1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
30 struct follow_page_context
{
31 struct dev_pagemap
*pgmap
;
32 unsigned int page_mask
;
35 static inline void sanity_check_pinned_pages(struct page
**pages
,
38 if (!IS_ENABLED(CONFIG_DEBUG_VM
))
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
53 for (; npages
; npages
--, pages
++) {
54 struct page
*page
= *pages
;
60 folio
= page_folio(page
);
62 if (is_zero_page(page
) ||
63 !folio_test_anon(folio
))
65 if (!folio_test_large(folio
) || folio_test_hugetlb(folio
))
66 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio
->page
), page
);
68 /* Either a PTE-mapped or a PMD-mapped THP. */
69 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio
->page
) &&
70 !PageAnonExclusive(page
), page
);
75 * Return the folio with ref appropriately incremented,
76 * or NULL if that failed.
78 static inline struct folio
*try_get_folio(struct page
*page
, int refs
)
83 folio
= page_folio(page
);
84 if (WARN_ON_ONCE(folio_ref_count(folio
) < 0))
86 if (unlikely(!folio_ref_try_add(folio
, refs
)))
90 * At this point we have a stable reference to the folio; but it
91 * could be that between calling page_folio() and the refcount
92 * increment, the folio was split, in which case we'd end up
93 * holding a reference on a folio that has nothing to do with the page
94 * we were given anymore.
95 * So now that the folio is stable, recheck that the page still
96 * belongs to this folio.
98 if (unlikely(page_folio(page
) != folio
)) {
99 if (!put_devmap_managed_folio_refs(folio
, refs
))
100 folio_put_refs(folio
, refs
);
107 static void gup_put_folio(struct folio
*folio
, int refs
, unsigned int flags
)
109 if (flags
& FOLL_PIN
) {
110 if (is_zero_folio(folio
))
112 node_stat_mod_folio(folio
, NR_FOLL_PIN_RELEASED
, refs
);
113 if (folio_test_large(folio
))
114 atomic_sub(refs
, &folio
->_pincount
);
116 refs
*= GUP_PIN_COUNTING_BIAS
;
119 if (!put_devmap_managed_folio_refs(folio
, refs
))
120 folio_put_refs(folio
, refs
);
124 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
125 * @folio: pointer to folio to be grabbed
126 * @refs: the value to (effectively) add to the folio's refcount
127 * @flags: gup flags: these are the FOLL_* flag values
129 * This might not do anything at all, depending on the flags argument.
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
134 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
137 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
138 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
140 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
143 * It is called when we have a stable reference for the folio, typically in
146 int __must_check
try_grab_folio(struct folio
*folio
, int refs
,
149 if (WARN_ON_ONCE(folio_ref_count(folio
) <= 0))
152 if (unlikely(!(flags
& FOLL_PCI_P2PDMA
) && is_pci_p2pdma_page(&folio
->page
)))
155 if (flags
& FOLL_GET
)
156 folio_ref_add(folio
, refs
);
157 else if (flags
& FOLL_PIN
) {
159 * Don't take a pin on the zero page - it's not going anywhere
160 * and it is used in a *lot* of places.
162 if (is_zero_folio(folio
))
166 * Increment the normal page refcount field at least once,
167 * so that the page really is pinned.
169 if (folio_test_large(folio
)) {
170 folio_ref_add(folio
, refs
);
171 atomic_add(refs
, &folio
->_pincount
);
173 folio_ref_add(folio
, refs
* GUP_PIN_COUNTING_BIAS
);
176 node_stat_mod_folio(folio
, NR_FOLL_PIN_ACQUIRED
, refs
);
183 * unpin_user_page() - release a dma-pinned page
184 * @page: pointer to page to be released
186 * Pages that were pinned via pin_user_pages*() must be released via either
187 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
188 * that such pages can be separately tracked and uniquely handled. In
189 * particular, interactions with RDMA and filesystems need special handling.
191 void unpin_user_page(struct page
*page
)
193 sanity_check_pinned_pages(&page
, 1);
194 gup_put_folio(page_folio(page
), 1, FOLL_PIN
);
196 EXPORT_SYMBOL(unpin_user_page
);
199 * unpin_folio() - release a dma-pinned folio
200 * @folio: pointer to folio to be released
202 * Folios that were pinned via memfd_pin_folios() or other similar routines
203 * must be released either using unpin_folio() or unpin_folios().
205 void unpin_folio(struct folio
*folio
)
207 gup_put_folio(folio
, 1, FOLL_PIN
);
209 EXPORT_SYMBOL_GPL(unpin_folio
);
212 * folio_add_pin - Try to get an additional pin on a pinned folio
213 * @folio: The folio to be pinned
215 * Get an additional pin on a folio we already have a pin on. Makes no change
216 * if the folio is a zero_page.
218 void folio_add_pin(struct folio
*folio
)
220 if (is_zero_folio(folio
))
224 * Similar to try_grab_folio(): be sure to *also* increment the normal
225 * page refcount field at least once, so that the page really is
228 if (folio_test_large(folio
)) {
229 WARN_ON_ONCE(atomic_read(&folio
->_pincount
) < 1);
230 folio_ref_inc(folio
);
231 atomic_inc(&folio
->_pincount
);
233 WARN_ON_ONCE(folio_ref_count(folio
) < GUP_PIN_COUNTING_BIAS
);
234 folio_ref_add(folio
, GUP_PIN_COUNTING_BIAS
);
238 static inline struct folio
*gup_folio_range_next(struct page
*start
,
239 unsigned long npages
, unsigned long i
, unsigned int *ntails
)
241 struct page
*next
= nth_page(start
, i
);
242 struct folio
*folio
= page_folio(next
);
245 if (folio_test_large(folio
))
246 nr
= min_t(unsigned int, npages
- i
,
247 folio_nr_pages(folio
) - folio_page_idx(folio
, next
));
253 static inline struct folio
*gup_folio_next(struct page
**list
,
254 unsigned long npages
, unsigned long i
, unsigned int *ntails
)
256 struct folio
*folio
= page_folio(list
[i
]);
259 for (nr
= i
+ 1; nr
< npages
; nr
++) {
260 if (page_folio(list
[nr
]) != folio
)
269 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
270 * @pages: array of pages to be maybe marked dirty, and definitely released.
271 * @npages: number of pages in the @pages array.
272 * @make_dirty: whether to mark the pages dirty
274 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
275 * variants called on that page.
277 * For each page in the @pages array, make that page (or its head page, if a
278 * compound page) dirty, if @make_dirty is true, and if the page was previously
279 * listed as clean. In any case, releases all pages using unpin_user_page(),
280 * possibly via unpin_user_pages(), for the non-dirty case.
282 * Please see the unpin_user_page() documentation for details.
284 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
285 * required, then the caller should a) verify that this is really correct,
286 * because _lock() is usually required, and b) hand code it:
287 * set_page_dirty_lock(), unpin_user_page().
290 void unpin_user_pages_dirty_lock(struct page
**pages
, unsigned long npages
,
298 unpin_user_pages(pages
, npages
);
302 sanity_check_pinned_pages(pages
, npages
);
303 for (i
= 0; i
< npages
; i
+= nr
) {
304 folio
= gup_folio_next(pages
, npages
, i
, &nr
);
306 * Checking PageDirty at this point may race with
307 * clear_page_dirty_for_io(), but that's OK. Two key
310 * 1) This code sees the page as already dirty, so it
311 * skips the call to set_page_dirty(). That could happen
312 * because clear_page_dirty_for_io() called
313 * folio_mkclean(), followed by set_page_dirty().
314 * However, now the page is going to get written back,
315 * which meets the original intention of setting it
316 * dirty, so all is well: clear_page_dirty_for_io() goes
317 * on to call TestClearPageDirty(), and write the page
320 * 2) This code sees the page as clean, so it calls
321 * set_page_dirty(). The page stays dirty, despite being
322 * written back, so it gets written back again in the
323 * next writeback cycle. This is harmless.
325 if (!folio_test_dirty(folio
)) {
327 folio_mark_dirty(folio
);
330 gup_put_folio(folio
, nr
, FOLL_PIN
);
333 EXPORT_SYMBOL(unpin_user_pages_dirty_lock
);
336 * unpin_user_page_range_dirty_lock() - release and optionally dirty
337 * gup-pinned page range
339 * @page: the starting page of a range maybe marked dirty, and definitely released.
340 * @npages: number of consecutive pages to release.
341 * @make_dirty: whether to mark the pages dirty
343 * "gup-pinned page range" refers to a range of pages that has had one of the
344 * pin_user_pages() variants called on that page.
346 * For the page ranges defined by [page .. page+npages], make that range (or
347 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
348 * page range was previously listed as clean.
350 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
351 * required, then the caller should a) verify that this is really correct,
352 * because _lock() is usually required, and b) hand code it:
353 * set_page_dirty_lock(), unpin_user_page().
