1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
14 * This file implements UBIFS I/O subsystem which provides various I/O-related
15 * helper functions (reading/writing/checking/validating nodes) and implements
16 * write-buffering support. Write buffers help to save space which otherwise
17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
18 * Instead, data first goes to the write-buffer and is flushed when the
19 * buffer is full or when it is not used for some time (by timer). This is
20 * similar to the mechanism is used by JFFS2.
22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
24 * the underlying flash is able to program at a time, and writing in
25 * @c->max_write_size units should presumably be faster. Obviously,
26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27 * @c->max_write_size bytes in size for maximum performance. However, when a
28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29 * boundary) which contains data is written, not the whole write-buffer,
30 * because this is more space-efficient.
32 * This optimization adds few complications to the code. Indeed, on the one
33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
35 * other hand, we do not want to waste space when synchronizing the write
36 * buffer, so during synchronization we writes in smaller chunks. And this makes
37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
40 * write-buffer size (@wbuf->size).
42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43 * mutexes defined inside these objects. Since sometimes upper-level code
44 * has to lock the write-buffer (e.g. journal space reservation code), many
45 * functions related to write-buffers have "nolock" suffix which means that the
46 * caller has to lock the write-buffer before calling this function.
48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49 * aligned, UBIFS starts the next node from the aligned address, and the padded
50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
51 * bytes in those small gaps. Common headers of nodes store real node lengths,
52 * not aligned lengths. Indexing nodes also store real lengths in branches.
54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55 * uses padding nodes or padding bytes, if the padding node does not fit.
57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58 * they are read from the flash media.
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
66 * ubifs_ro_mode - switch UBIFS to read read-only mode.
67 * @c: UBIFS file-system description object
68 * @err: error code which is the reason of switching to R/O mode
70 void ubifs_ro_mode(struct ubifs_info
*c
, int err
)
74 c
->no_chk_data_crc
= 0;
75 c
->vfs_sb
->s_flags
|= SB_RDONLY
;
76 ubifs_warn(c
, "switched to read-only mode, error %d", err
);
82 * Below are simple wrappers over UBI I/O functions which include some
83 * additional checks and UBIFS debugging stuff. See corresponding UBI function
84 * for more information.
87 int ubifs_leb_read(const struct ubifs_info
*c
, int lnum
, void *buf
, int offs
,
88 int len
, int even_ebadmsg
)
92 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
94 * In case of %-EBADMSG print the error message only if the
95 * @even_ebadmsg is true.
97 if (err
&& (err
!= -EBADMSG
|| even_ebadmsg
)) {
98 ubifs_err(c
, "reading %d bytes from LEB %d:%d failed, error %d",
99 len
, lnum
, offs
, err
);
105 int ubifs_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
, int offs
,
110 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
113 if (!dbg_is_tst_rcvry(c
))
114 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
);
116 err
= dbg_leb_write(c
, lnum
, buf
, offs
, len
);
118 ubifs_err(c
, "writing %d bytes to LEB %d:%d failed, error %d",
119 len
, lnum
, offs
, err
);
120 ubifs_ro_mode(c
, err
);
126 int ubifs_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
, int len
)
130 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
133 if (!dbg_is_tst_rcvry(c
))
134 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
);
136 err
= dbg_leb_change(c
, lnum
, buf
, len
);
138 ubifs_err(c
, "changing %d bytes in LEB %d failed, error %d",
140 ubifs_ro_mode(c
, err
);
146 int ubifs_leb_unmap(struct ubifs_info
*c
, int lnum
)
150 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
153 if (!dbg_is_tst_rcvry(c
))
154 err
= ubi_leb_unmap(c
->ubi
, lnum
);
156 err
= dbg_leb_unmap(c
, lnum
);
158 ubifs_err(c
, "unmap LEB %d failed, error %d", lnum
, err
);
159 ubifs_ro_mode(c
, err
);
165 int ubifs_leb_map(struct ubifs_info
*c
, int lnum
)
169 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
172 if (!dbg_is_tst_rcvry(c
))
173 err
= ubi_leb_map(c
->ubi
, lnum
);
175 err
= dbg_leb_map(c
, lnum
);
177 ubifs_err(c
, "mapping LEB %d failed, error %d", lnum
, err
);
178 ubifs_ro_mode(c
, err
);
184 int ubifs_is_mapped(const struct ubifs_info
*c
, int lnum
)
188 err
= ubi_is_mapped(c
->ubi
, lnum
);
190 ubifs_err(c
, "ubi_is_mapped failed for LEB %d, error %d",
197 static void record_magic_error(struct ubifs_stats_info
*stats
)
200 stats
->magic_errors
++;
203 static void record_node_error(struct ubifs_stats_info
*stats
)
206 stats
->node_errors
++;
209 static void record_crc_error(struct ubifs_stats_info
*stats
)
216 * ubifs_check_node - check node.
