1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
12 * This file implements garbage collection. The procedure for garbage collection
13 * is different depending on whether a LEB as an index LEB (contains index
14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
16 * nodes to the journal, at which point the garbage-collected LEB is free to be
17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
19 * to be reused. Garbage collection will cause the number of dirty index nodes
20 * to grow, however sufficient space is reserved for the index to ensure the
21 * commit will never run out of space.
23 * Notes about dead watermark. At current UBIFS implementation we assume that
24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
27 * Garbage Collector has to synchronize the GC head's write buffer before
28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
29 * actually reclaim even very small pieces of dirty space by garbage collecting
30 * enough dirty LEBs, but we do not bother doing this at this implementation.
32 * Notes about dark watermark. The results of GC work depends on how big are
33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
35 * have to waste large pieces of free space at the end of LEB B, because nodes
36 * from LEB A would not fit. And the worst situation is when all nodes are of
37 * maximum size. So dark watermark is the amount of free + dirty space in LEB
38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
40 * watermark are "good" LEBs from GC's point of view. The other LEBs are not so
41 * good, and GC takes extra care when moving them.
44 #include <linux/slab.h>
45 #include <linux/pagemap.h>
46 #include <linux/list_sort.h>
50 * GC may need to move more than one LEB to make progress. The below constants
51 * define "soft" and "hard" limits on the number of LEBs the garbage collector
54 #define SOFT_LEBS_LIMIT 4
55 #define HARD_LEBS_LIMIT 32
58 * switch_gc_head - switch the garbage collection journal head.
59 * @c: UBIFS file-system description object
61 * This function switch the GC head to the next LEB which is reserved in
62 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
63 * and other negative error code in case of failures.
65 static int switch_gc_head(struct ubifs_info
*c
)
67 int err
, gc_lnum
= c
->gc_lnum
;
68 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
70 ubifs_assert(c
, gc_lnum
!= -1);
71 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
72 wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
, gc_lnum
,
73 c
->leb_size
- wbuf
->offs
- wbuf
->used
);
75 err
= ubifs_wbuf_sync_nolock(wbuf
);
80 * The GC write-buffer was synchronized, we may safely unmap
83 err
= ubifs_leb_unmap(c
, gc_lnum
);
87 err
= ubifs_add_bud_to_log(c
, GCHD
, gc_lnum
, 0);
92 err
= ubifs_wbuf_seek_nolock(wbuf
, gc_lnum
, 0);
97 * data_nodes_cmp - compare 2 data nodes.
98 * @priv: UBIFS file-system description object
100 * @b: second data node
102 * This function compares data nodes @a and @b. Returns %1 if @a has greater
103 * inode or block number, and %-1 otherwise.
105 static int data_nodes_cmp(void *priv
, const struct list_head
*a
,
106 const struct list_head
*b
)
109 struct ubifs_info
*c
= priv
;
110 struct ubifs_scan_node
*sa
, *sb
;
116 sa
= list_entry(a
, struct ubifs_scan_node
, list
);
117 sb
= list_entry(b
, struct ubifs_scan_node
, list
);
119 ubifs_assert(c
, key_type(c
, &sa
->key
) == UBIFS_DATA_KEY
);
120 ubifs_assert(c
, key_type(c
, &sb
->key
) == UBIFS_DATA_KEY
);
121 ubifs_assert(c
, sa
->type
== UBIFS_DATA_NODE
);
122 ubifs_assert(c
, sb
->type
== UBIFS_DATA_NODE
);
124 inuma
= key_inum(c
, &sa
->key
);
125 inumb
= key_inum(c
, &sb
->key
);
127 if (inuma
== inumb
) {
128 unsigned int blka
= key_block(c
, &sa
->key
);
129 unsigned int blkb
= key_block(c
, &sb
->key
);
133 } else if (inuma
<= inumb
)
140 * nondata_nodes_cmp - compare 2 non-data nodes.
141 * @priv: UBIFS file-system description object
145 * This function compares nodes @a and @b. It makes sure that inode nodes go
146 * first and sorted by length in descending order. Directory entry nodes go
147 * after inode nodes and are sorted in ascending hash valuer order.
