1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
18 #include <cluster/masklog.h>
25 #include "extent_map.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
35 #include "buffer_head_io.h"
40 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
41 struct buffer_head
*bh_result
, int create
)
45 struct ocfs2_dinode
*fe
= NULL
;
46 struct buffer_head
*bh
= NULL
;
47 struct buffer_head
*buffer_cache_bh
= NULL
;
48 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
53 (unsigned long long)iblock
, bh_result
, create
);
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
57 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
58 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock
);
63 status
= ocfs2_read_inode_block(inode
, &bh
);
68 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
70 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
71 le32_to_cpu(fe
->i_clusters
))) {
73 mlog(ML_ERROR
, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock
);
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
81 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
83 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
84 if (!buffer_cache_bh
) {
86 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh
)
95 && ocfs2_inode_is_new(inode
)) {
96 kaddr
= kmap_atomic(bh_result
->b_page
);
98 mlog(ML_ERROR
, "couldn't kmap!\n");
101 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
102 buffer_cache_bh
->b_data
,
104 kunmap_atomic(kaddr
);
105 set_buffer_uptodate(bh_result
);
107 brelse(buffer_cache_bh
);
110 map_bh(bh_result
, inode
->i_sb
,
111 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
121 static int ocfs2_lock_get_block(struct inode
*inode
, sector_t iblock
,
122 struct buffer_head
*bh_result
, int create
)
125 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
127 down_read(&oi
->ip_alloc_sem
);
128 ret
= ocfs2_get_block(inode
, iblock
, bh_result
, create
);
129 up_read(&oi
->ip_alloc_sem
);
134 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
135 struct buffer_head
*bh_result
, int create
)
138 unsigned int ext_flags
;
139 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
140 u64 p_blkno
, count
, past_eof
;
141 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
144 (unsigned long long)iblock
, bh_result
, create
);
146 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
147 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
148 inode
, inode
->i_ino
);
150 if (S_ISLNK(inode
->i_mode
)) {
151 /* this always does I/O for some reason. */
152 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
156 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
159 mlog(ML_ERROR
, "get_blocks() failed, inode: 0x%p, "
160 "block: %llu\n", inode
, (unsigned long long)iblock
);
164 if (max_blocks
< count
)
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows __block_write_begin() to zero.
173 * If we see this on a sparse file system, then a truncate has
174 * raced us and removed the cluster. In this case, we clear
175 * the buffers dirty and uptodate bits and let the buffer code
176 * ignore it as a hole.
178 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
179 clear_buffer_dirty(bh_result
);
180 clear_buffer_uptodate(bh_result
);
184 /* Treat the unwritten extent as a hole for zeroing purposes. */
185 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
186 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
188 bh_result
->b_size
= count
<< inode
->i_blkbits
;
190 if (!ocfs2_sparse_alloc(osb
)) {
194 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
195 (unsigned long long)iblock
,
196 (unsigned long long)p_blkno
,
197 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
198 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
204 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
206 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
207 (unsigned long long)past_eof
);
208 if (create
&& (iblock
>= past_eof
))
209 set_buffer_new(bh_result
);
218 int ocfs2_read_inline_data(struct inode
*inode
, struct folio
*folio
,
219 struct buffer_head
*di_bh
)
222 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
224 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
225 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag\n",
226 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
230 size
= i_size_read(inode
);
232 if (size
> folio_size(folio
) ||
233 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
234 ocfs2_error(inode
->i_sb
,
235 "Inode %llu has with inline data has bad size: %Lu\n",
236 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
237 (unsigned long long)size
);
241 folio_fill_tail(folio
, 0, di
->id2
.i_data
.id_data
, size
);
242 folio_mark_uptodate(folio
);
247 static int ocfs2_readpage_inline(struct inode
*inode
, struct folio
*folio
)
250 struct buffer_head
*di_bh
= NULL
;
252 BUG_ON(!folio_test_locked(folio
));
253 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
255 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
261 ret
= ocfs2_read_inline_data(inode
, folio
, di_bh
);
269 static int ocfs2_read_folio(struct file
*file
, struct folio
*folio
)
271 struct inode
*inode
= folio
->mapping
->host
;
272 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
273 loff_t start
= folio_pos(folio
);
276 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
, folio
->index
);
278 ret
= ocfs2_inode_lock_with_folio(inode
, NULL
, 0, folio
);
280 if (ret
== AOP_TRUNCATED_PAGE
)
286 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
288 * Unlock the folio and cycle ip_alloc_sem so that we don't
289 * busyloop waiting for ip_alloc_sem to unlock
291 ret
= AOP_TRUNCATED_PAGE
;
294 down_read(&oi
->ip_alloc_sem
);
295 up_read(&oi
->ip_alloc_sem
);
296 goto out_inode_unlock
;
300 * i_size might have just been updated as we grabbed the meta lock. We
301 * might now be discovering a truncate that hit on another node.
302 * block_read_full_folio->get_block freaks out if it is asked to read
303 * beyond the end of a file, so we check here. Callers
304 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
305 * and notice that the folio they just read isn't needed.
307 * XXX sys_readahead() seems to get that wrong?
309 if (start
>= i_size_read(inode
)) {
310 folio_zero_segment(folio
, 0, folio_size(folio
));
311 folio_mark_uptodate(folio
);
316 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
317 ret
= ocfs2_readpage_inline(inode
, folio
);
319 ret
= block_read_full_folio(folio
, ocfs2_get_block
);
323 up_read(&oi
->ip_alloc_sem
);
325 ocfs2_inode_unlock(inode
, 0);
333 * This is used only for read-ahead. Failures or difficult to handle
334 * situations are safe to ignore.
336 * Right now, we don't bother with BH_Boundary - in-inode extent lists
337 * are quite large (243 extents on 4k blocks), so most inodes don't
338 * grow out to a tree. If need be, detecting boundary extents could
339 * trivially be added in a future version of ocfs2_get_block().
341 static void ocfs2_readahead(struct readahead_control
*rac
)
344 struct inode
*inode
= rac
->mapping
->host
;
345 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
348 * Use the nonblocking flag for the dlm code to avoid page
349 * lock inversion, but don't bother with retrying.
351 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
355 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0)
359 * Don't bother with inline-data. There isn't anything
360 * to read-ahead in that case anyway...
362 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
366 * Check whether a remote node truncated this file - we just
367 * drop out in that case as it's not worth handling here.
369 if (readahead_pos(rac
) >= i_size_read(inode
))
372 mpage_readahead(rac
, ocfs2_get_block
);
375 up_read(&oi
->ip_alloc_sem
);
377 ocfs2_inode_unlock(inode
, 0);
380 /* Note: Because we don't support holes, our allocation has
381 * already happened (allocation writes zeros to the file data)
382 * so we don't have to worry about ordered writes in
385 * ->writepages is called during the process of invalidating the page cache
386 * during blocked lock processing. It can't block on any cluster locks
387 * to during block mapping. It's relying on the fact that the block
388 * mapping can't have disappeared under the dirty pages that it is
389 * being asked to write back.