217 * @c: UBIFS file-system description object
218 * @buf: node to check
220 * @lnum: logical eraseblock number
221 * @offs: offset within the logical eraseblock
222 * @quiet: print no messages
223 * @must_chk_crc: indicates whether to always check the CRC
225 * This function checks node magic number and CRC checksum. This function also
226 * validates node length to prevent UBIFS from becoming crazy when an attacker
227 * feeds it a file-system image with incorrect nodes. For example, too large
228 * node length in the common header could cause UBIFS to read memory outside of
229 * allocated buffer when checking the CRC checksum.
231 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
232 * true, which is controlled by corresponding UBIFS mount option. However, if
233 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
234 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
235 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
236 * is checked. This is because during mounting or re-mounting from R/O mode to
237 * R/W mode we may read journal nodes (when replying the journal or doing the
238 * recovery) and the journal nodes may potentially be corrupted, so checking is
241 * This function returns zero in case of success and %-EUCLEAN in case of bad
244 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int len
,
245 int lnum
, int offs
, int quiet
, int must_chk_crc
)
247 int err
= -EINVAL
, type
, node_len
;
248 uint32_t crc
, node_crc
, magic
;
249 const struct ubifs_ch
*ch
= buf
;
251 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
252 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
254 magic
= le32_to_cpu(ch
->magic
);
255 if (magic
!= UBIFS_NODE_MAGIC
) {
257 ubifs_err(c
, "bad magic %#08x, expected %#08x",
258 magic
, UBIFS_NODE_MAGIC
);
259 record_magic_error(c
->stats
);
264 type
= ch
->node_type
;
265 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
267 ubifs_err(c
, "bad node type %d", type
);
268 record_node_error(c
->stats
);
272 node_len
= le32_to_cpu(ch
->len
);
273 if (node_len
+ offs
> c
->leb_size
)
276 if (c
->ranges
[type
].max_len
== 0) {
277 if (node_len
!= c
->ranges
[type
].len
)
279 } else if (node_len
< c
->ranges
[type
].min_len
||
280 node_len
> c
->ranges
[type
].max_len
)
283 if (!must_chk_crc
&& type
== UBIFS_DATA_NODE
&& !c
->mounting
&&
284 !c
->remounting_rw
&& c
->no_chk_data_crc
)
287 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
288 node_crc
= le32_to_cpu(ch
->crc
);
289 if (crc
!= node_crc
) {
291 ubifs_err(c
, "bad CRC: calculated %#08x, read %#08x",
293 record_crc_error(c
->stats
);
302 ubifs_err(c
, "bad node length %d", node_len
);
305 ubifs_err(c
, "bad node at LEB %d:%d", lnum
, offs
);
306 ubifs_dump_node(c
, buf
, len
);
313 * ubifs_pad - pad flash space.
314 * @c: UBIFS file-system description object
315 * @buf: buffer to put padding to
316 * @pad: how many bytes to pad
318 * The flash media obliges us to write only in chunks of %c->min_io_size and
319 * when we have to write less data we add padding node to the write-buffer and
320 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
321 * media is being scanned. If the amount of wasted space is not enough to fit a
322 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
323 * pattern (%UBIFS_PADDING_BYTE).