149 static int nondata_nodes_cmp(void *priv
, const struct list_head
*a
,
150 const struct list_head
*b
)
153 struct ubifs_info
*c
= priv
;
154 struct ubifs_scan_node
*sa
, *sb
;
160 sa
= list_entry(a
, struct ubifs_scan_node
, list
);
161 sb
= list_entry(b
, struct ubifs_scan_node
, list
);
163 ubifs_assert(c
, key_type(c
, &sa
->key
) != UBIFS_DATA_KEY
&&
164 key_type(c
, &sb
->key
) != UBIFS_DATA_KEY
);
165 ubifs_assert(c
, sa
->type
!= UBIFS_DATA_NODE
&&
166 sb
->type
!= UBIFS_DATA_NODE
);
168 /* Inodes go before directory entries */
169 if (sa
->type
== UBIFS_INO_NODE
) {
170 if (sb
->type
== UBIFS_INO_NODE
)
171 return sb
->len
- sa
->len
;
174 if (sb
->type
== UBIFS_INO_NODE
)
177 ubifs_assert(c
, key_type(c
, &sa
->key
) == UBIFS_DENT_KEY
||
178 key_type(c
, &sa
->key
) == UBIFS_XENT_KEY
);
179 ubifs_assert(c
, key_type(c
, &sb
->key
) == UBIFS_DENT_KEY
||
180 key_type(c
, &sb
->key
) == UBIFS_XENT_KEY
);
181 ubifs_assert(c
, sa
->type
== UBIFS_DENT_NODE
||
182 sa
->type
== UBIFS_XENT_NODE
);
183 ubifs_assert(c
, sb
->type
== UBIFS_DENT_NODE
||
184 sb
->type
== UBIFS_XENT_NODE
);
186 inuma
= key_inum(c
, &sa
->key
);
187 inumb
= key_inum(c
, &sb
->key
);
189 if (inuma
== inumb
) {
190 uint32_t hasha
= key_hash(c
, &sa
->key
);
191 uint32_t hashb
= key_hash(c
, &sb
->key
);
195 } else if (inuma
<= inumb
)
202 * sort_nodes - sort nodes for GC.
203 * @c: UBIFS file-system description object
204 * @sleb: describes nodes to sort and contains the result on exit
205 * @nondata: contains non-data nodes on exit
206 * @min: minimum node size is returned here
208 * This function sorts the list of inodes to garbage collect. First of all, it
209 * kills obsolete nodes and separates data and non-data nodes to the
210 * @sleb->nodes and @nondata lists correspondingly.
212 * Data nodes are then sorted in block number order - this is important for
213 * bulk-read; data nodes with lower inode number go before data nodes with
214 * higher inode number, and data nodes with lower block number go before data
215 * nodes with higher block number;
217 * Non-data nodes are sorted as follows.
218 * o First go inode nodes - they are sorted in descending length order.
219 * o Then go directory entry nodes - they are sorted in hash order, which
220 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
221 * inode number go before direntry nodes with higher parent inode number,
222 * and direntry nodes with lower name hash values go before direntry nodes
223 * with higher name hash values.
