos
+ len
;
5456 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
5459 memset(rec
, 0, sizeof(*rec
));
5460 ocfs2_cleanup_merge(el
, index
);
5462 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5463 if (is_rightmost_tree_rec
&& next_free
> 1) {
5465 * We skip the edge update if this path will
5466 * be deleted by the rotate code.
5468 rec
= &el
->l_recs
[next_free
- 1];
5469 ocfs2_adjust_rightmost_records(handle
, et
, path
,
5472 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
5473 /* Remove leftmost portion of the record. */
5474 le32_add_cpu(&rec
->e_cpos
, len
);
5475 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
5476 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5477 } else if (rec_range
== trunc_range
) {
5478 /* Remove rightmost portion of the record */
5479 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5480 if (is_rightmost_tree_rec
)
5481 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
5483 /* Caller should have trapped this. */
5484 mlog(ML_ERROR
, "Owner %llu: Invalid record truncate: (%u, %u) "
5486 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5487 le32_to_cpu(rec
->e_cpos
),
5488 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
5495 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
5496 ocfs2_complete_edge_insert(handle
, left_path
, path
,
5500 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5502 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5507 ocfs2_free_path(left_path
);
5511 int ocfs2_remove_extent(handle_t
*handle
,
5512 struct ocfs2_extent_tree
*et
,
5514 struct ocfs2_alloc_context
*meta_ac
,
5515 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5518 u32 rec_range
, trunc_range
;
5519 struct ocfs2_extent_rec
*rec
;
5520 struct ocfs2_extent_list
*el
;
5521 struct ocfs2_path
*path
= NULL
;
5524 * XXX: Why are we truncating to 0 instead of wherever this
5527 ocfs2_et_extent_map_truncate(et
, 0);
5529 path
= ocfs2_new_path_from_et(et
);
5536 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5542 el
= path_leaf_el(path
);
5543 index
= ocfs2_search_extent_list(el
, cpos
);
5545 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5546 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5547 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5554 * We have 3 cases of extent removal:
5555 * 1) Range covers the entire extent rec
5556 * 2) Range begins or ends on one edge of the extent rec
5557 * 3) Range is in the middle of the extent rec (no shared edges)
5559 * For case 1 we remove the extent rec and left rotate to
5562 * For case 2 we just shrink the existing extent rec, with a
5563 * tree update if the shrinking edge is also the edge of an
5566 * For case 3 we do a right split to turn the extent rec into
5567 * something case 2 can handle.
5569 rec
= &el
->l_recs
[index
];
5570 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5571 trunc_range
= cpos
+ len
;
5573 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
5575 trace_ocfs2_remove_extent(
5576 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5577 cpos
, len
, index
, le32_to_cpu(rec
->e_cpos
),
5578 ocfs2_rec_clusters(el
, rec
));
5580 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
5581 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5588 ret
= ocfs2_split_tree(handle
, et
, path
, index
,
5589 trunc_range
, meta_ac
);
5596 * The split could have manipulated the tree enough to
5597 * move the record location, so we have to look for it again.
5599 ocfs2_reinit_path(path
, 1);
5601 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5607 el
= path_leaf_el(path
);
5608 index
= ocfs2_search_extent_list(el
, cpos
);
5610 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5611 "Owner %llu: split at cpos %u lost record\n",
5612 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5619 * Double check our values here. If anything is fishy,
5620 * it's easier to catch it at the top level.
5622 rec
= &el
->l_recs
[index
];
5623 rec_range
= le32_to_cpu(rec
->e_cpos
) +
5624 ocfs2_rec_clusters(el
, rec
);
5625 if (rec_range
!= trunc_range
) {
5626 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5627 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5628 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5629 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
5630 ocfs2_rec_clusters(el
, rec
));
5635 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5642 ocfs2_free_path(path
);
5647 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5648 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5649 * number to reserve some extra blocks, and it only handles meta
5652 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5653 * and punching holes.
5655 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode
*inode
,
5656 struct ocfs2_extent_tree
*et
,
5657 u32 extents_to_split
,
5658 struct ocfs2_alloc_context
**ac
,
5661 int ret
= 0, num_free_extents
;
5662 unsigned int max_recs_needed
= 2 * extents_to_split
;
5663 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5667 num_free_extents
= ocfs2_num_free_extents(et
);
5668 if (num_free_extents
< 0) {
5669 ret
= num_free_extents
;
5674 if (!num_free_extents
||
5675 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
))
5676 extra_blocks
+= ocfs2_extend_meta_needed(et
->et_root_el
);
5679 ret
= ocfs2_reserve_new_metadata_blocks(osb
, extra_blocks
, ac
);
5689 ocfs2_free_alloc_context(*ac
);
5697 int ocfs2_remove_btree_range(struct inode
*inode
,
5698 struct ocfs2_extent_tree
*et
,
5699 u32 cpos
, u32 phys_cpos
, u32 len
, int flags
,
5700 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5701 u64 refcount_loc
, bool refcount_tree_locked
)
5703 int ret
, credits
= 0, extra_blocks
= 0;
5704 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
5705 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5706 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5708 struct ocfs2_alloc_context
*meta_ac
= NULL
;
5709 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
5711 if ((flags
& OCFS2_EXT_REFCOUNTED
) && len
) {
5712 BUG_ON(!ocfs2_is_refcount_inode(inode
));
5714 if (!refcount_tree_locked
) {
5715 ret
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
5723 ret
= ocfs2_prepare_refcount_change_for_del(inode
,
5735 ret
= ocfs2_reserve_blocks_for_rec_trunc(inode
, et
, 1, &meta_ac
,
5742 inode_lock(tl_inode
);
5744 if (ocfs2_truncate_log_needs_flush(osb
)) {
5745 ret
= __ocfs2_flush_truncate_log(osb
);
5752 handle
= ocfs2_start_trans(osb
,
5753 ocfs2_remove_extent_credits(osb
->sb
) + credits
);
5754 if (IS_ERR(handle
)) {
5755 ret
= PTR_ERR(handle
);
5760 ret
= ocfs2_et_root_journal_access(handle
, et
,
5761 OCFS2_JOURNAL_ACCESS_WRITE