325 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
328 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
332 ubifs_assert(c
, pad
>= 0);
334 if (pad
>= UBIFS_PAD_NODE_SZ
) {
335 struct ubifs_ch
*ch
= buf
;
336 struct ubifs_pad_node
*pad_node
= buf
;
338 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
339 ch
->node_type
= UBIFS_PAD_NODE
;
340 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
341 ch
->padding
[0] = ch
->padding
[1] = 0;
343 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
344 pad
-= UBIFS_PAD_NODE_SZ
;
345 pad_node
->pad_len
= cpu_to_le32(pad
);
346 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
347 ch
->crc
= cpu_to_le32(crc
);
348 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
350 /* Too little space, padding node won't fit */
351 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
355 * next_sqnum - get next sequence number.
356 * @c: UBIFS file-system description object
358 static unsigned long long next_sqnum(struct ubifs_info
*c
)
360 unsigned long long sqnum
;
362 spin_lock(&c
->cnt_lock
);
363 sqnum
= ++c
->max_sqnum
;
364 spin_unlock(&c
->cnt_lock
);
366 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
367 if (sqnum
>= SQNUM_WATERMARK
) {
368 ubifs_err(c
, "sequence number overflow %llu, end of life",
370 ubifs_ro_mode(c
, -EINVAL
);
372 ubifs_warn(c
, "running out of sequence numbers, end of life soon");
378 void ubifs_init_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
380 struct ubifs_ch
*ch
= node
;
381 unsigned long long sqnum
= next_sqnum(c
);
383 ubifs_assert(c
, len
>= UBIFS_CH_SZ
);
385 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
386 ch
->len
= cpu_to_le32(len
);
387 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
388 ch
->sqnum
= cpu_to_le64(sqnum
);
389 ch
->padding
[0] = ch
->padding
[1] = 0;
393 pad
= ALIGN(len
, c
->min_io_size
) - len
;
394 ubifs_pad(c
, node
+ len
, pad
);
398 void ubifs_crc_node(struct ubifs_info
*c
, void *node
, int len
)
400 struct ubifs_ch
*ch
= node
;
403 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
404 ch
->crc
= cpu_to_le32(crc
);
408 * ubifs_prepare_node_hmac - prepare node to be written to flash.
409 * @c: UBIFS file-system description object
410 * @node: the node to pad
412 * @hmac_offs: offset of the HMAC in the node
413 * @pad: if the buffer has to be padded
415 * This function prepares node at @node to be written to the media - it
416 * calculates node CRC, fills the common header, and adds proper padding up to
417 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
418 * a HMAC is inserted into the node at the given offset.
420 * This function returns 0 for success or a negative error code otherwise.
422 int ubifs_prepare_node_hmac(struct ubifs_info
*c
, void *node
, int len
,
423 int hmac_offs
, int pad
)
427 ubifs_init_node(c
, node
, len
, pad
);
430 err
= ubifs_node_insert_hmac(c
, node
, len
, hmac_offs
);
435 ubifs_crc_node(c
, node
, len
);
441 * ubifs_prepare_node - prepare node to be written to flash.
442 * @c: UBIFS file-system description object
443 * @node: the node to pad
445 * @pad: if the buffer has to be padded
447 * This function prepares node at @node to be written to the media - it
448 * calculates node CRC, fills the common header, and adds proper padding up to
449 * the next minimum I/O unit if @pad is not zero.
451 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
454 * Deliberately ignore return value since this function can only fail
455 * when a hmac offset is given.
457 ubifs_prepare_node_hmac(c
, node
, len
, 0, pad
);
461 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
462 * @c: UBIFS file-system description object
463 * @node: the node to pad
465 * @last: indicates the last node of the group
467 * This function prepares node at @node to be written to the media - it
468 * calculates node CRC and fills the common header.