391 static int ocfs2_writepages(struct address_space
*mapping
,
392 struct writeback_control
*wbc
)
394 return mpage_writepages(mapping
, wbc
, ocfs2_get_block
);
397 /* Taken from ext3. We don't necessarily need the full blown
398 * functionality yet, but IMHO it's better to cut and paste the whole
399 * thing so we can avoid introducing our own bugs (and easily pick up
400 * their fixes when they happen) --Mark */
401 int walk_page_buffers( handle_t
*handle
,
402 struct buffer_head
*head
,
406 int (*fn
)( handle_t
*handle
,
407 struct buffer_head
*bh
))
409 struct buffer_head
*bh
;
410 unsigned block_start
, block_end
;
411 unsigned blocksize
= head
->b_size
;
413 struct buffer_head
*next
;
415 for ( bh
= head
, block_start
= 0;
416 ret
== 0 && (bh
!= head
|| !block_start
);
417 block_start
= block_end
, bh
= next
)
419 next
= bh
->b_this_page
;
420 block_end
= block_start
+ blocksize
;
421 if (block_end
<= from
|| block_start
>= to
) {
422 if (partial
&& !buffer_uptodate(bh
))
426 err
= (*fn
)(handle
, bh
);
433 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
438 struct inode
*inode
= mapping
->host
;
440 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
441 (unsigned long long)block
);
444 * The swap code (ab-)uses ->bmap to get a block mapping and then
445 * bypasseѕ the file system for actual I/O. We really can't allow
446 * that on refcounted inodes, so we have to skip out here. And yes,
447 * 0 is the magic code for a bmap error..
449 if (ocfs2_is_refcount_inode(inode
))
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
455 if (!INODE_JOURNAL(inode
)) {
456 err
= ocfs2_inode_lock(inode
, NULL
, 0);
462 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
465 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
466 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
469 if (!INODE_JOURNAL(inode
)) {
470 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
471 ocfs2_inode_unlock(inode
, 0);
475 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block
);
482 status
= err
? 0 : p_blkno
;
487 static bool ocfs2_release_folio(struct folio
*folio
, gfp_t wait
)
489 if (!folio_buffers(folio
))
491 return try_to_free_buffers(folio
);
494 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
499 unsigned int cluster_start
= 0, cluster_end
= PAGE_SIZE
;
501 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
)) {
504 cpp
= 1 << (PAGE_SHIFT
- osb
->s_clustersize_bits
);
506 cluster_start
= cpos
% cpp
;
507 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
509 cluster_end
= cluster_start
+ osb
->s_clustersize
;
512 BUG_ON(cluster_start
> PAGE_SIZE
);
513 BUG_ON(cluster_end
> PAGE_SIZE
);
516 *start
= cluster_start
;
522 * 'from' and 'to' are the region in the page to avoid zeroing.
524 * If pagesize > clustersize, this function will avoid zeroing outside
525 * of the cluster boundary.
527 * from == to == 0 is code for "zero the entire cluster region"
529 static void ocfs2_clear_folio_regions(struct folio
*folio
,
530 struct ocfs2_super
*osb
, u32 cpos
,
531 unsigned from
, unsigned to
)
534 unsigned int cluster_start
, cluster_end
;
536 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
538 kaddr
= kmap_local_folio(folio
, 0);
541 if (from
> cluster_start
)
542 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
543 if (to
< cluster_end
)
544 memset(kaddr
+ to
, 0, cluster_end
- to
);
546 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
553 * Nonsparse file systems fully allocate before we get to the write
554 * code. This prevents ocfs2_write() from tagging the write as an
555 * allocating one, which means ocfs2_map_folio_blocks() might try to
556 * read-in the blocks at the tail of our file. Avoid reading them by
557 * testing i_size against each block offset.
559 static int ocfs2_should_read_blk(struct inode
*inode
, struct folio
*folio
,
560 unsigned int block_start
)
562 u64 offset
= folio_pos(folio
) + block_start
;
564 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
567 if (i_size_read(inode
) > offset
)
574 * Some of this taken from __block_write_begin(). We already have our
575 * mapping by now though, and the entire write will be allocating or
576 * it won't, so not much need to use BH_New.
578 * This will also skip zeroing, which is handled externally.
580 int ocfs2_map_folio_blocks(struct folio
*folio
, u64
*p_blkno
,
581 struct inode
*inode
, unsigned int from
,
582 unsigned int to
, int new)
585 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
586 unsigned int block_end
, block_start
;
587 unsigned int bsize
= i_blocksize(inode
);
589 head
= folio_buffers(folio
);
591 head
= create_empty_buffers(folio
, bsize
, 0);
593 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
594 bh
= bh
->b_this_page
, block_start
+= bsize
) {
595 block_end
= block_start
+ bsize
;
597 clear_buffer_new(bh
);
600 * Ignore blocks outside of our i/o range -
601 * they may belong to unallocated clusters.
603 if (block_start
>= to
|| block_end
<= from
) {
604 if (folio_test_uptodate(folio
))
605 set_buffer_uptodate(bh
);
610 * For an allocating write with cluster size >= page
611 * size, we always write the entire page.
616 if (!buffer_mapped(bh
)) {
617 map_bh(bh
, inode
->i_sb
, *p_blkno
);
618 clean_bdev_bh_alias(bh
);
621 if (folio_test_uptodate(folio
)) {
622 set_buffer_uptodate(bh
);
623 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
625 ocfs2_should_read_blk(inode
, folio
, block_start
) &&
626 (block_start
< from
|| block_end
> to
)) {
627 bh_read_nowait(bh
, 0);
631 *p_blkno
= *p_blkno
+ 1;
635 * If we issued read requests - let them complete.
637 while(wait_bh
> wait
) {
638 wait_on_buffer(*--wait_bh
);
639 if (!buffer_uptodate(*wait_bh
))
643 if (ret
== 0 || !new)
647 * If we get -EIO above, zero out any newly allocated blocks
648 * to avoid exposing stale data.
653 block_end
= block_start
+ bsize
;
654 if (block_end
<= from
)
656 if (block_start
>= to
)
659 folio_zero_range(folio
, block_start
, bh
->b_size
);
660 set_buffer_uptodate(bh
);
661 mark_buffer_dirty(bh
);
664 block_start
= block_end
;
665 bh
= bh
->b_this_page
;
666 } while (bh
!= head
);
671 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
672 #define OCFS2_MAX_CTXT_PAGES 1
674 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
677 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
679 struct ocfs2_unwritten_extent
{
680 struct list_head ue_node
;
681 struct list_head ue_ip_node
;
687 * Describe the state of a single cluster to be written to.
689 struct ocfs2_write_cluster_desc
{
693 * Give this a unique field because c_phys eventually gets
697 unsigned c_clear_unwritten
;
698 unsigned c_needs_zero
;
701 struct ocfs2_write_ctxt
{
702 /* Logical cluster position / len of write */
706 /* First cluster allocated in a nonsparse extend */
707 u32 w_first_new_cpos
;
709 /* Type of caller. Must be one of buffer, mmap, direct. */
710 ocfs2_write_type_t w_type
;
712 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
715 * This is true if page_size > cluster_size.
717 * It triggers a set of special cases during write which might
718 * have to deal with allocating writes to partial pages.
720 unsigned int w_large_pages
;
723 * Folios involved in this write.