356 void unpin_user_page_range_dirty_lock(struct page
*page
, unsigned long npages
,
363 for (i
= 0; i
< npages
; i
+= nr
) {
364 folio
= gup_folio_range_next(page
, npages
, i
, &nr
);
365 if (make_dirty
&& !folio_test_dirty(folio
)) {
367 folio_mark_dirty(folio
);
370 gup_put_folio(folio
, nr
, FOLL_PIN
);
373 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock
);
375 static void gup_fast_unpin_user_pages(struct page
**pages
, unsigned long npages
)
382 * Don't perform any sanity checks because we might have raced with
383 * fork() and some anonymous pages might now actually be shared --
384 * which is why we're unpinning after all.
386 for (i
= 0; i
< npages
; i
+= nr
) {
387 folio
= gup_folio_next(pages
, npages
, i
, &nr
);
388 gup_put_folio(folio
, nr
, FOLL_PIN
);
393 * unpin_user_pages() - release an array of gup-pinned pages.
394 * @pages: array of pages to be marked dirty and released.
395 * @npages: number of pages in the @pages array.
397 * For each page in the @pages array, release the page using unpin_user_page().
399 * Please see the unpin_user_page() documentation for details.
401 void unpin_user_pages(struct page
**pages
, unsigned long npages
)
408 * If this WARN_ON() fires, then the system *might* be leaking pages (by
409 * leaving them pinned), but probably not. More likely, gup/pup returned
410 * a hard -ERRNO error to the caller, who erroneously passed it here.
412 if (WARN_ON(IS_ERR_VALUE(npages
)))
415 sanity_check_pinned_pages(pages
, npages
);
416 for (i
= 0; i
< npages
; i
+= nr
) {
421 folio
= gup_folio_next(pages
, npages
, i
, &nr
);
422 gup_put_folio(folio
, nr
, FOLL_PIN
);
425 EXPORT_SYMBOL(unpin_user_pages
);
428 * unpin_user_folio() - release pages of a folio
429 * @folio: pointer to folio to be released
430 * @npages: number of pages of same folio
432 * Release npages of the folio
434 void unpin_user_folio(struct folio
*folio
, unsigned long npages
)
436 gup_put_folio(folio
, npages
, FOLL_PIN
);
438 EXPORT_SYMBOL(unpin_user_folio
);
441 * unpin_folios() - release an array of gup-pinned folios.
442 * @folios: array of folios to be marked dirty and released.
443 * @nfolios: number of folios in the @folios array.
445 * For each folio in the @folios array, release the folio using gup_put_folio.
447 * Please see the unpin_folio() documentation for details.
449 void unpin_folios(struct folio
**folios
, unsigned long nfolios
)
451 unsigned long i
= 0, j
;
454 * If this WARN_ON() fires, then the system *might* be leaking folios
455 * (by leaving them pinned), but probably not. More likely, gup/pup
456 * returned a hard -ERRNO error to the caller, who erroneously passed
459 if (WARN_ON(IS_ERR_VALUE(nfolios
)))
462 while (i
< nfolios
) {
463 for (j
= i
+ 1; j
< nfolios
; j
++)
464 if (folios
[i
] != folios
[j
])
468 gup_put_folio(folios
[i
], j
- i
, FOLL_PIN
);
472 EXPORT_SYMBOL_GPL(unpin_folios
);
475 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
476 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
477 * cache bouncing on large SMP machines for concurrent pinned gups.
479 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags
)
481 if (!test_bit(MMF_HAS_PINNED
, mm_flags
))
482 set_bit(MMF_HAS_PINNED
, mm_flags
);
487 #ifdef CONFIG_HAVE_GUP_FAST
488 static int record_subpages(struct page
*page
, unsigned long sz
,
489 unsigned long addr
, unsigned long end
,
492 struct page
*start_page
;
495 start_page
= nth_page(page
, (addr
& (sz
- 1)) >> PAGE_SHIFT
);
496 for (nr
= 0; addr
!= end
; nr
++, addr
+= PAGE_SIZE
)
497 pages
[nr
] = nth_page(start_page
, nr
);
503 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
504 * @page: pointer to page to be grabbed
505 * @refs: the value to (effectively) add to the folio's refcount
506 * @flags: gup flags: these are the FOLL_* flag values.
508 * "grab" names in this file mean, "look at flags to decide whether to use
509 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
511 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
512 * same time. (That's true throughout the get_user_pages*() and
513 * pin_user_pages*() APIs.) Cases:
515 * FOLL_GET: folio's refcount will be incremented by @refs.
517 * FOLL_PIN on large folios: folio's refcount will be incremented by
518 * @refs, and its pincount will be incremented by @refs.
520 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
521 * @refs * GUP_PIN_COUNTING_BIAS.
523 * Return: The folio containing @page (with refcount appropriately
524 * incremented) for success, or NULL upon failure. If neither FOLL_GET
525 * nor FOLL_PIN was set, that's considered failure, and furthermore,
526 * a likely bug in the caller, so a warning is also emitted.
528 * It uses add ref unless zero to elevate the folio refcount and must be called
531 static struct folio
*try_grab_folio_fast(struct page
*page
, int refs
,
536 /* Raise warn if it is not called in fast GUP */
537 VM_WARN_ON_ONCE(!irqs_disabled());
539 if (WARN_ON_ONCE((flags
& (FOLL_GET
| FOLL_PIN
)) == 0))
542 if (unlikely(!(flags
& FOLL_PCI_P2PDMA
) && is_pci_p2pdma_page(page
)))
545 if (flags
& FOLL_GET
)
546 return try_get_folio(page
, refs
);
548 /* FOLL_PIN is set */
551 * Don't take a pin on the zero page - it's not going anywhere
552 * and it is used in a *lot* of places.
554 if (is_zero_page(page
))
555 return page_folio(page
);
557 folio
= try_get_folio(page
, refs
);
562 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
563 * right zone, so fail and let the caller fall back to the slow
566 if (unlikely((flags
& FOLL_LONGTERM
) &&
567 !folio_is_longterm_pinnable(folio
))) {
568 if (!put_devmap_managed_folio_refs(folio
, refs
))
569 folio_put_refs(folio
, refs
);
574 * When pinning a large folio, use an exact count to track it.
576 * However, be sure to *also* increment the normal folio
577 * refcount field at least once, so that the folio really
578 * is pinned. That's why the refcount from the earlier
579 * try_get_folio() is left intact.
581 if (folio_test_large(folio
))
582 atomic_add(refs
, &folio
->_pincount
);
585 refs
* (GUP_PIN_COUNTING_BIAS
- 1));
587 * Adjust the pincount before re-checking the PTE for changes.
588 * This is essentially a smp_mb() and is paired with a memory
589 * barrier in folio_try_share_anon_rmap_*().
591 smp_mb__after_atomic();
593 node_stat_mod_folio(folio
, NR_FOLL_PIN_ACQUIRED
, refs
);
597 #endif /* CONFIG_HAVE_GUP_FAST */
599 /* Common code for can_follow_write_* */
600 static inline bool can_follow_write_common(struct page
*page
,
601 struct vm_area_struct
*vma
, unsigned int flags
)
603 /* Maybe FOLL_FORCE is set to override it? */
604 if (!(flags
& FOLL_FORCE
))
607 /* But FOLL_FORCE has no effect on shared mappings */
608 if (vma
->vm_flags
& (VM_MAYSHARE
| VM_SHARED
))
611 /* ... or read-only private ones */
612 if (!(vma
->vm_flags
& VM_MAYWRITE
))
615 /* ... or already writable ones that just need to take a write fault */
616 if (vma
->vm_flags
& VM_WRITE
)
620 * See can_change_pte_writable(): we broke COW and could map the page
621 * writable if we have an exclusive anonymous page ...
623 return page
&& PageAnon(page
) && PageAnonExclusive(page
);
626 static struct page
*no_page_table(struct vm_area_struct
*vma
,
627 unsigned int flags
, unsigned long address
)
629 if (!(flags
& FOLL_DUMP
))
633 * When core dumping, we don't want to allocate unnecessary pages or
634 * page tables. Return error instead of NULL to skip handle_mm_fault,
635 * then get_dump_page() will return NULL to leave a hole in the dump.
636 * But we can only make this optimization where a hole would surely
637 * be zero-filled if handle_mm_fault() actually did handle it.
639 if (is_vm_hugetlb_page(vma
)) {
640 struct hstate
*h
= hstate_vma(vma
);
642 if (!hugetlbfs_pagecache_present(h
, vma
, address
))
643 return ERR_PTR(-EFAULT
);
644 } else if ((vma_is_anonymous(vma
) || !vma
->vm_ops
->fault
)) {
645 return ERR_PTR(-EFAULT
);
651 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
652 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
653 static inline bool can_follow_write_pud(pud_t pud
, struct page
*page
,
654 struct vm_area_struct
*vma
,
657 /* If the pud is writable, we can write to the page. */
661 return can_follow_write_common(page
, vma
, flags
);
664 static struct page
*follow_huge_pud(struct vm_area_struct
*vma
,
665 unsigned long addr
, pud_t
*pudp
,
666 int flags
, struct follow_page_context
*ctx
)
668 struct mm_struct
*mm
= vma
->vm_mm
;
671 unsigned long pfn
= pud_pfn(pud
);
674 assert_spin_locked(pud_lockptr(mm
, pudp
));
676 if (!pud_present(pud
))
679 if ((flags
& FOLL_WRITE
) &&
680 !can_follow_write_pud(pud
, pfn_to_page(pfn
), vma
, flags
))
683 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
685 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
) &&
688 * device mapped pages can only be returned if the caller
689 * will manage the page reference count.