470 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
473 struct ubifs_ch
*ch
= node
;
474 unsigned long long sqnum
= next_sqnum(c
);
476 ubifs_assert(c
, len
>= UBIFS_CH_SZ
);
478 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
479 ch
->len
= cpu_to_le32(len
);
481 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
483 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
484 ch
->sqnum
= cpu_to_le64(sqnum
);
485 ch
->padding
[0] = ch
->padding
[1] = 0;
486 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
487 ch
->crc
= cpu_to_le32(crc
);
491 * wbuf_timer_callback_nolock - write-buffer timer callback function.
492 * @timer: timer data (write-buffer descriptor)
494 * This function is called when the write-buffer timer expires.
496 static enum hrtimer_restart
wbuf_timer_callback_nolock(struct hrtimer
*timer
)
498 struct ubifs_wbuf
*wbuf
= container_of(timer
, struct ubifs_wbuf
, timer
);
500 dbg_io("jhead %s", dbg_jhead(wbuf
->jhead
));
502 wbuf
->c
->need_wbuf_sync
= 1;
503 ubifs_wake_up_bgt(wbuf
->c
);
504 return HRTIMER_NORESTART
;
508 * new_wbuf_timer_nolock - start new write-buffer timer.
509 * @c: UBIFS file-system description object
510 * @wbuf: write-buffer descriptor
512 static void new_wbuf_timer_nolock(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
514 ktime_t softlimit
= ms_to_ktime(dirty_writeback_interval
* 10);
515 unsigned long long delta
= dirty_writeback_interval
;
517 /* centi to milli, milli to nano, then 10% */
518 delta
*= 10ULL * NSEC_PER_MSEC
/ 10ULL;
520 ubifs_assert(c
, !hrtimer_active(&wbuf
->timer
));
521 ubifs_assert(c
, delta
<= ULONG_MAX
);
525 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
526 dbg_jhead(wbuf
->jhead
),
527 div_u64(ktime_to_ns(softlimit
), USEC_PER_SEC
),
528 div_u64(ktime_to_ns(softlimit
) + delta
, USEC_PER_SEC
));
529 hrtimer_start_range_ns(&wbuf
->timer
, softlimit
, delta
,
534 * cancel_wbuf_timer_nolock - cancel write-buffer timer.
535 * @wbuf: write-buffer descriptor
537 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
542 hrtimer_cancel(&wbuf
->timer
);
546 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
547 * @wbuf: write-buffer to synchronize
549 * This function synchronizes write-buffer @buf and returns zero in case of
550 * success or a negative error code in case of failure.
552 * Note, although write-buffers are of @c->max_write_size, this function does
553 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
554 * if the write-buffer is only partially filled with data, only the used part
555 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
556 * This way we waste less space.
558 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
560 struct ubifs_info
*c
= wbuf
->c
;
561 int err
, dirt
, sync_len
;
563 cancel_wbuf_timer_nolock(wbuf
);
564 if (!wbuf
->used
|| wbuf
->lnum
== -1)
565 /* Write-buffer is empty or not seeked */
568 dbg_io("LEB %d:%d, %d bytes, jhead %s",
569 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
, dbg_jhead(wbuf
->jhead
));
570 ubifs_assert(c
, !(wbuf
->avail
& 7));
571 ubifs_assert(c
, wbuf
->offs
+ wbuf
->size
<= c
->leb_size
);
572 ubifs_assert(c
, wbuf
->size
>= c
->min_io_size
);
573 ubifs_assert(c
, wbuf
->size
<= c
->max_write_size
);
574 ubifs_assert(c
, wbuf
->size
% c
->min_io_size
== 0);
575 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
576 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
577 ubifs_assert(c
, !((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
583 * Do not write whole write buffer but write only the minimum necessary
584 * amount of min. I/O units.
586 sync_len
= ALIGN(wbuf
->used
, c
->min_io_size
);
587 dirt
= sync_len
- wbuf
->used
;
589 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, dirt
);
590 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
, sync_len
);
594 spin_lock(&wbuf
->lock
);
595 wbuf
->offs
+= sync_len
;
597 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
598 * But our goal is to optimize writes and make sure we write in
599 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
600 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
601 * sure that @wbuf->offs + @wbuf->size is aligned to
602 * @c->max_write_size. This way we make sure that after next
603 * write-buffer flush we are again at the optimal offset (aligned to
604 * @c->max_write_size).