725 * w_target_folio is the folio being written to by the user.
727 * w_folios is an array of folios which always contains
728 * w_target_folio, and in the case of an allocating write with
729 * page_size < cluster size, it will contain zero'd and mapped
730 * pages adjacent to w_target_folio which need to be written
731 * out in so that future reads from that region will get
734 unsigned int w_num_folios
;
735 struct folio
*w_folios
[OCFS2_MAX_CTXT_PAGES
];
736 struct folio
*w_target_folio
;
739 * w_target_locked is used for page_mkwrite path indicating no unlocking
740 * against w_target_folio in ocfs2_write_end_nolock.
742 unsigned int w_target_locked
:1;
745 * ocfs2_write_end() uses this to know what the real range to
746 * write in the target should be.
748 unsigned int w_target_from
;
749 unsigned int w_target_to
;
752 * We could use journal_current_handle() but this is cleaner,
757 struct buffer_head
*w_di_bh
;
759 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
761 struct list_head w_unwritten_list
;
762 unsigned int w_unwritten_count
;
765 void ocfs2_unlock_and_free_folios(struct folio
**folios
, int num_folios
)
769 for(i
= 0; i
< num_folios
; i
++) {
772 folio_unlock(folios
[i
]);
773 folio_mark_accessed(folios
[i
]);
774 folio_put(folios
[i
]);
778 static void ocfs2_unlock_folios(struct ocfs2_write_ctxt
*wc
)
783 * w_target_locked is only set to true in the page_mkwrite() case.
784 * The intent is to allow us to lock the target page from write_begin()
785 * to write_end(). The caller must hold a ref on w_target_folio.
787 if (wc
->w_target_locked
) {
788 BUG_ON(!wc
->w_target_folio
);
789 for (i
= 0; i
< wc
->w_num_folios
; i
++) {
790 if (wc
->w_target_folio
== wc
->w_folios
[i
]) {
791 wc
->w_folios
[i
] = NULL
;
795 folio_mark_accessed(wc
->w_target_folio
);
796 folio_put(wc
->w_target_folio
);
798 ocfs2_unlock_and_free_folios(wc
->w_folios
, wc
->w_num_folios
);
801 static void ocfs2_free_unwritten_list(struct inode
*inode
,
802 struct list_head
*head
)
804 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
805 struct ocfs2_unwritten_extent
*ue
= NULL
, *tmp
= NULL
;
807 list_for_each_entry_safe(ue
, tmp
, head
, ue_node
) {
808 list_del(&ue
->ue_node
);
809 spin_lock(&oi
->ip_lock
);
810 list_del(&ue
->ue_ip_node
);
811 spin_unlock(&oi
->ip_lock
);
816 static void ocfs2_free_write_ctxt(struct inode
*inode
,
817 struct ocfs2_write_ctxt
*wc
)
819 ocfs2_free_unwritten_list(inode
, &wc
->w_unwritten_list
);
820 ocfs2_unlock_folios(wc
);
825 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
826 struct ocfs2_super
*osb
, loff_t pos
,
827 unsigned len
, ocfs2_write_type_t type
,
828 struct buffer_head
*di_bh
)
831 struct ocfs2_write_ctxt
*wc
;
833 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
837 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
838 wc
->w_first_new_cpos
= UINT_MAX
;
839 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
840 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
845 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
))
846 wc
->w_large_pages
= 1;
848 wc
->w_large_pages
= 0;
850 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
851 INIT_LIST_HEAD(&wc
->w_unwritten_list
);
859 * If a page has any new buffers, zero them out here, and mark them uptodate
860 * and dirty so they'll be written out (in order to prevent uninitialised
861 * block data from leaking). And clear the new bit.
863 static void ocfs2_zero_new_buffers(struct folio
*folio
, size_t from
, size_t to
)
865 unsigned int block_start
, block_end
;
866 struct buffer_head
*head
, *bh
;
868 BUG_ON(!folio_test_locked(folio
));
869 head
= folio_buffers(folio
);
876 block_end
= block_start
+ bh
->b_size
;
878 if (buffer_new(bh
)) {
879 if (block_end
> from
&& block_start
< to
) {
880 if (!folio_test_uptodate(folio
)) {
883 start
= max(from
, block_start
);
884 end
= min(to
, block_end
);
886 folio_zero_segment(folio
, start
, end
);
887 set_buffer_uptodate(bh
);
890 clear_buffer_new(bh
);
891 mark_buffer_dirty(bh
);
895 block_start
= block_end
;
896 bh
= bh
->b_this_page
;
897 } while (bh
!= head
);
901 * Only called when we have a failure during allocating write to write
902 * zero's to the newly allocated region.
904 static void ocfs2_write_failure(struct inode
*inode
,
905 struct ocfs2_write_ctxt
*wc
,
906 loff_t user_pos
, unsigned user_len
)
909 unsigned from
= user_pos
& (PAGE_SIZE
- 1),
910 to
= user_pos
+ user_len
;
912 if (wc
->w_target_folio
)
913 ocfs2_zero_new_buffers(wc
->w_target_folio
, from
, to
);
915 for (i
= 0; i
< wc
->w_num_folios
; i
++) {
916 struct folio
*folio
= wc
->w_folios
[i
];
918 if (folio
&& folio_buffers(folio
)) {
919 if (ocfs2_should_order_data(inode
))
920 ocfs2_jbd2_inode_add_write(wc
->w_handle
, inode
,
923 block_commit_write(&folio
->page
, from
, to
);
928 static int ocfs2_prepare_folio_for_write(struct inode
*inode
, u64
*p_blkno
,
929 struct ocfs2_write_ctxt
*wc
, struct folio
*folio
, u32 cpos
,
930 loff_t user_pos
, unsigned user_len
, int new)
933 unsigned int map_from
= 0, map_to
= 0;
934 unsigned int cluster_start
, cluster_end
;
935 unsigned int user_data_from
= 0, user_data_to
= 0;
937 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
938 &cluster_start
, &cluster_end
);
940 /* treat the write as new if the a hole/lseek spanned across
943 new = new | ((i_size_read(inode
) <= folio_pos(folio
)) &&
944 (folio_pos(folio
) <= user_pos
));
946 if (folio
== wc
->w_target_folio
) {
947 map_from
= user_pos
& (PAGE_SIZE
- 1);
948 map_to
= map_from
+ user_len
;
951 ret
= ocfs2_map_folio_blocks(folio
, p_blkno
, inode
,
952 cluster_start
, cluster_end
, new);
954 ret
= ocfs2_map_folio_blocks(folio
, p_blkno
, inode
,
955 map_from
, map_to
, new);
961 user_data_from
= map_from
;
962 user_data_to
= map_to
;
964 map_from
= cluster_start
;
965 map_to
= cluster_end
;
969 * If we haven't allocated the new folio yet, we
970 * shouldn't be writing it out without copying user
971 * data. This is likely a math error from the caller.
975 map_from
= cluster_start
;
976 map_to
= cluster_end
;
978 ret
= ocfs2_map_folio_blocks(folio
, p_blkno
, inode
,
979 cluster_start
, cluster_end
, new);
987 * Parts of newly allocated folios need to be zero'd.