691 * At least one of FOLL_GET | FOLL_PIN must be set, so
694 if (!(flags
& (FOLL_GET
| FOLL_PIN
)))
695 return ERR_PTR(-EEXIST
);
697 if (flags
& FOLL_TOUCH
)
698 touch_pud(vma
, addr
, pudp
, flags
& FOLL_WRITE
);
700 ctx
->pgmap
= get_dev_pagemap(pfn
, ctx
->pgmap
);
702 return ERR_PTR(-EFAULT
);
705 page
= pfn_to_page(pfn
);
707 if (!pud_devmap(pud
) && !pud_write(pud
) &&
708 gup_must_unshare(vma
, flags
, page
))
709 return ERR_PTR(-EMLINK
);
711 ret
= try_grab_folio(page_folio(page
), 1, flags
);
715 ctx
->page_mask
= HPAGE_PUD_NR
- 1;
720 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
721 static inline bool can_follow_write_pmd(pmd_t pmd
, struct page
*page
,
722 struct vm_area_struct
*vma
,
725 /* If the pmd is writable, we can write to the page. */
729 if (!can_follow_write_common(page
, vma
, flags
))
732 /* ... and a write-fault isn't required for other reasons. */
733 if (pmd_needs_soft_dirty_wp(vma
, pmd
))
735 return !userfaultfd_huge_pmd_wp(vma
, pmd
);
738 static struct page
*follow_huge_pmd(struct vm_area_struct
*vma
,
739 unsigned long addr
, pmd_t
*pmd
,
741 struct follow_page_context
*ctx
)
743 struct mm_struct
*mm
= vma
->vm_mm
;
748 assert_spin_locked(pmd_lockptr(mm
, pmd
));
750 page
= pmd_page(pmdval
);
751 if ((flags
& FOLL_WRITE
) &&
752 !can_follow_write_pmd(pmdval
, page
, vma
, flags
))
755 /* Avoid dumping huge zero page */
756 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(pmdval
))
757 return ERR_PTR(-EFAULT
);
759 if (pmd_protnone(*pmd
) && !gup_can_follow_protnone(vma
, flags
))
762 if (!pmd_write(pmdval
) && gup_must_unshare(vma
, flags
, page
))
763 return ERR_PTR(-EMLINK
);
765 VM_BUG_ON_PAGE((flags
& FOLL_PIN
) && PageAnon(page
) &&
766 !PageAnonExclusive(page
), page
);
768 ret
= try_grab_folio(page_folio(page
), 1, flags
);
772 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
773 if (pmd_trans_huge(pmdval
) && (flags
& FOLL_TOUCH
))
774 touch_pmd(vma
, addr
, pmd
, flags
& FOLL_WRITE
);
775 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
777 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
778 ctx
->page_mask
= HPAGE_PMD_NR
- 1;
783 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
784 static struct page
*follow_huge_pud(struct vm_area_struct
*vma
,
785 unsigned long addr
, pud_t
*pudp
,
786 int flags
, struct follow_page_context
*ctx
)
791 static struct page
*follow_huge_pmd(struct vm_area_struct
*vma
,
792 unsigned long addr
, pmd_t
*pmd
,
794 struct follow_page_context
*ctx
)
798 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
800 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
801 pte_t
*pte
, unsigned int flags
)
803 if (flags
& FOLL_TOUCH
) {
804 pte_t orig_entry
= ptep_get(pte
);
805 pte_t entry
= orig_entry
;
807 if (flags
& FOLL_WRITE
)
808 entry
= pte_mkdirty(entry
);
809 entry
= pte_mkyoung(entry
);
811 if (!pte_same(orig_entry
, entry
)) {
812 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
813 update_mmu_cache(vma
, address
, pte
);
817 /* Proper page table entry exists, but no corresponding struct page */
821 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
822 static inline bool can_follow_write_pte(pte_t pte
, struct page
*page
,
823 struct vm_area_struct
*vma
,
826 /* If the pte is writable, we can write to the page. */
830 if (!can_follow_write_common(page
, vma
, flags
))
833 /* ... and a write-fault isn't required for other reasons. */
834 if (pte_needs_soft_dirty_wp(vma
, pte
))
836 return !userfaultfd_pte_wp(vma
, pte
);
839 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
840 unsigned long address
, pmd_t
*pmd
, unsigned int flags
,
841 struct dev_pagemap
**pgmap
)
843 struct mm_struct
*mm
= vma
->vm_mm
;
850 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
851 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
852 (FOLL_PIN
| FOLL_GET
)))
853 return ERR_PTR(-EINVAL
);
855 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
857 return no_page_table(vma
, flags
, address
);
858 pte
= ptep_get(ptep
);
859 if (!pte_present(pte
))
861 if (pte_protnone(pte
) && !gup_can_follow_protnone(vma
, flags
))
864 page
= vm_normal_page(vma
, address
, pte
);
867 * We only care about anon pages in can_follow_write_pte() and don't
868 * have to worry about pte_devmap() because they are never anon.
870 if ((flags
& FOLL_WRITE
) &&
871 !can_follow_write_pte(pte
, page
, vma
, flags
)) {
876 if (!page
&& pte_devmap(pte
) && (flags
& (FOLL_GET
| FOLL_PIN
))) {
878 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
879 * case since they are only valid while holding the pgmap
882 *pgmap
= get_dev_pagemap(pte_pfn(pte
), *pgmap
);
884 page
= pte_page(pte
);
887 } else if (unlikely(!page
)) {
888 if (flags
& FOLL_DUMP
) {
889 /* Avoid special (like zero) pages in core dumps */
890 page
= ERR_PTR(-EFAULT
);
894 if (is_zero_pfn(pte_pfn(pte
))) {
895 page
= pte_page(pte
);
897 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
902 folio
= page_folio(page
);
904 if (!pte_write(pte
) && gup_must_unshare(vma
, flags
, page
)) {
905 page
= ERR_PTR(-EMLINK
);
909 VM_BUG_ON_PAGE((flags
& FOLL_PIN
) && PageAnon(page
) &&
910 !PageAnonExclusive(page
), page
);
912 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
913 ret
= try_grab_folio(folio
, 1, flags
);
920 * We need to make the page accessible if and only if we are going
921 * to access its content (the FOLL_PIN case). Please see
922 * Documentation/core-api/pin_user_pages.rst for details.
924 if (flags
& FOLL_PIN
) {
925 ret
= arch_make_folio_accessible(folio
);
927 unpin_user_page(page
);
932 if (flags
& FOLL_TOUCH
) {
933 if ((flags
& FOLL_WRITE
) &&
934 !pte_dirty(pte
) && !folio_test_dirty(folio
))
935 folio_mark_dirty(folio
);
937 * pte_mkyoung() would be more correct here, but atomic care
938 * is needed to avoid losing the dirty bit: it is easier to use
939 * folio_mark_accessed().
941 folio_mark_accessed(folio
);
944 pte_unmap_unlock(ptep
, ptl
);
947 pte_unmap_unlock(ptep
, ptl
);
950 return no_page_table(vma
, flags
, address
);
953 static struct page
*follow_pmd_mask(struct vm_area_struct
*vma
,
954 unsigned long address
, pud_t
*pudp
,
956 struct follow_page_context
*ctx
)
961 struct mm_struct
*mm
= vma
->vm_mm
;
963 pmd
= pmd_offset(pudp
, address
);
964 pmdval
= pmdp_get_lockless(pmd
);
965 if (pmd_none(pmdval
))
966 return no_page_table(vma
, flags
, address
);
967 if (!pmd_present(pmdval
))
968 return no_page_table(vma
, flags
, address
);
969 if (pmd_devmap(pmdval
)) {
970 ptl
= pmd_lock(mm
, pmd
);
971 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
975 return no_page_table(vma
, flags
, address
);
977 if (likely(!pmd_leaf(pmdval
)))
978 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
980 if (pmd_protnone(pmdval
) && !gup_can_follow_protnone(vma
, flags
))
981 return no_page_table(vma
, flags
, address
);
983 ptl
= pmd_lock(mm
, pmd
);
985 if (unlikely(!pmd_present(pmdval
))) {
987 return no_page_table(vma
, flags
, address
);
989 if (unlikely(!pmd_leaf(pmdval
))) {
991 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
993 if (pmd_trans_huge(pmdval
) && (flags
& FOLL_SPLIT_PMD
)) {
995 split_huge_pmd(vma
, pmd
, address
);
996 /* If pmd was left empty, stuff a page table in there quickly */
997 return pte_alloc(mm
, pmd
) ? ERR_PTR(-ENOMEM
) :
998 follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
1000 page
= follow_huge_pmd(vma
, address
, pmd
, flags
, ctx
);
1005 static struct page
*follow_pud_mask(struct vm_area_struct
*vma
,
1006 unsigned long address
, p4d_t
*p4dp
,
1008 struct follow_page_context
*ctx
)
1013 struct mm_struct
*mm
= vma
->vm_mm
;
1015 pudp
= pud_offset(p4dp
, address
);
1016 pud
= READ_ONCE(*pudp
);
1017 if (!pud_present(pud
))
1018 return no_page_table(vma
, flags
, address
);
1019 if (pud_leaf(pud
)) {
1020 ptl
= pud_lock(mm
, pudp
);
1021 page
= follow_huge_pud(vma
, address
, pudp
, flags
, ctx
);
1025 return no_page_table(vma
, flags
, address
);
1027 if (unlikely(pud_bad(pud
)))
1028 return no_page_table(vma
, flags
, address
);
1030 return follow_pmd_mask(vma
, address
, pudp
, flags
, ctx
);
1033 static struct page
*follow_p4d_mask(struct vm_area_struct
*vma
,
1034 unsigned long address
, pgd_t
*pgdp
,
1036 struct follow_page_context
*ctx
)
1040 p4dp
= p4d_offset(pgdp
, address
);
1041 p4d
= READ_ONCE(*p4dp
);
1042 BUILD_BUG_ON(p4d_leaf(p4d
));
1044 if (!p4d_present(p4d
) || p4d_bad(p4d
))
1045 return no_page_table(vma
, flags
, address
);
1047 return follow_pud_mask(vma
, address
, p4dp
, flags
, ctx
);
1051 * follow_page_mask - look up a page descriptor from a user-virtual address
1052 * @vma: vm_area_struct mapping @address
1053 * @address: virtual address to look up
1054 * @flags: flags modifying lookup behaviour
1055 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1056 * pointer to output page_mask
1058 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1060 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1061 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1063 * When getting an anonymous page and the caller has to trigger unsharing
1064 * of a shared anonymous page first, -EMLINK is returned. The caller should
1065 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1066 * relevant with FOLL_PIN and !FOLL_WRITE.
