Linux 6.14-rc1
[linux-stable.git] / mm / damon / core.c
blobc7b9813088626530fc37a4d2494d24bfc261fca9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
5 * Author: SeongJae Park <sj@kernel.org>
6 */
8 #define pr_fmt(fmt) "damon: " fmt
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/string_choices.h>
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/damon.h>
22 #ifdef CONFIG_DAMON_KUNIT_TEST
23 #undef DAMON_MIN_REGION
24 #define DAMON_MIN_REGION 1
25 #endif
27 static DEFINE_MUTEX(damon_lock);
28 static int nr_running_ctxs;
29 static bool running_exclusive_ctxs;
31 static DEFINE_MUTEX(damon_ops_lock);
32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
34 static struct kmem_cache *damon_region_cache __ro_after_init;
36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
37 static bool __damon_is_registered_ops(enum damon_ops_id id)
39 struct damon_operations empty_ops = {};
41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
42 return false;
43 return true;
46 /**
47 * damon_is_registered_ops() - Check if a given damon_operations is registered.
48 * @id: Id of the damon_operations to check if registered.
50 * Return: true if the ops is set, false otherwise.
52 bool damon_is_registered_ops(enum damon_ops_id id)
54 bool registered;
56 if (id >= NR_DAMON_OPS)
57 return false;
58 mutex_lock(&damon_ops_lock);
59 registered = __damon_is_registered_ops(id);
60 mutex_unlock(&damon_ops_lock);
61 return registered;
64 /**
65 * damon_register_ops() - Register a monitoring operations set to DAMON.
66 * @ops: monitoring operations set to register.
68 * This function registers a monitoring operations set of valid &struct
69 * damon_operations->id so that others can find and use them later.
71 * Return: 0 on success, negative error code otherwise.
73 int damon_register_ops(struct damon_operations *ops)
75 int err = 0;
77 if (ops->id >= NR_DAMON_OPS)
78 return -EINVAL;
79 mutex_lock(&damon_ops_lock);
80 /* Fail for already registered ops */
81 if (__damon_is_registered_ops(ops->id)) {
82 err = -EINVAL;
83 goto out;
85 damon_registered_ops[ops->id] = *ops;
86 out:
87 mutex_unlock(&damon_ops_lock);
88 return err;
91 /**
92 * damon_select_ops() - Select a monitoring operations to use with the context.
93 * @ctx: monitoring context to use the operations.
94 * @id: id of the registered monitoring operations to select.
96 * This function finds registered monitoring operations set of @id and make
97 * @ctx to use it.
99 * Return: 0 on success, negative error code otherwise.
101 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
103 int err = 0;
105 if (id >= NR_DAMON_OPS)
106 return -EINVAL;
108 mutex_lock(&damon_ops_lock);
109 if (!__damon_is_registered_ops(id))
110 err = -EINVAL;
111 else
112 ctx->ops = damon_registered_ops[id];
113 mutex_unlock(&damon_ops_lock);
114 return err;
118 * Construct a damon_region struct
120 * Returns the pointer to the new struct if success, or NULL otherwise
122 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
124 struct damon_region *region;
126 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
127 if (!region)
128 return NULL;
130 region->ar.start = start;
131 region->ar.end = end;
132 region->nr_accesses = 0;
133 region->nr_accesses_bp = 0;
134 INIT_LIST_HEAD(&region->list);
136 region->age = 0;
137 region->last_nr_accesses = 0;
139 return region;
142 void damon_add_region(struct damon_region *r, struct damon_target *t)
144 list_add_tail(&r->list, &t->regions_list);
145 t->nr_regions++;
148 static void damon_del_region(struct damon_region *r, struct damon_target *t)
150 list_del(&r->list);
151 t->nr_regions--;
154 static void damon_free_region(struct damon_region *r)
156 kmem_cache_free(damon_region_cache, r);
159 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
161 damon_del_region(r, t);
162 damon_free_region(r);
166 * Check whether a region is intersecting an address range
168 * Returns true if it is.
170 static bool damon_intersect(struct damon_region *r,
171 struct damon_addr_range *re)
173 return !(r->ar.end <= re->start || re->end <= r->ar.start);
177 * Fill holes in regions with new regions.
179 static int damon_fill_regions_holes(struct damon_region *first,
180 struct damon_region *last, struct damon_target *t)
182 struct damon_region *r = first;
184 damon_for_each_region_from(r, t) {
185 struct damon_region *next, *newr;
187 if (r == last)
188 break;
189 next = damon_next_region(r);
190 if (r->ar.end != next->ar.start) {
191 newr = damon_new_region(r->ar.end, next->ar.start);
192 if (!newr)
193 return -ENOMEM;
194 damon_insert_region(newr, r, next, t);
197 return 0;
201 * damon_set_regions() - Set regions of a target for given address ranges.
202 * @t: the given target.
203 * @ranges: array of new monitoring target ranges.
204 * @nr_ranges: length of @ranges.
206 * This function adds new regions to, or modify existing regions of a
207 * monitoring target to fit in specific ranges.
209 * Return: 0 if success, or negative error code otherwise.
211 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
212 unsigned int nr_ranges)
214 struct damon_region *r, *next;
215 unsigned int i;
216 int err;
218 /* Remove regions which are not in the new ranges */
219 damon_for_each_region_safe(r, next, t) {
220 for (i = 0; i < nr_ranges; i++) {
221 if (damon_intersect(r, &ranges[i]))
222 break;
224 if (i == nr_ranges)
225 damon_destroy_region(r, t);
228 r = damon_first_region(t);
229 /* Add new regions or resize existing regions to fit in the ranges */
230 for (i = 0; i < nr_ranges; i++) {
231 struct damon_region *first = NULL, *last, *newr;
232 struct damon_addr_range *range;
234 range = &ranges[i];
235 /* Get the first/last regions intersecting with the range */
236 damon_for_each_region_from(r, t) {
237 if (damon_intersect(r, range)) {
238 if (!first)
239 first = r;
240 last = r;
242 if (r->ar.start >= range->end)
243 break;
245 if (!first) {
246 /* no region intersects with this range */
247 newr = damon_new_region(
248 ALIGN_DOWN(range->start,
249 DAMON_MIN_REGION),
250 ALIGN(range->end, DAMON_MIN_REGION));
251 if (!newr)
252 return -ENOMEM;
253 damon_insert_region(newr, damon_prev_region(r), r, t);
254 } else {
255 /* resize intersecting regions to fit in this range */
256 first->ar.start = ALIGN_DOWN(range->start,
257 DAMON_MIN_REGION);
258 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
260 /* fill possible holes in the range */
261 err = damon_fill_regions_holes(first, last, t);
262 if (err)
263 return err;
266 return 0;
269 struct damos_filter *damos_new_filter(enum damos_filter_type type,
270 bool matching, bool allow)
272 struct damos_filter *filter;
274 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
275 if (!filter)
276 return NULL;
277 filter->type = type;
278 filter->matching = matching;
279 filter->allow = allow;
280 INIT_LIST_HEAD(&filter->list);
281 return filter;
284 void damos_add_filter(struct damos *s, struct damos_filter *f)
286 list_add_tail(&f->list, &s->filters);
289 static void damos_del_filter(struct damos_filter *f)
291 list_del(&f->list);
294 static void damos_free_filter(struct damos_filter *f)
296 kfree(f);
299 void damos_destroy_filter(struct damos_filter *f)
301 damos_del_filter(f);
302 damos_free_filter(f);
305 struct damos_quota_goal *damos_new_quota_goal(
306 enum damos_quota_goal_metric metric,
307 unsigned long target_value)
309 struct damos_quota_goal *goal;
311 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
312 if (!goal)
313 return NULL;
314 goal->metric = metric;
315 goal->target_value = target_value;
316 INIT_LIST_HEAD(&goal->list);
317 return goal;
320 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
322 list_add_tail(&g->list, &q->goals);
325 static void damos_del_quota_goal(struct damos_quota_goal *g)
327 list_del(&g->list);
330 static void damos_free_quota_goal(struct damos_quota_goal *g)
332 kfree(g);
335 void damos_destroy_quota_goal(struct damos_quota_goal *g)
337 damos_del_quota_goal(g);
338 damos_free_quota_goal(g);
341 /* initialize fields of @quota that normally API users wouldn't set */
342 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
344 quota->esz = 0;
345 quota->total_charged_sz = 0;
346 quota->total_charged_ns = 0;
347 quota->charged_sz = 0;
348 quota->charged_from = 0;
349 quota->charge_target_from = NULL;
350 quota->charge_addr_from = 0;
351 quota->esz_bp = 0;
352 return quota;
355 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
356 enum damos_action action,
357 unsigned long apply_interval_us,
358 struct damos_quota *quota,
359 struct damos_watermarks *wmarks,
360 int target_nid)
362 struct damos *scheme;
364 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
365 if (!scheme)
366 return NULL;
367 scheme->pattern = *pattern;
368 scheme->action = action;
369 scheme->apply_interval_us = apply_interval_us;
371 * next_apply_sis will be set when kdamond starts. While kdamond is
372 * running, it will also updated when it is added to the DAMON context,
373 * or damon_attrs are updated.