);
5767 dquot_free_space_nodirty(inode
,
5768 ocfs2_clusters_to_bytes(inode
->i_sb
, len
));
5770 ret
= ocfs2_remove_extent(handle
, et
, cpos
, len
, meta_ac
, dealloc
);
5776 ocfs2_et_update_clusters(et
, -len
);
5777 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
5779 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
5782 if (flags
& OCFS2_EXT_REFCOUNTED
)
5783 ret
= ocfs2_decrease_refcount(inode
, handle
,
5784 ocfs2_blocks_to_clusters(osb
->sb
,
5789 ret
= ocfs2_truncate_log_append(osb
, handle
,
5797 ocfs2_commit_trans(osb
, handle
);
5799 inode_unlock(tl_inode
);
5802 ocfs2_free_alloc_context(meta_ac
);
5805 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
5810 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
5812 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5813 struct ocfs2_dinode
*di
;
5814 struct ocfs2_truncate_log
*tl
;
5816 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5817 tl
= &di
->id2
.i_dealloc
;
5819 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
5820 "slot %d, invalid truncate log parameters: used = "
5821 "%u, count = %u\n", osb
->slot_num
,
5822 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
5823 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
5826 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
5827 unsigned int new_start
)
5829 unsigned int tail_index
;
5830 unsigned int current_tail
;
5832 /* No records, nothing to coalesce */
5833 if (!le16_to_cpu(tl
->tl_used
))
5836 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
5837 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
5838 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
5840 return current_tail
== new_start
;
5843 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
5846 unsigned int num_clusters
)
5849 unsigned int start_cluster
, tl_count
;
5850 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5851 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5852 struct ocfs2_dinode
*di
;
5853 struct ocfs2_truncate_log
*tl
;
5855 BUG_ON(inode_trylock(tl_inode
));
5857 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
5859 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5861 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5862 * by the underlying call to ocfs2_read_inode_block(), so any
5863 * corruption is a code bug */
5864 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5866 tl
= &di
->id2
.i_dealloc
;
5867 tl_count
= le16_to_cpu(tl
->tl_count
);
5868 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
5870 "Truncate record count on #%llu invalid "
5871 "wanted %u, actual %u\n",
5872 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5873 ocfs2_truncate_recs_per_inode(osb
->sb
),
5874 le16_to_cpu(tl
->tl_count
));
5876 /* Caller should have known to flush before calling us. */
5877 index
= le16_to_cpu(tl
->tl_used
);
5878 if (index
>= tl_count
) {
5884 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5885 OCFS2_JOURNAL_ACCESS_WRITE
);
5891 trace_ocfs2_truncate_log_append(
5892 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
,
5893 start_cluster
, num_clusters
);
5894 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
5896 * Move index back to the record we are coalescing with.
5897 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5901 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
5902 trace_ocfs2_truncate_log_append(
5903 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5904 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
5907 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
5908 tl
->tl_used
= cpu_to_le16(index
+ 1);
5910 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
5912 ocfs2_journal_dirty(handle
, tl_bh
);
5914 osb
->truncated_clusters
+= num_clusters
;
5919 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
5920 struct inode
*data_alloc_inode
,
5921 struct buffer_head
*data_alloc_bh
)
5925 unsigned int num_clusters
;
5927 struct ocfs2_truncate_rec rec
;
5928 struct ocfs2_dinode
*di
;
5929 struct ocfs2_truncate_log
*tl
;
5930 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5931 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5934 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5935 tl
= &di
->id2
.i_dealloc
;
5936 i
= le16_to_cpu(tl
->tl_used
) - 1;
5938 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5939 if (IS_ERR(handle
)) {
5940 status
= PTR_ERR(handle
);
5945 /* Caller has given us at least enough credits to
5946 * update the truncate log dinode */
5947 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5948 OCFS2_JOURNAL_ACCESS_WRITE
);
5950 ocfs2_commit_trans(osb
, handle
);
5955 tl
->tl_used
= cpu_to_le16(i
);
5957 ocfs2_journal_dirty(handle
, tl_bh
);
5959 rec
= tl
->tl_recs
[i
];
5960 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5961 le32_to_cpu(rec
.t_start
));
5962 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5964 /* if start_blk is not set, we ignore the record as
5967 trace_ocfs2_replay_truncate_records(
5968 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5969 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5971 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5972 data_alloc_bh
, start_blk
,
5975 ocfs2_commit_trans(osb
, handle
);
5981 ocfs2_commit_trans(osb
, handle
);
5985 osb
->truncated_clusters
= 0;
5991 /* Expects you to already be holding tl_inode->i_rwsem */
5992 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5995 unsigned int num_to_flush
;
5996 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5997 struct inode
*data_alloc_inode
= NULL
;
5998 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5999 struct buffer_head
*data_alloc_bh
= NULL
;
6000 struct ocfs2_dinode
*di
;
6001 struct ocfs2_truncate_log
*tl
;
6002 struct ocfs2_journal
*journal
= osb
->journal
;
6004 BUG_ON(inode_trylock(tl_inode
));
6006 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6008 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
6009 * by the underlying call to ocfs2_read_inode_block(), so any
6010 * corruption is a code bug */
6011 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6013 tl
= &di
->id2
.i_dealloc
;
6014 num_to_flush
= le16_to_cpu(tl
->tl_used
);
6015 trace_ocfs2_flush_truncate_log(
6016 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
6018 if (!num_to_flush
) {
6023 /* Appending truncate log(TA) and flushing truncate log(TF) are
6024 * two separated transactions. They can be both committed but not
6025 * checkpointed. If crash occurs then, both two transaction will be
6026 * replayed with several already released to global bitmap clusters.
6027 * Then truncate log will be replayed resulting in cluster double free.