606 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
607 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
608 else if (wbuf
->offs
& (c
->max_write_size
- 1))
609 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
611 wbuf
->size
= c
->max_write_size
;
612 wbuf
->avail
= wbuf
->size
;
615 spin_unlock(&wbuf
->lock
);
617 if (wbuf
->sync_callback
)
618 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
619 c
->leb_size
- wbuf
->offs
, dirt
);
624 * ubifs_wbuf_seek_nolock - seek write-buffer.
625 * @wbuf: write-buffer
626 * @lnum: logical eraseblock number to seek to
627 * @offs: logical eraseblock offset to seek to
629 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
630 * The write-buffer has to be empty. Returns zero in case of success and a
631 * negative error code in case of failure.
633 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
)
635 const struct ubifs_info
*c
= wbuf
->c
;
637 dbg_io("LEB %d:%d, jhead %s", lnum
, offs
, dbg_jhead(wbuf
->jhead
));
638 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
);
639 ubifs_assert(c
, offs
>= 0 && offs
<= c
->leb_size
);
640 ubifs_assert(c
, offs
% c
->min_io_size
== 0 && !(offs
& 7));
641 ubifs_assert(c
, lnum
!= wbuf
->lnum
);
642 ubifs_assert(c
, wbuf
->used
== 0);
644 spin_lock(&wbuf
->lock
);
647 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
648 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
649 else if (wbuf
->offs
& (c
->max_write_size
- 1))
650 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
652 wbuf
->size
= c
->max_write_size
;
653 wbuf
->avail
= wbuf
->size
;
655 spin_unlock(&wbuf
->lock
);
661 * ubifs_bg_wbufs_sync - synchronize write-buffers.
662 * @c: UBIFS file-system description object
664 * This function is called by background thread to synchronize write-buffers.
665 * Returns zero in case of success and a negative error code in case of
668 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
672 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
673 if (!c
->need_wbuf_sync
)
675 c
->need_wbuf_sync
= 0;
682 dbg_io("synchronize");
683 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
684 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
689 * If the mutex is locked then wbuf is being changed, so
690 * synchronization is not necessary.
692 if (mutex_is_locked(&wbuf
->io_mutex
))
695 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
696 if (!wbuf
->need_sync
) {
697 mutex_unlock(&wbuf
->io_mutex
);
701 err
= ubifs_wbuf_sync_nolock(wbuf
);
702 mutex_unlock(&wbuf
->io_mutex
);
704 ubifs_err(c
, "cannot sync write-buffer, error %d", err
);
705 ubifs_ro_mode(c
, err
);
713 /* Cancel all timers to prevent repeated errors */
714 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
715 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
717 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
718 cancel_wbuf_timer_nolock(wbuf
);
719 mutex_unlock(&wbuf
->io_mutex
);
725 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
726 * @wbuf: write-buffer
727 * @buf: node to write
730 * This function writes data to flash via write-buffer @wbuf. This means that
731 * the last piece of the node won't reach the flash media immediately if it
732 * does not take whole max. write unit (@c->max_write_size). Instead, the node
733 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
734 * because more data are appended to the write-buffer).
736 * This function returns zero in case of success and a negative error code in
737 * case of failure. If the node cannot be written because there is no more
738 * space in this logical eraseblock, %-ENOSPC is returned.
