Linux 6.14-rc1
[linux-stable.git] / fs / ocfs2 / aops.c
blob5bbeb6fbb1ac014201e549bb4f99b14234c22c21
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
18 #include <cluster/masklog.h>
20 #include "ocfs2.h"
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
43 int err = -EIO;
44 int status;
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 void *kaddr;
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
60 goto bail;
63 status = ocfs2_read_inode_block(inode, &bh);
64 if (status < 0) {
65 mlog_errno(status);
66 goto bail;
68 fe = (struct ocfs2_dinode *) bh->b_data;
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
72 err = -ENOMEM;
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
75 goto bail;
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 iblock;
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
85 err = -ENOMEM;
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 goto bail;
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
96 kaddr = kmap_atomic(bh_result->b_page);
97 if (!kaddr) {
98 mlog(ML_ERROR, "couldn't kmap!\n");
99 goto bail;
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
103 bh_result->b_size);
104 kunmap_atomic(kaddr);
105 set_buffer_uptodate(bh_result);
107 brelse(buffer_cache_bh);
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
113 err = 0;
115 bail:
116 brelse(bh);
118 return err;
121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
124 int ret = 0;
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
131 return ret;
134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
137 int err = 0;
138 unsigned int ext_flags;
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 &ext_flags);
158 if (err) {
159 mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, "
160 "block: %llu\n", inode, (unsigned long long)iblock);
161 goto bail;
164 if (max_blocks < count)
165 count = max_blocks;
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows __block_write_begin() to zero.
173 * If we see this on a sparse file system, then a truncate has
174 * raced us and removed the cluster. In this case, we clear
175 * the buffers dirty and uptodate bits and let the buffer code
176 * ignore it as a hole.
178 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
179 clear_buffer_dirty(bh_result);
180 clear_buffer_uptodate(bh_result);
181 goto bail;
184 /* Treat the unwritten extent as a hole for zeroing purposes. */
185 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
186 map_bh(bh_result, inode->i_sb, p_blkno);
188 bh_result->b_size = count << inode->i_blkbits;
190 if (!ocfs2_sparse_alloc(osb)) {
191 if (p_blkno == 0) {
192 err = -EIO;
193 mlog(ML_ERROR,
194 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
195 (unsigned long long)iblock,
196 (unsigned long long)p_blkno,
197 (unsigned long long)OCFS2_I(inode)->ip_blkno);
198 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
199 dump_stack();
200 goto bail;
204 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
207 (unsigned long long)past_eof);
208 if (create && (iblock >= past_eof))
209 set_buffer_new(bh_result);
211 bail:
212 if (err < 0)
213 err = -EIO;
215 return err;
218 int ocfs2_read_inline_data(struct inode *inode, struct folio *folio,
219 struct buffer_head *di_bh)
221 loff_t size;
222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 return -EROFS;
230 size = i_size_read(inode);
232 if (size > folio_size(folio) ||
233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
234 ocfs2_error(inode->i_sb,
235 "Inode %llu has with inline data has bad size: %Lu\n",
236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
237 (unsigned long long)size);
238 return -EROFS;
241 folio_fill_tail(folio, 0, di->id2.i_data.id_data, size);
242 folio_mark_uptodate(folio);
244 return 0;
247 static int ocfs2_readpage_inline(struct inode *inode, struct folio *folio)
249 int ret;
250 struct buffer_head *di_bh = NULL;
252 BUG_ON(!folio_test_locked(folio));
253 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
255 ret = ocfs2_read_inode_block(inode, &di_bh);
256 if (ret) {
257 mlog_errno(ret);
258 goto out;
261 ret = ocfs2_read_inline_data(inode, folio, di_bh);
262 out:
263 folio_unlock(folio);
265 brelse(di_bh);
266 return ret;
269 static int ocfs2_read_folio(struct file *file, struct folio *folio)
271 struct inode *inode = folio->mapping->host;
272 struct ocfs2_inode_info *oi = OCFS2_I(inode);
273 loff_t start = folio_pos(folio);
274 int ret, unlock = 1;
276 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
278 ret = ocfs2_inode_lock_with_folio(inode, NULL, 0, folio);
279 if (ret != 0) {
280 if (ret == AOP_TRUNCATED_PAGE)
281 unlock = 0;
282 mlog_errno(ret);
283 goto out;
286 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
288 * Unlock the folio and cycle ip_alloc_sem so that we don't
289 * busyloop waiting for ip_alloc_sem to unlock
291 ret = AOP_TRUNCATED_PAGE;
292 folio_unlock(folio);
293 unlock = 0;
294 down_read(&oi->ip_alloc_sem);
295 up_read(&oi->ip_alloc_sem);
296 goto out_inode_unlock;
300 * i_size might have just been updated as we grabbed the meta lock. We
301 * might now be discovering a truncate that hit on another node.
302 * block_read_full_folio->get_block freaks out if it is asked to read
303 * beyond the end of a file, so we check here. Callers
304 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
305 * and notice that the folio they just read isn't needed.
307 * XXX sys_readahead() seems to get that wrong?
309 if (start >= i_size_read(inode)) {
310 folio_zero_segment(folio, 0, folio_size(folio));
311 folio_mark_uptodate(folio);
312 ret = 0;
313 goto out_alloc;
316 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
317 ret = ocfs2_readpage_inline(inode, folio);
318 else
319 ret = block_read_full_folio(folio, ocfs2_get_block);
320 unlock = 0;
322 out_alloc:
323 up_read(&oi->ip_alloc_sem);
324 out_inode_unlock:
325 ocfs2_inode_unlock(inode, 0);
326 out:
327 if (unlock)
328 folio_unlock(folio);
329 return ret;
333 * This is used only for read-ahead. Failures or difficult to handle
334 * situations are safe to ignore.
336 * Right now, we don't bother with BH_Boundary - in-inode extent lists
337 * are quite large (243 extents on 4k blocks), so most inodes don't
338 * grow out to a tree. If need be, detecting boundary extents could
339 * trivially be added in a future version of ocfs2_get_block().
341 static void ocfs2_readahead(struct readahead_control *rac)
343 int ret;
344 struct inode *inode = rac->mapping->host;
345 struct ocfs2_inode_info *oi = OCFS2_I(inode);
348 * Use the nonblocking flag for the dlm code to avoid page
349 * lock inversion, but don't bother with retrying.
351 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
352 if (ret)
353 return;
355 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
356 goto out_unlock;
359 * Don't bother with inline-data. There isn't anything
360 * to read-ahead in that case anyway...
362 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
363 goto out_up;
366 * Check whether a remote node truncated this file - we just
367 * drop out in that case as it's not worth handling here.
369 if (readahead_pos(rac) >= i_size_read(inode))
370 goto out_up;
372 mpage_readahead(rac, ocfs2_get_block);
374 out_up:
375 up_read(&oi->ip_alloc_sem);
376 out_unlock:
377 ocfs2_inode_unlock(inode, 0);
380 /* Note: Because we don't support holes, our allocation has
381 * already happened (allocation writes zeros to the file data)
382 * so we don't have to worry about ordered writes in
383 * ocfs2_writepages.
385 * ->writepages is called during the process of invalidating the page cache
386 * during blocked lock processing. It can't block on any cluster locks
387 * to during block mapping. It's relying on the fact that the block
388 * mapping can't have disappeared under the dirty pages that it is
389 * being asked to write back.