989 * Above, we have also rewritten 'to' and 'from' - as far as
990 * the rest of the function is concerned, the entire cluster
991 * range inside of a folio needs to be written.
993 * We can skip this if the folio is uptodate - it's already
994 * been zero'd from being read in as a hole.
996 if (new && !folio_test_uptodate(folio
))
997 ocfs2_clear_folio_regions(folio
, OCFS2_SB(inode
->i_sb
),
998 cpos
, user_data_from
, user_data_to
);
1000 flush_dcache_folio(folio
);
1007 * This function will only grab one clusters worth of pages.
1009 static int ocfs2_grab_folios_for_write(struct address_space
*mapping
,
1010 struct ocfs2_write_ctxt
*wc
, u32 cpos
, loff_t user_pos
,
1011 unsigned user_len
, int new, struct folio
*mmap_folio
)
1014 unsigned long start
, target_index
, end_index
, index
;
1015 struct inode
*inode
= mapping
->host
;
1018 target_index
= user_pos
>> PAGE_SHIFT
;
1021 * Figure out how many pages we'll be manipulating here. For
1022 * non allocating write, we just change the one
1023 * page. Otherwise, we'll need a whole clusters worth. If we're
1024 * writing past i_size, we only need enough pages to cover the
1025 * last page of the write.
1028 wc
->w_num_folios
= ocfs2_pages_per_cluster(inode
->i_sb
);
1029 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1031 * We need the index *past* the last page we could possibly
1032 * touch. This is the page past the end of the write or
1033 * i_size, whichever is greater.
1035 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1036 BUG_ON(last_byte
< 1);
1037 end_index
= ((last_byte
- 1) >> PAGE_SHIFT
) + 1;
1038 if ((start
+ wc
->w_num_folios
) > end_index
)
1039 wc
->w_num_folios
= end_index
- start
;
1041 wc
->w_num_folios
= 1;
1042 start
= target_index
;
1044 end_index
= (user_pos
+ user_len
- 1) >> PAGE_SHIFT
;
1046 for(i
= 0; i
< wc
->w_num_folios
; i
++) {
1049 if (index
>= target_index
&& index
<= end_index
&&
1050 wc
->w_type
== OCFS2_WRITE_MMAP
) {
1052 * ocfs2_pagemkwrite() is a little different
1053 * and wants us to directly use the page
1056 folio_lock(mmap_folio
);
1058 /* Exit and let the caller retry */
1059 if (mmap_folio
->mapping
!= mapping
) {
1060 WARN_ON(mmap_folio
->mapping
);
1061 folio_unlock(mmap_folio
);
1066 folio_get(mmap_folio
);
1067 wc
->w_folios
[i
] = mmap_folio
;
1068 wc
->w_target_locked
= true;
1069 } else if (index
>= target_index
&& index
<= end_index
&&
1070 wc
->w_type
== OCFS2_WRITE_DIRECT
) {
1071 /* Direct write has no mapping page. */
1072 wc
->w_folios
[i
] = NULL
;
1075 wc
->w_folios
[i
] = __filemap_get_folio(mapping
, index
,
1076 FGP_LOCK
| FGP_ACCESSED
| FGP_CREAT
,
1078 if (IS_ERR(wc
->w_folios
[i
])) {
1079 ret
= PTR_ERR(wc
->w_folios
[i
]);
1084 folio_wait_stable(wc
->w_folios
[i
]);
1086 if (index
== target_index
)
1087 wc
->w_target_folio
= wc
->w_folios
[i
];
1091 wc
->w_target_locked
= false;
1096 * Prepare a single cluster for write one cluster into the file.
1098 static int ocfs2_write_cluster(struct address_space
*mapping
,
1099 u32
*phys
, unsigned int new,
1100 unsigned int clear_unwritten
,
1101 unsigned int should_zero
,
1102 struct ocfs2_alloc_context
*data_ac
,
1103 struct ocfs2_alloc_context
*meta_ac
,
1104 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1105 loff_t user_pos
, unsigned user_len
)
1109 struct inode
*inode
= mapping
->host
;
1110 struct ocfs2_extent_tree et
;
1111 int bpc
= ocfs2_clusters_to_blocks(inode
->i_sb
, 1);
1117 * This is safe to call with the page locks - it won't take
1118 * any additional semaphores or cluster locks.
1121 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1122 &tmp_pos
, 1, !clear_unwritten
,
1123 wc
->w_di_bh
, wc
->w_handle
,
1124 data_ac
, meta_ac
, NULL
);
1126 * This shouldn't happen because we must have already
1127 * calculated the correct meta data allocation required. The
1128 * internal tree allocation code should know how to increase
1129 * transaction credits itself.
1131 * If need be, we could handle -EAGAIN for a
1132 * RESTART_TRANS here.
1134 mlog_bug_on_msg(ret
== -EAGAIN
,
1135 "Inode %llu: EAGAIN return during allocation.\n",
1136 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1141 } else if (clear_unwritten
) {
1142 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1144 ret
= ocfs2_mark_extent_written(inode
, &et
,
1145 wc
->w_handle
, cpos
, 1, *phys
,
1146 meta_ac
, &wc
->w_dealloc
);
1154 * The only reason this should fail is due to an inability to
1155 * find the extent added.
1157 ret
= ocfs2_get_clusters(inode
, cpos
, phys
, NULL
, NULL
);
1159 mlog(ML_ERROR
, "Get physical blkno failed for inode %llu, "
1160 "at logical cluster %u",
1161 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
1167 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, *phys
);
1169 p_blkno
+= (user_pos
>> inode
->i_sb
->s_blocksize_bits
) & (u64
)(bpc
- 1);
1171 for (i
= 0; i
< wc
->w_num_folios
; i
++) {
1174 /* This is the direct io target page. */
1175 if (wc
->w_folios
[i
] == NULL
) {
1176 p_blkno
+= (1 << (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
));
1180 tmpret
= ocfs2_prepare_folio_for_write(inode
, &p_blkno
, wc
,
1181 wc
->w_folios
[i
], cpos
, user_pos
, user_len
,
1191 * We only have cleanup to do in case of allocating write.
1194 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1201 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1202 struct ocfs2_alloc_context
*data_ac
,
1203 struct ocfs2_alloc_context
*meta_ac
,
1204 struct ocfs2_write_ctxt
*wc
,
1205 loff_t pos
, unsigned len
)
1209 unsigned int local_len
= len
;
1210 struct ocfs2_write_cluster_desc
*desc
;
1211 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1213 for (i
= 0; i
< wc
->w_clen
; i
++) {
1214 desc
= &wc
->w_desc
[i
];
1217 * We have to make sure that the total write passed in
1218 * doesn't extend past a single cluster.
1221 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1222 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1223 local_len
= osb
->s_clustersize
- cluster_off
;
1225 ret
= ocfs2_write_cluster(mapping
, &desc
->c_phys
,
1227 desc
->c_clear_unwritten
,
1230 wc
, desc
->c_cpos
, pos
, local_len
);
1246 * ocfs2_write_end() wants to know which parts of the target page it
1247 * should complete the write on. It's easiest to compute them ahead of
1248 * time when a more complete view of the write is available.