225 * This function returns zero in case of success and a negative error code in
228 static int sort_nodes(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
229 struct list_head
*nondata
, int *min
)
232 struct ubifs_scan_node
*snod
, *tmp
;
236 /* Separate data nodes and non-data nodes */
237 list_for_each_entry_safe(snod
, tmp
, &sleb
->nodes
, list
) {
238 ubifs_assert(c
, snod
->type
== UBIFS_INO_NODE
||
239 snod
->type
== UBIFS_DATA_NODE
||
240 snod
->type
== UBIFS_DENT_NODE
||
241 snod
->type
== UBIFS_XENT_NODE
||
242 snod
->type
== UBIFS_TRUN_NODE
||
243 snod
->type
== UBIFS_AUTH_NODE
);
245 if (snod
->type
!= UBIFS_INO_NODE
&&
246 snod
->type
!= UBIFS_DATA_NODE
&&
247 snod
->type
!= UBIFS_DENT_NODE
&&
248 snod
->type
!= UBIFS_XENT_NODE
) {
249 /* Probably truncation node, zap it */
250 list_del(&snod
->list
);
255 ubifs_assert(c
, key_type(c
, &snod
->key
) == UBIFS_DATA_KEY
||
256 key_type(c
, &snod
->key
) == UBIFS_INO_KEY
||
257 key_type(c
, &snod
->key
) == UBIFS_DENT_KEY
||
258 key_type(c
, &snod
->key
) == UBIFS_XENT_KEY
);
260 err
= ubifs_tnc_has_node(c
, &snod
->key
, 0, sleb
->lnum
,
266 /* The node is obsolete, remove it from the list */
267 list_del(&snod
->list
);
272 if (snod
->len
< *min
)
275 if (key_type(c
, &snod
->key
) != UBIFS_DATA_KEY
)
276 list_move_tail(&snod
->list
, nondata
);
279 /* Sort data and non-data nodes */
280 list_sort(c
, &sleb
->nodes
, &data_nodes_cmp
);
281 list_sort(c
, nondata
, &nondata_nodes_cmp
);
283 err
= dbg_check_data_nodes_order(c
, &sleb
->nodes
);
286 err
= dbg_check_nondata_nodes_order(c
, nondata
);
293 * move_node - move a node.
294 * @c: UBIFS file-system description object
295 * @sleb: describes the LEB to move nodes from
296 * @snod: the mode to move
297 * @wbuf: write-buffer to move node to
299 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
300 * destroys @snod. Returns zero in case of success and a negative error code in
303 static int move_node(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
304 struct ubifs_scan_node
*snod
, struct ubifs_wbuf
*wbuf
)
306 int err
, new_lnum
= wbuf
->lnum
, new_offs
= wbuf
->offs
+ wbuf
->used
;
309 err
= ubifs_wbuf_write_nolock(wbuf
, snod
->node
, snod
->len
);
313 err
= ubifs_tnc_replace(c
, &snod
->key
, sleb
->lnum
,
314 snod
->offs
, new_lnum
, new_offs
,
316 list_del(&snod
->list
);
322 * move_nodes - move nodes.
323 * @c: UBIFS file-system description object
324 * @sleb: describes the LEB to move nodes from
326 * This function moves valid nodes from data LEB described by @sleb to the GC
327 * journal head. This function returns zero in case of success, %-EAGAIN if
328 * commit is required, and other negative error codes in case of other
331 static int move_nodes(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
)
335 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
337 if (wbuf
->lnum
== -1) {
339 * The GC journal head is not set, because it is the first GC
340 * invocation since mount.
342 err
= switch_gc_head(c
);
347 err
= sort_nodes(c
, sleb
, &nondata
, &min
);
351 /* Write nodes to their new location. Use the first-fit strategy */
353 int avail
, moved
= 0;
354 struct ubifs_scan_node
*snod
, *tmp
;
356 /* Move data nodes */
357 list_for_each_entry_safe(snod
, tmp
, &sleb
->nodes
, list
) {
358 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
-
359 ubifs_auth_node_sz(c
);
360 if (snod
->len
> avail
)
362 * Do not skip data nodes in order to optimize