391 static int ocfs2_writepages(struct address_space *mapping,
392 struct writeback_control *wbc)
394 return mpage_writepages(mapping, wbc, ocfs2_get_block);
397 /* Taken from ext3. We don't necessarily need the full blown
398 * functionality yet, but IMHO it's better to cut and paste the whole
399 * thing so we can avoid introducing our own bugs (and easily pick up
400 * their fixes when they happen) --Mark */
401 int walk_page_buffers( handle_t *handle,
402 struct buffer_head *head,
403 unsigned from,
404 unsigned to,
405 int *partial,
406 int (*fn)( handle_t *handle,
407 struct buffer_head *bh))
409 struct buffer_head *bh;
410 unsigned block_start, block_end;
411 unsigned blocksize = head->b_size;
412 int err, ret = 0;
413 struct buffer_head *next;
415 for ( bh = head, block_start = 0;
416 ret == 0 && (bh != head || !block_start);
417 block_start = block_end, bh = next)
419 next = bh->b_this_page;
420 block_end = block_start + blocksize;
421 if (block_end <= from || block_start >= to) {
422 if (partial && !buffer_uptodate(bh))
423 *partial = 1;
424 continue;
426 err = (*fn)(handle, bh);
427 if (!ret)
428 ret = err;
430 return ret;
433 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
435 sector_t status;
436 u64 p_blkno = 0;
437 int err = 0;
438 struct inode *inode = mapping->host;
440 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
441 (unsigned long long)block);
444 * The swap code (ab-)uses ->bmap to get a block mapping and then
445 * bypasseѕ the file system for actual I/O. We really can't allow
446 * that on refcounted inodes, so we have to skip out here. And yes,
447 * 0 is the magic code for a bmap error..
449 if (ocfs2_is_refcount_inode(inode))
450 return 0;
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
455 if (!INODE_JOURNAL(inode)) {
456 err = ocfs2_inode_lock(inode, NULL, 0);
457 if (err) {
458 if (err != -ENOENT)
459 mlog_errno(err);
460 goto bail;
462 down_read(&OCFS2_I(inode)->ip_alloc_sem);
465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 NULL);
469 if (!INODE_JOURNAL(inode)) {
470 up_read(&OCFS2_I(inode)->ip_alloc_sem);
471 ocfs2_inode_unlock(inode, 0);
474 if (err) {
475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block);
477 mlog_errno(err);
478 goto bail;
481 bail:
482 status = err ? 0 : p_blkno;
484 return status;
487 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
489 if (!folio_buffers(folio))
490 return false;
491 return try_to_free_buffers(folio);
494 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
495 u32 cpos,
496 unsigned int *start,
497 unsigned int *end)
499 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
501 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
502 unsigned int cpp;
504 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
506 cluster_start = cpos % cpp;
507 cluster_start = cluster_start << osb->s_clustersize_bits;
509 cluster_end = cluster_start + osb->s_clustersize;
512 BUG_ON(cluster_start > PAGE_SIZE);
513 BUG_ON(cluster_end > PAGE_SIZE);
515 if (start)
516 *start = cluster_start;
517 if (end)
518 *end = cluster_end;
522 * 'from' and 'to' are the region in the page to avoid zeroing.
524 * If pagesize > clustersize, this function will avoid zeroing outside
525 * of the cluster boundary.
527 * from == to == 0 is code for "zero the entire cluster region"
529 static void ocfs2_clear_folio_regions(struct folio *folio,
530 struct ocfs2_super *osb, u32 cpos,
531 unsigned from, unsigned to)
533 void *kaddr;
534 unsigned int cluster_start, cluster_end;
536 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
538 kaddr = kmap_local_folio(folio, 0);
540 if (from || to) {
541 if (from > cluster_start)
542 memset(kaddr + cluster_start, 0, from - cluster_start);
543 if (to < cluster_end)
544 memset(kaddr + to, 0, cluster_end - to);
545 } else {
546 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
549 kunmap_local(kaddr);
553 * Nonsparse file systems fully allocate before we get to the write
554 * code. This prevents ocfs2_write() from tagging the write as an
555 * allocating one, which means ocfs2_map_folio_blocks() might try to
556 * read-in the blocks at the tail of our file. Avoid reading them by
557 * testing i_size against each block offset.
559 static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio,
560 unsigned int block_start)
562 u64 offset = folio_pos(folio) + block_start;
564 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
565 return 1;
567 if (i_size_read(inode) > offset)
568 return 1;
570 return 0;
574 * Some of this taken from __block_write_begin(). We already have our
575 * mapping by now though, and the entire write will be allocating or
576 * it won't, so not much need to use BH_New.
578 * This will also skip zeroing, which is handled externally.
580 int ocfs2_map_folio_blocks(struct folio *folio, u64 *p_blkno,
581 struct inode *inode, unsigned int from,
582 unsigned int to, int new)
584 int ret = 0;
585 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
586 unsigned int block_end, block_start;
587 unsigned int bsize = i_blocksize(inode);
589 head = folio_buffers(folio);
590 if (!head)
591 head = create_empty_buffers(folio, bsize, 0);
593 for (bh = head, block_start = 0; bh != head || !block_start;
594 bh = bh->b_this_page, block_start += bsize) {
595 block_end = block_start + bsize;
597 clear_buffer_new(bh);
600 * Ignore blocks outside of our i/o range -
601 * they may belong to unallocated clusters.
603 if (block_start >= to || block_end <= from) {
604 if (folio_test_uptodate(folio))
605 set_buffer_uptodate(bh);
606 continue;
610 * For an allocating write with cluster size >= page
611 * size, we always write the entire page.
613 if (new)
614 set_buffer_new(bh);
616 if (!buffer_mapped(bh)) {
617 map_bh(bh, inode->i_sb, *p_blkno);
618 clean_bdev_bh_alias(bh);
621 if (folio_test_uptodate(folio)) {
622 set_buffer_uptodate(bh);
623 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
624 !buffer_new(bh) &&
625 ocfs2_should_read_blk(inode, folio, block_start) &&
626 (block_start < from || block_end > to)) {
627 bh_read_nowait(bh, 0);
628 *wait_bh++=bh;
631 *p_blkno = *p_blkno + 1;
635 * If we issued read requests - let them complete.
637 while(wait_bh > wait) {
638 wait_on_buffer(*--wait_bh);
639 if (!buffer_uptodate(*wait_bh))
640 ret = -EIO;
643 if (ret == 0 || !new)
644 return ret;
647 * If we get -EIO above, zero out any newly allocated blocks
648 * to avoid exposing stale data.
650 bh = head;
651 block_start = 0;
652 do {
653 block_end = block_start + bsize;
654 if (block_end <= from)
655 goto next_bh;
656 if (block_start >= to)
657 break;
659 folio_zero_range(folio, block_start, bh->b_size);
660 set_buffer_uptodate(bh);
661 mark_buffer_dirty(bh);
663 next_bh:
664 block_start = block_end;
665 bh = bh->b_this_page;
666 } while (bh != head);
668 return ret;
671 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
672 #define OCFS2_MAX_CTXT_PAGES 1
673 #else
674 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
675 #endif
677 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
679 struct ocfs2_unwritten_extent {
680 struct list_head ue_node;
681 struct list_head ue_ip_node;
682 u32 ue_cpos;
683 u32 ue_phys;
687 * Describe the state of a single cluster to be written to.
689 struct ocfs2_write_cluster_desc {
690 u32 c_cpos;
691 u32 c_phys;
693 * Give this a unique field because c_phys eventually gets
694 * filled.
696 unsigned c_new;
697 unsigned c_clear_unwritten;
698 unsigned c_needs_zero;
701 struct ocfs2_write_ctxt {
702 /* Logical cluster position / len of write */
703 u32 w_cpos;
704 u32 w_clen;
706 /* First cluster allocated in a nonsparse extend */
707 u32 w_first_new_cpos;
709 /* Type of caller. Must be one of buffer, mmap, direct. */
710 ocfs2_write_type_t w_type;
712 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
715 * This is true if page_size > cluster_size.
717 * It triggers a set of special cases during write which might
718 * have to deal with allocating writes to partial pages.
720 unsigned int w_large_pages;
723 * Folios involved in this write.
725 * w_target_folio is the folio being written to by the user.
727 * w_folios is an array of folios which always contains
728 * w_target_folio, and in the case of an allocating write with
729 * page_size < cluster size, it will contain zero'd and mapped
730 * pages adjacent to w_target_folio which need to be written
731 * out in so that future reads from that region will get
732 * zero's.