1250 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1251 struct ocfs2_write_ctxt
*wc
,
1252 loff_t pos
, unsigned len
, int alloc
)
1254 struct ocfs2_write_cluster_desc
*desc
;
1256 wc
->w_target_from
= pos
& (PAGE_SIZE
- 1);
1257 wc
->w_target_to
= wc
->w_target_from
+ len
;
1263 * Allocating write - we may have different boundaries based
1264 * on page size and cluster size.
1266 * NOTE: We can no longer compute one value from the other as
1267 * the actual write length and user provided length may be
1271 if (wc
->w_large_pages
) {
1273 * We only care about the 1st and last cluster within
1274 * our range and whether they should be zero'd or not. Either
1275 * value may be extended out to the start/end of a
1276 * newly allocated cluster.
1278 desc
= &wc
->w_desc
[0];
1279 if (desc
->c_needs_zero
)
1280 ocfs2_figure_cluster_boundaries(osb
,
1285 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1286 if (desc
->c_needs_zero
)
1287 ocfs2_figure_cluster_boundaries(osb
,
1292 wc
->w_target_from
= 0;
1293 wc
->w_target_to
= PAGE_SIZE
;
1298 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1299 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1300 * by the direct io procedure.
1301 * If this is a new extent that allocated by direct io, we should mark it in
1302 * the ip_unwritten_list.
1304 static int ocfs2_unwritten_check(struct inode
*inode
,
1305 struct ocfs2_write_ctxt
*wc
,
1306 struct ocfs2_write_cluster_desc
*desc
)
1308 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1309 struct ocfs2_unwritten_extent
*ue
= NULL
, *new = NULL
;
1312 if (!desc
->c_needs_zero
)
1316 spin_lock(&oi
->ip_lock
);
1317 /* Needs not to zero no metter buffer or direct. The one who is zero
1318 * the cluster is doing zero. And he will clear unwritten after all
1319 * cluster io finished. */
1320 list_for_each_entry(ue
, &oi
->ip_unwritten_list
, ue_ip_node
) {
1321 if (desc
->c_cpos
== ue
->ue_cpos
) {
1322 BUG_ON(desc
->c_new
);
1323 desc
->c_needs_zero
= 0;
1324 desc
->c_clear_unwritten
= 0;
1329 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
)
1333 spin_unlock(&oi
->ip_lock
);
1334 new = kmalloc(sizeof(struct ocfs2_unwritten_extent
),
1342 /* This direct write will doing zero. */
1343 new->ue_cpos
= desc
->c_cpos
;
1344 new->ue_phys
= desc
->c_phys
;
1345 desc
->c_clear_unwritten
= 0;
1346 list_add_tail(&new->ue_ip_node
, &oi
->ip_unwritten_list
);
1347 list_add_tail(&new->ue_node
, &wc
->w_unwritten_list
);
1348 wc
->w_unwritten_count
++;
1351 spin_unlock(&oi
->ip_lock
);
1358 * Populate each single-cluster write descriptor in the write context
1359 * with information about the i/o to be done.
1361 * Returns the number of clusters that will have to be allocated, as
1362 * well as a worst case estimate of the number of extent records that
1363 * would have to be created during a write to an unwritten region.
1365 static int ocfs2_populate_write_desc(struct inode
*inode
,
1366 struct ocfs2_write_ctxt
*wc
,
1367 unsigned int *clusters_to_alloc
,
1368 unsigned int *extents_to_split
)
1371 struct ocfs2_write_cluster_desc
*desc
;
1372 unsigned int num_clusters
= 0;
1373 unsigned int ext_flags
= 0;
1377 *clusters_to_alloc
= 0;
1378 *extents_to_split
= 0;
1380 for (i
= 0; i
< wc
->w_clen
; i
++) {
1381 desc
= &wc
->w_desc
[i
];
1382 desc
->c_cpos
= wc
->w_cpos
+ i
;
1384 if (num_clusters
== 0) {
1386 * Need to look up the next extent record.
1388 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1389 &num_clusters
, &ext_flags
);
1395 /* We should already CoW the refcountd extent. */
1396 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1399 * Assume worst case - that we're writing in
1400 * the middle of the extent.
1402 * We can assume that the write proceeds from
1403 * left to right, in which case the extent
1404 * insert code is smart enough to coalesce the
1405 * next splits into the previous records created.
1407 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1408 *extents_to_split
= *extents_to_split
+ 2;
1411 * Only increment phys if it doesn't describe
1418 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1419 * file that got extended. w_first_new_cpos tells us
1420 * where the newly allocated clusters are so we can
1423 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1425 desc
->c_needs_zero
= 1;
1428 desc
->c_phys
= phys
;
1431 desc
->c_needs_zero
= 1;
1432 desc
->c_clear_unwritten
= 1;
1433 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1436 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1437 desc
->c_clear_unwritten
= 1;
1438 desc
->c_needs_zero
= 1;
1441 ret
= ocfs2_unwritten_check(inode
, wc
, desc
);
1455 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1456 struct inode
*inode
,
1457 struct ocfs2_write_ctxt
*wc
)
1460 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1461 struct folio
*folio
;
1463 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1465 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1466 if (IS_ERR(handle
)) {
1467 ret
= PTR_ERR(handle
);
1472 folio
= __filemap_get_folio(mapping
, 0,
1473 FGP_LOCK
| FGP_ACCESSED
| FGP_CREAT
, GFP_NOFS
);
1474 if (IS_ERR(folio
)) {
1475 ocfs2_commit_trans(osb
, handle
);
1476 ret
= PTR_ERR(folio
);
1481 * If we don't set w_num_folios then this folio won't get unlocked
1482 * and freed on cleanup of the write context.
1484 wc
->w_target_folio
= folio
;
1485 wc
->w_folios
[0] = folio
;
1486 wc
->w_num_folios
= 1;
1488 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1489 OCFS2_JOURNAL_ACCESS_WRITE
);
1491 ocfs2_commit_trans(osb
, handle
);
1497 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1498 ocfs2_set_inode_data_inline(inode
, di
);
1500 if (!folio_test_uptodate(folio
)) {
1501 ret
= ocfs2_read_inline_data(inode
, folio
, wc
->w_di_bh
);
1503 ocfs2_commit_trans(osb
, handle
);
1509 wc
->w_handle
= handle
;
1514 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1516 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1518 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1523 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1524 struct inode
*inode
, loff_t pos
, size_t len
,
1525 struct folio
*mmap_folio
, struct ocfs2_write_ctxt
*wc
)
1527 int ret
, written
= 0;
1528 loff_t end
= pos
+ len
;
1529 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1530 struct ocfs2_dinode
*di
= NULL
;
1532 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1533 len
, (unsigned long long)pos
,
1534 oi
->ip_dyn_features
);
1537 * Handle inodes which already have inline data 1st.
1539 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1540 if (mmap_folio
== NULL
&&
1541 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1542 goto do_inline_write
;
1545 * The write won't fit - we have to give this inode an
1546 * inline extent list now.
1548 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1555 * Check whether the inode can accept inline data.
1557 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1561 * Check whether the write can fit.
1563 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1565 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1569 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1576 * This signals to the caller that the data can be written
1581 return written
? written
: ret
;
1585 * This function only does anything for file systems which can't
1586 * handle sparse files.