375 scheme->next_apply_sis = 0;
376 INIT_LIST_HEAD(&scheme->filters);
377 scheme->stat = (struct damos_stat){};
378 INIT_LIST_HEAD(&scheme->list);
380 scheme->quota = *(damos_quota_init(quota));
381 /* quota.goals should be separately set by caller */
382 INIT_LIST_HEAD(&scheme->quota.goals);
384 scheme->wmarks = *wmarks;
385 scheme->wmarks.activated = true;
387 scheme->target_nid = target_nid;
389 return scheme;
392 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
394 unsigned long sample_interval = ctx->attrs.sample_interval ?
395 ctx->attrs.sample_interval : 1;
396 unsigned long apply_interval = s->apply_interval_us ?
397 s->apply_interval_us : ctx->attrs.aggr_interval;
399 s->next_apply_sis = ctx->passed_sample_intervals +
400 apply_interval / sample_interval;
403 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
405 list_add_tail(&s->list, &ctx->schemes);
406 damos_set_next_apply_sis(s, ctx);
409 static void damon_del_scheme(struct damos *s)
411 list_del(&s->list);
414 static void damon_free_scheme(struct damos *s)
416 kfree(s);
419 void damon_destroy_scheme(struct damos *s)
421 struct damos_quota_goal *g, *g_next;
422 struct damos_filter *f, *next;
424 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
425 damos_destroy_quota_goal(g);
427 damos_for_each_filter_safe(f, next, s)
428 damos_destroy_filter(f);
429 damon_del_scheme(s);
430 damon_free_scheme(s);
434 * Construct a damon_target struct
436 * Returns the pointer to the new struct if success, or NULL otherwise
438 struct damon_target *damon_new_target(void)
440 struct damon_target *t;
442 t = kmalloc(sizeof(*t), GFP_KERNEL);
443 if (!t)
444 return NULL;
446 t->pid = NULL;
447 t->nr_regions = 0;
448 INIT_LIST_HEAD(&t->regions_list);
449 INIT_LIST_HEAD(&t->list);
451 return t;
454 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
456 list_add_tail(&t->list, &ctx->adaptive_targets);
459 bool damon_targets_empty(struct damon_ctx *ctx)
461 return list_empty(&ctx->adaptive_targets);
464 static void damon_del_target(struct damon_target *t)
466 list_del(&t->list);
469 void damon_free_target(struct damon_target *t)
471 struct damon_region *r, *next;
473 damon_for_each_region_safe(r, next, t)
474 damon_free_region(r);
475 kfree(t);
478 void damon_destroy_target(struct damon_target *t)
480 damon_del_target(t);
481 damon_free_target(t);
484 unsigned int damon_nr_regions(struct damon_target *t)
486 return t->nr_regions;
489 struct damon_ctx *damon_new_ctx(void)
491 struct damon_ctx *ctx;
493 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
494 if (!ctx)
495 return NULL;
497 init_completion(&ctx->kdamond_started);
499 ctx->attrs.sample_interval = 5 * 1000;
500 ctx->attrs.aggr_interval = 100 * 1000;
501 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
503 ctx->passed_sample_intervals = 0;
504 /* These will be set from kdamond_init_intervals_sis() */
505 ctx->next_aggregation_sis = 0;
506 ctx->next_ops_update_sis = 0;
508 mutex_init(&ctx->kdamond_lock);
509 mutex_init(&ctx->call_control_lock);
510 mutex_init(&ctx->walk_control_lock);
512 ctx->attrs.min_nr_regions = 10;
513 ctx->attrs.max_nr_regions = 1000;
515 INIT_LIST_HEAD(&ctx->adaptive_targets);
516 INIT_LIST_HEAD(&ctx->schemes);
518 return ctx;
521 static void damon_destroy_targets(struct damon_ctx *ctx)
523 struct damon_target *t, *next_t;
525 if (ctx->ops.cleanup) {
526 ctx->ops.cleanup(ctx);
527 return;
530 damon_for_each_target_safe(t, next_t, ctx)
531 damon_destroy_target(t);
534 void damon_destroy_ctx(struct damon_ctx *ctx)
536 struct damos *s, *next_s;
538 damon_destroy_targets(ctx);
540 damon_for_each_scheme_safe(s, next_s, ctx)
541 damon_destroy_scheme(s);
543 kfree(ctx);
546 static unsigned int damon_age_for_new_attrs(unsigned int age,
547 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
549 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
552 /* convert access ratio in bp (per 10,000) to nr_accesses */
553 static unsigned int damon_accesses_bp_to_nr_accesses(
554 unsigned int accesses_bp, struct damon_attrs *attrs)
556 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
560 * Convert nr_accesses to access ratio in bp (per 10,000).
562 * Callers should ensure attrs.aggr_interval is not zero, like
563 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
564 * happen.
566 static unsigned int damon_nr_accesses_to_accesses_bp(
567 unsigned int nr_accesses, struct damon_attrs *attrs)
569 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
572 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
573 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
575 return damon_accesses_bp_to_nr_accesses(
576 damon_nr_accesses_to_accesses_bp(
577 nr_accesses, old_attrs),
578 new_attrs);
581 static void damon_update_monitoring_result(struct damon_region *r,
582 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
584 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
585 old_attrs, new_attrs);
586 r->nr_accesses_bp = r->nr_accesses * 10000;
587 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
591 * region->nr_accesses is the number of sampling intervals in the last
592 * aggregation interval that access to the region has found, and region->age is
593 * the number of aggregation intervals that its access pattern has maintained.
594 * For the reason, the real meaning of the two fields depend on current
595 * sampling interval and aggregation interval. This function updates
596 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
598 static void damon_update_monitoring_results(struct damon_ctx *ctx,
599 struct damon_attrs *new_attrs)
601 struct damon_attrs *old_attrs = &ctx->attrs;
602 struct damon_target *t;
603 struct damon_region *r;
605 /* if any interval is zero, simply forgive conversion */
606 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
607 !new_attrs->sample_interval ||
608 !new_attrs->aggr_interval)
609 return;
611 damon_for_each_target(t, ctx)
612 damon_for_each_region(r, t)
613 damon_update_monitoring_result(
614 r, old_attrs, new_attrs);
618 * damon_set_attrs() - Set attributes for the monitoring.
619 * @ctx: monitoring context
620 * @attrs: monitoring attributes
622 * This function should be called while the kdamond is not running, or an
623 * access check results aggregation is not ongoing (e.g., from
624 * &struct damon_callback->after_aggregation or
625 * &struct damon_callback->after_wmarks_check callbacks).
627 * Every time interval is in micro-seconds.
629 * Return: 0 on success, negative error code otherwise.
631 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
633 unsigned long sample_interval = attrs->sample_interval ?
634 attrs->sample_interval : 1;
635 struct damos *s;
637 if (attrs->min_nr_regions < 3)
638 return -EINVAL;
639 if (attrs->min_nr_regions > attrs->max_nr_regions)
640 return -EINVAL;
641 if (attrs->sample_interval > attrs->aggr_interval)
642 return -EINVAL;
644 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
645 attrs->aggr_interval / sample_interval;
646 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
647 attrs->ops_update_interval / sample_interval;
649 damon_update_monitoring_results(ctx, attrs);
650 ctx->attrs = *attrs;
652 damon_for_each_scheme(s, ctx)
653 damos_set_next_apply_sis(s, ctx);
655 return 0;
659 * damon_set_schemes() - Set data access monitoring based operation schemes.
660 * @ctx: monitoring context
661 * @schemes: array of the schemes
662 * @nr_schemes: number of entries in @schemes
664 * This function should not be called while the kdamond of the context is
665 * running.