734 unsigned int w_num_folios;
735 struct folio *w_folios[OCFS2_MAX_CTXT_PAGES];
736 struct folio *w_target_folio;
739 * w_target_locked is used for page_mkwrite path indicating no unlocking
740 * against w_target_folio in ocfs2_write_end_nolock.
742 unsigned int w_target_locked:1;
745 * ocfs2_write_end() uses this to know what the real range to
746 * write in the target should be.
748 unsigned int w_target_from;
749 unsigned int w_target_to;
752 * We could use journal_current_handle() but this is cleaner,
753 * IMHO -Mark
755 handle_t *w_handle;
757 struct buffer_head *w_di_bh;
759 struct ocfs2_cached_dealloc_ctxt w_dealloc;
761 struct list_head w_unwritten_list;
762 unsigned int w_unwritten_count;
765 void ocfs2_unlock_and_free_folios(struct folio **folios, int num_folios)
767 int i;
769 for(i = 0; i < num_folios; i++) {
770 if (!folios[i])
771 continue;
772 folio_unlock(folios[i]);
773 folio_mark_accessed(folios[i]);
774 folio_put(folios[i]);
778 static void ocfs2_unlock_folios(struct ocfs2_write_ctxt *wc)
780 int i;
783 * w_target_locked is only set to true in the page_mkwrite() case.
784 * The intent is to allow us to lock the target page from write_begin()
785 * to write_end(). The caller must hold a ref on w_target_folio.
787 if (wc->w_target_locked) {
788 BUG_ON(!wc->w_target_folio);
789 for (i = 0; i < wc->w_num_folios; i++) {
790 if (wc->w_target_folio == wc->w_folios[i]) {
791 wc->w_folios[i] = NULL;
792 break;
795 folio_mark_accessed(wc->w_target_folio);
796 folio_put(wc->w_target_folio);
798 ocfs2_unlock_and_free_folios(wc->w_folios, wc->w_num_folios);
801 static void ocfs2_free_unwritten_list(struct inode *inode,
802 struct list_head *head)
804 struct ocfs2_inode_info *oi = OCFS2_I(inode);
805 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
807 list_for_each_entry_safe(ue, tmp, head, ue_node) {
808 list_del(&ue->ue_node);
809 spin_lock(&oi->ip_lock);
810 list_del(&ue->ue_ip_node);
811 spin_unlock(&oi->ip_lock);
812 kfree(ue);
816 static void ocfs2_free_write_ctxt(struct inode *inode,
817 struct ocfs2_write_ctxt *wc)
819 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
820 ocfs2_unlock_folios(wc);
821 brelse(wc->w_di_bh);
822 kfree(wc);
825 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
826 struct ocfs2_super *osb, loff_t pos,
827 unsigned len, ocfs2_write_type_t type,
828 struct buffer_head *di_bh)
830 u32 cend;
831 struct ocfs2_write_ctxt *wc;
833 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
834 if (!wc)
835 return -ENOMEM;
837 wc->w_cpos = pos >> osb->s_clustersize_bits;
838 wc->w_first_new_cpos = UINT_MAX;
839 cend = (pos + len - 1) >> osb->s_clustersize_bits;
840 wc->w_clen = cend - wc->w_cpos + 1;
841 get_bh(di_bh);
842 wc->w_di_bh = di_bh;
843 wc->w_type = type;
845 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
846 wc->w_large_pages = 1;
847 else
848 wc->w_large_pages = 0;
850 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
851 INIT_LIST_HEAD(&wc->w_unwritten_list);
853 *wcp = wc;
855 return 0;
859 * If a page has any new buffers, zero them out here, and mark them uptodate
860 * and dirty so they'll be written out (in order to prevent uninitialised
861 * block data from leaking). And clear the new bit.
863 static void ocfs2_zero_new_buffers(struct folio *folio, size_t from, size_t to)
865 unsigned int block_start, block_end;
866 struct buffer_head *head, *bh;
868 BUG_ON(!folio_test_locked(folio));
869 head = folio_buffers(folio);
870 if (!head)
871 return;
873 bh = head;
874 block_start = 0;
875 do {
876 block_end = block_start + bh->b_size;
878 if (buffer_new(bh)) {
879 if (block_end > from && block_start < to) {
880 if (!folio_test_uptodate(folio)) {
881 unsigned start, end;
883 start = max(from, block_start);
884 end = min(to, block_end);
886 folio_zero_segment(folio, start, end);
887 set_buffer_uptodate(bh);
890 clear_buffer_new(bh);
891 mark_buffer_dirty(bh);
895 block_start = block_end;
896 bh = bh->b_this_page;
897 } while (bh != head);
901 * Only called when we have a failure during allocating write to write
902 * zero's to the newly allocated region.
904 static void ocfs2_write_failure(struct inode *inode,
905 struct ocfs2_write_ctxt *wc,
906 loff_t user_pos, unsigned user_len)
908 int i;
909 unsigned from = user_pos & (PAGE_SIZE - 1),
910 to = user_pos + user_len;
912 if (wc->w_target_folio)
913 ocfs2_zero_new_buffers(wc->w_target_folio, from, to);
915 for (i = 0; i < wc->w_num_folios; i++) {
916 struct folio *folio = wc->w_folios[i];
918 if (folio && folio_buffers(folio)) {
919 if (ocfs2_should_order_data(inode))
920 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
921 user_pos, user_len);
923 block_commit_write(&folio->page, from, to);
928 static int ocfs2_prepare_folio_for_write(struct inode *inode, u64 *p_blkno,
929 struct ocfs2_write_ctxt *wc, struct folio *folio, u32 cpos,
930 loff_t user_pos, unsigned user_len, int new)
932 int ret;
933 unsigned int map_from = 0, map_to = 0;
934 unsigned int cluster_start, cluster_end;
935 unsigned int user_data_from = 0, user_data_to = 0;
937 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
938 &cluster_start, &cluster_end);
940 /* treat the write as new if the a hole/lseek spanned across
941 * the page boundary.
943 new = new | ((i_size_read(inode) <= folio_pos(folio)) &&
944 (folio_pos(folio) <= user_pos));
946 if (folio == wc->w_target_folio) {
947 map_from = user_pos & (PAGE_SIZE - 1);
948 map_to = map_from + user_len;
950 if (new)
951 ret = ocfs2_map_folio_blocks(folio, p_blkno, inode,
952 cluster_start, cluster_end, new);
953 else
954 ret = ocfs2_map_folio_blocks(folio, p_blkno, inode,
955 map_from, map_to, new);
956 if (ret) {
957 mlog_errno(ret);
958 goto out;
961 user_data_from = map_from;
962 user_data_to = map_to;
963 if (new) {
964 map_from = cluster_start;
965 map_to = cluster_end;
967 } else {
969 * If we haven't allocated the new folio yet, we
970 * shouldn't be writing it out without copying user
971 * data. This is likely a math error from the caller.
973 BUG_ON(!new);
975 map_from = cluster_start;
976 map_to = cluster_end;
978 ret = ocfs2_map_folio_blocks(folio, p_blkno, inode,
979 cluster_start, cluster_end, new);
980 if (ret) {
981 mlog_errno(ret);
982 goto out;
987 * Parts of newly allocated folios need to be zero'd.
989 * Above, we have also rewritten 'to' and 'from' - as far as
990 * the rest of the function is concerned, the entire cluster
991 * range inside of a folio needs to be written.
993 * We can skip this if the folio is uptodate - it's already
994 * been zero'd from being read in as a hole.
996 if (new && !folio_test_uptodate(folio))
997 ocfs2_clear_folio_regions(folio, OCFS2_SB(inode->i_sb),
998 cpos, user_data_from, user_data_to);
1000 flush_dcache_folio(folio);
1002 out:
1003 return ret;
1007 * This function will only grab one clusters worth of pages.