6029 jbd2_journal_lock_updates(journal
->j_journal
);
6030 status
= jbd2_journal_flush(journal
->j_journal
, 0);
6031 jbd2_journal_unlock_updates(journal
->j_journal
);
6037 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
6038 GLOBAL_BITMAP_SYSTEM_INODE
,
6039 OCFS2_INVALID_SLOT
);
6040 if (!data_alloc_inode
) {
6042 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
6046 inode_lock(data_alloc_inode
);
6048 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
6054 status
= ocfs2_replay_truncate_records(osb
, data_alloc_inode
,
6059 brelse(data_alloc_bh
);
6060 ocfs2_inode_unlock(data_alloc_inode
, 1);
6063 inode_unlock(data_alloc_inode
);
6064 iput(data_alloc_inode
);
6070 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
6073 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6075 inode_lock(tl_inode
);
6076 status
= __ocfs2_flush_truncate_log(osb
);
6077 inode_unlock(tl_inode
);
6082 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
6085 struct ocfs2_super
*osb
=
6086 container_of(work
, struct ocfs2_super
,
6087 osb_truncate_log_wq
.work
);
6089 status
= ocfs2_flush_truncate_log(osb
);
6093 ocfs2_init_steal_slots(osb
);
6096 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6097 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
6100 if (osb
->osb_tl_inode
&&
6101 atomic_read(&osb
->osb_tl_disable
) == 0) {
6102 /* We want to push off log flushes while truncates are
6105 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6107 queue_delayed_work(osb
->ocfs2_wq
, &osb
->osb_truncate_log_wq
,
6108 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
6113 * Try to flush truncate logs if we can free enough clusters from it.
6114 * As for return value, "< 0" means error, "0" no space and "1" means
6115 * we have freed enough spaces and let the caller try to allocate again.
6117 int ocfs2_try_to_free_truncate_log(struct ocfs2_super
*osb
,
6118 unsigned int needed
)
6122 unsigned int truncated_clusters
;
6124 inode_lock(osb
->osb_tl_inode
);
6125 truncated_clusters
= osb
->truncated_clusters
;
6126 inode_unlock(osb
->osb_tl_inode
);
6129 * Check whether we can succeed in allocating if we free
6132 if (truncated_clusters
< needed
)
6135 ret
= ocfs2_flush_truncate_log(osb
);
6141 if (jbd2_journal_start_commit(osb
->journal
->j_journal
, &target
)) {
6142 jbd2_log_wait_commit(osb
->journal
->j_journal
, target
);
6149 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
6151 struct inode
**tl_inode
,
6152 struct buffer_head
**tl_bh
)
6155 struct inode
*inode
= NULL
;
6156 struct buffer_head
*bh
= NULL
;
6157 struct ocfs2_dinode
*di
;
6158 struct ocfs2_truncate_log
*tl
;
6159 unsigned int tl_count
;
6161 inode
= ocfs2_get_system_file_inode(osb
,
6162 TRUNCATE_LOG_SYSTEM_INODE
,
6166 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
6170 status
= ocfs2_read_inode_block(inode
, &bh
);
6177 di
= (struct ocfs2_dinode
*)bh
->b_data
;
6178 tl
= &di
->id2
.i_dealloc
;
6179 tl_count
= le16_to_cpu(tl
->tl_count
);
6180 if (unlikely(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
6182 status
= -EFSCORRUPTED
;
6195 /* called during the 1st stage of node recovery. we stamp a clean
6196 * truncate log and pass back a copy for processing later. if the
6197 * truncate log does not require processing, a *tl_copy is set to
6199 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
6201 struct ocfs2_dinode
**tl_copy
)
6204 struct inode
*tl_inode
= NULL
;
6205 struct buffer_head
*tl_bh
= NULL
;
6206 struct ocfs2_dinode
*di
;
6207 struct ocfs2_truncate_log
*tl
;
6211 trace_ocfs2_begin_truncate_log_recovery(slot_num
);
6213 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
6219 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6221 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6222 * validated by the underlying call to ocfs2_read_inode_block(),
6223 * so any corruption is a code bug */
6224 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6226 tl
= &di
->id2
.i_dealloc
;
6227 if (le16_to_cpu(tl
->tl_used
)) {
6228 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl
->tl_used
));
6231 * Assuming the write-out below goes well, this copy will be
6232 * passed back to recovery for processing.
6234 *tl_copy
= kmemdup(tl_bh
->b_data
, tl_bh
->b_size
, GFP_KERNEL
);
6241 /* All we need to do to clear the truncate log is set
6245 ocfs2_compute_meta_ecc(osb
->sb
, tl_bh
->b_data
, &di
->i_check
);
6246 status
= ocfs2_write_block(osb
, tl_bh
, INODE_CACHE(tl_inode
));
6266 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
6267 struct ocfs2_dinode
*tl_copy
)
6271 unsigned int clusters
, num_recs
, start_cluster
;
6274 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6275 struct ocfs2_truncate_log
*tl
;
6277 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
6278 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
6282 tl
= &tl_copy
->id2
.i_dealloc
;
6283 num_recs
= le16_to_cpu(tl
->tl_used
);
6284 trace_ocfs2_complete_truncate_log_recovery(
6285 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
),
6288 inode_lock(tl_inode
);
6289 for(i
= 0; i
< num_recs
; i
++) {
6290 if (ocfs2_truncate_log_needs_flush(osb
)) {
6291 status
= __ocfs2_flush_truncate_log(osb
);
6298 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6299 if (IS_ERR(handle
)) {
6300 status
= PTR_ERR(handle
);
6305 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
6306 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
6307 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
6309 status
= ocfs2_truncate_log_append(osb
, handle
,
6310 start_blk
, clusters
);
6311 ocfs2_commit_trans(osb
, handle
);
6319 inode_unlock(tl_inode
);
6324 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
6327 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6329 atomic_set(&osb
->osb_tl_disable
, 1);
6332 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6333 flush_workqueue(osb
->ocfs2_wq
);
6335 status
= ocfs2_flush_truncate_log(osb
);
6339 brelse(osb
->osb_tl_bh
);
6340 iput(osb
->osb_tl_inode
);
6344 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
6347 struct inode
*tl_inode
= NULL
;
6348 struct buffer_head
*tl_bh
= NULL
;
6350 status
= ocfs2_get_truncate_log_info(osb
,
6357 /* ocfs2_truncate_log_shutdown keys on the existence of
6358 * osb->osb_tl_inode so we don't set any of the osb variables
6359 * until we're sure all is well. */
6360 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
6361 ocfs2_truncate_log_worker
);
6362 atomic_set(&osb
->osb_tl_disable
, 0);
6363 osb
->osb_tl_bh
= tl_bh
;
6364 osb
->osb_tl_inode
= tl_inode
;
6370 * Delayed de-allocation of suballocator blocks.
6372 * Some sets of block de-allocations might involve multiple suballocator inodes.
6374 * The locking for this can get extremely complicated, especially when
6375 * the suballocator inodes to delete from aren't known until deep
6376 * within an unrelated codepath.