667 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
668 ssize_t nr_schemes)
670 struct damos *s, *next;
671 ssize_t i;
673 damon_for_each_scheme_safe(s, next, ctx)
674 damon_destroy_scheme(s);
675 for (i = 0; i < nr_schemes; i++)
676 damon_add_scheme(ctx, schemes[i]);
679 static struct damos_quota_goal *damos_nth_quota_goal(
680 int n, struct damos_quota *q)
682 struct damos_quota_goal *goal;
683 int i = 0;
685 damos_for_each_quota_goal(goal, q) {
686 if (i++ == n)
687 return goal;
689 return NULL;
692 static void damos_commit_quota_goal(
693 struct damos_quota_goal *dst, struct damos_quota_goal *src)
695 dst->metric = src->metric;
696 dst->target_value = src->target_value;
697 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
698 dst->current_value = src->current_value;
699 /* keep last_psi_total as is, since it will be updated in next cycle */
703 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
704 * @dst: The commit destination DAMOS quota.
705 * @src: The commit source DAMOS quota.
707 * Copies user-specified parameters for quota goals from @src to @dst. Users
708 * should use this function for quota goals-level parameters update of running
709 * DAMON contexts, instead of manual in-place updates.
711 * This function should be called from parameters-update safe context, like
712 * DAMON callbacks.
714 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
716 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
717 int i = 0, j = 0;
719 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
720 src_goal = damos_nth_quota_goal(i++, src);
721 if (src_goal)
722 damos_commit_quota_goal(dst_goal, src_goal);
723 else
724 damos_destroy_quota_goal(dst_goal);
726 damos_for_each_quota_goal_safe(src_goal, next, src) {
727 if (j++ < i)
728 continue;
729 new_goal = damos_new_quota_goal(
730 src_goal->metric, src_goal->target_value);
731 if (!new_goal)
732 return -ENOMEM;
733 damos_add_quota_goal(dst, new_goal);
735 return 0;
738 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
740 int err;
742 dst->reset_interval = src->reset_interval;
743 dst->ms = src->ms;
744 dst->sz = src->sz;
745 err = damos_commit_quota_goals(dst, src);
746 if (err)
747 return err;
748 dst->weight_sz = src->weight_sz;
749 dst->weight_nr_accesses = src->weight_nr_accesses;
750 dst->weight_age = src->weight_age;
751 return 0;
754 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
756 struct damos_filter *filter;
757 int i = 0;
759 damos_for_each_filter(filter, s) {
760 if (i++ == n)
761 return filter;
763 return NULL;
766 static void damos_commit_filter_arg(
767 struct damos_filter *dst, struct damos_filter *src)
769 switch (dst->type) {
770 case DAMOS_FILTER_TYPE_MEMCG:
771 dst->memcg_id = src->memcg_id;
772 break;
773 case DAMOS_FILTER_TYPE_ADDR:
774 dst->addr_range = src->addr_range;
775 break;
776 case DAMOS_FILTER_TYPE_TARGET:
777 dst->target_idx = src->target_idx;
778 break;
779 default:
780 break;
784 static void damos_commit_filter(
785 struct damos_filter *dst, struct damos_filter *src)
787 dst->type = src->type;
788 dst->matching = src->matching;
789 damos_commit_filter_arg(dst, src);
792 static int damos_commit_filters(struct damos *dst, struct damos *src)
794 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
795 int i = 0, j = 0;
797 damos_for_each_filter_safe(dst_filter, next, dst) {
798 src_filter = damos_nth_filter(i++, src);
799 if (src_filter)
800 damos_commit_filter(dst_filter, src_filter);
801 else
802 damos_destroy_filter(dst_filter);
805 damos_for_each_filter_safe(src_filter, next, src) {
806 if (j++ < i)
807 continue;
809 new_filter = damos_new_filter(
810 src_filter->type, src_filter->matching,
811 src_filter->allow);
812 if (!new_filter)
813 return -ENOMEM;
814 damos_commit_filter_arg(new_filter, src_filter);
815 damos_add_filter(dst, new_filter);
817 return 0;
820 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
822 struct damos *s;
823 int i = 0;
825 damon_for_each_scheme(s, ctx) {
826 if (i++ == n)
827 return s;
829 return NULL;
832 static int damos_commit(struct damos *dst, struct damos *src)
834 int err;
836 dst->pattern = src->pattern;
837 dst->action = src->action;
838 dst->apply_interval_us = src->apply_interval_us;
840 err = damos_commit_quota(&dst->quota, &src->quota);
841 if (err)
842 return err;
844 dst->wmarks = src->wmarks;
846 err = damos_commit_filters(dst, src);
847 return err;
850 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
852 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
853 int i = 0, j = 0, err;
855 damon_for_each_scheme_safe(dst_scheme, next, dst) {
856 src_scheme = damon_nth_scheme(i++, src);
857 if (src_scheme) {
858 err = damos_commit(dst_scheme, src_scheme);
859 if (err)
860 return err;
861 } else {
862 damon_destroy_scheme(dst_scheme);
866 damon_for_each_scheme_safe(src_scheme, next, src) {
867 if (j++ < i)
868 continue;
869 new_scheme = damon_new_scheme(&src_scheme->pattern,
870 src_scheme->action,
871 src_scheme->apply_interval_us,
872 &src_scheme->quota, &src_scheme->wmarks,
873 NUMA_NO_NODE);
874 if (!new_scheme)
875 return -ENOMEM;
876 err = damos_commit(new_scheme, src_scheme);
877 if (err) {
878 damon_destroy_scheme(new_scheme);
879 return err;
881 damon_add_scheme(dst, new_scheme);
883 return 0;
886 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
888 struct damon_target *t;
889 int i = 0;
891 damon_for_each_target(t, ctx) {
892 if (i++ == n)
893 return t;
895 return NULL;
899 * The caller should ensure the regions of @src are
900 * 1. valid (end >= src) and
901 * 2. sorted by starting address.
903 * If @src has no region, @dst keeps current regions.
905 static int damon_commit_target_regions(
906 struct damon_target *dst, struct damon_target *src)
908 struct damon_region *src_region;
909 struct damon_addr_range *ranges;
910 int i = 0, err;
912 damon_for_each_region(src_region, src)
913 i++;
914 if (!i)
915 return 0;
917 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
918 if (!ranges)
919 return -ENOMEM;
920 i = 0;
921 damon_for_each_region(src_region, src)
922 ranges[i++] = src_region->ar;
923 err = damon_set_regions(dst, ranges, i);
924 kfree(ranges);
925 return err;
928 static int damon_commit_target(
929 struct damon_target *dst, bool dst_has_pid,
930 struct damon_target *src, bool src_has_pid)
932 int err;
934 err = damon_commit_target_regions(dst, src);
935 if (err)
936 return err;
937 if (dst_has_pid)
938 put_pid(dst->pid);
939 if (src_has_pid)
940 get_pid(src->pid);
941 dst->pid = src->pid;
942 return 0;
945 static int damon_commit_targets(
946 struct damon_ctx *dst, struct damon_ctx *src)
948 struct damon_target *dst_target, *next, *src_target, *new_target;
949 int i = 0, j = 0, err;
951 damon_for_each_target_safe(dst_target, next, dst) {
952 src_target = damon_nth_target(i++, src);
953 if (src_target) {
954 err = damon_commit_target(
955 dst_target, damon_target_has_pid(dst),
956 src_target, damon_target_has_pid(src));
957 if (err)
958 return err;
959 } else {
960 if (damon_target_has_pid(dst))
961 put_pid(dst_target->pid);
962 damon_destroy_target(dst_target);
966 damon_for_each_target_safe(src_target, next, src) {
967 if (j++ < i)
968 continue;
969 new_target = damon_new_target();
970 if (!new_target)
971 return -ENOMEM;
972 err = damon_commit_target(new_target, false,
973 src_target, damon_target_has_pid(src));
974 if (err) {
975 damon_destroy_target(new_target);
976 return err;
978 damon_add_target(dst, new_target);
980 return 0;
984 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
985 * @dst: The commit destination DAMON context.
986 * @src: The commit source DAMON context.
988 * This function copies user-specified parameters from @src to @dst and update
989 * the internal status and results accordingly. Users should use this function
990 * for context-level parameters update of running context, instead of manual
991 * in-place updates.
993 * This function should be called from parameters-update safe context, like
994 * DAMON callbacks.
996 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
998 int err;
1000 err = damon_commit_schemes(dst, src);
1001 if (err)
1002 return err;
1003 err = damon_commit_targets(dst, src);
1004 if (err)
1005 return err;
1007 * schemes and targets should be updated first, since
1008 * 1. damon_set_attrs() updates monitoring results of targets and
1009 * next_apply_sis of schemes, and
1010 * 2. ops update should be done after pid handling is done (target
1011 * committing require putting pids).
1013 err = damon_set_attrs(dst, &src->attrs);
1014 if (err)
1015 return err;
1016 dst->ops = src->ops;
1018 return 0;
1022 * damon_nr_running_ctxs() - Return number of currently running contexts.