1588 * What we want to do here is fill in any hole between the current end
1589 * of allocation and the end of our write. That way the rest of the
1590 * write path can treat it as an non-allocating write, which has no
1591 * special case code for sparse/nonsparse files.
1593 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1594 struct buffer_head
*di_bh
,
1595 loff_t pos
, unsigned len
,
1596 struct ocfs2_write_ctxt
*wc
)
1599 loff_t newsize
= pos
+ len
;
1601 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1603 if (newsize
<= i_size_read(inode
))
1606 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1610 /* There is no wc if this is call from direct. */
1612 wc
->w_first_new_cpos
=
1613 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1618 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1623 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1624 if (pos
> i_size_read(inode
))
1625 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1630 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1631 loff_t pos
, unsigned len
, ocfs2_write_type_t type
,
1632 struct folio
**foliop
, void **fsdata
,
1633 struct buffer_head
*di_bh
, struct folio
*mmap_folio
)
1635 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1636 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1637 struct ocfs2_write_ctxt
*wc
;
1638 struct inode
*inode
= mapping
->host
;
1639 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1640 struct ocfs2_dinode
*di
;
1641 struct ocfs2_alloc_context
*data_ac
= NULL
;
1642 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1644 struct ocfs2_extent_tree et
;
1645 int try_free
= 1, ret1
;
1648 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, type
, di_bh
);
1654 if (ocfs2_supports_inline_data(osb
)) {
1655 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1667 /* Direct io change i_size late, should not zero tail here. */
1668 if (type
!= OCFS2_WRITE_DIRECT
) {
1669 if (ocfs2_sparse_alloc(osb
))
1670 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1672 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
1680 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1684 } else if (ret
== 1) {
1685 clusters_need
= wc
->w_clen
;
1686 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1687 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1694 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1700 clusters_need
+= clusters_to_alloc
;
1702 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1704 trace_ocfs2_write_begin_nolock(
1705 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1706 (long long)i_size_read(inode
),
1707 le32_to_cpu(di
->i_clusters
),
1708 pos
, len
, type
, mmap_folio
,
1709 clusters_to_alloc
, extents_to_split
);
1712 * We set w_target_from, w_target_to here so that
1713 * ocfs2_write_end() knows which range in the target page to
1714 * write out. An allocation requires that we write the entire
1717 if (clusters_to_alloc
|| extents_to_split
) {
1719 * XXX: We are stretching the limits of
1720 * ocfs2_lock_allocators(). It greatly over-estimates
1721 * the work to be done.
1723 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1725 ret
= ocfs2_lock_allocators(inode
, &et
,
1726 clusters_to_alloc
, extents_to_split
,
1727 &data_ac
, &meta_ac
);
1734 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1736 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1738 } else if (type
== OCFS2_WRITE_DIRECT
)
1739 /* direct write needs not to start trans if no extents alloc. */
1743 * We have to zero sparse allocated clusters, unwritten extent clusters,
1744 * and non-sparse clusters we just extended. For non-sparse writes,
1745 * we know zeros will only be needed in the first and/or last cluster.
1747 if (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1748 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
))
1749 cluster_of_pages
= 1;
1751 cluster_of_pages
= 0;
1753 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1755 handle
= ocfs2_start_trans(osb
, credits
);
1756 if (IS_ERR(handle
)) {
1757 ret
= PTR_ERR(handle
);
1762 wc
->w_handle
= handle
;
1764 if (clusters_to_alloc
) {
1765 ret
= dquot_alloc_space_nodirty(inode
,
1766 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1771 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1772 OCFS2_JOURNAL_ACCESS_WRITE
);
1779 * Fill our folio array first. That way we've grabbed enough so
1780 * that we can zero and flush if we error after adding the
1783 ret
= ocfs2_grab_folios_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1784 cluster_of_pages
, mmap_folio
);
1787 * ocfs2_grab_folios_for_write() returns -EAGAIN if it
1788 * could not lock the target folio. In this case, we exit
1789 * with no error and no target folio. This will trigger
1790 * the caller, page_mkwrite(), to re-try the operation.
1792 if (type
== OCFS2_WRITE_MMAP
&& ret
== -EAGAIN
) {
1793 BUG_ON(wc
->w_target_folio
);
1802 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1810 ocfs2_free_alloc_context(data_ac
);
1812 ocfs2_free_alloc_context(meta_ac
);
1816 *foliop
= wc
->w_target_folio
;
1820 if (clusters_to_alloc
)
1821 dquot_free_space(inode
,
1822 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1824 ocfs2_commit_trans(osb
, handle
);
1828 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1829 * even in case of error here like ENOSPC and ENOMEM. So, we need
1830 * to unlock the target page manually to prevent deadlocks when
1831 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1834 if (wc
->w_target_locked
)
1835 folio_unlock(mmap_folio
);
1837 ocfs2_free_write_ctxt(inode
, wc
);
1840 ocfs2_free_alloc_context(data_ac
);
1844 ocfs2_free_alloc_context(meta_ac
);
1848 if (ret
== -ENOSPC
&& try_free
) {
1850 * Try to free some truncate log so that we can have enough
1851 * clusters to allocate.
1855 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1866 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1867 loff_t pos
, unsigned len
,
1868 struct folio
**foliop
, void **fsdata
)
1871 struct buffer_head
*di_bh
= NULL
;
1872 struct inode
*inode
= mapping
->host
;
1874 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1881 * Take alloc sem here to prevent concurrent lookups. That way
1882 * the mapping, zeroing and tree manipulation within
1883 * ocfs2_write() will be safe against ->read_folio(). This
1884 * should also serve to lock out allocation from a shared
1887 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1889 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, OCFS2_WRITE_BUFFER
,
1890 foliop
, fsdata
, di_bh
, NULL
);
1901 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1904 ocfs2_inode_unlock(inode
, 1);
1909 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1910 unsigned len
, unsigned *copied
,
1911 struct ocfs2_dinode
*di
,
1912 struct ocfs2_write_ctxt
*wc
)
1914 if (unlikely(*copied
< len
)) {
1915 if (!folio_test_uptodate(wc
->w_target_folio
)) {
1921 memcpy_from_folio(di
->id2
.i_data
.id_data
+ pos
, wc
->w_target_folio
,
1924 trace_ocfs2_write_end_inline(
1925 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1926 (unsigned long long)pos
, *copied
,
1927 le16_to_cpu(di
->id2
.i_data
.id_count
),
1928 le16_to_cpu(di
->i_dyn_features
));
1931 int ocfs2_write_end_nolock(struct address_space
*mapping
, loff_t pos
,
1932 unsigned len
, unsigned copied
, void *fsdata
)
1935 size_t from
, to
, start
= pos
& (PAGE_SIZE
- 1);
1936 struct inode
*inode
= mapping
->host
;
1937 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1938 struct ocfs2_write_ctxt
*wc
= fsdata
;
1939 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1940 handle_t
*handle
= wc
->w_handle
;
1942 BUG_ON(!list_empty(&wc
->w_unwritten_list
));
1945 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
),
1946 wc
->w_di_bh
, OCFS2_JOURNAL_ACCESS_WRITE
);
1954 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1955 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1956 goto out_write_size
;
1959 if (unlikely(copied
< len
) && wc
->w_target_folio
) {
1962 if (!folio_test_uptodate(wc
->w_target_folio
))
1965 new_isize
= max_t(loff_t
, i_size_read(inode
), pos
+ copied
);
1966 if (new_isize
> folio_pos(wc
->w_target_folio
))
1967 ocfs2_zero_new_buffers(wc
->w_target_folio
, start
+copied
,
1971 * When folio is fully beyond new isize (data copy
1972 * failed), do not bother zeroing the folio. Invalidate
1973 * it instead so that writeback does not get confused
1974 * put page & buffer dirty bits into inconsistent
1977 block_invalidate_folio(wc
->w_target_folio
, 0,
1978 folio_size(wc
->w_target_folio
));
1981 if (wc
->w_target_folio
)
1982 flush_dcache_folio(wc
->w_target_folio
);
1984 for (i
= 0; i
< wc
->w_num_folios
; i
++) {
1985 struct folio
*folio
= wc
->w_folios
[i
];
1987 /* This is the direct io target folio */
1991 if (folio
== wc
->w_target_folio
) {
1992 from
= wc
->w_target_from
;
1993 to
= wc
->w_target_to
;
1995 BUG_ON(from
> folio_size(folio
) ||
1996 to
> folio_size(folio
) ||
2000 * Pages adjacent to the target (if any) imply
2001 * a hole-filling write in which case we want
2002 * to flush their entire range.