1068 * On output, the @ctx->page_mask is set according to the size of the page.
1070 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1071 * an error pointer if there is a mapping to something not represented
1072 * by a page descriptor (see also vm_normal_page()).
1074 static struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1075 unsigned long address
, unsigned int flags
,
1076 struct follow_page_context
*ctx
)
1079 struct mm_struct
*mm
= vma
->vm_mm
;
1082 vma_pgtable_walk_begin(vma
);
1085 pgd
= pgd_offset(mm
, address
);
1087 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1088 page
= no_page_table(vma
, flags
, address
);
1090 page
= follow_p4d_mask(vma
, address
, pgd
, flags
, ctx
);
1092 vma_pgtable_walk_end(vma
);
1097 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
1098 unsigned int gup_flags
, struct vm_area_struct
**vma
,
1109 /* user gate pages are read-only */
1110 if (gup_flags
& FOLL_WRITE
)
1112 if (address
> TASK_SIZE
)
1113 pgd
= pgd_offset_k(address
);
1115 pgd
= pgd_offset_gate(mm
, address
);
1118 p4d
= p4d_offset(pgd
, address
);
1121 pud
= pud_offset(p4d
, address
);
1124 pmd
= pmd_offset(pud
, address
);
1125 if (!pmd_present(*pmd
))
1127 pte
= pte_offset_map(pmd
, address
);
1130 entry
= ptep_get(pte
);
1131 if (pte_none(entry
))
1133 *vma
= get_gate_vma(mm
);
1136 *page
= vm_normal_page(*vma
, address
, entry
);
1138 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(entry
)))
1140 *page
= pte_page(entry
);
1142 ret
= try_grab_folio(page_folio(*page
), 1, gup_flags
);
1153 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1154 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1155 * to 0 and -EBUSY returned.
1157 static int faultin_page(struct vm_area_struct
*vma
,
1158 unsigned long address
, unsigned int flags
, bool unshare
,
1161 unsigned int fault_flags
= 0;
1164 if (flags
& FOLL_NOFAULT
)
1166 if (flags
& FOLL_WRITE
)
1167 fault_flags
|= FAULT_FLAG_WRITE
;
1168 if (flags
& FOLL_REMOTE
)
1169 fault_flags
|= FAULT_FLAG_REMOTE
;
1170 if (flags
& FOLL_UNLOCKABLE
) {
1171 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1173 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1174 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1175 * That's because some callers may not be prepared to
1176 * handle early exits caused by non-fatal signals.
1178 if (flags
& FOLL_INTERRUPTIBLE
)
1179 fault_flags
|= FAULT_FLAG_INTERRUPTIBLE
;
1181 if (flags
& FOLL_NOWAIT
)
1182 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
1183 if (flags
& FOLL_TRIED
) {
1185 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1188 fault_flags
|= FAULT_FLAG_TRIED
;
1191 fault_flags
|= FAULT_FLAG_UNSHARE
;
1192 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1193 VM_BUG_ON(fault_flags
& FAULT_FLAG_WRITE
);
1196 ret
= handle_mm_fault(vma
, address
, fault_flags
, NULL
);
1198 if (ret
& VM_FAULT_COMPLETED
) {
1200 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1201 * mmap lock in the page fault handler. Sanity check this.
1203 WARN_ON_ONCE(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
);
1207 * We should do the same as VM_FAULT_RETRY, but let's not
1208 * return -EBUSY since that's not reflecting the reality of
1209 * what has happened - we've just fully completed a page
1210 * fault, with the mmap lock released. Use -EAGAIN to show
1211 * that we want to take the mmap lock _again_.
1216 if (ret
& VM_FAULT_ERROR
) {
1217 int err
= vm_fault_to_errno(ret
, flags
);
1224 if (ret
& VM_FAULT_RETRY
) {
1225 if (!(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
1234 * Writing to file-backed mappings which require folio dirty tracking using GUP
1235 * is a fundamentally broken operation, as kernel write access to GUP mappings
1236 * do not adhere to the semantics expected by a file system.
1238 * Consider the following scenario:-
1240 * 1. A folio is written to via GUP which write-faults the memory, notifying
1241 * the file system and dirtying the folio.
1242 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1243 * the PTE being marked read-only.
1244 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1246 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1247 * (though it does not have to).
1249 * This results in both data being written to a folio without writenotify, and
1250 * the folio being dirtied unexpectedly (if the caller decides to do so).
1252 static bool writable_file_mapping_allowed(struct vm_area_struct
*vma
,
1253 unsigned long gup_flags
)
1256 * If we aren't pinning then no problematic write can occur. A long term
1257 * pin is the most egregious case so this is the case we disallow.
1259 if ((gup_flags
& (FOLL_PIN
| FOLL_LONGTERM
)) !=
1260 (FOLL_PIN
| FOLL_LONGTERM
))
1264 * If the VMA does not require dirty tracking then no problematic write
1267 return !vma_needs_dirty_tracking(vma
);
1270 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
1272 vm_flags_t vm_flags
= vma
->vm_flags
;
1273 int write
= (gup_flags
& FOLL_WRITE
);
1274 int foreign
= (gup_flags
& FOLL_REMOTE
);
1275 bool vma_anon
= vma_is_anonymous(vma
);
1277 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
1280 if ((gup_flags
& FOLL_ANON
) && !vma_anon
)
1283 if ((gup_flags
& FOLL_LONGTERM
) && vma_is_fsdax(vma
))
1286 if (vma_is_secretmem(vma
))
1291 !writable_file_mapping_allowed(vma
, gup_flags
))
1294 if (!(vm_flags
& VM_WRITE
) || (vm_flags
& VM_SHADOW_STACK
)) {
1295 if (!(gup_flags
& FOLL_FORCE
))
1298 * We used to let the write,force case do COW in a
1299 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1300 * set a breakpoint in a read-only mapping of an
1301 * executable, without corrupting the file (yet only
1302 * when that file had been opened for writing!).
1303 * Anon pages in shared mappings are surprising: now
1306 if (!is_cow_mapping(vm_flags
))
1309 } else if (!(vm_flags
& VM_READ
)) {
1310 if (!(gup_flags
& FOLL_FORCE
))
1313 * Is there actually any vma we can reach here which does not
1314 * have VM_MAYREAD set?
1316 if (!(vm_flags
& VM_MAYREAD
))
1320 * gups are always data accesses, not instruction
1321 * fetches, so execute=false here
1323 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
1329 * This is "vma_lookup()", but with a warning if we would have
1330 * historically expanded the stack in the GUP code.
1332 static struct vm_area_struct
*gup_vma_lookup(struct mm_struct
*mm
,
1335 #ifdef CONFIG_STACK_GROWSUP
1336 return vma_lookup(mm
, addr
);
1338 static volatile unsigned long next_warn
;
1339 struct vm_area_struct
*vma
;
1340 unsigned long now
, next
;
1342 vma
= find_vma(mm
, addr
);
1343 if (!vma
|| (addr
>= vma
->vm_start
))
1346 /* Only warn for half-way relevant accesses */
1347 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1349 if (vma
->vm_start
- addr
> 65536)
1352 /* Let's not warn more than once an hour.. */
1353 now
= jiffies
; next
= next_warn
;
1354 if (next
&& time_before(now
, next
))
1356 next_warn
= now
+ 60*60*HZ
;
1358 /* Let people know things may have changed. */
1359 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1360 current
->comm
, task_pid_nr(current
),
1361 vma
->vm_start
, vma
->vm_end
, addr
);
1368 * __get_user_pages() - pin user pages in memory
1369 * @mm: mm_struct of target mm
1370 * @start: starting user address
1371 * @nr_pages: number of pages from start to pin
1372 * @gup_flags: flags modifying pin behaviour
1373 * @pages: array that receives pointers to the pages pinned.