367 err
= ubifs_shash_update(c
, c
->jheads
[GCHD
].log_hash
,
368 snod
->node
, snod
->len
);
372 err
= move_node(c
, sleb
, snod
, wbuf
);
378 /* Move non-data nodes */
379 list_for_each_entry_safe(snod
, tmp
, &nondata
, list
) {
380 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
-
381 ubifs_auth_node_sz(c
);
385 if (snod
->len
> avail
) {
387 * Keep going only if this is an inode with
388 * some data. Otherwise stop and switch the GC
389 * head. IOW, we assume that data-less inode
390 * nodes and direntry nodes are roughly of the
393 if (key_type(c
, &snod
->key
) == UBIFS_DENT_KEY
||
394 snod
->len
== UBIFS_INO_NODE_SZ
)
399 err
= ubifs_shash_update(c
, c
->jheads
[GCHD
].log_hash
,
400 snod
->node
, snod
->len
);
404 err
= move_node(c
, sleb
, snod
, wbuf
);
410 if (ubifs_authenticated(c
) && moved
) {
411 struct ubifs_auth_node
*auth
;
413 auth
= kmalloc(ubifs_auth_node_sz(c
), GFP_NOFS
);
419 err
= ubifs_prepare_auth_node(c
, auth
,
420 c
->jheads
[GCHD
].log_hash
);
426 err
= ubifs_wbuf_write_nolock(wbuf
, auth
,
427 ubifs_auth_node_sz(c
));
433 ubifs_add_dirt(c
, wbuf
->lnum
, ubifs_auth_node_sz(c
));
436 if (list_empty(&sleb
->nodes
) && list_empty(&nondata
))
440 * Waste the rest of the space in the LEB and switch to the
443 err
= switch_gc_head(c
);
451 list_splice_tail(&nondata
, &sleb
->nodes
);
456 * gc_sync_wbufs - sync write-buffers for GC.
457 * @c: UBIFS file-system description object
459 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
460 * be in a write-buffer instead. That is, a node could be written to a
461 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
462 * erased before the write-buffer is sync'd and then there is an unclean
463 * unmount, then an existing node is lost. To avoid this, we sync all
466 * This function returns %0 on success or a negative error code on failure.
468 static int gc_sync_wbufs(struct ubifs_info
*c
)
472 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
475 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
483 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
484 * @c: UBIFS file-system description object
485 * @lp: describes the LEB to garbage collect
487 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
488 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
489 * required, and other negative error codes in case of failures.
491 int ubifs_garbage_collect_leb(struct ubifs_info
*c
, struct ubifs_lprops
*lp
)
493 struct ubifs_scan_leb
*sleb
;
494 struct ubifs_scan_node
*snod
;
495 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
496 int err
= 0, lnum
= lp
->lnum
;
498 ubifs_assert(c
, c
->gc_lnum
!= -1 || wbuf
->offs
+ wbuf
->used
== 0 ||
500 ubifs_assert(c
, c
->gc_lnum
!= lnum
);
501 ubifs_assert(c
, wbuf
->lnum
!= lnum
);
503 if (lp
->free
+ lp
->dirty
== c
->leb_size
) {
504 /* Special case - a free LEB */
505 dbg_gc("LEB %d is free, return it", lp
->lnum
);
506 ubifs_assert(c
, !(lp
->flags
& LPROPS_INDEX
));
508 if (lp
->free
!= c
->leb_size
) {
510 * Write buffers must be sync'd before unmapping
511 * freeable LEBs, because one of them may contain data
512 * which obsoletes something in 'lp->lnum'.
514 err
= gc_sync_wbufs(c
);
517 err
= ubifs_change_one_lp(c
, lp
->lnum
, c
->leb_size
,
522 err
= ubifs_leb_unmap(c
, lp
->lnum
);
526 if (c
->gc_lnum
== -1) {
535 * We scan the entire LEB even though we only really need to scan up to
536 * (c->leb_size - lp->free).