1009 static int ocfs2_grab_folios_for_write(struct address_space *mapping,
1010 struct ocfs2_write_ctxt *wc, u32 cpos, loff_t user_pos,
1011 unsigned user_len, int new, struct folio *mmap_folio)
1013 int ret = 0, i;
1014 unsigned long start, target_index, end_index, index;
1015 struct inode *inode = mapping->host;
1016 loff_t last_byte;
1018 target_index = user_pos >> PAGE_SHIFT;
1021 * Figure out how many pages we'll be manipulating here. For
1022 * non allocating write, we just change the one
1023 * page. Otherwise, we'll need a whole clusters worth. If we're
1024 * writing past i_size, we only need enough pages to cover the
1025 * last page of the write.
1027 if (new) {
1028 wc->w_num_folios = ocfs2_pages_per_cluster(inode->i_sb);
1029 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1031 * We need the index *past* the last page we could possibly
1032 * touch. This is the page past the end of the write or
1033 * i_size, whichever is greater.
1035 last_byte = max(user_pos + user_len, i_size_read(inode));
1036 BUG_ON(last_byte < 1);
1037 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1038 if ((start + wc->w_num_folios) > end_index)
1039 wc->w_num_folios = end_index - start;
1040 } else {
1041 wc->w_num_folios = 1;
1042 start = target_index;
1044 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1046 for(i = 0; i < wc->w_num_folios; i++) {
1047 index = start + i;
1049 if (index >= target_index && index <= end_index &&
1050 wc->w_type == OCFS2_WRITE_MMAP) {
1052 * ocfs2_pagemkwrite() is a little different
1053 * and wants us to directly use the page
1054 * passed in.
1056 folio_lock(mmap_folio);
1058 /* Exit and let the caller retry */
1059 if (mmap_folio->mapping != mapping) {
1060 WARN_ON(mmap_folio->mapping);
1061 folio_unlock(mmap_folio);
1062 ret = -EAGAIN;
1063 goto out;
1066 folio_get(mmap_folio);
1067 wc->w_folios[i] = mmap_folio;
1068 wc->w_target_locked = true;
1069 } else if (index >= target_index && index <= end_index &&
1070 wc->w_type == OCFS2_WRITE_DIRECT) {
1071 /* Direct write has no mapping page. */
1072 wc->w_folios[i] = NULL;
1073 continue;
1074 } else {
1075 wc->w_folios[i] = __filemap_get_folio(mapping, index,
1076 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
1077 GFP_NOFS);
1078 if (IS_ERR(wc->w_folios[i])) {
1079 ret = PTR_ERR(wc->w_folios[i]);
1080 mlog_errno(ret);
1081 goto out;
1084 folio_wait_stable(wc->w_folios[i]);
1086 if (index == target_index)
1087 wc->w_target_folio = wc->w_folios[i];
1089 out:
1090 if (ret)
1091 wc->w_target_locked = false;
1092 return ret;
1096 * Prepare a single cluster for write one cluster into the file.
1098 static int ocfs2_write_cluster(struct address_space *mapping,
1099 u32 *phys, unsigned int new,
1100 unsigned int clear_unwritten,
1101 unsigned int should_zero,
1102 struct ocfs2_alloc_context *data_ac,
1103 struct ocfs2_alloc_context *meta_ac,
1104 struct ocfs2_write_ctxt *wc, u32 cpos,
1105 loff_t user_pos, unsigned user_len)
1107 int ret, i;
1108 u64 p_blkno;
1109 struct inode *inode = mapping->host;
1110 struct ocfs2_extent_tree et;
1111 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1113 if (new) {
1114 u32 tmp_pos;
1117 * This is safe to call with the page locks - it won't take
1118 * any additional semaphores or cluster locks.
1120 tmp_pos = cpos;
1121 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1122 &tmp_pos, 1, !clear_unwritten,
1123 wc->w_di_bh, wc->w_handle,
1124 data_ac, meta_ac, NULL);
1126 * This shouldn't happen because we must have already
1127 * calculated the correct meta data allocation required. The
1128 * internal tree allocation code should know how to increase
1129 * transaction credits itself.
1131 * If need be, we could handle -EAGAIN for a
1132 * RESTART_TRANS here.
1134 mlog_bug_on_msg(ret == -EAGAIN,
1135 "Inode %llu: EAGAIN return during allocation.\n",
1136 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1137 if (ret < 0) {
1138 mlog_errno(ret);
1139 goto out;
1141 } else if (clear_unwritten) {
1142 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1143 wc->w_di_bh);
1144 ret = ocfs2_mark_extent_written(inode, &et,
1145 wc->w_handle, cpos, 1, *phys,
1146 meta_ac, &wc->w_dealloc);
1147 if (ret < 0) {
1148 mlog_errno(ret);
1149 goto out;
1154 * The only reason this should fail is due to an inability to
1155 * find the extent added.
1157 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1158 if (ret < 0) {
1159 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1160 "at logical cluster %u",
1161 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1162 goto out;
1165 BUG_ON(*phys == 0);
1167 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1168 if (!should_zero)
1169 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1171 for (i = 0; i < wc->w_num_folios; i++) {
1172 int tmpret;
1174 /* This is the direct io target page. */
1175 if (wc->w_folios[i] == NULL) {
1176 p_blkno += (1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits));
1177 continue;
1180 tmpret = ocfs2_prepare_folio_for_write(inode, &p_blkno, wc,
1181 wc->w_folios[i], cpos, user_pos, user_len,
1182 should_zero);
1183 if (tmpret) {
1184 mlog_errno(tmpret);
1185 if (ret == 0)
1186 ret = tmpret;
1191 * We only have cleanup to do in case of allocating write.
1193 if (ret && new)
1194 ocfs2_write_failure(inode, wc, user_pos, user_len);
1196 out:
1198 return ret;
1201 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1202 struct ocfs2_alloc_context *data_ac,
1203 struct ocfs2_alloc_context *meta_ac,
1204 struct ocfs2_write_ctxt *wc,
1205 loff_t pos, unsigned len)
1207 int ret, i;
1208 loff_t cluster_off;
1209 unsigned int local_len = len;
1210 struct ocfs2_write_cluster_desc *desc;
1211 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1213 for (i = 0; i < wc->w_clen; i++) {
1214 desc = &wc->w_desc[i];
1217 * We have to make sure that the total write passed in
1218 * doesn't extend past a single cluster.
1220 local_len = len;
1221 cluster_off = pos & (osb->s_clustersize - 1);
1222 if ((cluster_off + local_len) > osb->s_clustersize)
1223 local_len = osb->s_clustersize - cluster_off;
1225 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1226 desc->c_new,
1227 desc->c_clear_unwritten,
1228 desc->c_needs_zero,
1229 data_ac, meta_ac,
1230 wc, desc->c_cpos, pos, local_len);
1231 if (ret) {
1232 mlog_errno(ret);
1233 goto out;
1236 len -= local_len;
1237 pos += local_len;
1240 ret = 0;
1241 out:
1242 return ret;
1246 * ocfs2_write_end() wants to know which parts of the target page it
1247 * should complete the write on. It's easiest to compute them ahead of
1248 * time when a more complete view of the write is available.
1250 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1251 struct ocfs2_write_ctxt *wc,
1252 loff_t pos, unsigned len, int alloc)
1254 struct ocfs2_write_cluster_desc *desc;
1256 wc->w_target_from = pos & (PAGE_SIZE - 1);
1257 wc->w_target_to = wc->w_target_from + len;
1259 if (alloc == 0)
1260 return;
1263 * Allocating write - we may have different boundaries based
1264 * on page size and cluster size.
1266 * NOTE: We can no longer compute one value from the other as
1267 * the actual write length and user provided length may be
1268 * different.
1271 if (wc->w_large_pages) {
1273 * We only care about the 1st and last cluster within
1274 * our range and whether they should be zero'd or not. Either
1275 * value may be extended out to the start/end of a
1276 * newly allocated cluster.