1374 * Should be at least nr_pages long. Or NULL, if caller
1375 * only intends to ensure the pages are faulted in.
1376 * @locked: whether we're still with the mmap_lock held
1378 * Returns either number of pages pinned (which may be less than the
1379 * number requested), or an error. Details about the return value:
1381 * -- If nr_pages is 0, returns 0.
1382 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1383 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1384 * pages pinned. Again, this may be less than nr_pages.
1385 * -- 0 return value is possible when the fault would need to be retried.
1387 * The caller is responsible for releasing returned @pages, via put_page().
1389 * Must be called with mmap_lock held. It may be released. See below.
1391 * __get_user_pages walks a process's page tables and takes a reference to
1392 * each struct page that each user address corresponds to at a given
1393 * instant. That is, it takes the page that would be accessed if a user
1394 * thread accesses the given user virtual address at that instant.
1396 * This does not guarantee that the page exists in the user mappings when
1397 * __get_user_pages returns, and there may even be a completely different
1398 * page there in some cases (eg. if mmapped pagecache has been invalidated
1399 * and subsequently re-faulted). However it does guarantee that the page
1400 * won't be freed completely. And mostly callers simply care that the page
1401 * contains data that was valid *at some point in time*. Typically, an IO
1402 * or similar operation cannot guarantee anything stronger anyway because
1403 * locks can't be held over the syscall boundary.
1405 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1406 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1407 * appropriate) must be called after the page is finished with, and
1408 * before put_page is called.
1410 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1411 * be released. If this happens *@locked will be set to 0 on return.
1413 * A caller using such a combination of @gup_flags must therefore hold the
1414 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1415 * it must be held for either reading or writing and will not be released.
1417 * In most cases, get_user_pages or get_user_pages_fast should be used
1418 * instead of __get_user_pages. __get_user_pages should be used only if
1419 * you need some special @gup_flags.
1421 static long __get_user_pages(struct mm_struct
*mm
,
1422 unsigned long start
, unsigned long nr_pages
,
1423 unsigned int gup_flags
, struct page
**pages
,
1426 long ret
= 0, i
= 0;
1427 struct vm_area_struct
*vma
= NULL
;
1428 struct follow_page_context ctx
= { NULL
};
1433 start
= untagged_addr_remote(mm
, start
);
1435 VM_BUG_ON(!!pages
!= !!(gup_flags
& (FOLL_GET
| FOLL_PIN
)));
1439 unsigned int page_increm
;
1441 /* first iteration or cross vma bound */
1442 if (!vma
|| start
>= vma
->vm_end
) {
1444 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1445 * lookups+error reporting differently.
1447 if (gup_flags
& FOLL_MADV_POPULATE
) {
1448 vma
= vma_lookup(mm
, start
);
1453 if (check_vma_flags(vma
, gup_flags
)) {
1459 vma
= gup_vma_lookup(mm
, start
);
1460 if (!vma
&& in_gate_area(mm
, start
)) {
1461 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
1463 pages
? &page
: NULL
);
1474 ret
= check_vma_flags(vma
, gup_flags
);
1480 * If we have a pending SIGKILL, don't keep faulting pages and
1481 * potentially allocating memory.
1483 if (fatal_signal_pending(current
)) {
1489 page
= follow_page_mask(vma
, start
, gup_flags
, &ctx
);
1490 if (!page
|| PTR_ERR(page
) == -EMLINK
) {
1491 ret
= faultin_page(vma
, start
, gup_flags
,
1492 PTR_ERR(page
) == -EMLINK
, locked
);
1506 } else if (PTR_ERR(page
) == -EEXIST
) {
1508 * Proper page table entry exists, but no corresponding
1509 * struct page. If the caller expects **pages to be
1510 * filled in, bail out now, because that can't be done
1514 ret
= PTR_ERR(page
);
1517 } else if (IS_ERR(page
)) {
1518 ret
= PTR_ERR(page
);
1522 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & ctx
.page_mask
);
1523 if (page_increm
> nr_pages
)
1524 page_increm
= nr_pages
;
1527 struct page
*subpage
;
1531 * This must be a large folio (and doesn't need to
1532 * be the whole folio; it can be part of it), do
1533 * the refcount work for all the subpages too.
1535 * NOTE: here the page may not be the head page
1536 * e.g. when start addr is not thp-size aligned.
1537 * try_grab_folio() should have taken care of tail
1540 if (page_increm
> 1) {
1541 struct folio
*folio
= page_folio(page
);
1544 * Since we already hold refcount on the
1545 * large folio, this should never fail.
1547 if (try_grab_folio(folio
, page_increm
- 1,
1550 * Release the 1st page ref if the
1551 * folio is problematic, fail hard.
1553 gup_put_folio(folio
, 1, gup_flags
);
1559 for (j
= 0; j
< page_increm
; j
++) {
1560 subpage
= nth_page(page
, j
);
1561 pages
[i
+ j
] = subpage
;
1562 flush_anon_page(vma
, subpage
, start
+ j
* PAGE_SIZE
);
1563 flush_dcache_page(subpage
);
1568 start
+= page_increm
* PAGE_SIZE
;
1569 nr_pages
-= page_increm
;
1573 put_dev_pagemap(ctx
.pgmap
);
1577 static bool vma_permits_fault(struct vm_area_struct
*vma
,
1578 unsigned int fault_flags
)
1580 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
1581 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
1582 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
1584 if (!(vm_flags
& vma
->vm_flags
))
1588 * The architecture might have a hardware protection
1589 * mechanism other than read/write that can deny access.
1591 * gup always represents data access, not instruction
1592 * fetches, so execute=false here:
1594 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
1601 * fixup_user_fault() - manually resolve a user page fault
1602 * @mm: mm_struct of target mm
1603 * @address: user address
1604 * @fault_flags:flags to pass down to handle_mm_fault()
1605 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1606 * does not allow retry. If NULL, the caller must guarantee
1607 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1609 * This is meant to be called in the specific scenario where for locking reasons
1610 * we try to access user memory in atomic context (within a pagefault_disable()
1611 * section), this returns -EFAULT, and we want to resolve the user fault before
1614 * Typically this is meant to be used by the futex code.
1616 * The main difference with get_user_pages() is that this function will
1617 * unconditionally call handle_mm_fault() which will in turn perform all the
1618 * necessary SW fixup of the dirty and young bits in the PTE, while
1619 * get_user_pages() only guarantees to update these in the struct page.
1621 * This is important for some architectures where those bits also gate the
1622 * access permission to the page because they are maintained in software. On
1623 * such architectures, gup() will not be enough to make a subsequent access
1626 * This function will not return with an unlocked mmap_lock. So it has not the
1627 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1629 int fixup_user_fault(struct mm_struct
*mm
,
1630 unsigned long address
, unsigned int fault_flags
,
1633 struct vm_area_struct
*vma
;
1636 address
= untagged_addr_remote(mm
, address
);
1639 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1642 vma
= gup_vma_lookup(mm
, address
);
1646 if (!vma_permits_fault(vma
, fault_flags
))
1649 if ((fault_flags
& FAULT_FLAG_KILLABLE
) &&
1650 fatal_signal_pending(current
))
1653 ret
= handle_mm_fault(vma
, address
, fault_flags
, NULL
);
1655 if (ret
& VM_FAULT_COMPLETED
) {
1657 * NOTE: it's a pity that we need to retake the lock here
1658 * to pair with the unlock() in the callers. Ideally we
1659 * could tell the callers so they do not need to unlock.
1666 if (ret
& VM_FAULT_ERROR
) {
1667 int err
= vm_fault_to_errno(ret
, 0);
1674 if (ret
& VM_FAULT_RETRY
) {
1677 fault_flags
|= FAULT_FLAG_TRIED
;
1683 EXPORT_SYMBOL_GPL(fixup_user_fault
);
1686 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1687 * specified, it'll also respond to generic signals. The caller of GUP
1688 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1690 static bool gup_signal_pending(unsigned int flags
)
1692 if (fatal_signal_pending(current
))
1695 if (!(flags
& FOLL_INTERRUPTIBLE
))
1698 return signal_pending(current
);
1702 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1703 * the caller. This function may drop the mmap_lock. If it does so, then it will
1704 * set (*locked = 0).
1706 * (*locked == 0) means that the caller expects this function to acquire and
1707 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1708 * the function returns, even though it may have changed temporarily during
1709 * function execution.
1711 * Please note that this function, unlike __get_user_pages(), will not return 0
1712 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1714 static __always_inline
long __get_user_pages_locked(struct mm_struct
*mm
,
1715 unsigned long start
,
1716 unsigned long nr_pages
,
1717 struct page
**pages
,
1721 long ret
, pages_done
;
1722 bool must_unlock
= false;
1728 * The internal caller expects GUP to manage the lock internally and the
1729 * lock must be released when this returns.