6378 * ocfs2_extent_block structures are a good example of this - an inode
6379 * btree could have been grown by any number of nodes each allocating
6380 * out of their own suballoc inode.
6382 * These structures allow the delay of block de-allocation until a
6383 * later time, when locking of multiple cluster inodes won't cause
6388 * Describe a single bit freed from a suballocator. For the block
6389 * suballocators, it represents one block. For the global cluster
6390 * allocator, it represents some clusters and free_bit indicates
6393 struct ocfs2_cached_block_free
{
6394 struct ocfs2_cached_block_free
*free_next
;
6397 unsigned int free_bit
;
6400 struct ocfs2_per_slot_free_list
{
6401 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
6404 struct ocfs2_cached_block_free
*f_first
;
6407 static int ocfs2_free_cached_blocks(struct ocfs2_super
*osb
,
6410 struct ocfs2_cached_block_free
*head
)
6415 struct inode
*inode
;
6416 struct buffer_head
*di_bh
= NULL
;
6417 struct ocfs2_cached_block_free
*tmp
;
6419 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
6428 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
6436 bg_blkno
= head
->free_bg
;
6438 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
6440 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
6441 if (IS_ERR(handle
)) {
6442 ret
= PTR_ERR(handle
);
6447 trace_ocfs2_free_cached_blocks(
6448 (unsigned long long)head
->free_blk
, head
->free_bit
);
6450 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
6451 head
->free_bit
, bg_blkno
, 1);
6455 ocfs2_commit_trans(osb
, handle
);
6458 head
= head
->free_next
;
6463 ocfs2_inode_unlock(inode
, 1);
6466 inode_unlock(inode
);
6470 /* Premature exit may have left some dangling items. */
6472 head
= head
->free_next
;
6479 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6480 u64 blkno
, unsigned int bit
)
6483 struct ocfs2_cached_block_free
*item
;
6485 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6492 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno
, bit
);
6494 item
->free_blk
= blkno
;
6495 item
->free_bit
= bit
;
6496 item
->free_next
= ctxt
->c_global_allocator
;
6498 ctxt
->c_global_allocator
= item
;
6502 static int ocfs2_free_cached_clusters(struct ocfs2_super
*osb
,
6503 struct ocfs2_cached_block_free
*head
)
6505 struct ocfs2_cached_block_free
*tmp
;
6506 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6510 inode_lock(tl_inode
);
6513 if (ocfs2_truncate_log_needs_flush(osb
)) {
6514 ret
= __ocfs2_flush_truncate_log(osb
);
6521 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6522 if (IS_ERR(handle
)) {
6523 ret
= PTR_ERR(handle
);
6528 ret
= ocfs2_truncate_log_append(osb
, handle
, head
->free_blk
,
6531 ocfs2_commit_trans(osb
, handle
);
6533 head
= head
->free_next
;
6542 inode_unlock(tl_inode
);
6545 /* Premature exit may have left some dangling items. */
6547 head
= head
->free_next
;
6554 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
6555 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6558 struct ocfs2_per_slot_free_list
*fl
;
6563 while (ctxt
->c_first_suballocator
) {
6564 fl
= ctxt
->c_first_suballocator
;
6567 trace_ocfs2_run_deallocs(fl
->f_inode_type
,
6569 ret2
= ocfs2_free_cached_blocks(osb
,
6579 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
6583 if (ctxt
->c_global_allocator
) {
6584 ret2
= ocfs2_free_cached_clusters(osb
,
6585 ctxt
->c_global_allocator
);
6591 ctxt
->c_global_allocator
= NULL
;
6597 static struct ocfs2_per_slot_free_list
*
6598 ocfs2_find_per_slot_free_list(int type
,
6600 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6602 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6605 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
6608 fl
= fl
->f_next_suballocator
;
6611 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
6613 fl
->f_inode_type
= type
;
6616 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
6618 ctxt
->c_first_suballocator
= fl
;
6623 static struct ocfs2_per_slot_free_list
*
6624 ocfs2_find_preferred_free_list(int type
,
6627 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6629 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6632 if (fl
->f_inode_type
== type
&& fl
->f_slot
== preferred_slot
) {
6633 *real_slot
= fl
->f_slot
;
6637 fl
= fl
->f_next_suballocator
;
6640 /* If we can't find any free list matching preferred slot, just use
6643 fl
= ctxt
->c_first_suballocator
;
6644 *real_slot
= fl
->f_slot
;
6649 /* Return Value 1 indicates empty */
6650 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree
*et
)
6652 struct ocfs2_per_slot_free_list
*fl
= NULL
;
6654 if (!et
->et_dealloc
)
6657 fl
= et
->et_dealloc
->c_first_suballocator
;
6667 /* If extent was deleted from tree due to extent rotation and merging, and
6668 * no metadata is reserved ahead of time. Try to reuse some extents
6669 * just deleted. This is only used to reuse extent blocks.
6670 * It is supposed to find enough extent blocks in dealloc if our estimation
6671 * on metadata is accurate.
6673 static int ocfs2_reuse_blk_from_dealloc(handle_t
*handle
,
6674 struct ocfs2_extent_tree
*et
,
6675 struct buffer_head
**new_eb_bh
,
6676 int blk_wanted
, int *blk_given
)
6678 int i
, status
= 0, real_slot
;
6679 struct ocfs2_cached_dealloc_ctxt
*dealloc
;
6680 struct ocfs2_per_slot_free_list
*fl
;
6681 struct ocfs2_cached_block_free
*bf
;
6682 struct ocfs2_extent_block
*eb
;
6683 struct ocfs2_super
*osb
=
6684 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
6688 /* If extent tree doesn't have a dealloc, this is not faulty. Just
6689 * tell upper caller dealloc can't provide any block and it should
6690 * ask for alloc to claim more space.
6692 dealloc
= et
->et_dealloc
;
6696 for (i
= 0; i
< blk_wanted
; i
++) {
6697 /* Prefer to use local slot */
6698 fl
= ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE
,
6699 osb
->slot_num
, &real_slot
,
6701 /* If no more block can be reused, we should claim more
6702 * from alloc. Just return here normally.