1024 int damon_nr_running_ctxs(void)
1026 int nr_ctxs;
1028 mutex_lock(&damon_lock);
1029 nr_ctxs = nr_running_ctxs;
1030 mutex_unlock(&damon_lock);
1032 return nr_ctxs;
1035 /* Returns the size upper limit for each monitoring region */
1036 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1038 struct damon_target *t;
1039 struct damon_region *r;
1040 unsigned long sz = 0;
1042 damon_for_each_target(t, ctx) {
1043 damon_for_each_region(r, t)
1044 sz += damon_sz_region(r);
1047 if (ctx->attrs.min_nr_regions)
1048 sz /= ctx->attrs.min_nr_regions;
1049 if (sz < DAMON_MIN_REGION)
1050 sz = DAMON_MIN_REGION;
1052 return sz;
1055 static int kdamond_fn(void *data);
1058 * __damon_start() - Starts monitoring with given context.
1059 * @ctx: monitoring context
1061 * This function should be called while damon_lock is hold.
1063 * Return: 0 on success, negative error code otherwise.
1065 static int __damon_start(struct damon_ctx *ctx)
1067 int err = -EBUSY;
1069 mutex_lock(&ctx->kdamond_lock);
1070 if (!ctx->kdamond) {
1071 err = 0;
1072 reinit_completion(&ctx->kdamond_started);
1073 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1074 nr_running_ctxs);
1075 if (IS_ERR(ctx->kdamond)) {
1076 err = PTR_ERR(ctx->kdamond);
1077 ctx->kdamond = NULL;
1078 } else {
1079 wait_for_completion(&ctx->kdamond_started);
1082 mutex_unlock(&ctx->kdamond_lock);
1084 return err;
1088 * damon_start() - Starts the monitorings for a given group of contexts.
1089 * @ctxs: an array of the pointers for contexts to start monitoring
1090 * @nr_ctxs: size of @ctxs
1091 * @exclusive: exclusiveness of this contexts group
1093 * This function starts a group of monitoring threads for a group of monitoring
1094 * contexts. One thread per each context is created and run in parallel. The
1095 * caller should handle synchronization between the threads by itself. If
1096 * @exclusive is true and a group of threads that created by other
1097 * 'damon_start()' call is currently running, this function does nothing but
1098 * returns -EBUSY.
1100 * Return: 0 on success, negative error code otherwise.
1102 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1104 int i;
1105 int err = 0;
1107 mutex_lock(&damon_lock);
1108 if ((exclusive && nr_running_ctxs) ||
1109 (!exclusive && running_exclusive_ctxs)) {
1110 mutex_unlock(&damon_lock);
1111 return -EBUSY;
1114 for (i = 0; i < nr_ctxs; i++) {
1115 err = __damon_start(ctxs[i]);
1116 if (err)
1117 break;
1118 nr_running_ctxs++;
1120 if (exclusive && nr_running_ctxs)
1121 running_exclusive_ctxs = true;
1122 mutex_unlock(&damon_lock);
1124 return err;
1128 * __damon_stop() - Stops monitoring of a given context.
1129 * @ctx: monitoring context
1131 * Return: 0 on success, negative error code otherwise.
1133 static int __damon_stop(struct damon_ctx *ctx)
1135 struct task_struct *tsk;
1137 mutex_lock(&ctx->kdamond_lock);
1138 tsk = ctx->kdamond;
1139 if (tsk) {
1140 get_task_struct(tsk);
1141 mutex_unlock(&ctx->kdamond_lock);
1142 kthread_stop_put(tsk);
1143 return 0;
1145 mutex_unlock(&ctx->kdamond_lock);
1147 return -EPERM;
1151 * damon_stop() - Stops the monitorings for a given group of contexts.
1152 * @ctxs: an array of the pointers for contexts to stop monitoring
1153 * @nr_ctxs: size of @ctxs
1155 * Return: 0 on success, negative error code otherwise.
1157 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1159 int i, err = 0;
1161 for (i = 0; i < nr_ctxs; i++) {
1162 /* nr_running_ctxs is decremented in kdamond_fn */
1163 err = __damon_stop(ctxs[i]);
1164 if (err)
1165 break;
1167 return err;
1170 static bool damon_is_running(struct damon_ctx *ctx)
1172 bool running;
1174 mutex_lock(&ctx->kdamond_lock);
1175 running = ctx->kdamond != NULL;
1176 mutex_unlock(&ctx->kdamond_lock);
1177 return running;
1181 * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1182 * @ctx: DAMON context to call the function for.
1183 * @control: Control variable of the call request.
1185 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1186 * argument data that respectively passed via &damon_call_control->fn and
1187 * &damon_call_control->data of @control, and wait until the kdamond finishes
1188 * handling of the request.
1190 * The kdamond executes the function with the argument in the main loop, just
1191 * after a sampling of the iteration is finished. The function can hence
1192 * safely access the internal data of the &struct damon_ctx without additional
1193 * synchronization. The return value of the function will be saved in
1194 * &damon_call_control->return_code.
1196 * Return: 0 on success, negative error code otherwise.
1198 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1200 init_completion(&control->completion);
1201 control->canceled = false;
1203 mutex_lock(&ctx->call_control_lock);
1204 if (ctx->call_control) {
1205 mutex_unlock(&ctx->call_control_lock);
1206 return -EBUSY;
1208 ctx->call_control = control;
1209 mutex_unlock(&ctx->call_control_lock);
1210 if (!damon_is_running(ctx))
1211 return -EINVAL;
1212 wait_for_completion(&control->completion);
1213 if (control->canceled)
1214 return -ECANCELED;
1215 return 0;
1219 * damos_walk() - Invoke a given functions while DAMOS walk regions.
1220 * @ctx: DAMON context to call the functions for.
1221 * @control: Control variable of the walk request.
1223 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1224 * that the kdamond will apply DAMOS action to, and wait until the kdamond
1225 * finishes handling of the request.
1227 * The kdamond executes the given function in the main loop, for each region
1228 * just after it applied any DAMOS actions of @ctx to it. The invocation is
1229 * made only within one &damos->apply_interval_us since damos_walk()
1230 * invocation, for each scheme. The given callback function can hence safely
1231 * access the internal data of &struct damon_ctx and &struct damon_region that
1232 * each of the scheme will apply the action for next interval, without
1233 * additional synchronizations against the kdamond. If every scheme of @ctx
1234 * passed at least one &damos->apply_interval_us, kdamond marks the request as
1235 * completed so that damos_walk() can wakeup and return.
1237 * Return: 0 on success, negative error code otherwise.
1239 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1241 init_completion(&control->completion);
1242 control->canceled = false;
1243 mutex_lock(&ctx->walk_control_lock);
1244 if (ctx->walk_control) {
1245 mutex_unlock(&ctx->walk_control_lock);
1246 return -EBUSY;
1248 ctx->walk_control = control;
1249 mutex_unlock(&ctx->walk_control_lock);
1250 if (!damon_is_running(ctx))
1251 return -EINVAL;
1252 wait_for_completion(&control->completion);
1253 if (control->canceled)
1254 return -ECANCELED;
1255 return 0;
1259 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1261 static void kdamond_reset_aggregated(struct damon_ctx *c)
1263 struct damon_target *t;
1264 unsigned int ti = 0; /* target's index */
1266 damon_for_each_target(t, c) {
1267 struct damon_region *r;
1269 damon_for_each_region(r, t) {
1270 trace_damon_aggregated(ti, r, damon_nr_regions(t));
1271 r->last_nr_accesses = r->nr_accesses;
1272 r->nr_accesses = 0;
1274 ti++;
1278 static void damon_split_region_at(struct damon_target *t,
1279 struct damon_region *r, unsigned long sz_r);
1281 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1283 unsigned long sz;
1284 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1286 sz = damon_sz_region(r);
1287 return s->pattern.min_sz_region <= sz &&
1288 sz <= s->pattern.max_sz_region &&
1289 s->pattern.min_nr_accesses <= nr_accesses &&
1290 nr_accesses <= s->pattern.max_nr_accesses &&
1291 s->pattern.min_age_region <= r->age &&
1292 r->age <= s->pattern.max_age_region;
1295 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1296 struct damon_region *r, struct damos *s)
1298 bool ret = __damos_valid_target(r, s);
1300 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1301 return ret;
1303 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1307 * damos_skip_charged_region() - Check if the given region or starting part of
1308 * it is already charged for the DAMOS quota.
1309 * @t: The target of the region.
1310 * @rp: The pointer to the region.
1311 * @s: The scheme to be applied.
1313 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1314 * action would applied to only a part of the target access pattern fulfilling
1315 * regions. To avoid applying the scheme action to only already applied
1316 * regions, DAMON skips applying the scheme action to the regions that charged
1317 * in the previous charge window.