1732 if (mmap_read_lock_killable(mm
))
1738 mmap_assert_locked(mm
);
1740 if (flags
& FOLL_PIN
)
1741 mm_set_has_pinned_flag(&mm
->flags
);
1744 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1745 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1746 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1747 * for FOLL_GET, not for the newer FOLL_PIN.
1749 * FOLL_PIN always expects pages to be non-null, but no need to assert
1750 * that here, as any failures will be obvious enough.
1752 if (pages
&& !(flags
& FOLL_PIN
))
1757 ret
= __get_user_pages(mm
, start
, nr_pages
, flags
, pages
,
1759 if (!(flags
& FOLL_UNLOCKABLE
)) {
1760 /* VM_FAULT_RETRY couldn't trigger, bypass */
1765 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1768 BUG_ON(ret
>= nr_pages
);
1779 * VM_FAULT_RETRY didn't trigger or it was a
1787 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1788 * For the prefault case (!pages) we only update counts.
1792 start
+= ret
<< PAGE_SHIFT
;
1794 /* The lock was temporarily dropped, so we must unlock later */
1799 * Repeat on the address that fired VM_FAULT_RETRY
1800 * with both FAULT_FLAG_ALLOW_RETRY and
1801 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1802 * by fatal signals of even common signals, depending on
1803 * the caller's request. So we need to check it before we
1804 * start trying again otherwise it can loop forever.
1806 if (gup_signal_pending(flags
)) {
1808 pages_done
= -EINTR
;
1812 ret
= mmap_read_lock_killable(mm
);
1821 ret
= __get_user_pages(mm
, start
, 1, flags
| FOLL_TRIED
,
1824 /* Continue to retry until we succeeded */
1842 if (must_unlock
&& *locked
) {
1844 * We either temporarily dropped the lock, or the caller
1845 * requested that we both acquire and drop the lock. Either way,
1846 * we must now unlock, and notify the caller of that state.
1848 mmap_read_unlock(mm
);
1853 * Failing to pin anything implies something has gone wrong (except when
1854 * FOLL_NOWAIT is specified).
1856 if (WARN_ON_ONCE(pages_done
== 0 && !(flags
& FOLL_NOWAIT
)))
1863 * populate_vma_page_range() - populate a range of pages in the vma.
1865 * @start: start address
1867 * @locked: whether the mmap_lock is still held
1869 * This takes care of mlocking the pages too if VM_LOCKED is set.
1871 * Return either number of pages pinned in the vma, or a negative error
1874 * vma->vm_mm->mmap_lock must be held.
1876 * If @locked is NULL, it may be held for read or write and will
1879 * If @locked is non-NULL, it must held for read only and may be
1880 * released. If it's released, *@locked will be set to 0.
1882 long populate_vma_page_range(struct vm_area_struct
*vma
,
1883 unsigned long start
, unsigned long end
, int *locked
)
1885 struct mm_struct
*mm
= vma
->vm_mm
;
1886 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1887 int local_locked
= 1;
1891 VM_BUG_ON(!PAGE_ALIGNED(start
));
1892 VM_BUG_ON(!PAGE_ALIGNED(end
));
1893 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1894 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1895 mmap_assert_locked(mm
);
1898 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1899 * faultin_page() to break COW, so it has no work to do here.
1901 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1904 /* ... similarly, we've never faulted in PROT_NONE pages */
1905 if (!vma_is_accessible(vma
))
1908 gup_flags
= FOLL_TOUCH
;
1910 * We want to touch writable mappings with a write fault in order
1911 * to break COW, except for shared mappings because these don't COW
1912 * and we would not want to dirty them for nothing.
1914 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1915 * readable (ie write-only or executable).
1917 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1918 gup_flags
|= FOLL_WRITE
;
1920 gup_flags
|= FOLL_FORCE
;
1923 gup_flags
|= FOLL_UNLOCKABLE
;
1926 * We made sure addr is within a VMA, so the following will
1927 * not result in a stack expansion that recurses back here.
1929 ret
= __get_user_pages(mm
, start
, nr_pages
, gup_flags
,
1930 NULL
, locked
? locked
: &local_locked
);
1936 * faultin_page_range() - populate (prefault) page tables inside the
1937 * given range readable/writable
1939 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1941 * @mm: the mm to populate page tables in
1942 * @start: start address
1944 * @write: whether to prefault readable or writable
1945 * @locked: whether the mmap_lock is still held
1947 * Returns either number of processed pages in the MM, or a negative error
1948 * code on error (see __get_user_pages()). Note that this function reports
1949 * errors related to VMAs, such as incompatible mappings, as expected by
1950 * MADV_POPULATE_(READ|WRITE).
1952 * The range must be page-aligned.
1954 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1956 long faultin_page_range(struct mm_struct
*mm
, unsigned long start
,
1957 unsigned long end
, bool write
, int *locked
)
1959 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1963 VM_BUG_ON(!PAGE_ALIGNED(start
));
1964 VM_BUG_ON(!PAGE_ALIGNED(end
));
1965 mmap_assert_locked(mm
);
1968 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1969 * the page dirty with FOLL_WRITE -- which doesn't make a
1970 * difference with !FOLL_FORCE, because the page is writable
1971 * in the page table.
1972 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1974 * !FOLL_FORCE: Require proper access permissions.
1976 gup_flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_UNLOCKABLE
|
1979 gup_flags
|= FOLL_WRITE
;
1981 ret
= __get_user_pages_locked(mm
, start
, nr_pages
, NULL
, locked
,
1988 * __mm_populate - populate and/or mlock pages within a range of address space.
1990 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1991 * flags. VMAs must be already marked with the desired vm_flags, and
1992 * mmap_lock must not be held.
1994 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1996 struct mm_struct
*mm
= current
->mm
;
1997 unsigned long end
, nstart
, nend
;
1998 struct vm_area_struct
*vma
= NULL
;
2004 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
2006 * We want to fault in pages for [nstart; end) address range.
2007 * Find first corresponding VMA.
2012 vma
= find_vma_intersection(mm
, nstart
, end
);
2013 } else if (nstart
>= vma
->vm_end
)
2014 vma
= find_vma_intersection(mm
, vma
->vm_end
, end
);
2019 * Set [nstart; nend) to intersection of desired address
2020 * range with the first VMA. Also, skip undesirable VMA types.
2022 nend
= min(end
, vma
->vm_end
);
2023 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
2025 if (nstart
< vma
->vm_start
)
2026 nstart
= vma
->vm_start
;
2028 * Now fault in a range of pages. populate_vma_page_range()
2029 * double checks the vma flags, so that it won't mlock pages
2030 * if the vma was already munlocked.
2032 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
2034 if (ignore_errors
) {
2036 continue; /* continue at next VMA */
2040 nend
= nstart
+ ret
* PAGE_SIZE
;
2044 mmap_read_unlock(mm
);
2045 return ret
; /* 0 or negative error code */
2047 #else /* CONFIG_MMU */
2048 static long __get_user_pages_locked(struct mm_struct
*mm
, unsigned long start
,
2049 unsigned long nr_pages
, struct page
**pages
,
2050 int *locked
, unsigned int foll_flags
)
2052 struct vm_area_struct
*vma
;
2053 bool must_unlock
= false;
2054 unsigned long vm_flags
;
2061 * The internal caller expects GUP to manage the lock internally and the
2062 * lock must be released when this returns.
2065 if (mmap_read_lock_killable(mm
))
2071 /* calculate required read or write permissions.
2072 * If FOLL_FORCE is set, we only require the "MAY" flags.
2074 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
2075 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
2076 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
2077 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
2079 for (i
= 0; i
< nr_pages
; i
++) {
2080 vma
= find_vma(mm
, start
);
2084 /* protect what we can, including chardevs */
2085 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
2086 !(vm_flags
& vma
->vm_flags
))
2090 pages
[i
] = virt_to_page((void *)start
);
2095 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
2098 if (must_unlock
&& *locked
) {
2099 mmap_read_unlock(mm
);
2103 return i
? : -EFAULT
;
2105 #endif /* !CONFIG_MMU */
2108 * fault_in_writeable - fault in userspace address range for writing
2109 * @uaddr: start of address range
2110 * @size: size of address range
2112 * Returns the number of bytes not faulted in (like copy_to_user() and
2113 * copy_from_user()).
2115 size_t fault_in_writeable(char __user
*uaddr
, size_t size
)
2117 char __user
*start
= uaddr
, *end
;
2119 if (unlikely(size
== 0))
2121 if (!user_write_access_begin(uaddr
, size
))
2123 if (!PAGE_ALIGNED(uaddr
)) {
2124 unsafe_put_user(0, uaddr
, out
);
2125 uaddr
= (char __user
*)PAGE_ALIGN((unsigned long)uaddr
);
2127 end
= (char __user
*)PAGE_ALIGN((unsigned long)start
+ size
);
2128 if (unlikely(end
< start
))
2130 while (uaddr
!= end
) {
2131 unsafe_put_user(0, uaddr
, out
);
2136 user_write_access_end();
2137 if (size
> uaddr
- start
)
2138 return size
- (uaddr
- start
);
2141 EXPORT_SYMBOL(fault_in_writeable
);
2144 * fault_in_subpage_writeable - fault in an address range for writing
2145 * @uaddr: start of address range
2146 * @size: size of address range
2148 * Fault in a user address range for writing while checking for permissions at
2149 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2150 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2152 * Returns the number of bytes not faulted in (like copy_to_user() and
2153 * copy_from_user()).