1278 desc = &wc->w_desc[0];
1279 if (desc->c_needs_zero)
1280 ocfs2_figure_cluster_boundaries(osb,
1281 desc->c_cpos,
1282 &wc->w_target_from,
1283 NULL);
1285 desc = &wc->w_desc[wc->w_clen - 1];
1286 if (desc->c_needs_zero)
1287 ocfs2_figure_cluster_boundaries(osb,
1288 desc->c_cpos,
1289 NULL,
1290 &wc->w_target_to);
1291 } else {
1292 wc->w_target_from = 0;
1293 wc->w_target_to = PAGE_SIZE;
1298 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1299 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1300 * by the direct io procedure.
1301 * If this is a new extent that allocated by direct io, we should mark it in
1302 * the ip_unwritten_list.
1304 static int ocfs2_unwritten_check(struct inode *inode,
1305 struct ocfs2_write_ctxt *wc,
1306 struct ocfs2_write_cluster_desc *desc)
1308 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1309 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1310 int ret = 0;
1312 if (!desc->c_needs_zero)
1313 return 0;
1315 retry:
1316 spin_lock(&oi->ip_lock);
1317 /* Needs not to zero no metter buffer or direct. The one who is zero
1318 * the cluster is doing zero. And he will clear unwritten after all
1319 * cluster io finished. */
1320 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1321 if (desc->c_cpos == ue->ue_cpos) {
1322 BUG_ON(desc->c_new);
1323 desc->c_needs_zero = 0;
1324 desc->c_clear_unwritten = 0;
1325 goto unlock;
1329 if (wc->w_type != OCFS2_WRITE_DIRECT)
1330 goto unlock;
1332 if (new == NULL) {
1333 spin_unlock(&oi->ip_lock);
1334 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1335 GFP_NOFS);
1336 if (new == NULL) {
1337 ret = -ENOMEM;
1338 goto out;
1340 goto retry;
1342 /* This direct write will doing zero. */
1343 new->ue_cpos = desc->c_cpos;
1344 new->ue_phys = desc->c_phys;
1345 desc->c_clear_unwritten = 0;
1346 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1347 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1348 wc->w_unwritten_count++;
1349 new = NULL;
1350 unlock:
1351 spin_unlock(&oi->ip_lock);
1352 out:
1353 kfree(new);
1354 return ret;
1358 * Populate each single-cluster write descriptor in the write context
1359 * with information about the i/o to be done.
1361 * Returns the number of clusters that will have to be allocated, as
1362 * well as a worst case estimate of the number of extent records that
1363 * would have to be created during a write to an unwritten region.
1365 static int ocfs2_populate_write_desc(struct inode *inode,
1366 struct ocfs2_write_ctxt *wc,
1367 unsigned int *clusters_to_alloc,
1368 unsigned int *extents_to_split)
1370 int ret;
1371 struct ocfs2_write_cluster_desc *desc;
1372 unsigned int num_clusters = 0;
1373 unsigned int ext_flags = 0;
1374 u32 phys = 0;
1375 int i;
1377 *clusters_to_alloc = 0;
1378 *extents_to_split = 0;
1380 for (i = 0; i < wc->w_clen; i++) {
1381 desc = &wc->w_desc[i];
1382 desc->c_cpos = wc->w_cpos + i;
1384 if (num_clusters == 0) {
1386 * Need to look up the next extent record.
1388 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1389 &num_clusters, &ext_flags);
1390 if (ret) {
1391 mlog_errno(ret);
1392 goto out;
1395 /* We should already CoW the refcountd extent. */
1396 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1399 * Assume worst case - that we're writing in
1400 * the middle of the extent.
1402 * We can assume that the write proceeds from
1403 * left to right, in which case the extent
1404 * insert code is smart enough to coalesce the
1405 * next splits into the previous records created.
1407 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1408 *extents_to_split = *extents_to_split + 2;
1409 } else if (phys) {
1411 * Only increment phys if it doesn't describe
1412 * a hole.
1414 phys++;
1418 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1419 * file that got extended. w_first_new_cpos tells us
1420 * where the newly allocated clusters are so we can
1421 * zero them.
1423 if (desc->c_cpos >= wc->w_first_new_cpos) {
1424 BUG_ON(phys == 0);
1425 desc->c_needs_zero = 1;
1428 desc->c_phys = phys;
1429 if (phys == 0) {
1430 desc->c_new = 1;
1431 desc->c_needs_zero = 1;
1432 desc->c_clear_unwritten = 1;
1433 *clusters_to_alloc = *clusters_to_alloc + 1;
1436 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1437 desc->c_clear_unwritten = 1;
1438 desc->c_needs_zero = 1;
1441 ret = ocfs2_unwritten_check(inode, wc, desc);
1442 if (ret) {
1443 mlog_errno(ret);
1444 goto out;
1447 num_clusters--;
1450 ret = 0;
1451 out:
1452 return ret;
1455 static int ocfs2_write_begin_inline(struct address_space *mapping,
1456 struct inode *inode,
1457 struct ocfs2_write_ctxt *wc)
1459 int ret;
1460 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1461 struct folio *folio;
1462 handle_t *handle;
1463 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1465 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1466 if (IS_ERR(handle)) {
1467 ret = PTR_ERR(handle);
1468 mlog_errno(ret);
1469 goto out;
1472 folio = __filemap_get_folio(mapping, 0,
1473 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_NOFS);
1474 if (IS_ERR(folio)) {
1475 ocfs2_commit_trans(osb, handle);
1476 ret = PTR_ERR(folio);
1477 mlog_errno(ret);
1478 goto out;
1481 * If we don't set w_num_folios then this folio won't get unlocked
1482 * and freed on cleanup of the write context.
1484 wc->w_target_folio = folio;
1485 wc->w_folios[0] = folio;
1486 wc->w_num_folios = 1;
1488 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1489 OCFS2_JOURNAL_ACCESS_WRITE);
1490 if (ret) {
1491 ocfs2_commit_trans(osb, handle);
1493 mlog_errno(ret);
1494 goto out;
1497 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1498 ocfs2_set_inode_data_inline(inode, di);
1500 if (!folio_test_uptodate(folio)) {
1501 ret = ocfs2_read_inline_data(inode, folio, wc->w_di_bh);
1502 if (ret) {
1503 ocfs2_commit_trans(osb, handle);
1505 goto out;
1509 wc->w_handle = handle;
1510 out:
1511 return ret;
1514 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1516 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1518 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1519 return 1;
1520 return 0;
1523 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1524 struct inode *inode, loff_t pos, size_t len,
1525 struct folio *mmap_folio, struct ocfs2_write_ctxt *wc)
1527 int ret, written = 0;
1528 loff_t end = pos + len;
1529 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1530 struct ocfs2_dinode *di = NULL;
1532 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1533 len, (unsigned long long)pos,
1534 oi->ip_dyn_features);
1537 * Handle inodes which already have inline data 1st.
1539 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1540 if (mmap_folio == NULL &&
1541 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1542 goto do_inline_write;
1545 * The write won't fit - we have to give this inode an
1546 * inline extent list now.
1548 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1549 if (ret)
1550 mlog_errno(ret);
1551 goto out;
1555 * Check whether the inode can accept inline data.
1557 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1558 return 0;
1561 * Check whether the write can fit.
1563 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1564 if (mmap_folio ||
1565 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1566 return 0;
1568 do_inline_write:
1569 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1570 if (ret) {
1571 mlog_errno(ret);
1572 goto out;
1576 * This signals to the caller that the data can be written
1577 * inline.
1579 written = 1;
1580 out:
1581 return written ? written : ret;
1585 * This function only does anything for file systems which can't
1586 * handle sparse files.
1588 * What we want to do here is fill in any hole between the current end
1589 * of allocation and the end of our write. That way the rest of the
1590 * write path can treat it as an non-allocating write, which has no
1591 * special case code for sparse/nonsparse files.