538 sleb
= ubifs_scan(c
, lnum
, 0, c
->sbuf
, 0);
540 return PTR_ERR(sleb
);
542 ubifs_assert(c
, !list_empty(&sleb
->nodes
));
543 snod
= list_entry(sleb
->nodes
.next
, struct ubifs_scan_node
, list
);
545 if (snod
->type
== UBIFS_IDX_NODE
) {
546 struct ubifs_gced_idx_leb
*idx_gc
;
548 dbg_gc("indexing LEB %d (free %d, dirty %d)",
549 lnum
, lp
->free
, lp
->dirty
);
550 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
551 struct ubifs_idx_node
*idx
= snod
->node
;
552 int level
= le16_to_cpu(idx
->level
);
554 ubifs_assert(c
, snod
->type
== UBIFS_IDX_NODE
);
555 key_read(c
, ubifs_idx_key(c
, idx
), &snod
->key
);
556 err
= ubifs_dirty_idx_node(c
, &snod
->key
, level
, lnum
,
562 idx_gc
= kmalloc(sizeof(struct ubifs_gced_idx_leb
), GFP_NOFS
);
570 list_add(&idx_gc
->list
, &c
->idx_gc
);
573 * Don't release the LEB until after the next commit, because
574 * it may contain data which is needed for recovery. So
575 * although we freed this LEB, it will become usable only after
578 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
, 0, 0,
584 dbg_gc("data LEB %d (free %d, dirty %d)",
585 lnum
, lp
->free
, lp
->dirty
);
587 err
= move_nodes(c
, sleb
);
591 err
= gc_sync_wbufs(c
);
595 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
, 0, 0, 0, 0);
599 /* Allow for races with TNC */
605 if (c
->gc_lnum
== -1) {
609 err
= ubifs_wbuf_sync_nolock(wbuf
);
613 err
= ubifs_leb_unmap(c
, lnum
);
622 ubifs_scan_destroy(sleb
);
626 /* We may have moved at least some nodes so allow for races with TNC */
635 * ubifs_garbage_collect - UBIFS garbage collector.
636 * @c: UBIFS file-system description object
637 * @anyway: do GC even if there are free LEBs
639 * This function does out-of-place garbage collection. The return codes are:
640 * o positive LEB number if the LEB has been freed and may be used;
641 * o %-EAGAIN if the caller has to run commit;
642 * o %-ENOSPC if GC failed to make any progress;
643 * o other negative error codes in case of other errors.
645 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
646 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
647 * commit may be required. But commit cannot be run from inside GC, because the
648 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
649 * And this error code means that the caller has to run commit, and re-run GC
650 * if there is still no free space.
652 * There are many reasons why this function may return %-EAGAIN:
653 * o the log is full and there is no space to write an LEB reference for
655 * o the journal is too large and exceeds size limitations;
656 * o GC moved indexing LEBs, but they can be used only after the commit;
657 * o the shrinker fails to find clean znodes to free and requests the commit;
660 * Note, if the file-system is close to be full, this function may return
661 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
662 * the function. E.g., this happens if the limits on the journal size are too
663 * tough and GC writes too much to the journal before an LEB is freed. This
664 * might also mean that the journal is too large, and the TNC becomes to big,
665 * so that the shrinker is constantly called, finds not clean znodes to free,
666 * and requests commit. Well, this may also happen if the journal is all right,
667 * but another kernel process consumes too much memory. Anyway, infinite
668 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
670 int ubifs_garbage_collect(struct ubifs_info
*c
, int anyway
)
672 int i
, err
, ret
, min_space
= c
->dead_wm
;
673 struct ubifs_lprops lp
;
674 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
676 ubifs_assert_cmt_locked(c
);
677 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
679 if (ubifs_gc_should_commit(c
))
682 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
689 /* We expect the write-buffer to be empty on entry */
690 ubifs_assert(c
, !wbuf
->used
);
693 int space_before
, space_after
;
695 /* Maybe continue after find and break before find */
700 /* Give the commit an opportunity to run */
701 if (ubifs_gc_should_commit(c
)) {
706 if (i
> SOFT_LEBS_LIMIT
&& !list_empty(&c
->idx_gc
)) {
708 * We've done enough iterations. Indexing LEBs were
709 * moved and will be available after the commit.