2155 size_t fault_in_subpage_writeable(char __user
*uaddr
, size_t size
)
2160 * Attempt faulting in at page granularity first for page table
2161 * permission checking. The arch-specific probe_subpage_writeable()
2162 * functions may not check for this.
2164 faulted_in
= size
- fault_in_writeable(uaddr
, size
);
2166 faulted_in
-= probe_subpage_writeable(uaddr
, faulted_in
);
2168 return size
- faulted_in
;
2170 EXPORT_SYMBOL(fault_in_subpage_writeable
);
2173 * fault_in_safe_writeable - fault in an address range for writing
2174 * @uaddr: start of address range
2175 * @size: length of address range
2177 * Faults in an address range for writing. This is primarily useful when we
2178 * already know that some or all of the pages in the address range aren't in
2181 * Unlike fault_in_writeable(), this function is non-destructive.
2183 * Note that we don't pin or otherwise hold the pages referenced that we fault
2184 * in. There's no guarantee that they'll stay in memory for any duration of
2187 * Returns the number of bytes not faulted in, like copy_to_user() and
2190 size_t fault_in_safe_writeable(const char __user
*uaddr
, size_t size
)
2192 unsigned long start
= (unsigned long)uaddr
, end
;
2193 struct mm_struct
*mm
= current
->mm
;
2194 bool unlocked
= false;
2196 if (unlikely(size
== 0))
2198 end
= PAGE_ALIGN(start
+ size
);
2204 if (fixup_user_fault(mm
, start
, FAULT_FLAG_WRITE
, &unlocked
))
2206 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
2207 } while (start
!= end
);
2208 mmap_read_unlock(mm
);
2210 if (size
> (unsigned long)uaddr
- start
)
2211 return size
- ((unsigned long)uaddr
- start
);
2214 EXPORT_SYMBOL(fault_in_safe_writeable
);
2217 * fault_in_readable - fault in userspace address range for reading
2218 * @uaddr: start of user address range
2219 * @size: size of user address range
2221 * Returns the number of bytes not faulted in (like copy_to_user() and
2222 * copy_from_user()).
2224 size_t fault_in_readable(const char __user
*uaddr
, size_t size
)
2226 const char __user
*start
= uaddr
, *end
;
2229 if (unlikely(size
== 0))
2231 if (!user_read_access_begin(uaddr
, size
))
2233 if (!PAGE_ALIGNED(uaddr
)) {
2234 unsafe_get_user(c
, uaddr
, out
);
2235 uaddr
= (const char __user
*)PAGE_ALIGN((unsigned long)uaddr
);
2237 end
= (const char __user
*)PAGE_ALIGN((unsigned long)start
+ size
);
2238 if (unlikely(end
< start
))
2240 while (uaddr
!= end
) {
2241 unsafe_get_user(c
, uaddr
, out
);
2246 user_read_access_end();
2248 if (size
> uaddr
- start
)
2249 return size
- (uaddr
- start
);
2252 EXPORT_SYMBOL(fault_in_readable
);
2255 * get_dump_page() - pin user page in memory while writing it to core dump
2256 * @addr: user address
2258 * Returns struct page pointer of user page pinned for dump,
2259 * to be freed afterwards by put_page().
2261 * Returns NULL on any kind of failure - a hole must then be inserted into
2262 * the corefile, to preserve alignment with its headers; and also returns
2263 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2264 * allowing a hole to be left in the corefile to save disk space.
2266 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2268 #ifdef CONFIG_ELF_CORE
2269 struct page
*get_dump_page(unsigned long addr
)
2275 ret
= __get_user_pages_locked(current
->mm
, addr
, 1, &page
, &locked
,
2276 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
);
2277 return (ret
== 1) ? page
: NULL
;
2279 #endif /* CONFIG_ELF_CORE */
2281 #ifdef CONFIG_MIGRATION
2284 * An array of either pages or folios ("pofs"). Although it may seem tempting to
2285 * avoid this complication, by simply interpreting a list of folios as a list of
2286 * pages, that approach won't work in the longer term, because eventually the
2287 * layouts of struct page and struct folio will become completely different.
2288 * Furthermore, this pof approach avoids excessive page_folio() calls.
2290 struct pages_or_folios
{
2292 struct page
**pages
;
2293 struct folio
**folios
;
2300 static struct folio
*pofs_get_folio(struct pages_or_folios
*pofs
, long i
)
2302 if (pofs
->has_folios
)
2303 return pofs
->folios
[i
];
2304 return page_folio(pofs
->pages
[i
]);
2307 static void pofs_clear_entry(struct pages_or_folios
*pofs
, long i
)
2309 pofs
->entries
[i
] = NULL
;
2312 static void pofs_unpin(struct pages_or_folios
*pofs
)
2314 if (pofs
->has_folios
)
2315 unpin_folios(pofs
->folios
, pofs
->nr_entries
);
2317 unpin_user_pages(pofs
->pages
, pofs
->nr_entries
);
2321 * Returns the number of collected folios. Return value is always >= 0.
2323 static void collect_longterm_unpinnable_folios(
2324 struct list_head
*movable_folio_list
,
2325 struct pages_or_folios
*pofs
)
2327 struct folio
*prev_folio
= NULL
;
2328 bool drain_allow
= true;
2331 for (i
= 0; i
< pofs
->nr_entries
; i
++) {
2332 struct folio
*folio
= pofs_get_folio(pofs
, i
);
2334 if (folio
== prev_folio
)
2338 if (folio_is_longterm_pinnable(folio
))
2341 if (folio_is_device_coherent(folio
))
2344 if (folio_test_hugetlb(folio
)) {
2345 folio_isolate_hugetlb(folio
, movable_folio_list
);
2349 if (!folio_test_lru(folio
) && drain_allow
) {
2350 lru_add_drain_all();
2351 drain_allow
= false;
2354 if (!folio_isolate_lru(folio
))
2357 list_add_tail(&folio
->lru
, movable_folio_list
);
2358 node_stat_mod_folio(folio
,
2359 NR_ISOLATED_ANON
+ folio_is_file_lru(folio
),
2360 folio_nr_pages(folio
));
2365 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2366 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2367 * failure (or partial success).
2370 migrate_longterm_unpinnable_folios(struct list_head
*movable_folio_list
,
2371 struct pages_or_folios
*pofs
)
2376 for (i
= 0; i
< pofs
->nr_entries
; i
++) {
2377 struct folio
*folio
= pofs_get_folio(pofs
, i
);
2379 if (folio_is_device_coherent(folio
)) {
2381 * Migration will fail if the folio is pinned, so
2382 * convert the pin on the source folio to a normal
2385 pofs_clear_entry(pofs
, i
);
2387 gup_put_folio(folio
, 1, FOLL_PIN
);
2389 if (migrate_device_coherent_folio(folio
)) {
2398 * We can't migrate folios with unexpected references, so drop
2399 * the reference obtained by __get_user_pages_locked().
2400 * Migrating folios have been added to movable_folio_list after
2401 * calling folio_isolate_lru() which takes a reference so the
2402 * folio won't be freed if it's migrating.
2405 pofs_clear_entry(pofs
, i
);
2408 if (!list_empty(movable_folio_list
)) {
2409 struct migration_target_control mtc
= {
2410 .nid
= NUMA_NO_NODE
,
2411 .gfp_mask
= GFP_USER
| __GFP_NOWARN
,
2412 .reason
= MR_LONGTERM_PIN
,
2415 if (migrate_pages(movable_folio_list
, alloc_migration_target
,
2416 NULL
, (unsigned long)&mtc
, MIGRATE_SYNC
,
2417 MR_LONGTERM_PIN
, NULL
)) {
2423 putback_movable_pages(movable_folio_list
);
2429 putback_movable_pages(movable_folio_list
);
2435 check_and_migrate_movable_pages_or_folios(struct pages_or_folios
*pofs
)
2437 LIST_HEAD(movable_folio_list
);
2439 collect_longterm_unpinnable_folios(&movable_folio_list
, pofs
);
2440 if (list_empty(&movable_folio_list
))
2443 return migrate_longterm_unpinnable_folios(&movable_folio_list
, pofs
);
2447 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2448 * Rather confusingly, all folios in the range are required to be pinned via
2449 * FOLL_PIN, before calling this routine.
2453 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2454 * then this routine leaves all folios pinned and returns zero for success.
2456 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2457 * routine will migrate those folios away, unpin all the folios in the range. If
2458 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2459 * caller should re-pin the entire range with FOLL_PIN and then call this
2462 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2463 * indicates a migration failure. The caller should give up, and propagate the
2464 * error back up the call stack. The caller does not need to unpin any folios in
2465 * that case, because this routine will do the unpinning.
2467 static long check_and_migrate_movable_folios(unsigned long nr_folios
,
2468 struct folio
**folios
)
2470 struct pages_or_folios pofs
= {
2473 .nr_entries
= nr_folios
,
2476 return check_and_migrate_movable_pages_or_folios(&pofs
);
2480 * Return values and behavior are the same as those for
2481 * check_and_migrate_movable_folios().