1319 * This function checks if a given region should be skipped or not for the
1320 * reason. If only the starting part of the region has previously charged,
1321 * this function splits the region into two so that the second one covers the
1322 * area that not charged in the previous charge widnow and saves the second
1323 * region in *rp and returns false, so that the caller can apply DAMON action
1324 * to the second one.
1326 * Return: true if the region should be entirely skipped, false otherwise.
1328 static bool damos_skip_charged_region(struct damon_target *t,
1329 struct damon_region **rp, struct damos *s)
1331 struct damon_region *r = *rp;
1332 struct damos_quota *quota = &s->quota;
1333 unsigned long sz_to_skip;
1335 /* Skip previously charged regions */
1336 if (quota->charge_target_from) {
1337 if (t != quota->charge_target_from)
1338 return true;
1339 if (r == damon_last_region(t)) {
1340 quota->charge_target_from = NULL;
1341 quota->charge_addr_from = 0;
1342 return true;
1344 if (quota->charge_addr_from &&
1345 r->ar.end <= quota->charge_addr_from)
1346 return true;
1348 if (quota->charge_addr_from && r->ar.start <
1349 quota->charge_addr_from) {
1350 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1351 r->ar.start, DAMON_MIN_REGION);
1352 if (!sz_to_skip) {
1353 if (damon_sz_region(r) <= DAMON_MIN_REGION)
1354 return true;
1355 sz_to_skip = DAMON_MIN_REGION;
1357 damon_split_region_at(t, r, sz_to_skip);
1358 r = damon_next_region(r);
1359 *rp = r;
1361 quota->charge_target_from = NULL;
1362 quota->charge_addr_from = 0;
1364 return false;
1367 static void damos_update_stat(struct damos *s,
1368 unsigned long sz_tried, unsigned long sz_applied,
1369 unsigned long sz_ops_filter_passed)
1371 s->stat.nr_tried++;
1372 s->stat.sz_tried += sz_tried;
1373 if (sz_applied)
1374 s->stat.nr_applied++;
1375 s->stat.sz_applied += sz_applied;
1376 s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1379 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1380 struct damon_region *r, struct damos_filter *filter)
1382 bool matched = false;
1383 struct damon_target *ti;
1384 int target_idx = 0;
1385 unsigned long start, end;
1387 switch (filter->type) {
1388 case DAMOS_FILTER_TYPE_TARGET:
1389 damon_for_each_target(ti, ctx) {
1390 if (ti == t)
1391 break;
1392 target_idx++;
1394 matched = target_idx == filter->target_idx;
1395 break;
1396 case DAMOS_FILTER_TYPE_ADDR:
1397 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1398 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1400 /* inside the range */
1401 if (start <= r->ar.start && r->ar.end <= end) {
1402 matched = true;
1403 break;
1405 /* outside of the range */
1406 if (r->ar.end <= start || end <= r->ar.start) {
1407 matched = false;
1408 break;
1410 /* start before the range and overlap */
1411 if (r->ar.start < start) {
1412 damon_split_region_at(t, r, start - r->ar.start);
1413 matched = false;
1414 break;
1416 /* start inside the range */
1417 damon_split_region_at(t, r, end - r->ar.start);
1418 matched = true;
1419 break;
1420 default:
1421 return false;
1424 return matched == filter->matching;
1427 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1428 struct damon_region *r, struct damos *s)
1430 struct damos_filter *filter;
1432 damos_for_each_filter(filter, s) {
1433 if (damos_filter_match(ctx, t, r, filter))
1434 return !filter->allow;
1436 return false;
1440 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1441 * @ctx: The context of &damon_ctx->walk_control.
1442 * @t: The monitoring target of @r that @s will be applied.
1443 * @r: The region of @t that @s will be applied.
1444 * @s: The scheme of @ctx that will be applied to @r.
1446 * This function is called from kdamond whenever it asked the operation set to
1447 * apply a DAMOS scheme action to a region. If a DAMOS walk request is
1448 * installed by damos_walk() and not yet uninstalled, invoke it.
1450 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1451 struct damon_region *r, struct damos *s,
1452 unsigned long sz_filter_passed)
1454 struct damos_walk_control *control;
1456 mutex_lock(&ctx->walk_control_lock);
1457 control = ctx->walk_control;
1458 mutex_unlock(&ctx->walk_control_lock);
1459 if (!control)
1460 return;
1461 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1465 * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1466 * @ctx: The context of &damon_ctx->walk_control.
1467 * @s: A scheme of @ctx that all walks are now done.
1469 * This function is called when kdamond finished applying the action of a DAMOS
1470 * scheme to all regions that eligible for the given &damos->apply_interval_us.
1471 * If every scheme of @ctx including @s now finished walking for at least one
1472 * &damos->apply_interval_us, this function makrs the handling of the given
1473 * DAMOS walk request is done, so that damos_walk() can wake up and return.
1475 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1477 struct damos *siter;
1478 struct damos_walk_control *control;
1480 mutex_lock(&ctx->walk_control_lock);
1481 control = ctx->walk_control;
1482 mutex_unlock(&ctx->walk_control_lock);
1483 if (!control)
1484 return;
1486 s->walk_completed = true;
1487 /* if all schemes completed, signal completion to walker */
1488 damon_for_each_scheme(siter, ctx) {
1489 if (!siter->walk_completed)
1490 return;
1492 complete(&control->completion);
1493 mutex_lock(&ctx->walk_control_lock);
1494 ctx->walk_control = NULL;
1495 mutex_unlock(&ctx->walk_control_lock);
1499 * damos_walk_cancel() - Cancel the current DAMOS walk request.
1500 * @ctx: The context of &damon_ctx->walk_control.
1502 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1503 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1504 * is already out of the main loop and therefore gonna be terminated, and hence
1505 * cannot continue the walks. This function therefore marks the walk request
1506 * as canceled, so that damos_walk() can wake up and return.
1508 static void damos_walk_cancel(struct damon_ctx *ctx)
1510 struct damos_walk_control *control;
1512 mutex_lock(&ctx->walk_control_lock);
1513 control = ctx->walk_control;
1514 mutex_unlock(&ctx->walk_control_lock);
1516 if (!control)
1517 return;
1518 control->canceled = true;
1519 complete(&control->completion);
1520 mutex_lock(&ctx->walk_control_lock);
1521 ctx->walk_control = NULL;
1522 mutex_unlock(&ctx->walk_control_lock);
1525 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1526 struct damon_region *r, struct damos *s)
1528 struct damos_quota *quota = &s->quota;
1529 unsigned long sz = damon_sz_region(r);
1530 struct timespec64 begin, end;
1531 unsigned long sz_applied = 0;
1532 unsigned long sz_ops_filter_passed = 0;
1533 int err = 0;
1535 * We plan to support multiple context per kdamond, as DAMON sysfs
1536 * implies with 'nr_contexts' file. Nevertheless, only single context
1537 * per kdamond is supported for now. So, we can simply use '0' context
1538 * index here.
1540 unsigned int cidx = 0;
1541 struct damos *siter; /* schemes iterator */
1542 unsigned int sidx = 0;
1543 struct damon_target *titer; /* targets iterator */
1544 unsigned int tidx = 0;
1545 bool do_trace = false;
1547 /* get indices for trace_damos_before_apply() */
1548 if (trace_damos_before_apply_enabled()) {
1549 damon_for_each_scheme(siter, c) {
1550 if (siter == s)
1551 break;
1552 sidx++;
1554 damon_for_each_target(titer, c) {
1555 if (titer == t)
1556 break;
1557 tidx++;
1559 do_trace = true;
1562 if (c->ops.apply_scheme) {
1563 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1564 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1565 DAMON_MIN_REGION);
1566 if (!sz)
1567 goto update_stat;
1568 damon_split_region_at(t, r, sz);
1570 if (damos_filter_out(c, t, r, s))
1571 return;
1572 ktime_get_coarse_ts64(&begin);
1573 if (c->callback.before_damos_apply)
1574 err = c->callback.before_damos_apply(c, t, r, s);
1575 if (!err) {
1576 trace_damos_before_apply(cidx, sidx, tidx, r,
1577 damon_nr_regions(t), do_trace);
1578 sz_applied = c->ops.apply_scheme(c, t, r, s,
1579 &sz_ops_filter_passed);
1581 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed);
1582 ktime_get_coarse_ts64(&end);
1583 quota->total_charged_ns += timespec64_to_ns(&end) -
1584 timespec64_to_ns(&begin);
1585 quota->charged_sz += sz;
1586 if (quota->esz && quota->charged_sz >= quota->esz) {
1587 quota->charge_target_from = t;
1588 quota->charge_addr_from = r->ar.end + 1;
1591 if (s->action != DAMOS_STAT)
1592 r->age = 0;
1594 update_stat:
1595 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed);
1598 static void damon_do_apply_schemes(struct damon_ctx *c,
1599 struct damon_target *t,
1600 struct damon_region *r)
1602 struct damos *s;
1604 damon_for_each_scheme(s, c) {
1605 struct damos_quota *quota = &s->quota;
1607 if (c->passed_sample_intervals < s->next_apply_sis)
1608 continue;
1610 if (!s->wmarks.activated)
1611 continue;
1613 /* Check the quota */
1614 if (quota->esz && quota->charged_sz >= quota->esz)
1615 continue;
1617 if (damos_skip_charged_region(t, &r, s))
1618 continue;
1620 if (!damos_valid_target(c, t, r, s))
1621 continue;
1623 damos_apply_scheme(c, t, r, s);
1628 * damon_feed_loop_next_input() - get next input to achieve a target score.