1593 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1594 struct buffer_head *di_bh,
1595 loff_t pos, unsigned len,
1596 struct ocfs2_write_ctxt *wc)
1598 int ret;
1599 loff_t newsize = pos + len;
1601 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1603 if (newsize <= i_size_read(inode))
1604 return 0;
1606 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1607 if (ret)
1608 mlog_errno(ret);
1610 /* There is no wc if this is call from direct. */
1611 if (wc)
1612 wc->w_first_new_cpos =
1613 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1615 return ret;
1618 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1619 loff_t pos)
1621 int ret = 0;
1623 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1624 if (pos > i_size_read(inode))
1625 ret = ocfs2_zero_extend(inode, di_bh, pos);
1627 return ret;
1630 int ocfs2_write_begin_nolock(struct address_space *mapping,
1631 loff_t pos, unsigned len, ocfs2_write_type_t type,
1632 struct folio **foliop, void **fsdata,
1633 struct buffer_head *di_bh, struct folio *mmap_folio)
1635 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1636 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1637 struct ocfs2_write_ctxt *wc;
1638 struct inode *inode = mapping->host;
1639 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1640 struct ocfs2_dinode *di;
1641 struct ocfs2_alloc_context *data_ac = NULL;
1642 struct ocfs2_alloc_context *meta_ac = NULL;
1643 handle_t *handle;
1644 struct ocfs2_extent_tree et;
1645 int try_free = 1, ret1;
1647 try_again:
1648 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1649 if (ret) {
1650 mlog_errno(ret);
1651 return ret;
1654 if (ocfs2_supports_inline_data(osb)) {
1655 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1656 mmap_folio, wc);
1657 if (ret == 1) {
1658 ret = 0;
1659 goto success;
1661 if (ret < 0) {
1662 mlog_errno(ret);
1663 goto out;
1667 /* Direct io change i_size late, should not zero tail here. */
1668 if (type != OCFS2_WRITE_DIRECT) {
1669 if (ocfs2_sparse_alloc(osb))
1670 ret = ocfs2_zero_tail(inode, di_bh, pos);
1671 else
1672 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1673 len, wc);
1674 if (ret) {
1675 mlog_errno(ret);
1676 goto out;
1680 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1681 if (ret < 0) {
1682 mlog_errno(ret);
1683 goto out;
1684 } else if (ret == 1) {
1685 clusters_need = wc->w_clen;
1686 ret = ocfs2_refcount_cow(inode, di_bh,
1687 wc->w_cpos, wc->w_clen, UINT_MAX);
1688 if (ret) {
1689 mlog_errno(ret);
1690 goto out;
1694 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1695 &extents_to_split);
1696 if (ret) {
1697 mlog_errno(ret);
1698 goto out;
1700 clusters_need += clusters_to_alloc;
1702 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1704 trace_ocfs2_write_begin_nolock(
1705 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1706 (long long)i_size_read(inode),
1707 le32_to_cpu(di->i_clusters),
1708 pos, len, type, mmap_folio,
1709 clusters_to_alloc, extents_to_split);
1712 * We set w_target_from, w_target_to here so that
1713 * ocfs2_write_end() knows which range in the target page to
1714 * write out. An allocation requires that we write the entire
1715 * cluster range.
1717 if (clusters_to_alloc || extents_to_split) {
1719 * XXX: We are stretching the limits of
1720 * ocfs2_lock_allocators(). It greatly over-estimates
1721 * the work to be done.
1723 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1724 wc->w_di_bh);
1725 ret = ocfs2_lock_allocators(inode, &et,
1726 clusters_to_alloc, extents_to_split,
1727 &data_ac, &meta_ac);
1728 if (ret) {
1729 mlog_errno(ret);
1730 goto out;
1733 if (data_ac)
1734 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1736 credits = ocfs2_calc_extend_credits(inode->i_sb,
1737 &di->id2.i_list);
1738 } else if (type == OCFS2_WRITE_DIRECT)
1739 /* direct write needs not to start trans if no extents alloc. */
1740 goto success;
1743 * We have to zero sparse allocated clusters, unwritten extent clusters,
1744 * and non-sparse clusters we just extended. For non-sparse writes,
1745 * we know zeros will only be needed in the first and/or last cluster.
1747 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1748 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1749 cluster_of_pages = 1;
1750 else
1751 cluster_of_pages = 0;
1753 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1755 handle = ocfs2_start_trans(osb, credits);
1756 if (IS_ERR(handle)) {
1757 ret = PTR_ERR(handle);
1758 mlog_errno(ret);
1759 goto out;
1762 wc->w_handle = handle;
1764 if (clusters_to_alloc) {
1765 ret = dquot_alloc_space_nodirty(inode,
1766 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1767 if (ret)
1768 goto out_commit;
1771 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1772 OCFS2_JOURNAL_ACCESS_WRITE);
1773 if (ret) {
1774 mlog_errno(ret);
1775 goto out_quota;
1779 * Fill our folio array first. That way we've grabbed enough so
1780 * that we can zero and flush if we error after adding the
1781 * extent.
1783 ret = ocfs2_grab_folios_for_write(mapping, wc, wc->w_cpos, pos, len,
1784 cluster_of_pages, mmap_folio);
1785 if (ret) {
1787 * ocfs2_grab_folios_for_write() returns -EAGAIN if it
1788 * could not lock the target folio. In this case, we exit
1789 * with no error and no target folio. This will trigger
1790 * the caller, page_mkwrite(), to re-try the operation.
1792 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1793 BUG_ON(wc->w_target_folio);
1794 ret = 0;
1795 goto out_quota;
1798 mlog_errno(ret);
1799 goto out_quota;
1802 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1803 len);
1804 if (ret) {
1805 mlog_errno(ret);
1806 goto out_quota;
1809 if (data_ac)
1810 ocfs2_free_alloc_context(data_ac);
1811 if (meta_ac)
1812 ocfs2_free_alloc_context(meta_ac);
1814 success:
1815 if (foliop)
1816 *foliop = wc->w_target_folio;
1817 *fsdata = wc;
1818 return 0;
1819 out_quota:
1820 if (clusters_to_alloc)
1821 dquot_free_space(inode,
1822 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1823 out_commit:
1824 ocfs2_commit_trans(osb, handle);
1826 out:
1828 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1829 * even in case of error here like ENOSPC and ENOMEM. So, we need
1830 * to unlock the target page manually to prevent deadlocks when
1831 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1832 * to VM code.
1834 if (wc->w_target_locked)
1835 folio_unlock(mmap_folio);
1837 ocfs2_free_write_ctxt(inode, wc);
1839 if (data_ac) {
1840 ocfs2_free_alloc_context(data_ac);
1841 data_ac = NULL;
1843 if (meta_ac) {
1844 ocfs2_free_alloc_context(meta_ac);
1845 meta_ac = NULL;
1848 if (ret == -ENOSPC && try_free) {
1850 * Try to free some truncate log so that we can have enough
1851 * clusters to allocate.
1853 try_free = 0;
1855 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1856 if (ret1 == 1)
1857 goto try_again;
1859 if (ret1 < 0)
1860 mlog_errno(ret1);
1863 return ret;
1866 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1867 loff_t pos, unsigned len,
1868 struct folio **foliop, void **fsdata)
1870 int ret;
1871 struct buffer_head *di_bh = NULL;
1872 struct inode *inode = mapping->host;
1874 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1875 if (ret) {
1876 mlog_errno(ret);
1877 return ret;
1881 * Take alloc sem here to prevent concurrent lookups. That way
1882 * the mapping, zeroing and tree manipulation within
1883 * ocfs2_write() will be safe against ->read_folio(). This
1884 * should also serve to lock out allocation from a shared
1885 * writeable region.