6710 fl
->f_first
= bf
->free_next
;
6712 new_eb_bh
[i
] = sb_getblk(osb
->sb
, bf
->free_blk
);
6713 if (new_eb_bh
[i
] == NULL
) {
6719 mlog(0, "Reusing block(%llu) from "
6720 "dealloc(local slot:%d, real slot:%d)\n",
6721 bf
->free_blk
, osb
->slot_num
, real_slot
);
6723 ocfs2_set_new_buffer_uptodate(et
->et_ci
, new_eb_bh
[i
]);
6725 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
6727 OCFS2_JOURNAL_ACCESS_CREATE
);
6733 memset(new_eb_bh
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
6734 eb
= (struct ocfs2_extent_block
*) new_eb_bh
[i
]->b_data
;
6736 /* We can't guarantee that buffer head is still cached, so
6737 * polutlate the extent block again.
6739 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
6740 eb
->h_blkno
= cpu_to_le64(bf
->free_blk
);
6741 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
6742 eb
->h_suballoc_slot
= cpu_to_le16(real_slot
);
6743 eb
->h_suballoc_loc
= cpu_to_le64(bf
->free_bg
);
6744 eb
->h_suballoc_bit
= cpu_to_le16(bf
->free_bit
);
6745 eb
->h_list
.l_count
=
6746 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
6748 /* We'll also be dirtied by the caller, so
6749 * this isn't absolutely necessary.
6751 ocfs2_journal_dirty(handle
, new_eb_bh
[i
]);
6754 dealloc
->c_first_suballocator
= fl
->f_next_suballocator
;
6763 if (unlikely(status
< 0)) {
6764 for (i
= 0; i
< blk_wanted
; i
++)
6765 brelse(new_eb_bh
[i
]);
6771 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6772 int type
, int slot
, u64 suballoc
,
6773 u64 blkno
, unsigned int bit
)
6776 struct ocfs2_per_slot_free_list
*fl
;
6777 struct ocfs2_cached_block_free
*item
;
6779 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
6786 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6793 trace_ocfs2_cache_block_dealloc(type
, slot
,
6794 (unsigned long long)suballoc
,
6795 (unsigned long long)blkno
, bit
);
6797 item
->free_bg
= suballoc
;
6798 item
->free_blk
= blkno
;
6799 item
->free_bit
= bit
;
6800 item
->free_next
= fl
->f_first
;
6809 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6810 struct ocfs2_extent_block
*eb
)
6812 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
6813 le16_to_cpu(eb
->h_suballoc_slot
),
6814 le64_to_cpu(eb
->h_suballoc_loc
),
6815 le64_to_cpu(eb
->h_blkno
),
6816 le16_to_cpu(eb
->h_suballoc_bit
));
6819 static int ocfs2_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6821 set_buffer_uptodate(bh
);
6822 mark_buffer_dirty(bh
);
6826 void ocfs2_map_and_dirty_folio(struct inode
*inode
, handle_t
*handle
,
6827 size_t from
, size_t to
, struct folio
*folio
, int zero
,
6830 int ret
, partial
= 0;
6831 loff_t start_byte
= folio_pos(folio
) + from
;
6832 loff_t length
= to
- from
;
6834 ret
= ocfs2_map_folio_blocks(folio
, phys
, inode
, from
, to
, 0);
6839 folio_zero_segment(folio
, from
, to
);
6842 * Need to set the buffers we zero'd into uptodate
6843 * here if they aren't - ocfs2_map_page_blocks()
6844 * might've skipped some
6846 ret
= walk_page_buffers(handle
, folio_buffers(folio
),
6851 else if (ocfs2_should_order_data(inode
)) {
6852 ret
= ocfs2_jbd2_inode_add_write(handle
, inode
,
6853 start_byte
, length
);
6859 folio_mark_uptodate(folio
);
6861 flush_dcache_folio(folio
);
6864 static void ocfs2_zero_cluster_folios(struct inode
*inode
, loff_t start
,
6865 loff_t end
, struct folio
**folios
, int numfolios
,
6866 u64 phys
, handle_t
*handle
)
6869 struct super_block
*sb
= inode
->i_sb
;
6871 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6876 for (i
= 0; i
< numfolios
; i
++) {
6877 struct folio
*folio
= folios
[i
];
6878 size_t to
= folio_size(folio
);
6879 size_t from
= offset_in_folio(folio
, start
);
6881 if (to
> end
- folio_pos(folio
))
6882 to
= end
- folio_pos(folio
);
6884 ocfs2_map_and_dirty_folio(inode
, handle
, from
, to
, folio
, 1,
6887 start
= folio_next_index(folio
) << PAGE_SHIFT
;
6891 ocfs2_unlock_and_free_folios(folios
, numfolios
);
6894 static int ocfs2_grab_folios(struct inode
*inode
, loff_t start
, loff_t end
,
6895 struct folio
**folios
, int *num
)
6897 int numfolios
, ret
= 0;
6898 struct address_space
*mapping
= inode
->i_mapping
;
6899 unsigned long index
;
6900 loff_t last_page_bytes
;
6902 BUG_ON(start
> end
);
6905 last_page_bytes
= PAGE_ALIGN(end
);
6906 index
= start
>> PAGE_SHIFT
;
6908 folios
[numfolios
] = __filemap_get_folio(mapping
, index
,
6909 FGP_LOCK
| FGP_ACCESSED
| FGP_CREAT
, GFP_NOFS
);
6910 if (IS_ERR(folios
[numfolios
])) {
6911 ret
= PTR_ERR(folios
[numfolios
]);
6916 index
= folio_next_index(folios
[numfolios
]);
6918 } while (index
< (last_page_bytes
>> PAGE_SHIFT
));
6923 ocfs2_unlock_and_free_folios(folios
, numfolios
);
6932 static int ocfs2_grab_eof_folios(struct inode
*inode
, loff_t start
, loff_t end
,
6933 struct folio
**folios
, int *num
)
6935 struct super_block
*sb
= inode
->i_sb
;
6937 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6938 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6940 return ocfs2_grab_folios(inode
, start
, end
, folios
, num
);
6944 * Zero partial cluster for a hole punch or truncate. This avoids exposing
6945 * nonzero data on subsequent file extends.