1629 * @last_input The last input.
1630 * @score Current score that made with @last_input.
1632 * Calculate next input to achieve the target score, based on the last input
1633 * and current score. Assuming the input and the score are positively
1634 * proportional, calculate how much compensation should be added to or
1635 * subtracted from the last input as a proportion of the last input. Avoid
1636 * next input always being zero by setting it non-zero always. In short form
1637 * (assuming support of float and signed calculations), the algorithm is as
1638 * below.
1640 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1642 * For simple implementation, we assume the target score is always 10,000. The
1643 * caller should adjust @score for this.
1645 * Returns next input that assumed to achieve the target score.
1647 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1648 unsigned long score)
1650 const unsigned long goal = 10000;
1651 /* Set minimum input as 10000 to avoid compensation be zero */
1652 const unsigned long min_input = 10000;
1653 unsigned long score_goal_diff, compensation;
1654 bool over_achieving = score > goal;
1656 if (score == goal)
1657 return last_input;
1658 if (score >= goal * 2)
1659 return min_input;
1661 if (over_achieving)
1662 score_goal_diff = score - goal;
1663 else
1664 score_goal_diff = goal - score;
1666 if (last_input < ULONG_MAX / score_goal_diff)
1667 compensation = last_input * score_goal_diff / goal;
1668 else
1669 compensation = last_input / goal * score_goal_diff;
1671 if (over_achieving)
1672 return max(last_input - compensation, min_input);
1673 if (last_input < ULONG_MAX - compensation)
1674 return last_input + compensation;
1675 return ULONG_MAX;
1678 #ifdef CONFIG_PSI
1680 static u64 damos_get_some_mem_psi_total(void)
1682 if (static_branch_likely(&psi_disabled))
1683 return 0;
1684 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1685 NSEC_PER_USEC);
1688 #else /* CONFIG_PSI */
1690 static inline u64 damos_get_some_mem_psi_total(void)
1692 return 0;
1695 #endif /* CONFIG_PSI */
1697 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1699 u64 now_psi_total;
1701 switch (goal->metric) {
1702 case DAMOS_QUOTA_USER_INPUT:
1703 /* User should already set goal->current_value */
1704 break;
1705 case DAMOS_QUOTA_SOME_MEM_PSI_US:
1706 now_psi_total = damos_get_some_mem_psi_total();
1707 goal->current_value = now_psi_total - goal->last_psi_total;
1708 goal->last_psi_total = now_psi_total;
1709 break;
1710 default:
1711 break;
1715 /* Return the highest score since it makes schemes least aggressive */
1716 static unsigned long damos_quota_score(struct damos_quota *quota)
1718 struct damos_quota_goal *goal;
1719 unsigned long highest_score = 0;
1721 damos_for_each_quota_goal(goal, quota) {
1722 damos_set_quota_goal_current_value(goal);
1723 highest_score = max(highest_score,
1724 goal->current_value * 10000 /
1725 goal->target_value);
1728 return highest_score;
1732 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1734 static void damos_set_effective_quota(struct damos_quota *quota)
1736 unsigned long throughput;
1737 unsigned long esz = ULONG_MAX;
1739 if (!quota->ms && list_empty(&quota->goals)) {
1740 quota->esz = quota->sz;
1741 return;
1744 if (!list_empty(&quota->goals)) {
1745 unsigned long score = damos_quota_score(quota);
1747 quota->esz_bp = damon_feed_loop_next_input(
1748 max(quota->esz_bp, 10000UL),
1749 score);
1750 esz = quota->esz_bp / 10000;
1753 if (quota->ms) {
1754 if (quota->total_charged_ns)
1755 throughput = quota->total_charged_sz * 1000000 /
1756 quota->total_charged_ns;
1757 else
1758 throughput = PAGE_SIZE * 1024;
1759 esz = min(throughput * quota->ms, esz);
1762 if (quota->sz && quota->sz < esz)
1763 esz = quota->sz;
1765 quota->esz = esz;
1768 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1770 struct damos_quota *quota = &s->quota;
1771 struct damon_target *t;
1772 struct damon_region *r;
1773 unsigned long cumulated_sz;
1774 unsigned int score, max_score = 0;
1776 if (!quota->ms && !quota->sz && list_empty(&quota->goals))
1777 return;
1779 /* New charge window starts */
1780 if (time_after_eq(jiffies, quota->charged_from +
1781 msecs_to_jiffies(quota->reset_interval))) {
1782 if (quota->esz && quota->charged_sz >= quota->esz)
1783 s->stat.qt_exceeds++;
1784 quota->total_charged_sz += quota->charged_sz;
1785 quota->charged_from = jiffies;
1786 quota->charged_sz = 0;
1787 damos_set_effective_quota(quota);
1790 if (!c->ops.get_scheme_score)
1791 return;
1793 /* Fill up the score histogram */
1794 memset(c->regions_score_histogram, 0,
1795 sizeof(*c->regions_score_histogram) *
1796 (DAMOS_MAX_SCORE + 1));
1797 damon_for_each_target(t, c) {
1798 damon_for_each_region(r, t) {
1799 if (!__damos_valid_target(r, s))
1800 continue;
1801 score = c->ops.get_scheme_score(c, t, r, s);
1802 c->regions_score_histogram[score] +=
1803 damon_sz_region(r);
1804 if (score > max_score)
1805 max_score = score;
1809 /* Set the min score limit */
1810 for (cumulated_sz = 0, score = max_score; ; score--) {
1811 cumulated_sz += c->regions_score_histogram[score];
1812 if (cumulated_sz >= quota->esz || !score)
1813 break;
1815 quota->min_score = score;
1818 static void kdamond_apply_schemes(struct damon_ctx *c)
1820 struct damon_target *t;
1821 struct damon_region *r, *next_r;
1822 struct damos *s;
1823 unsigned long sample_interval = c->attrs.sample_interval ?
1824 c->attrs.sample_interval : 1;
1825 bool has_schemes_to_apply = false;
1827 damon_for_each_scheme(s, c) {
1828 if (c->passed_sample_intervals < s->next_apply_sis)
1829 continue;
1831 if (!s->wmarks.activated)
1832 continue;
1834 has_schemes_to_apply = true;
1836 damos_adjust_quota(c, s);
1839 if (!has_schemes_to_apply)
1840 return;
1842 damon_for_each_target(t, c) {
1843 damon_for_each_region_safe(r, next_r, t)
1844 damon_do_apply_schemes(c, t, r);
1847 damon_for_each_scheme(s, c) {
1848 if (c->passed_sample_intervals < s->next_apply_sis)
1849 continue;
1850 damos_walk_complete(c, s);
1851 s->next_apply_sis = c->passed_sample_intervals +
1852 (s->apply_interval_us ? s->apply_interval_us :
1853 c->attrs.aggr_interval) / sample_interval;
1858 * Merge two adjacent regions into one region
1860 static void damon_merge_two_regions(struct damon_target *t,
1861 struct damon_region *l, struct damon_region *r)
1863 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1865 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1866 (sz_l + sz_r);
1867 l->nr_accesses_bp = l->nr_accesses * 10000;
1868 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1869 l->ar.end = r->ar.end;
1870 damon_destroy_region(r, t);
1874 * Merge adjacent regions having similar access frequencies
1876 * t target affected by this merge operation
1877 * thres '->nr_accesses' diff threshold for the merge
1878 * sz_limit size upper limit of each region
1880 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1881 unsigned long sz_limit)
1883 struct damon_region *r, *prev = NULL, *next;
1885 damon_for_each_region_safe(r, next, t) {
1886 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1887 r->age = 0;
1888 else
1889 r->age++;
1891 if (prev && prev->ar.end == r->ar.start &&
1892 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1893 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1894 damon_merge_two_regions(t, prev, r);
1895 else
1896 prev = r;
1901 * Merge adjacent regions having similar access frequencies
1903 * threshold '->nr_accesses' diff threshold for the merge
1904 * sz_limit size upper limit of each region
1906 * This function merges monitoring target regions which are adjacent and their
1907 * access frequencies are similar. This is for minimizing the monitoring
1908 * overhead under the dynamically changeable access pattern. If a merge was
1909 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1911 * The total number of regions could be higher than the user-defined limit,
1912 * max_nr_regions for some cases. For example, the user can update
1913 * max_nr_regions to a number that lower than the current number of regions
1914 * while DAMON is running. For such a case, repeat merging until the limit is
1915 * met while increasing @threshold up to possible maximum level.