1887 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1889 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1890 foliop, fsdata, di_bh, NULL);
1891 if (ret) {
1892 mlog_errno(ret);
1893 goto out_fail;
1896 brelse(di_bh);
1898 return 0;
1900 out_fail:
1901 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1903 brelse(di_bh);
1904 ocfs2_inode_unlock(inode, 1);
1906 return ret;
1909 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1910 unsigned len, unsigned *copied,
1911 struct ocfs2_dinode *di,
1912 struct ocfs2_write_ctxt *wc)
1914 if (unlikely(*copied < len)) {
1915 if (!folio_test_uptodate(wc->w_target_folio)) {
1916 *copied = 0;
1917 return;
1921 memcpy_from_folio(di->id2.i_data.id_data + pos, wc->w_target_folio,
1922 pos, *copied);
1924 trace_ocfs2_write_end_inline(
1925 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1926 (unsigned long long)pos, *copied,
1927 le16_to_cpu(di->id2.i_data.id_count),
1928 le16_to_cpu(di->i_dyn_features));
1931 int ocfs2_write_end_nolock(struct address_space *mapping, loff_t pos,
1932 unsigned len, unsigned copied, void *fsdata)
1934 int i, ret;
1935 size_t from, to, start = pos & (PAGE_SIZE - 1);
1936 struct inode *inode = mapping->host;
1937 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1938 struct ocfs2_write_ctxt *wc = fsdata;
1939 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1940 handle_t *handle = wc->w_handle;
1942 BUG_ON(!list_empty(&wc->w_unwritten_list));
1944 if (handle) {
1945 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1946 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1947 if (ret) {
1948 copied = ret;
1949 mlog_errno(ret);
1950 goto out;
1954 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1955 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1956 goto out_write_size;
1959 if (unlikely(copied < len) && wc->w_target_folio) {
1960 loff_t new_isize;
1962 if (!folio_test_uptodate(wc->w_target_folio))
1963 copied = 0;
1965 new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1966 if (new_isize > folio_pos(wc->w_target_folio))
1967 ocfs2_zero_new_buffers(wc->w_target_folio, start+copied,
1968 start+len);
1969 else {
1971 * When folio is fully beyond new isize (data copy
1972 * failed), do not bother zeroing the folio. Invalidate
1973 * it instead so that writeback does not get confused
1974 * put page & buffer dirty bits into inconsistent
1975 * state.
1977 block_invalidate_folio(wc->w_target_folio, 0,
1978 folio_size(wc->w_target_folio));
1981 if (wc->w_target_folio)
1982 flush_dcache_folio(wc->w_target_folio);
1984 for (i = 0; i < wc->w_num_folios; i++) {
1985 struct folio *folio = wc->w_folios[i];
1987 /* This is the direct io target folio */
1988 if (folio == NULL)
1989 continue;
1991 if (folio == wc->w_target_folio) {
1992 from = wc->w_target_from;
1993 to = wc->w_target_to;
1995 BUG_ON(from > folio_size(folio) ||
1996 to > folio_size(folio) ||
1997 to < from);
1998 } else {
2000 * Pages adjacent to the target (if any) imply
2001 * a hole-filling write in which case we want
2002 * to flush their entire range.
2004 from = 0;
2005 to = folio_size(folio);
2008 if (folio_buffers(folio)) {
2009 if (handle && ocfs2_should_order_data(inode)) {
2010 loff_t start_byte = folio_pos(folio) + from;
2011 loff_t length = to - from;
2012 ocfs2_jbd2_inode_add_write(handle, inode,
2013 start_byte, length);
2015 block_commit_write(&folio->page, from, to);
2019 out_write_size:
2020 /* Direct io do not update i_size here. */
2021 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2022 pos += copied;
2023 if (pos > i_size_read(inode)) {
2024 i_size_write(inode, pos);
2025 mark_inode_dirty(inode);
2027 inode->i_blocks = ocfs2_inode_sector_count(inode);
2028 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2029 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2030 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2031 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2032 if (handle)
2033 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2035 if (handle)
2036 ocfs2_journal_dirty(handle, wc->w_di_bh);
2038 out:
2039 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2040 * lock, or it will cause a deadlock since journal commit threads holds
2041 * this lock and will ask for the page lock when flushing the data.
2042 * put it here to preserve the unlock order.
2044 ocfs2_unlock_folios(wc);
2046 if (handle)
2047 ocfs2_commit_trans(osb, handle);
2049 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2051 brelse(wc->w_di_bh);
2052 kfree(wc);
2054 return copied;
2057 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2058 loff_t pos, unsigned len, unsigned copied,
2059 struct folio *folio, void *fsdata)
2061 int ret;
2062 struct inode *inode = mapping->host;
2064 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2066 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2067 ocfs2_inode_unlock(inode, 1);
2069 return ret;
2072 struct ocfs2_dio_write_ctxt {
2073 struct list_head dw_zero_list;
2074 unsigned dw_zero_count;
2075 int dw_orphaned;
2076 pid_t dw_writer_pid;
2079 static struct ocfs2_dio_write_ctxt *
2080 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2082 struct ocfs2_dio_write_ctxt *dwc = NULL;
2084 if (bh->b_private)
2085 return bh->b_private;
2087 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2088 if (dwc == NULL)
2089 return NULL;
2090 INIT_LIST_HEAD(&dwc->dw_zero_list);
2091 dwc->dw_zero_count = 0;
2092 dwc->dw_orphaned = 0;
2093 dwc->dw_writer_pid = task_pid_nr(current);
2094 bh->b_private = dwc;
2095 *alloc = 1;
2097 return dwc;
2100 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2101 struct ocfs2_dio_write_ctxt *dwc)
2103 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2104 kfree(dwc);
2108 * TODO: Make this into a generic get_blocks function.
2110 * From do_direct_io in direct-io.c:
2111 * "So what we do is to permit the ->get_blocks function to populate
2112 * bh.b_size with the size of IO which is permitted at this offset and
2113 * this i_blkbits."
2115 * This function is called directly from get_more_blocks in direct-io.c.
2117 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2118 * fs_count, map_bh, dio->rw == WRITE);
2120 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2121 struct buffer_head *bh_result, int create)
2123 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2124 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2125 struct ocfs2_write_ctxt *wc;
2126 struct ocfs2_write_cluster_desc *desc = NULL;
2127 struct ocfs2_dio_write_ctxt *dwc = NULL;
2128 struct buffer_head *di_bh = NULL;
2129 u64 p_blkno;
2130 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2131 loff_t pos = iblock << i_blkbits;
2132 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2133 unsigned len, total_len = bh_result->b_size;
2134 int ret = 0, first_get_block = 0;
2136 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2137 len = min(total_len, len);
2140 * bh_result->b_size is count in get_more_blocks according to write
2141 * "pos" and "end", we need map twice to return different buffer state:
2142 * 1. area in file size, not set NEW;
2143 * 2. area out file size, set NEW.
2145 * iblock endblk
2146 * |--------|---------|---------|---------
2147 * |<-------area in file------->|
2150 if ((iblock <= endblk) &&
2151 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2152 len = (endblk - iblock + 1) << i_blkbits;
2154 mlog(0, "get block of %lu at %llu:%u req %u\n",
2155 inode->i_ino, pos, len, total_len);
2158 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2159 * we may need to add it to orphan dir. So can not fall to fast path
2160 * while file size will be changed.
2162 if (pos + total_len <= i_size_read(inode)) {
2164 /* This is the fast path for re-write. */
2165 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2166 if (buffer_mapped(bh_result) &&
2167 !buffer_new(bh_result) &&
2168 ret == 0)
2169 goto out;
2171 /* Clear state set by ocfs2_get_block. */
2172 bh_result->b_state = 0;
2175 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2176 if (unlikely(dwc == NULL)) {
2177 ret = -ENOMEM;
2178 mlog_errno(ret);
2179 goto out;
2182 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2183 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2184 !dwc->dw_orphaned) {
2186 * when we are going to alloc extents beyond file size, add the
2187 * inode to orphan dir, so we can recall those spaces when
2188 * system crashed during write.