740 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
742 struct ubifs_info
*c
= wbuf
->c
;
743 int err
, n
, written
= 0, aligned_len
= ALIGN(len
, 8);
745 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len
,
746 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
),
747 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
748 ubifs_assert(c
, len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
749 ubifs_assert(c
, wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
750 ubifs_assert(c
, !(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
751 ubifs_assert(c
, wbuf
->avail
> 0 && wbuf
->avail
<= wbuf
->size
);
752 ubifs_assert(c
, wbuf
->size
>= c
->min_io_size
);
753 ubifs_assert(c
, wbuf
->size
<= c
->max_write_size
);
754 ubifs_assert(c
, wbuf
->size
% c
->min_io_size
== 0);
755 ubifs_assert(c
, mutex_is_locked(&wbuf
->io_mutex
));
756 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
757 ubifs_assert(c
, !c
->space_fixup
);
758 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
759 ubifs_assert(c
, !((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
761 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
766 cancel_wbuf_timer_nolock(wbuf
);
771 if (aligned_len
<= wbuf
->avail
) {
773 * The node is not very large and fits entirely within
776 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
777 if (aligned_len
> len
) {
778 ubifs_assert(c
, aligned_len
- len
< 8);
779 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
+ len
, aligned_len
- len
);
782 if (aligned_len
== wbuf
->avail
) {
783 dbg_io("flush jhead %s wbuf to LEB %d:%d",
784 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
785 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
,
786 wbuf
->offs
, wbuf
->size
);
790 spin_lock(&wbuf
->lock
);
791 wbuf
->offs
+= wbuf
->size
;
792 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
793 wbuf
->size
= c
->max_write_size
;
795 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
796 wbuf
->avail
= wbuf
->size
;
799 spin_unlock(&wbuf
->lock
);
801 spin_lock(&wbuf
->lock
);
802 wbuf
->avail
-= aligned_len
;
803 wbuf
->used
+= aligned_len
;
804 spin_unlock(&wbuf
->lock
);
812 * The node is large enough and does not fit entirely within
813 * current available space. We have to fill and flush
814 * write-buffer and switch to the next max. write unit.
816 dbg_io("flush jhead %s wbuf to LEB %d:%d",
817 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
818 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
819 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
824 wbuf
->offs
+= wbuf
->size
;
826 aligned_len
-= wbuf
->avail
;
827 written
+= wbuf
->avail
;
828 } else if (wbuf
->offs
& (c
->max_write_size
- 1)) {
830 * The write-buffer offset is not aligned to
831 * @c->max_write_size and @wbuf->size is less than
832 * @c->max_write_size. Write @wbuf->size bytes to make sure the
833 * following writes are done in optimal @c->max_write_size
836 dbg_io("write %d bytes to LEB %d:%d",
837 wbuf
->size
, wbuf
->lnum
, wbuf
->offs
);
838 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
, wbuf
->offs
,
843 wbuf
->offs
+= wbuf
->size
;
845 aligned_len
-= wbuf
->size
;
846 written
+= wbuf
->size
;
850 * The remaining data may take more whole max. write units, so write the
851 * remains multiple to max. write unit size directly to the flash media.
852 * We align node length to 8-byte boundary because we anyway flash wbuf
853 * if the remaining space is less than 8 bytes.
855 n
= aligned_len
>> c
->max_write_shift
;
859 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
,
863 /* '(n-1)<<c->max_write_shift < len' is always true. */
864 m
<<= c
->max_write_shift
;
865 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
+ written
,
876 * The non-written len of buf may be less than 'n' because
877 * parameter 'len' is not 8 bytes aligned, so here we read
878 * min(len, n) bytes from buf.
880 n
= 1 << c
->max_write_shift
;
881 memcpy(wbuf
->buf
, buf
+ written
, min(len
, n
));
883 ubifs_assert(c
, n
- len
< 8);
884 ubifs_pad(c
, wbuf
->buf
+ len
, n
- len
);
887 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
, n
);
896 spin_lock(&wbuf
->lock
);
899 * And now we have what's left and what does not take whole
900 * max. write unit, so write it to the write-buffer and we are
903 memcpy(wbuf
->buf
, buf
+ written
, len
);
904 if (aligned_len
> len
) {
905 ubifs_assert(c
, aligned_len
- len
< 8);
906 ubifs_pad(c
, wbuf
->buf
+ len
, aligned_len
- len
);
910 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
911 wbuf
->size
= c
->max_write_size
;
913 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
914 wbuf
->avail
= wbuf
->size
- aligned_len
;
915 wbuf
->used
= aligned_len
;
917 spin_unlock(&wbuf
->lock
);
920 if (wbuf
->sync_callback
) {
921 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
923 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
929 new_wbuf_timer_nolock(c
, wbuf
);
934 ubifs_err(c
, "cannot write %d bytes to LEB %d:%d, error %d",
935 len
, wbuf
->lnum
, wbuf
->offs
, err
);
936 ubifs_dump_node(c
, buf
, written
+ len
);
938 ubifs_dump_leb(c
, wbuf
->lnum
);
943 * ubifs_write_node_hmac - write node to the media.