711 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
712 ubifs_commit_required(c
);
717 if (i
> HARD_LEBS_LIMIT
) {
719 * We've moved too many LEBs and have not made
722 dbg_gc("hard limit, -ENOSPC");
728 * Empty and freeable LEBs can turn up while we waited for
729 * the wbuf lock, or while we have been running GC. In that
730 * case, we should just return one of those instead of
731 * continuing to GC dirty LEBs. Hence we request
732 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
734 ret
= ubifs_find_dirty_leb(c
, &lp
, min_space
, anyway
? 0 : 1);
737 dbg_gc("no more dirty LEBs");
741 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
742 lp
.lnum
, lp
.free
, lp
.dirty
, lp
.free
+ lp
.dirty
,
745 space_before
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
746 if (wbuf
->lnum
== -1)
749 ret
= ubifs_garbage_collect_leb(c
, &lp
);
751 if (ret
== -EAGAIN
) {
753 * This is not error, so we have to return the
754 * LEB to lprops. But if 'ubifs_return_leb()'
755 * fails, its failure code is propagated to the
756 * caller instead of the original '-EAGAIN'.
758 err
= ubifs_return_leb(c
, lp
.lnum
);
762 * An LEB may always be "taken",
763 * so setting ubifs to read-only,
764 * and then executing sync wbuf will
765 * return -EROFS and enter the "out"
768 ubifs_ro_mode(c
, ret
);
770 /* Maybe double return LEB if goto out */
777 if (ret
== LEB_FREED
) {
778 /* An LEB has been freed and is ready for use */
779 dbg_gc("LEB %d freed, return", lp
.lnum
);
784 if (ret
== LEB_FREED_IDX
) {
786 * This was an indexing LEB and it cannot be
787 * immediately used. And instead of requesting the
788 * commit straight away, we try to garbage collect some
791 dbg_gc("indexing LEB %d freed, continue", lp
.lnum
);
795 ubifs_assert(c
, ret
== LEB_RETAINED
);
796 space_after
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
797 dbg_gc("LEB %d retained, freed %d bytes", lp
.lnum
,
798 space_after
- space_before
);
800 if (space_after
> space_before
) {
801 /* GC makes progress, keep working */
803 if (min_space
< c
->dead_wm
)
804 min_space
= c
->dead_wm
;
808 dbg_gc("did not make progress");
811 * GC moved an LEB bud have not done any progress. This means
812 * that the previous GC head LEB contained too few free space
813 * and the LEB which was GC'ed contained only large nodes which
814 * did not fit that space.
816 * We can do 2 things:
817 * 1. pick another LEB in a hope it'll contain a small node
818 * which will fit the space we have at the end of current GC
819 * head LEB, but there is no guarantee, so we try this out
820 * unless we have already been working for too long;
821 * 2. request an LEB with more dirty space, which will force
822 * 'ubifs_find_dirty_leb()' to start scanning the lprops
823 * table, instead of just picking one from the heap
824 * (previously it already picked the dirtiest LEB).
826 if (i
< SOFT_LEBS_LIMIT
) {
832 if (min_space
> c
->dark_wm
)
833 min_space
= c
->dark_wm
;
834 dbg_gc("set min. space to %d", min_space
);
837 if (ret
== -ENOSPC
&& !list_empty(&c
->idx_gc
)) {
838 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
839 ubifs_commit_required(c
);
843 err
= ubifs_wbuf_sync_nolock(wbuf
);
845 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
851 mutex_unlock(&wbuf
->io_mutex
);
855 ubifs_assert(c
, ret
< 0);
856 ubifs_assert(c
, ret
!= -ENOSPC
&& ret
!= -EAGAIN
);
857 ubifs_wbuf_sync_nolock(wbuf
);
858 ubifs_ro_mode(c
, ret
);
859 mutex_unlock(&wbuf
->io_mutex
);
861 ubifs_return_leb(c
, lp
.lnum
);
866 * ubifs_gc_start_commit - garbage collection at start of commit.
867 * @c: UBIFS file-system description object
869 * If a LEB has only dirty and free space, then we may safely unmap it and make
870 * it free. Note, we cannot do this with indexing LEBs because dirty space may
871 * correspond index nodes that are required for recovery. In that case, the
872 * LEB cannot be unmapped until after the next commit.
874 * This function returns %0 upon success and a negative error code upon failure.
876 int ubifs_gc_start_commit(struct ubifs_info
*c
)
878 struct ubifs_gced_idx_leb
*idx_gc
;
879 const struct ubifs_lprops
*lp
;
885 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
886 * wbufs are sync'd before this, which is done in 'do_commit()'.