6947 * We need to call this before i_size is updated on the inode because
6948 * otherwise block_write_full_folio() will skip writeout of pages past
6951 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6952 u64 range_start
, u64 range_end
)
6954 int ret
= 0, numfolios
;
6955 struct folio
**folios
= NULL
;
6957 unsigned int ext_flags
;
6958 struct super_block
*sb
= inode
->i_sb
;
6961 * File systems which don't support sparse files zero on every
6964 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6968 * Avoid zeroing folios fully beyond current i_size. It is pointless as
6969 * underlying blocks of those folios should be already zeroed out and
6970 * page writeback will skip them anyway.
6972 range_end
= min_t(u64
, range_end
, i_size_read(inode
));
6973 if (range_start
>= range_end
)
6976 folios
= kcalloc(ocfs2_pages_per_cluster(sb
),
6977 sizeof(struct folio
*), GFP_NOFS
);
6978 if (folios
== NULL
) {
6984 ret
= ocfs2_extent_map_get_blocks(inode
,
6985 range_start
>> sb
->s_blocksize_bits
,
6986 &phys
, NULL
, &ext_flags
);
6993 * Tail is a hole, or is marked unwritten. In either case, we
6994 * can count on read and write to return/push zero's.
6996 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6999 ret
= ocfs2_grab_eof_folios(inode
, range_start
, range_end
, folios
,
7006 ocfs2_zero_cluster_folios(inode
, range_start
, range_end
, folios
,
7007 numfolios
, phys
, handle
);
7010 * Initiate writeout of the folios we zero'd here. We don't
7011 * wait on them - the truncate_inode_pages() call later will
7014 ret
= filemap_fdatawrite_range(inode
->i_mapping
, range_start
,
7025 static void ocfs2_zero_dinode_id2_with_xattr(struct inode
*inode
,
7026 struct ocfs2_dinode
*di
)
7028 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
7029 unsigned int xattrsize
= le16_to_cpu(di
->i_xattr_inline_size
);
7031 if (le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_XATTR_FL
)
7032 memset(&di
->id2
, 0, blocksize
-
7033 offsetof(struct ocfs2_dinode
, id2
) -
7036 memset(&di
->id2
, 0, blocksize
-
7037 offsetof(struct ocfs2_dinode
, id2
));
7040 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
7041 struct ocfs2_dinode
*di
)
7043 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
7044 di
->id2
.i_list
.l_tree_depth
= 0;
7045 di
->id2
.i_list
.l_next_free_rec
= 0;
7046 di
->id2
.i_list
.l_count
= cpu_to_le16(
7047 ocfs2_extent_recs_per_inode_with_xattr(inode
->i_sb
, di
));
7050 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
7052 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
7053 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7055 spin_lock(&oi
->ip_lock
);
7056 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
7057 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
7058 spin_unlock(&oi
->ip_lock
);
7061 * We clear the entire i_data structure here so that all
7062 * fields can be properly initialized.
7064 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
7066 idata
->id_count
= cpu_to_le16(
7067 ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
));
7070 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
7071 struct buffer_head
*di_bh
)
7073 int ret
, has_data
, num_folios
= 0;
7078 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
7079 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7080 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7081 struct ocfs2_alloc_context
*data_ac
= NULL
;
7082 struct folio
*folio
= NULL
;
7083 struct ocfs2_extent_tree et
;
7086 has_data
= i_size_read(inode
) ? 1 : 0;
7089 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
7096 handle
= ocfs2_start_trans(osb
,
7097 ocfs2_inline_to_extents_credits(osb
->sb
));
7098 if (IS_ERR(handle
)) {
7099 ret
= PTR_ERR(handle
);
7104 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
7105 OCFS2_JOURNAL_ACCESS_WRITE
);
7112 unsigned int page_end
= min_t(unsigned, PAGE_SIZE
,
7113 osb
->s_clustersize
);
7116 ret
= dquot_alloc_space_nodirty(inode
,
7117 ocfs2_clusters_to_bytes(osb
->sb
, 1));
7122 data_ac
->ac_resv
= &oi
->ip_la_data_resv
;
7124 ret
= ocfs2_claim_clusters(handle
, data_ac
, 1, &bit_off
,
7132 * Save two copies, one for insert, and one that can
7133 * be changed by ocfs2_map_and_dirty_folio() below.
7135 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
7137 ret
= ocfs2_grab_eof_folios(inode
, 0, page_end
, &folio
,
7146 * This should populate the 1st page for us and mark
7149 ret
= ocfs2_read_inline_data(inode
, folio
, di_bh
);
7156 ocfs2_map_and_dirty_folio(inode
, handle
, 0, page_end
, folio
, 0,
7160 spin_lock(&oi
->ip_lock
);
7161 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
7162 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
7163 spin_unlock(&oi
->ip_lock
);
7165 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
7166 ocfs2_dinode_new_extent_list(inode
, di
);
7168 ocfs2_journal_dirty(handle
, di_bh
);
7172 * An error at this point should be extremely rare. If
7173 * this proves to be false, we could always re-build
7174 * the in-inode data from our pages.
7176 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
7177 ret
= ocfs2_insert_extent(handle
, &et
, 0, block
, 1, 0, NULL
);
7184 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7189 ocfs2_unlock_and_free_folios(&folio
, num_folios
);
7192 if (ret
< 0 && did_quota
)
7193 dquot_free_space_nodirty(inode
,
7194 ocfs2_clusters_to_bytes(osb
->sb
, 1));
7197 if (data_ac
->ac_which
== OCFS2_AC_USE_LOCAL
)
7198 ocfs2_free_local_alloc_bits(osb
, handle
, data_ac
,
7201 ocfs2_free_clusters(handle
,
7204 ocfs2_clusters_to_blocks(osb
->sb
, bit_off
),
7208 ocfs2_commit_trans(osb
, handle
);
7212 ocfs2_free_alloc_context(data_ac
);
7217 * It is expected, that by the time you call this function,
7218 * inode->i_size and fe->i_size have been adjusted.
7220 * WARNING: This will kfree the truncate context
7222 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
7223 struct inode
*inode
,
7224 struct buffer_head
*di_bh
)
7226 int status
= 0, i
, flags
= 0;
7227 u32 new_highest_cpos
, range
, trunc_cpos
, trunc_len
, phys_cpos
, coff
;
7229 struct ocfs2_extent_list
*el
;
7230 struct ocfs2_extent_rec
*rec
;
7231 struct ocfs2_path
*path
= NULL
;
7232 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7233 struct ocfs2_extent_list
*root_el
= &(di
->id2
.i_list
);
7234 u64 refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
7235 struct ocfs2_extent_tree et
;
7236 struct ocfs2_cached_dealloc_ctxt dealloc
;
7237 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
7239 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
7240 ocfs2_init_dealloc_ctxt(&dealloc
);
7242 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
7243 i_size_read(inode
));
7245 path
= ocfs2_new_path(di_bh
, &di
->id2
.i_list
,
7246 ocfs2_journal_access_di
);
7253 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
7257 * Check that we still have allocation to delete.