944 * @c: UBIFS file-system description object
945 * @buf: the node to write
947 * @lnum: logical eraseblock number
948 * @offs: offset within the logical eraseblock
949 * @hmac_offs: offset of the HMAC within the node
951 * This function automatically fills node magic number, assigns sequence
952 * number, and calculates node CRC checksum. The length of the @buf buffer has
953 * to be aligned to the minimal I/O unit size. This function automatically
954 * appends padding node and padding bytes if needed. Returns zero in case of
955 * success and a negative error code in case of failure.
957 int ubifs_write_node_hmac(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
958 int offs
, int hmac_offs
)
960 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
962 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
963 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
965 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
966 ubifs_assert(c
, offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
967 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
968 ubifs_assert(c
, !c
->space_fixup
);
973 err
= ubifs_prepare_node_hmac(c
, buf
, len
, hmac_offs
, 1);
977 err
= ubifs_leb_write(c
, lnum
, buf
, offs
, buf_len
);
979 ubifs_dump_node(c
, buf
, len
);
985 * ubifs_write_node - write node to the media.
986 * @c: UBIFS file-system description object
987 * @buf: the node to write
989 * @lnum: logical eraseblock number
990 * @offs: offset within the logical eraseblock
992 * This function automatically fills node magic number, assigns sequence
993 * number, and calculates node CRC checksum. The length of the @buf buffer has
994 * to be aligned to the minimal I/O unit size. This function automatically
995 * appends padding node and padding bytes if needed. Returns zero in case of
996 * success and a negative error code in case of failure.
998 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
1001 return ubifs_write_node_hmac(c
, buf
, len
, lnum
, offs
, -1);
1005 * ubifs_read_node_wbuf - read node from the media or write-buffer.
1006 * @wbuf: wbuf to check for un-written data
1007 * @buf: buffer to read to
1010 * @lnum: logical eraseblock number
1011 * @offs: offset within the logical eraseblock
1013 * This function reads a node of known type and length, checks it and stores
1014 * in @buf. If the node partially or fully sits in the write-buffer, this
1015 * function takes data from the buffer, otherwise it reads the flash media.
1016 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
1017 * error code in case of failure.
1019 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
1022 const struct ubifs_info
*c
= wbuf
->c
;
1023 int err
, rlen
, overlap
;
1024 struct ubifs_ch
*ch
= buf
;
1026 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum
, offs
,
1027 dbg_ntype(type
), len
, dbg_jhead(wbuf
->jhead
));
1028 ubifs_assert(c
, wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
1029 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
1030 ubifs_assert(c
, type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
1032 spin_lock(&wbuf
->lock
);
1033 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
1035 /* We may safely unlock the write-buffer and read the data */
1036 spin_unlock(&wbuf
->lock
);
1037 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
1040 /* Don't read under wbuf */
1041 rlen
= wbuf
->offs
- offs
;
1045 /* Copy the rest from the write-buffer */
1046 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
1047 spin_unlock(&wbuf
->lock
);
1050 /* Read everything that goes before write-buffer */
1051 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, rlen
, 0);
1052 if (err
&& err
!= -EBADMSG
)
1056 if (type
!= ch
->node_type
) {
1057 ubifs_err(c
, "bad node type (%d but expected %d)",
1058 ch
->node_type
, type
);
1062 err
= ubifs_check_node(c
, buf
, len
, lnum
, offs
, 0, 0);
1064 ubifs_err(c
, "expected node type %d", type
);
1068 rlen
= le32_to_cpu(ch
->len
);
1070 ubifs_err(c
, "bad node length %d, expected %d", rlen
, len
);
1077 ubifs_err(c
, "bad node at LEB %d:%d", lnum
, offs
);
1078 ubifs_dump_node(c
, buf
, len
);
1084 * ubifs_read_node - read node.