2190 ret = ocfs2_add_inode_to_orphan(osb, inode);
2191 if (ret < 0) {
2192 mlog_errno(ret);
2193 goto out;
2195 dwc->dw_orphaned = 1;
2198 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2199 if (ret) {
2200 mlog_errno(ret);
2201 goto out;
2204 down_write(&oi->ip_alloc_sem);
2206 if (first_get_block) {
2207 if (ocfs2_sparse_alloc(osb))
2208 ret = ocfs2_zero_tail(inode, di_bh, pos);
2209 else
2210 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2211 total_len, NULL);
2212 if (ret < 0) {
2213 mlog_errno(ret);
2214 goto unlock;
2218 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2219 OCFS2_WRITE_DIRECT, NULL,
2220 (void **)&wc, di_bh, NULL);
2221 if (ret) {
2222 mlog_errno(ret);
2223 goto unlock;
2226 desc = &wc->w_desc[0];
2228 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2229 BUG_ON(p_blkno == 0);
2230 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2232 map_bh(bh_result, inode->i_sb, p_blkno);
2233 bh_result->b_size = len;
2234 if (desc->c_needs_zero)
2235 set_buffer_new(bh_result);
2237 if (iblock > endblk)
2238 set_buffer_new(bh_result);
2240 /* May sleep in end_io. It should not happen in a irq context. So defer
2241 * it to dio work queue. */
2242 set_buffer_defer_completion(bh_result);
2244 if (!list_empty(&wc->w_unwritten_list)) {
2245 struct ocfs2_unwritten_extent *ue = NULL;
2247 ue = list_first_entry(&wc->w_unwritten_list,
2248 struct ocfs2_unwritten_extent,
2249 ue_node);
2250 BUG_ON(ue->ue_cpos != desc->c_cpos);
2251 /* The physical address may be 0, fill it. */
2252 ue->ue_phys = desc->c_phys;
2254 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2255 dwc->dw_zero_count += wc->w_unwritten_count;
2258 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2259 BUG_ON(ret != len);
2260 ret = 0;
2261 unlock:
2262 up_write(&oi->ip_alloc_sem);
2263 ocfs2_inode_unlock(inode, 1);
2264 brelse(di_bh);
2265 out:
2266 return ret;
2269 static int ocfs2_dio_end_io_write(struct inode *inode,
2270 struct ocfs2_dio_write_ctxt *dwc,
2271 loff_t offset,
2272 ssize_t bytes)
2274 struct ocfs2_cached_dealloc_ctxt dealloc;
2275 struct ocfs2_extent_tree et;
2276 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2278 struct ocfs2_unwritten_extent *ue = NULL;
2279 struct buffer_head *di_bh = NULL;
2280 struct ocfs2_dinode *di;
2281 struct ocfs2_alloc_context *data_ac = NULL;
2282 struct ocfs2_alloc_context *meta_ac = NULL;
2283 handle_t *handle = NULL;
2284 loff_t end = offset + bytes;
2285 int ret = 0, credits = 0;
2287 ocfs2_init_dealloc_ctxt(&dealloc);
2289 /* We do clear unwritten, delete orphan, change i_size here. If neither
2290 * of these happen, we can skip all this. */
2291 if (list_empty(&dwc->dw_zero_list) &&
2292 end <= i_size_read(inode) &&
2293 !dwc->dw_orphaned)
2294 goto out;
2296 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2297 if (ret < 0) {
2298 mlog_errno(ret);
2299 goto out;
2302 down_write(&oi->ip_alloc_sem);
2304 /* Delete orphan before acquire i_rwsem. */
2305 if (dwc->dw_orphaned) {
2306 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2308 end = end > i_size_read(inode) ? end : 0;
2310 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2311 !!end, end);
2312 if (ret < 0)
2313 mlog_errno(ret);
2316 di = (struct ocfs2_dinode *)di_bh->b_data;
2318 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2320 /* Attach dealloc with extent tree in case that we may reuse extents
2321 * which are already unlinked from current extent tree due to extent
2322 * rotation and merging.
2324 et.et_dealloc = &dealloc;
2326 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2327 &data_ac, &meta_ac);
2328 if (ret) {
2329 mlog_errno(ret);
2330 goto unlock;
2333 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2335 handle = ocfs2_start_trans(osb, credits);
2336 if (IS_ERR(handle)) {
2337 ret = PTR_ERR(handle);
2338 mlog_errno(ret);
2339 goto unlock;
2341 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2342 OCFS2_JOURNAL_ACCESS_WRITE);
2343 if (ret) {
2344 mlog_errno(ret);
2345 goto commit;
2348 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2349 ret = ocfs2_assure_trans_credits(handle, credits);
2350 if (ret < 0) {
2351 mlog_errno(ret);
2352 break;
2354 ret = ocfs2_mark_extent_written(inode, &et, handle,
2355 ue->ue_cpos, 1,
2356 ue->ue_phys,
2357 meta_ac, &dealloc);
2358 if (ret < 0) {
2359 mlog_errno(ret);
2360 break;
2364 if (end > i_size_read(inode)) {
2365 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2366 if (ret < 0)
2367 mlog_errno(ret);
2369 commit:
2370 ocfs2_commit_trans(osb, handle);
2371 unlock:
2372 up_write(&oi->ip_alloc_sem);
2373 ocfs2_inode_unlock(inode, 1);
2374 brelse(di_bh);
2375 out:
2376 if (data_ac)
2377 ocfs2_free_alloc_context(data_ac);
2378 if (meta_ac)
2379 ocfs2_free_alloc_context(meta_ac);
2380 ocfs2_run_deallocs(osb, &dealloc);
2381 ocfs2_dio_free_write_ctx(inode, dwc);
2383 return ret;
2387 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2388 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2389 * to protect io on one node from truncation on another.
2391 static int ocfs2_dio_end_io(struct kiocb *iocb,
2392 loff_t offset,
2393 ssize_t bytes,
2394 void *private)
2396 struct inode *inode = file_inode(iocb->ki_filp);
2397 int level;
2398 int ret = 0;
2400 /* this io's submitter should not have unlocked this before we could */
2401 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2403 if (bytes <= 0)
2404 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2405 (long long)bytes);
2406 if (private) {
2407 if (bytes > 0)
2408 ret = ocfs2_dio_end_io_write(inode, private, offset,
2409 bytes);
2410 else
2411 ocfs2_dio_free_write_ctx(inode, private);
2414 ocfs2_iocb_clear_rw_locked(iocb);
2416 level = ocfs2_iocb_rw_locked_level(iocb);
2417 ocfs2_rw_unlock(inode, level);
2418 return ret;
2421 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2423 struct file *file = iocb->ki_filp;
2424 struct inode *inode = file->f_mapping->host;
2425 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2426 get_block_t *get_block;
2429 * Fallback to buffered I/O if we see an inode without
2430 * extents.
2432 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2433 return 0;
2435 /* Fallback to buffered I/O if we do not support append dio. */
2436 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2437 !ocfs2_supports_append_dio(osb))
2438 return 0;
2440 if (iov_iter_rw(iter) == READ)
2441 get_block = ocfs2_lock_get_block;
2442 else
2443 get_block = ocfs2_dio_wr_get_block;
2445 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2446 iter, get_block,
2447 ocfs2_dio_end_io, 0);
2450 const struct address_space_operations ocfs2_aops = {
2451 .dirty_folio = block_dirty_folio,
2452 .read_folio = ocfs2_read_folio,
2453 .readahead = ocfs2_readahead,
2454 .writepages = ocfs2_writepages,
2455 .write_begin = ocfs2_write_begin,
2456 .write_end = ocfs2_write_end,
2457 .bmap = ocfs2_bmap,
2458 .direct_IO = ocfs2_direct_IO,
2459 .invalidate_folio = block_invalidate_folio,
2460 .release_folio = ocfs2_release_folio,
2461 .migrate_folio = buffer_migrate_folio,
2462 .is_partially_uptodate = block_is_partially_uptodate,
2463 .error_remove_folio = generic_error_remove_folio,