7259 if (OCFS2_I(inode
)->ip_clusters
== 0) {
7265 * Truncate always works against the rightmost tree branch.
7267 status
= ocfs2_find_path(INODE_CACHE(inode
), path
, UINT_MAX
);
7273 trace_ocfs2_commit_truncate(
7274 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7276 OCFS2_I(inode
)->ip_clusters
,
7277 path
->p_tree_depth
);
7280 * By now, el will point to the extent list on the bottom most
7281 * portion of this tree. Only the tail record is considered in
7284 * We handle the following cases, in order:
7285 * - empty extent: delete the remaining branch
7286 * - remove the entire record
7287 * - remove a partial record
7288 * - no record needs to be removed (truncate has completed)
7290 el
= path_leaf_el(path
);
7291 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
7292 ocfs2_error(inode
->i_sb
,
7293 "Inode %llu has empty extent block at %llu\n",
7294 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7295 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
7300 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
7301 rec
= &el
->l_recs
[i
];
7302 flags
= rec
->e_flags
;
7303 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
7305 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
7307 * Lower levels depend on this never happening, but it's best
7308 * to check it up here before changing the tree.
7310 if (root_el
->l_tree_depth
&& rec
->e_int_clusters
== 0) {
7311 mlog(ML_ERROR
, "Inode %lu has an empty "
7312 "extent record, depth %u\n", inode
->i_ino
,
7313 le16_to_cpu(root_el
->l_tree_depth
));
7314 status
= ocfs2_remove_rightmost_empty_extent(osb
,
7315 &et
, path
, &dealloc
);
7321 ocfs2_reinit_path(path
, 1);
7324 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7328 } else if (le32_to_cpu(rec
->e_cpos
) >= new_highest_cpos
) {
7330 * Truncate entire record.
7332 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7333 trunc_len
= ocfs2_rec_clusters(el
, rec
);
7334 blkno
= le64_to_cpu(rec
->e_blkno
);
7335 } else if (range
> new_highest_cpos
) {
7337 * Partial truncate. it also should be
7338 * the last truncate we're doing.
7340 trunc_cpos
= new_highest_cpos
;
7341 trunc_len
= range
- new_highest_cpos
;
7342 coff
= new_highest_cpos
- le32_to_cpu(rec
->e_cpos
);
7343 blkno
= le64_to_cpu(rec
->e_blkno
) +
7344 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
7347 * Truncate completed, leave happily.
7353 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
7355 if ((flags
& OCFS2_EXT_REFCOUNTED
) && trunc_len
&& !ref_tree
) {
7356 status
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
7364 status
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
7365 phys_cpos
, trunc_len
, flags
, &dealloc
,
7366 refcount_loc
, true);
7372 ocfs2_reinit_path(path
, 1);
7375 * The check above will catch the case where we've truncated
7376 * away all allocation.
7382 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
7384 ocfs2_schedule_truncate_log_flush(osb
, 1);
7386 ocfs2_run_deallocs(osb
, &dealloc
);
7388 ocfs2_free_path(path
);
7394 * 'start' is inclusive, 'end' is not.
7396 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
7397 unsigned int start
, unsigned int end
, int trunc
)
7400 unsigned int numbytes
;
7402 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7403 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7404 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7406 /* No need to punch hole beyond i_size. */
7407 if (start
>= i_size_read(inode
))
7410 if (end
> i_size_read(inode
))
7411 end
= i_size_read(inode
);
7413 BUG_ON(start
> end
);
7415 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
7416 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
7417 !ocfs2_supports_inline_data(osb
)) {
7418 ocfs2_error(inode
->i_sb
,
7419 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7420 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7421 le16_to_cpu(di
->i_dyn_features
),
7422 OCFS2_I(inode
)->ip_dyn_features
,
7423 osb
->s_feature_incompat
);
7428 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
7429 if (IS_ERR(handle
)) {
7430 ret
= PTR_ERR(handle
);
7435 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
7436 OCFS2_JOURNAL_ACCESS_WRITE
);
7442 numbytes
= end
- start
;
7443 memset(idata
->id_data
+ start
, 0, numbytes
);
7446 * No need to worry about the data page here - it's been
7447 * truncated already and inline data doesn't need it for
7448 * pushing zero's to disk, so we'll let read_folio pick it up
7452 i_size_write(inode
, start
);
7453 di
->i_size
= cpu_to_le64(start
);
7456 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7457 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
7459 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode_get_ctime_sec(inode
));
7460 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode_get_ctime_nsec(inode
));
7462 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
7463 ocfs2_journal_dirty(handle
, di_bh
);
7466 ocfs2_commit_trans(osb
, handle
);
7472 static int ocfs2_trim_extent(struct super_block
*sb
,
7473 struct ocfs2_group_desc
*gd
,
7474 u64 group
, u32 start
, u32 count
)
7476 u64 discard
, bcount
;
7477 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
7479 bcount
= ocfs2_clusters_to_blocks(sb
, count
);
7480 discard
= ocfs2_clusters_to_blocks(sb
, start
);
7483 * For the first cluster group, the gd->bg_blkno is not at the start
7484 * of the group, but at an offset from the start. If we add it while
7485 * calculating discard for first group, we will wrongly start fstrim a
7486 * few blocks after the desried start block and the range can cross
7487 * over into the next cluster group. So, add it only if this is not
7488 * the first cluster group.