1085 * @c: UBIFS file-system description object
1086 * @buf: buffer to read to
1088 * @len: node length (not aligned)
1089 * @lnum: logical eraseblock number
1090 * @offs: offset within the logical eraseblock
1092 * This function reads a node of known type and length, checks it and
1093 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1094 * and a negative error code in case of failure.
1096 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
1100 struct ubifs_ch
*ch
= buf
;
1102 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
1103 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
1104 ubifs_assert(c
, len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
1105 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
1106 ubifs_assert(c
, type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
1108 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 0);
1109 if (err
&& err
!= -EBADMSG
)
1112 if (type
!= ch
->node_type
) {
1113 ubifs_errc(c
, "bad node type (%d but expected %d)",
1114 ch
->node_type
, type
);
1118 err
= ubifs_check_node(c
, buf
, len
, lnum
, offs
, 0, 0);
1120 ubifs_errc(c
, "expected node type %d", type
);
1124 l
= le32_to_cpu(ch
->len
);
1126 ubifs_errc(c
, "bad node length %d, expected %d", l
, len
);
1133 ubifs_errc(c
, "bad node at LEB %d:%d, LEB mapping status %d", lnum
,
1134 offs
, ubi_is_mapped(c
->ubi
, lnum
));
1136 ubifs_dump_node(c
, buf
, len
);
1143 * ubifs_wbuf_init - initialize write-buffer.
1144 * @c: UBIFS file-system description object
1145 * @wbuf: write-buffer to initialize
1147 * This function initializes write-buffer. Returns zero in case of success
1148 * %-ENOMEM in case of failure.
1150 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
1154 wbuf
->buf
= kmalloc(c
->max_write_size
, GFP_KERNEL
);
1158 size
= (c
->max_write_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
1159 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
1160 if (!wbuf
->inodes
) {
1167 wbuf
->lnum
= wbuf
->offs
= -1;
1169 * If the LEB starts at the max. write size aligned address, then
1170 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1171 * set it to something smaller so that it ends at the closest max.
1172 * write size boundary.
1174 size
= c
->max_write_size
- (c
->leb_start
% c
->max_write_size
);
1175 wbuf
->avail
= wbuf
->size
= size
;
1176 wbuf
->sync_callback
= NULL
;
1177 mutex_init(&wbuf
->io_mutex
);
1178 spin_lock_init(&wbuf
->lock
);
1182 hrtimer_init(&wbuf
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1183 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
1188 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1189 * @wbuf: the write-buffer where to add
1190 * @inum: the inode number
1192 * This function adds an inode number to the inode array of the write-buffer.
1194 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1197 /* NOR flash or something similar */
1200 spin_lock(&wbuf
->lock
);
1202 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
1203 spin_unlock(&wbuf
->lock
);
1207 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1208 * @wbuf: the write-buffer
1209 * @inum: the inode number
1211 * This function returns with %1 if the write-buffer contains some data from the
1212 * given inode otherwise it returns with %0.
1214 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1218 spin_lock(&wbuf
->lock
);
1219 for (i
= 0; i
< wbuf
->next_ino
; i
++)
1220 if (inum
== wbuf
->inodes
[i
]) {
1224 spin_unlock(&wbuf
->lock
);
1230 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1231 * @c: UBIFS file-system description object
1232 * @inode: inode to synchronize
1234 * This function synchronizes write-buffers which contain nodes belonging to
1235 * @inode. Returns zero in case of success and a negative error code in case of
1238 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
1242 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1243 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
1247 * GC head is special, do not look at it. Even if the
1248 * head contains something related to this inode, it is
1249 * a _copy_ of corresponding on-flash node which sits
1254 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
1257 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1258 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
1259 err
= ubifs_wbuf_sync_nolock(wbuf
);
1260 mutex_unlock(&wbuf
->io_mutex
);
1263 ubifs_ro_mode(c
, err
);