1917 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1918 unsigned long sz_limit)
1920 struct damon_target *t;
1921 unsigned int nr_regions;
1922 unsigned int max_thres;
1924 max_thres = c->attrs.aggr_interval /
1925 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
1926 do {
1927 nr_regions = 0;
1928 damon_for_each_target(t, c) {
1929 damon_merge_regions_of(t, threshold, sz_limit);
1930 nr_regions += damon_nr_regions(t);
1932 threshold = max(1, threshold * 2);
1933 } while (nr_regions > c->attrs.max_nr_regions &&
1934 threshold / 2 < max_thres);
1938 * Split a region in two
1940 * r the region to be split
1941 * sz_r size of the first sub-region that will be made
1943 static void damon_split_region_at(struct damon_target *t,
1944 struct damon_region *r, unsigned long sz_r)
1946 struct damon_region *new;
1948 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1949 if (!new)
1950 return;
1952 r->ar.end = new->ar.start;
1954 new->age = r->age;
1955 new->last_nr_accesses = r->last_nr_accesses;
1956 new->nr_accesses_bp = r->nr_accesses_bp;
1957 new->nr_accesses = r->nr_accesses;
1959 damon_insert_region(new, r, damon_next_region(r), t);
1962 /* Split every region in the given target into 'nr_subs' regions */
1963 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1965 struct damon_region *r, *next;
1966 unsigned long sz_region, sz_sub = 0;
1967 int i;
1969 damon_for_each_region_safe(r, next, t) {
1970 sz_region = damon_sz_region(r);
1972 for (i = 0; i < nr_subs - 1 &&
1973 sz_region > 2 * DAMON_MIN_REGION; i++) {
1975 * Randomly select size of left sub-region to be at
1976 * least 10 percent and at most 90% of original region
1978 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1979 sz_region / 10, DAMON_MIN_REGION);
1980 /* Do not allow blank region */
1981 if (sz_sub == 0 || sz_sub >= sz_region)
1982 continue;
1984 damon_split_region_at(t, r, sz_sub);
1985 sz_region = sz_sub;
1991 * Split every target region into randomly-sized small regions
1993 * This function splits every target region into random-sized small regions if
1994 * current total number of the regions is equal or smaller than half of the
1995 * user-specified maximum number of regions. This is for maximizing the
1996 * monitoring accuracy under the dynamically changeable access patterns. If a
1997 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1998 * it.
2000 static void kdamond_split_regions(struct damon_ctx *ctx)
2002 struct damon_target *t;
2003 unsigned int nr_regions = 0;
2004 static unsigned int last_nr_regions;
2005 int nr_subregions = 2;
2007 damon_for_each_target(t, ctx)
2008 nr_regions += damon_nr_regions(t);
2010 if (nr_regions > ctx->attrs.max_nr_regions / 2)
2011 return;
2013 /* Maybe the middle of the region has different access frequency */
2014 if (last_nr_regions == nr_regions &&
2015 nr_regions < ctx->attrs.max_nr_regions / 3)
2016 nr_subregions = 3;
2018 damon_for_each_target(t, ctx)
2019 damon_split_regions_of(t, nr_subregions);
2021 last_nr_regions = nr_regions;
2025 * Check whether current monitoring should be stopped
2027 * The monitoring is stopped when either the user requested to stop, or all
2028 * monitoring targets are invalid.
2030 * Returns true if need to stop current monitoring.
2032 static bool kdamond_need_stop(struct damon_ctx *ctx)
2034 struct damon_target *t;
2036 if (kthread_should_stop())
2037 return true;
2039 if (!ctx->ops.target_valid)
2040 return false;
2042 damon_for_each_target(t, ctx) {
2043 if (ctx->ops.target_valid(t))
2044 return false;
2047 return true;
2050 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2051 unsigned long *metric_value)
2053 switch (metric) {
2054 case DAMOS_WMARK_FREE_MEM_RATE:
2055 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
2056 totalram_pages();
2057 return 0;
2058 default:
2059 break;
2061 return -EINVAL;
2065 * Returns zero if the scheme is active. Else, returns time to wait for next
2066 * watermark check in micro-seconds.
2068 static unsigned long damos_wmark_wait_us(struct damos *scheme)
2070 unsigned long metric;
2072 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
2073 return 0;
2075 /* higher than high watermark or lower than low watermark */
2076 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2077 if (scheme->wmarks.activated)
2078 pr_debug("deactivate a scheme (%d) for %s wmark\n",
2079 scheme->action,
2080 str_high_low(metric > scheme->wmarks.high));
2081 scheme->wmarks.activated = false;
2082 return scheme->wmarks.interval;
2085 /* inactive and higher than middle watermark */
2086 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2087 !scheme->wmarks.activated)
2088 return scheme->wmarks.interval;
2090 if (!scheme->wmarks.activated)
2091 pr_debug("activate a scheme (%d)\n", scheme->action);
2092 scheme->wmarks.activated = true;
2093 return 0;
2096 static void kdamond_usleep(unsigned long usecs)
2098 if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2099 schedule_timeout_idle(usecs_to_jiffies(usecs));
2100 else
2101 usleep_range_idle(usecs, usecs + 1);
2105 * kdamond_call() - handle damon_call_control.
2106 * @ctx: The &struct damon_ctx of the kdamond.
2107 * @cancel: Whether to cancel the invocation of the function.
2109 * If there is a &struct damon_call_control request that registered via
2110 * &damon_call() on @ctx, do or cancel the invocation of the function depending
2111 * on @cancel. @cancel is set when the kdamond is deactivated by DAMOS
2112 * watermarks, or the kdamond is already out of the main loop and therefore
2113 * will be terminated.
2115 static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2117 struct damon_call_control *control;
2118 int ret = 0;
2120 mutex_lock(&ctx->call_control_lock);
2121 control = ctx->call_control;
2122 mutex_unlock(&ctx->call_control_lock);
2123 if (!control)
2124 return;
2125 if (cancel) {
2126 control->canceled = true;
2127 } else {
2128 ret = control->fn(control->data);
2129 control->return_code = ret;
2131 complete(&control->completion);
2132 mutex_lock(&ctx->call_control_lock);
2133 ctx->call_control = NULL;
2134 mutex_unlock(&ctx->call_control_lock);
2137 /* Returns negative error code if it's not activated but should return */
2138 static int kdamond_wait_activation(struct damon_ctx *ctx)
2140 struct damos *s;
2141 unsigned long wait_time;
2142 unsigned long min_wait_time = 0;
2143 bool init_wait_time = false;
2145 while (!kdamond_need_stop(ctx)) {
2146 damon_for_each_scheme(s, ctx) {
2147 wait_time = damos_wmark_wait_us(s);
2148 if (!init_wait_time || wait_time < min_wait_time) {
2149 init_wait_time = true;
2150 min_wait_time = wait_time;
2153 if (!min_wait_time)
2154 return 0;
2156 kdamond_usleep(min_wait_time);
2158 if (ctx->callback.after_wmarks_check &&
2159 ctx->callback.after_wmarks_check(ctx))
2160 break;
2161 kdamond_call(ctx, true);
2162 damos_walk_cancel(ctx);
2164 return -EBUSY;
2167 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
2169 unsigned long sample_interval = ctx->attrs.sample_interval ?
2170 ctx->attrs.sample_interval : 1;
2171 unsigned long apply_interval;
2172 struct damos *scheme;
2174 ctx->passed_sample_intervals = 0;
2175 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2176 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2177 sample_interval;
2179 damon_for_each_scheme(scheme, ctx) {
2180 apply_interval = scheme->apply_interval_us ?