2005 to
= folio_size(folio
);
2008 if (folio_buffers(folio
)) {
2009 if (handle
&& ocfs2_should_order_data(inode
)) {
2010 loff_t start_byte
= folio_pos(folio
) + from
;
2011 loff_t length
= to
- from
;
2012 ocfs2_jbd2_inode_add_write(handle
, inode
,
2013 start_byte
, length
);
2015 block_commit_write(&folio
->page
, from
, to
);
2020 /* Direct io do not update i_size here. */
2021 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
) {
2023 if (pos
> i_size_read(inode
)) {
2024 i_size_write(inode
, pos
);
2025 mark_inode_dirty(inode
);
2027 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2028 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2029 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
2030 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode_get_mtime_sec(inode
));
2031 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode_get_mtime_nsec(inode
));
2033 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
2036 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2039 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2040 * lock, or it will cause a deadlock since journal commit threads holds
2041 * this lock and will ask for the page lock when flushing the data.
2042 * put it here to preserve the unlock order.
2044 ocfs2_unlock_folios(wc
);
2047 ocfs2_commit_trans(osb
, handle
);
2049 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2051 brelse(wc
->w_di_bh
);
2057 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2058 loff_t pos
, unsigned len
, unsigned copied
,
2059 struct folio
*folio
, void *fsdata
)
2062 struct inode
*inode
= mapping
->host
;
2064 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, fsdata
);
2066 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2067 ocfs2_inode_unlock(inode
, 1);
2072 struct ocfs2_dio_write_ctxt
{
2073 struct list_head dw_zero_list
;
2074 unsigned dw_zero_count
;
2076 pid_t dw_writer_pid
;
2079 static struct ocfs2_dio_write_ctxt
*
2080 ocfs2_dio_alloc_write_ctx(struct buffer_head
*bh
, int *alloc
)
2082 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2085 return bh
->b_private
;
2087 dwc
= kmalloc(sizeof(struct ocfs2_dio_write_ctxt
), GFP_NOFS
);
2090 INIT_LIST_HEAD(&dwc
->dw_zero_list
);
2091 dwc
->dw_zero_count
= 0;
2092 dwc
->dw_orphaned
= 0;
2093 dwc
->dw_writer_pid
= task_pid_nr(current
);
2094 bh
->b_private
= dwc
;
2100 static void ocfs2_dio_free_write_ctx(struct inode
*inode
,
2101 struct ocfs2_dio_write_ctxt
*dwc
)
2103 ocfs2_free_unwritten_list(inode
, &dwc
->dw_zero_list
);
2108 * TODO: Make this into a generic get_blocks function.
2110 * From do_direct_io in direct-io.c:
2111 * "So what we do is to permit the ->get_blocks function to populate
2112 * bh.b_size with the size of IO which is permitted at this offset and
2115 * This function is called directly from get_more_blocks in direct-io.c.
2117 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2118 * fs_count, map_bh, dio->rw == WRITE);
2120 static int ocfs2_dio_wr_get_block(struct inode
*inode
, sector_t iblock
,
2121 struct buffer_head
*bh_result
, int create
)
2123 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2124 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2125 struct ocfs2_write_ctxt
*wc
;
2126 struct ocfs2_write_cluster_desc
*desc
= NULL
;
2127 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2128 struct buffer_head
*di_bh
= NULL
;
2130 unsigned int i_blkbits
= inode
->i_sb
->s_blocksize_bits
;
2131 loff_t pos
= iblock
<< i_blkbits
;
2132 sector_t endblk
= (i_size_read(inode
) - 1) >> i_blkbits
;
2133 unsigned len
, total_len
= bh_result
->b_size
;
2134 int ret
= 0, first_get_block
= 0;
2136 len
= osb
->s_clustersize
- (pos
& (osb
->s_clustersize
- 1));
2137 len
= min(total_len
, len
);
2140 * bh_result->b_size is count in get_more_blocks according to write
2141 * "pos" and "end", we need map twice to return different buffer state:
2142 * 1. area in file size, not set NEW;
2143 * 2. area out file size, set NEW.
2146 * |--------|---------|---------|---------
2147 * |<-------area in file------->|
2150 if ((iblock
<= endblk
) &&
2151 ((iblock
+ ((len
- 1) >> i_blkbits
)) > endblk
))
2152 len
= (endblk
- iblock
+ 1) << i_blkbits
;
2154 mlog(0, "get block of %lu at %llu:%u req %u\n",
2155 inode
->i_ino
, pos
, len
, total_len
);
2158 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2159 * we may need to add it to orphan dir. So can not fall to fast path
2160 * while file size will be changed.
2162 if (pos
+ total_len
<= i_size_read(inode
)) {
2164 /* This is the fast path for re-write. */
2165 ret
= ocfs2_lock_get_block(inode
, iblock
, bh_result
, create
);
2166 if (buffer_mapped(bh_result
) &&
2167 !buffer_new(bh_result
) &&
2171 /* Clear state set by ocfs2_get_block. */
2172 bh_result
->b_state
= 0;
2175 dwc
= ocfs2_dio_alloc_write_ctx(bh_result
, &first_get_block
);
2176 if (unlikely(dwc
== NULL
)) {
2182 if (ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ total_len
) >
2183 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
)) &&
2184 !dwc
->dw_orphaned
) {
2186 * when we are going to alloc extents beyond file size, add the
2187 * inode to orphan dir, so we can recall those spaces when
2188 * system crashed during write.