889 lp
= ubifs_fast_find_freeable(c
);
892 ubifs_assert(c
, !(lp
->flags
& LPROPS_TAKEN
));
893 ubifs_assert(c
, !(lp
->flags
& LPROPS_INDEX
));
894 err
= ubifs_leb_unmap(c
, lp
->lnum
);
897 lp
= ubifs_change_lp(c
, lp
, c
->leb_size
, 0, lp
->flags
, 0);
902 ubifs_assert(c
, !(lp
->flags
& LPROPS_TAKEN
));
903 ubifs_assert(c
, !(lp
->flags
& LPROPS_INDEX
));
906 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
907 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
910 /* Record index freeable LEBs for unmapping after commit */
912 lp
= ubifs_fast_find_frdi_idx(c
);
919 idx_gc
= kmalloc(sizeof(struct ubifs_gced_idx_leb
), GFP_NOFS
);
924 ubifs_assert(c
, !(lp
->flags
& LPROPS_TAKEN
));
925 ubifs_assert(c
, lp
->flags
& LPROPS_INDEX
);
926 /* Don't release the LEB until after the next commit */
927 flags
= (lp
->flags
| LPROPS_TAKEN
) ^ LPROPS_INDEX
;
928 lp
= ubifs_change_lp(c
, lp
, c
->leb_size
, 0, flags
, 1);
934 ubifs_assert(c
, lp
->flags
& LPROPS_TAKEN
);
935 ubifs_assert(c
, !(lp
->flags
& LPROPS_INDEX
));
936 idx_gc
->lnum
= lp
->lnum
;
938 list_add(&idx_gc
->list
, &c
->idx_gc
);
941 ubifs_release_lprops(c
);
946 * ubifs_gc_end_commit - garbage collection at end of commit.
947 * @c: UBIFS file-system description object
949 * This function completes out-of-place garbage collection of index LEBs.
951 int ubifs_gc_end_commit(struct ubifs_info
*c
)
953 struct ubifs_gced_idx_leb
*idx_gc
, *tmp
;
954 struct ubifs_wbuf
*wbuf
;
957 wbuf
= &c
->jheads
[GCHD
].wbuf
;
958 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
959 list_for_each_entry_safe(idx_gc
, tmp
, &c
->idx_gc
, list
)
961 dbg_gc("LEB %d", idx_gc
->lnum
);
962 err
= ubifs_leb_unmap(c
, idx_gc
->lnum
);
965 err
= ubifs_change_one_lp(c
, idx_gc
->lnum
, LPROPS_NC
,
966 LPROPS_NC
, 0, LPROPS_TAKEN
, -1);
969 list_del(&idx_gc
->list
);
973 mutex_unlock(&wbuf
->io_mutex
);
978 * ubifs_destroy_idx_gc - destroy idx_gc list.
979 * @c: UBIFS file-system description object
981 * This function destroys the @c->idx_gc list. It is called when unmounting
982 * so locks are not needed. Returns zero in case of success and a negative
983 * error code in case of failure.
985 void ubifs_destroy_idx_gc(struct ubifs_info
*c
)
987 while (!list_empty(&c
->idx_gc
)) {
988 struct ubifs_gced_idx_leb
*idx_gc
;
990 idx_gc
= list_entry(c
->idx_gc
.next
, struct ubifs_gced_idx_leb
,
993 list_del(&idx_gc
->list
);
999 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
1000 * @c: UBIFS file-system description object
1002 * Called during start commit so locks are not needed.
1004 int ubifs_get_idx_gc_leb(struct ubifs_info
*c
)
1006 struct ubifs_gced_idx_leb
*idx_gc
;
1009 if (list_empty(&c
->idx_gc
))
1011 idx_gc
= list_entry(c
->idx_gc
.next
, struct ubifs_gced_idx_leb
, list
);
1012 lnum
= idx_gc
->lnum
;
1013 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
1014 list_del(&idx_gc
->list
);