2181 scheme->apply_interval_us : ctx->attrs.aggr_interval;
2182 scheme->next_apply_sis = apply_interval / sample_interval;
2187 * The monitoring daemon that runs as a kernel thread
2189 static int kdamond_fn(void *data)
2191 struct damon_ctx *ctx = data;
2192 struct damon_target *t;
2193 struct damon_region *r, *next;
2194 unsigned int max_nr_accesses = 0;
2195 unsigned long sz_limit = 0;
2197 pr_debug("kdamond (%d) starts\n", current->pid);
2199 complete(&ctx->kdamond_started);
2200 kdamond_init_intervals_sis(ctx);
2202 if (ctx->ops.init)
2203 ctx->ops.init(ctx);
2204 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
2205 goto done;
2206 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2207 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2208 if (!ctx->regions_score_histogram)
2209 goto done;
2211 sz_limit = damon_region_sz_limit(ctx);
2213 while (!kdamond_need_stop(ctx)) {
2215 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2216 * be changed from after_wmarks_check() or after_aggregation()
2217 * callbacks. Read the values here, and use those for this
2218 * iteration. That is, damon_set_attrs() updated new values
2219 * are respected from next iteration.
2221 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2222 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2223 unsigned long sample_interval = ctx->attrs.sample_interval;
2225 if (kdamond_wait_activation(ctx))
2226 break;
2228 if (ctx->ops.prepare_access_checks)
2229 ctx->ops.prepare_access_checks(ctx);
2230 if (ctx->callback.after_sampling &&
2231 ctx->callback.after_sampling(ctx))
2232 break;
2233 kdamond_call(ctx, false);
2235 kdamond_usleep(sample_interval);
2236 ctx->passed_sample_intervals++;
2238 if (ctx->ops.check_accesses)
2239 max_nr_accesses = ctx->ops.check_accesses(ctx);
2241 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2242 kdamond_merge_regions(ctx,
2243 max_nr_accesses / 10,
2244 sz_limit);
2245 if (ctx->callback.after_aggregation &&
2246 ctx->callback.after_aggregation(ctx))
2247 break;
2251 * do kdamond_apply_schemes() after kdamond_merge_regions() if
2252 * possible, to reduce overhead
2254 if (!list_empty(&ctx->schemes))
2255 kdamond_apply_schemes(ctx);
2256 else
2257 damos_walk_cancel(ctx);
2259 sample_interval = ctx->attrs.sample_interval ?
2260 ctx->attrs.sample_interval : 1;
2261 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2262 ctx->next_aggregation_sis = next_aggregation_sis +
2263 ctx->attrs.aggr_interval / sample_interval;
2265 kdamond_reset_aggregated(ctx);
2266 kdamond_split_regions(ctx);
2267 if (ctx->ops.reset_aggregated)
2268 ctx->ops.reset_aggregated(ctx);
2271 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2272 ctx->next_ops_update_sis = next_ops_update_sis +
2273 ctx->attrs.ops_update_interval /
2274 sample_interval;
2275 if (ctx->ops.update)
2276 ctx->ops.update(ctx);
2277 sz_limit = damon_region_sz_limit(ctx);
2280 done:
2281 damon_for_each_target(t, ctx) {
2282 damon_for_each_region_safe(r, next, t)
2283 damon_destroy_region(r, t);
2286 if (ctx->callback.before_terminate)
2287 ctx->callback.before_terminate(ctx);
2288 if (ctx->ops.cleanup)
2289 ctx->ops.cleanup(ctx);
2290 kfree(ctx->regions_score_histogram);
2292 pr_debug("kdamond (%d) finishes\n", current->pid);
2293 mutex_lock(&ctx->kdamond_lock);
2294 ctx->kdamond = NULL;
2295 mutex_unlock(&ctx->kdamond_lock);
2297 kdamond_call(ctx, true);
2298 damos_walk_cancel(ctx);
2300 mutex_lock(&damon_lock);
2301 nr_running_ctxs--;
2302 if (!nr_running_ctxs && running_exclusive_ctxs)
2303 running_exclusive_ctxs = false;
2304 mutex_unlock(&damon_lock);
2306 return 0;
2310 * struct damon_system_ram_region - System RAM resource address region of
2311 * [@start, @end).
2312 * @start: Start address of the region (inclusive).
2313 * @end: End address of the region (exclusive).
2315 struct damon_system_ram_region {
2316 unsigned long start;
2317 unsigned long end;
2320 static int walk_system_ram(struct resource *res, void *arg)
2322 struct damon_system_ram_region *a = arg;
2324 if (a->end - a->start < resource_size(res)) {
2325 a->start = res->start;
2326 a->end = res->end;
2328 return 0;
2332 * Find biggest 'System RAM' resource and store its start and end address in
2333 * @start and @end, respectively. If no System RAM is found, returns false.
2335 static bool damon_find_biggest_system_ram(unsigned long *start,
2336 unsigned long *end)
2339 struct damon_system_ram_region arg = {};
2341 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2342 if (arg.end <= arg.start)
2343 return false;
2345 *start = arg.start;
2346 *end = arg.end;
2347 return true;
2351 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2352 * monitoring target as requested, or biggest 'System RAM'.
2353 * @t: The monitoring target to set the region.
2354 * @start: The pointer to the start address of the region.
2355 * @end: The pointer to the end address of the region.
2357 * This function sets the region of @t as requested by @start and @end. If the
2358 * values of @start and @end are zero, however, this function finds the biggest
2359 * 'System RAM' resource and sets the region to cover the resource. In the
2360 * latter case, this function saves the start and end addresses of the resource
2361 * in @start and @end, respectively.
2363 * Return: 0 on success, negative error code otherwise.
2365 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2366 unsigned long *start, unsigned long *end)
2368 struct damon_addr_range addr_range;
2370 if (*start > *end)
2371 return -EINVAL;
2373 if (!*start && !*end &&
2374 !damon_find_biggest_system_ram(start, end))
2375 return -EINVAL;
2377 addr_range.start = *start;
2378 addr_range.end = *end;
2379 return damon_set_regions(t, &addr_range, 1);
2383 * damon_moving_sum() - Calculate an inferred moving sum value.
2384 * @mvsum: Inferred sum of the last @len_window values.
2385 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2386 * @len_window: The number of last values to take care of.
2387 * @new_value: New value that will be added to the pseudo moving sum.
2389 * Moving sum (moving average * window size) is good for handling noise, but
2390 * the cost of keeping past values can be high for arbitrary window size. This
2391 * function implements a lightweight pseudo moving sum function that doesn't
2392 * keep the past window values.
2394 * It simply assumes there was no noise in the past, and get the no-noise
2395 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2396 * non-moving sum of the last window. For example, if @len_window is 10 and we
2397 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2398 * values. Hence, this function simply drops @nomvsum / @len_window from
2399 * given @mvsum and add @new_value.
2401 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2402 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2403 * calculating next moving sum with a new value, we should drop 0 from 50 and
2404 * add the new value. However, this function assumes it got value 5 for each
2405 * of the last ten times. Based on the assumption, when the next value is
2406 * measured, it drops the assumed past value, 5 from the current sum, and add
2407 * the new value to get the updated pseduo-moving average.
2409 * This means the value could have errors, but the errors will be disappeared
2410 * for every @len_window aligned calls. For example, if @len_window is 10, the
2411 * pseudo moving sum with 11th value to 19th value would have an error. But
2412 * the sum with 20th value will not have the error.
2414 * Return: Pseudo-moving average after getting the @new_value.
2416 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2417 unsigned int len_window, unsigned int new_value)
2419 return mvsum - nomvsum / len_window + new_value;
2423 * damon_update_region_access_rate() - Update the access rate of a region.
2424 * @r: The DAMON region to update for its access check result.
2425 * @accessed: Whether the region has accessed during last sampling interval.
2426 * @attrs: The damon_attrs of the DAMON context.
2428 * Update the access rate of a region with the region's last sampling interval
2429 * access check result.
2431 * Usually this will be called by &damon_operations->check_accesses callback.
2433 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2434 struct damon_attrs *attrs)
2436 unsigned int len_window = 1;
2439 * sample_interval can be zero, but cannot be larger than
2440 * aggr_interval, owing to validation of damon_set_attrs().
2442 if (attrs->sample_interval)
2443 len_window = damon_max_nr_accesses(attrs);
2444 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2445 r->last_nr_accesses * 10000, len_window,
2446 accessed ? 10000 : 0);
2448 if (accessed)
2449 r->nr_accesses++;
2452 static int __init damon_init(void)
2454 damon_region_cache = KMEM_CACHE(damon_region, 0);
2455 if (unlikely(!damon_region_cache)) {
2456 pr_err("creating damon_region_cache fails\n");
2457 return -ENOMEM;
2460 return 0;
2463 subsys_initcall(damon_init);
2465 #include "tests/core-kunit.h"