2190 ret
= ocfs2_add_inode_to_orphan(osb
, inode
);
2195 dwc
->dw_orphaned
= 1;
2198 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2204 down_write(&oi
->ip_alloc_sem
);
2206 if (first_get_block
) {
2207 if (ocfs2_sparse_alloc(osb
))
2208 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
2210 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
2218 ret
= ocfs2_write_begin_nolock(inode
->i_mapping
, pos
, len
,
2219 OCFS2_WRITE_DIRECT
, NULL
,
2220 (void **)&wc
, di_bh
, NULL
);
2226 desc
= &wc
->w_desc
[0];
2228 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, desc
->c_phys
);
2229 BUG_ON(p_blkno
== 0);
2230 p_blkno
+= iblock
& (u64
)(ocfs2_clusters_to_blocks(inode
->i_sb
, 1) - 1);
2232 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
2233 bh_result
->b_size
= len
;
2234 if (desc
->c_needs_zero
)
2235 set_buffer_new(bh_result
);
2237 if (iblock
> endblk
)
2238 set_buffer_new(bh_result
);
2240 /* May sleep in end_io. It should not happen in a irq context. So defer
2241 * it to dio work queue. */
2242 set_buffer_defer_completion(bh_result
);
2244 if (!list_empty(&wc
->w_unwritten_list
)) {
2245 struct ocfs2_unwritten_extent
*ue
= NULL
;
2247 ue
= list_first_entry(&wc
->w_unwritten_list
,
2248 struct ocfs2_unwritten_extent
,
2250 BUG_ON(ue
->ue_cpos
!= desc
->c_cpos
);
2251 /* The physical address may be 0, fill it. */
2252 ue
->ue_phys
= desc
->c_phys
;
2254 list_splice_tail_init(&wc
->w_unwritten_list
, &dwc
->dw_zero_list
);
2255 dwc
->dw_zero_count
+= wc
->w_unwritten_count
;
2258 ret
= ocfs2_write_end_nolock(inode
->i_mapping
, pos
, len
, len
, wc
);
2262 up_write(&oi
->ip_alloc_sem
);
2263 ocfs2_inode_unlock(inode
, 1);
2269 static int ocfs2_dio_end_io_write(struct inode
*inode
,
2270 struct ocfs2_dio_write_ctxt
*dwc
,
2274 struct ocfs2_cached_dealloc_ctxt dealloc
;
2275 struct ocfs2_extent_tree et
;
2276 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2277 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2278 struct ocfs2_unwritten_extent
*ue
= NULL
;
2279 struct buffer_head
*di_bh
= NULL
;
2280 struct ocfs2_dinode
*di
;
2281 struct ocfs2_alloc_context
*data_ac
= NULL
;
2282 struct ocfs2_alloc_context
*meta_ac
= NULL
;
2283 handle_t
*handle
= NULL
;
2284 loff_t end
= offset
+ bytes
;
2285 int ret
= 0, credits
= 0;
2287 ocfs2_init_dealloc_ctxt(&dealloc
);
2289 /* We do clear unwritten, delete orphan, change i_size here. If neither
2290 * of these happen, we can skip all this. */
2291 if (list_empty(&dwc
->dw_zero_list
) &&
2292 end
<= i_size_read(inode
) &&
2296 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2302 down_write(&oi
->ip_alloc_sem
);
2304 /* Delete orphan before acquire i_rwsem. */
2305 if (dwc
->dw_orphaned
) {
2306 BUG_ON(dwc
->dw_writer_pid
!= task_pid_nr(current
));
2308 end
= end
> i_size_read(inode
) ? end
: 0;
2310 ret
= ocfs2_del_inode_from_orphan(osb
, inode
, di_bh
,
2316 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2318 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
2320 /* Attach dealloc with extent tree in case that we may reuse extents
2321 * which are already unlinked from current extent tree due to extent
2322 * rotation and merging.
2324 et
.et_dealloc
= &dealloc
;
2326 ret
= ocfs2_lock_allocators(inode
, &et
, 0, dwc
->dw_zero_count
*2,
2327 &data_ac
, &meta_ac
);
2333 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, &di
->id2
.i_list
);
2335 handle
= ocfs2_start_trans(osb
, credits
);
2336 if (IS_ERR(handle
)) {
2337 ret
= PTR_ERR(handle
);
2341 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
2342 OCFS2_JOURNAL_ACCESS_WRITE
);
2348 list_for_each_entry(ue
, &dwc
->dw_zero_list
, ue_node
) {
2349 ret
= ocfs2_assure_trans_credits(handle
, credits
);
2354 ret
= ocfs2_mark_extent_written(inode
, &et
, handle
,
2364 if (end
> i_size_read(inode
)) {
2365 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
, end
);
2370 ocfs2_commit_trans(osb
, handle
);
2372 up_write(&oi
->ip_alloc_sem
);
2373 ocfs2_inode_unlock(inode
, 1);
2377 ocfs2_free_alloc_context(data_ac
);
2379 ocfs2_free_alloc_context(meta_ac
);
2380 ocfs2_run_deallocs(osb
, &dealloc
);
2381 ocfs2_dio_free_write_ctx(inode
, dwc
);
2387 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2388 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2389 * to protect io on one node from truncation on another.
2391 static int ocfs2_dio_end_io(struct kiocb
*iocb
,
2396 struct inode
*inode
= file_inode(iocb
->ki_filp
);
2400 /* this io's submitter should not have unlocked this before we could */
2401 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
2404 mlog_ratelimited(ML_ERROR
, "Direct IO failed, bytes = %lld",
2408 ret
= ocfs2_dio_end_io_write(inode
, private, offset
,
2411 ocfs2_dio_free_write_ctx(inode
, private);
2414 ocfs2_iocb_clear_rw_locked(iocb
);
2416 level
= ocfs2_iocb_rw_locked_level(iocb
);
2417 ocfs2_rw_unlock(inode
, level
);
2421 static ssize_t
ocfs2_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
2423 struct file
*file
= iocb
->ki_filp
;
2424 struct inode
*inode
= file
->f_mapping
->host
;
2425 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2426 get_block_t
*get_block
;
2429 * Fallback to buffered I/O if we see an inode without
2432 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2435 /* Fallback to buffered I/O if we do not support append dio. */
2436 if (iocb
->ki_pos
+ iter
->count
> i_size_read(inode
) &&
2437 !ocfs2_supports_append_dio(osb
))
2440 if (iov_iter_rw(iter
) == READ
)
2441 get_block
= ocfs2_lock_get_block
;
2443 get_block
= ocfs2_dio_wr_get_block
;
2445 return __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
2447 ocfs2_dio_end_io
, 0);
2450 const struct address_space_operations ocfs2_aops
= {
2451 .dirty_folio
= block_dirty_folio
,
2452 .read_folio
= ocfs2_read_folio
,
2453 .readahead
= ocfs2_readahead
,
2454 .writepages
= ocfs2_writepages
,
2455 .write_begin
= ocfs2_write_begin
,
2456 .write_end
= ocfs2_write_end
,
2458 .direct_IO
= ocfs2_direct_IO
,
2459 .invalidate_folio
= block_invalidate_folio
,
2460 .release_folio
= ocfs2_release_folio
,
2461 .migrate_folio
= buffer_migrate_folio
,
2462 .is_partially_uptodate
= block_is_partially_uptodate
,
2463 .error_remove_folio
= generic_error_remove_folio
,