7490 if (group
!= osb
->first_cluster_group_blkno
)
7491 discard
+= le64_to_cpu(gd
->bg_blkno
);
7493 trace_ocfs2_trim_extent(sb
, (unsigned long long)discard
, bcount
);
7495 return sb_issue_discard(sb
, discard
, bcount
, GFP_NOFS
, 0);
7498 static int ocfs2_trim_group(struct super_block
*sb
,
7499 struct ocfs2_group_desc
*gd
, u64 group
,
7500 u32 start
, u32 max
, u32 minbits
)
7502 int ret
= 0, count
= 0, next
;
7503 void *bitmap
= gd
->bg_bitmap
;
7505 if (le16_to_cpu(gd
->bg_free_bits_count
) < minbits
)
7508 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd
->bg_blkno
),
7509 start
, max
, minbits
);
7511 while (start
< max
) {
7512 start
= ocfs2_find_next_zero_bit(bitmap
, max
, start
);
7515 next
= ocfs2_find_next_bit(bitmap
, max
, start
);
7517 if ((next
- start
) >= minbits
) {
7518 ret
= ocfs2_trim_extent(sb
, gd
, group
,
7519 start
, next
- start
);
7524 count
+= next
- start
;
7528 if (fatal_signal_pending(current
)) {
7529 count
= -ERESTARTSYS
;
7533 if ((le16_to_cpu(gd
->bg_free_bits_count
) - count
) < minbits
)
7544 int ocfs2_trim_mainbm(struct super_block
*sb
, struct fstrim_range
*range
)
7546 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
7547 u64 start
, len
, trimmed
= 0, first_group
, last_group
= 0, group
= 0;
7549 u32 first_bit
, last_bit
, minlen
;
7550 struct buffer_head
*main_bm_bh
= NULL
;
7551 struct inode
*main_bm_inode
= NULL
;
7552 struct buffer_head
*gd_bh
= NULL
;
7553 struct ocfs2_dinode
*main_bm
;
7554 struct ocfs2_group_desc
*gd
= NULL
;
7556 start
= range
->start
>> osb
->s_clustersize_bits
;
7557 len
= range
->len
>> osb
->s_clustersize_bits
;
7558 minlen
= range
->minlen
>> osb
->s_clustersize_bits
;
7560 if (minlen
>= osb
->bitmap_cpg
|| range
->len
< sb
->s_blocksize
)
7563 trace_ocfs2_trim_mainbm(start
, len
, minlen
);
7566 main_bm_inode
= ocfs2_get_system_file_inode(osb
,
7567 GLOBAL_BITMAP_SYSTEM_INODE
,
7568 OCFS2_INVALID_SLOT
);
7569 if (!main_bm_inode
) {
7575 inode_lock(main_bm_inode
);
7577 ret
= ocfs2_inode_lock(main_bm_inode
, &main_bm_bh
, 0);
7582 main_bm
= (struct ocfs2_dinode
*)main_bm_bh
->b_data
;
7585 * Do some check before trim the first group.
7588 if (start
>= le32_to_cpu(main_bm
->i_clusters
)) {
7593 if (start
+ len
> le32_to_cpu(main_bm
->i_clusters
))
7594 len
= le32_to_cpu(main_bm
->i_clusters
) - start
;
7597 * Determine first and last group to examine based on
7600 first_group
= ocfs2_which_cluster_group(main_bm_inode
, start
);
7601 if (first_group
== osb
->first_cluster_group_blkno
)
7604 first_bit
= start
- ocfs2_blocks_to_clusters(sb
,
7606 last_group
= ocfs2_which_cluster_group(main_bm_inode
,
7608 group
= first_group
;
7612 if (first_bit
+ len
>= osb
->bitmap_cpg
)
7613 last_bit
= osb
->bitmap_cpg
;
7615 last_bit
= first_bit
+ len
;
7617 ret
= ocfs2_read_group_descriptor(main_bm_inode
,
7625 gd
= (struct ocfs2_group_desc
*)gd_bh
->b_data
;
7626 cnt
= ocfs2_trim_group(sb
, gd
, group
,
7627 first_bit
, last_bit
, minlen
);
7637 len
-= osb
->bitmap_cpg
- first_bit
;
7639 if (group
== osb
->first_cluster_group_blkno
)
7640 group
= ocfs2_clusters_to_blocks(sb
, osb
->bitmap_cpg
);
7642 group
+= ocfs2_clusters_to_blocks(sb
, osb
->bitmap_cpg
);
7646 ocfs2_inode_unlock(main_bm_inode
, 0);
7650 inode_unlock(main_bm_inode
);
7651 iput(main_bm_inode
);
7654 * If all the groups trim are not done or failed, but we should release
7655 * main_bm related locks for avoiding the current IO starve, then go to
7656 * trim the next group
7658 if (ret
>= 0 && group
<= last_group
) {
7663 range
->len
= trimmed
* osb
->s_clustersize
;
7667 int ocfs2_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
7670 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
7671 struct ocfs2_trim_fs_info info
, *pinfo
= NULL
;
7673 ocfs2_trim_fs_lock_res_init(osb
);
7675 trace_ocfs2_trim_fs(range
->start
, range
->len
, range
->minlen
);
7677 ret
= ocfs2_trim_fs_lock(osb
, NULL
, 1);
7679 if (ret
!= -EAGAIN
) {
7681 ocfs2_trim_fs_lock_res_uninit(osb
);
7685 mlog(ML_NOTICE
, "Wait for trim on device (%s) to "
7686 "finish, which is running from another node.\n",
7688 ret
= ocfs2_trim_fs_lock(osb
, &info
, 0);
7691 ocfs2_trim_fs_lock_res_uninit(osb
);
7695 if (info
.tf_valid
&& info
.tf_success
&&
7696 info
.tf_start
== range
->start
&&
7697 info
.tf_len
== range
->len
&&
7698 info
.tf_minlen
== range
->minlen
) {
7699 /* Avoid sending duplicated trim to a shared device */
7700 mlog(ML_NOTICE
, "The same trim on device (%s) was "
7701 "just done from node (%u), return.\n",
7702 osb
->dev_str
, info
.tf_nodenum
);
7703 range
->len
= info
.tf_trimlen
;
7708 info
.tf_nodenum
= osb
->node_num
;
7709 info
.tf_start
= range
->start
;
7710 info
.tf_len
= range
->len
;
7711 info
.tf_minlen
= range
->minlen
;
7713 ret
= ocfs2_trim_mainbm(sb
, range
);
7715 info
.tf_trimlen
= range
->len
;
7716 info
.tf_success
= (ret
< 0 ? 0 : 1);
7719 ocfs2_trim_fs_unlock(osb
, pinfo
);
7720 ocfs2_trim_fs_lock_res_uninit(osb
);