2483 static long check_and_migrate_movable_pages(unsigned long nr_pages
,
2484 struct page
**pages
)
2486 struct pages_or_folios pofs
= {
2488 .has_folios
= false,
2489 .nr_entries
= nr_pages
,
2492 return check_and_migrate_movable_pages_or_folios(&pofs
);
2495 static long check_and_migrate_movable_pages(unsigned long nr_pages
,
2496 struct page
**pages
)
2501 static long check_and_migrate_movable_folios(unsigned long nr_folios
,
2502 struct folio
**folios
)
2506 #endif /* CONFIG_MIGRATION */
2509 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2510 * allows us to process the FOLL_LONGTERM flag.
2512 static long __gup_longterm_locked(struct mm_struct
*mm
,
2513 unsigned long start
,
2514 unsigned long nr_pages
,
2515 struct page
**pages
,
2517 unsigned int gup_flags
)
2520 long rc
, nr_pinned_pages
;
2522 if (!(gup_flags
& FOLL_LONGTERM
))
2523 return __get_user_pages_locked(mm
, start
, nr_pages
, pages
,
2526 flags
= memalloc_pin_save();
2528 nr_pinned_pages
= __get_user_pages_locked(mm
, start
, nr_pages
,
2531 if (nr_pinned_pages
<= 0) {
2532 rc
= nr_pinned_pages
;
2536 /* FOLL_LONGTERM implies FOLL_PIN */
2537 rc
= check_and_migrate_movable_pages(nr_pinned_pages
, pages
);
2538 } while (rc
== -EAGAIN
);
2539 memalloc_pin_restore(flags
);
2540 return rc
? rc
: nr_pinned_pages
;
2544 * Check that the given flags are valid for the exported gup/pup interface, and
2545 * update them with the required flags that the caller must have set.
2547 static bool is_valid_gup_args(struct page
**pages
, int *locked
,
2548 unsigned int *gup_flags_p
, unsigned int to_set
)
2550 unsigned int gup_flags
= *gup_flags_p
;
2553 * These flags not allowed to be specified externally to the gup
2555 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2556 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2557 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2559 if (WARN_ON_ONCE(gup_flags
& INTERNAL_GUP_FLAGS
))
2562 gup_flags
|= to_set
;
2564 /* At the external interface locked must be set */
2565 if (WARN_ON_ONCE(*locked
!= 1))
2568 gup_flags
|= FOLL_UNLOCKABLE
;
2571 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2572 if (WARN_ON_ONCE((gup_flags
& (FOLL_PIN
| FOLL_GET
)) ==
2573 (FOLL_PIN
| FOLL_GET
)))
2576 /* LONGTERM can only be specified when pinning */
2577 if (WARN_ON_ONCE(!(gup_flags
& FOLL_PIN
) && (gup_flags
& FOLL_LONGTERM
)))
2580 /* Pages input must be given if using GET/PIN */
2581 if (WARN_ON_ONCE((gup_flags
& (FOLL_GET
| FOLL_PIN
)) && !pages
))
2584 /* We want to allow the pgmap to be hot-unplugged at all times */
2585 if (WARN_ON_ONCE((gup_flags
& FOLL_LONGTERM
) &&
2586 (gup_flags
& FOLL_PCI_P2PDMA
)))
2589 *gup_flags_p
= gup_flags
;
2595 * get_user_pages_remote() - pin user pages in memory
2596 * @mm: mm_struct of target mm
2597 * @start: starting user address
2598 * @nr_pages: number of pages from start to pin
2599 * @gup_flags: flags modifying lookup behaviour
2600 * @pages: array that receives pointers to the pages pinned.
2601 * Should be at least nr_pages long. Or NULL, if caller
2602 * only intends to ensure the pages are faulted in.
2603 * @locked: pointer to lock flag indicating whether lock is held and
2604 * subsequently whether VM_FAULT_RETRY functionality can be
2605 * utilised. Lock must initially be held.
2607 * Returns either number of pages pinned (which may be less than the
2608 * number requested), or an error. Details about the return value:
2610 * -- If nr_pages is 0, returns 0.
2611 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2612 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2613 * pages pinned. Again, this may be less than nr_pages.
2615 * The caller is responsible for releasing returned @pages, via put_page().
2617 * Must be called with mmap_lock held for read or write.
2619 * get_user_pages_remote walks a process's page tables and takes a reference
2620 * to each struct page that each user address corresponds to at a given
2621 * instant. That is, it takes the page that would be accessed if a user
2622 * thread accesses the given user virtual address at that instant.
2624 * This does not guarantee that the page exists in the user mappings when
2625 * get_user_pages_remote returns, and there may even be a completely different
2626 * page there in some cases (eg. if mmapped pagecache has been invalidated
2627 * and subsequently re-faulted). However it does guarantee that the page
2628 * won't be freed completely. And mostly callers simply care that the page
2629 * contains data that was valid *at some point in time*. Typically, an IO
2630 * or similar operation cannot guarantee anything stronger anyway because
2631 * locks can't be held over the syscall boundary.
2633 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2634 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2635 * be called after the page is finished with, and before put_page is called.
2637 * get_user_pages_remote is typically used for fewer-copy IO operations,
2638 * to get a handle on the memory by some means other than accesses
2639 * via the user virtual addresses. The pages may be submitted for
2640 * DMA to devices or accessed via their kernel linear mapping (via the
2641 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2643 * See also get_user_pages_fast, for performance critical applications.
2645 * get_user_pages_remote should be phased out in favor of
2646 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2647 * should use get_user_pages_remote because it cannot pass
2648 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2650 long get_user_pages_remote(struct mm_struct
*mm
,
2651 unsigned long start
, unsigned long nr_pages
,
2652 unsigned int gup_flags
, struct page
**pages
,
2655 int local_locked
= 1;
2657 if (!is_valid_gup_args(pages
, locked
, &gup_flags
,
2658 FOLL_TOUCH
| FOLL_REMOTE
))
2661 return __get_user_pages_locked(mm
, start
, nr_pages
, pages
,
2662 locked
? locked
: &local_locked
,
2665 EXPORT_SYMBOL(get_user_pages_remote
);
2667 #else /* CONFIG_MMU */
2668 long get_user_pages_remote(struct mm_struct
*mm
,
2669 unsigned long start
, unsigned long nr_pages
,
2670 unsigned int gup_flags
, struct page
**pages
,
2675 #endif /* !CONFIG_MMU */
2678 * get_user_pages() - pin user pages in memory
2679 * @start: starting user address
2680 * @nr_pages: number of pages from start to pin
2681 * @gup_flags: flags modifying lookup behaviour
2682 * @pages: array that receives pointers to the pages pinned.
2683 * Should be at least nr_pages long. Or NULL, if caller
2684 * only intends to ensure the pages are faulted in.
2686 * This is the same as get_user_pages_remote(), just with a less-flexible
2687 * calling convention where we assume that the mm being operated on belongs to
2688 * the current task, and doesn't allow passing of a locked parameter. We also
2689 * obviously don't pass FOLL_REMOTE in here.
2691 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
2692 unsigned int gup_flags
, struct page
**pages
)
2696 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_TOUCH
))
2699 return __get_user_pages_locked(current
->mm
, start
, nr_pages
, pages
,
2700 &locked
, gup_flags
);
2702 EXPORT_SYMBOL(get_user_pages
);
2705 * get_user_pages_unlocked() is suitable to replace the form:
2707 * mmap_read_lock(mm);
2708 * get_user_pages(mm, ..., pages, NULL);
2709 * mmap_read_unlock(mm);
2713 * get_user_pages_unlocked(mm, ..., pages);
2715 * It is functionally equivalent to get_user_pages_fast so
2716 * get_user_pages_fast should be used instead if specific gup_flags
2717 * (e.g. FOLL_FORCE) are not required.
2719 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
2720 struct page
**pages
, unsigned int gup_flags
)
2724 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
,
2725 FOLL_TOUCH
| FOLL_UNLOCKABLE
))
2728 return __get_user_pages_locked(current
->mm
, start
, nr_pages
, pages
,
2729 &locked
, gup_flags
);
2731 EXPORT_SYMBOL(get_user_pages_unlocked
);
2736 * get_user_pages_fast attempts to pin user pages by walking the page
2737 * tables directly and avoids taking locks. Thus the walker needs to be
2738 * protected from page table pages being freed from under it, and should
2739 * block any THP splits.
2741 * One way to achieve this is to have the walker disable interrupts, and
2742 * rely on IPIs from the TLB flushing code blocking before the page table
2743 * pages are freed. This is unsuitable for architectures that do not need
2744 * to broadcast an IPI when invalidating TLBs.
2746 * Another way to achieve this is to batch up page table containing pages
2747 * belonging to more than one mm_user, then rcu_sched a callback to free those
2748 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2749 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2750 * (which is a relatively rare event). The code below adopts this strategy.
2752 * Before activating this code, please be aware that the following assumptions
2753 * are currently made:
2755 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2756 * free pages containing page tables or TLB flushing requires IPI broadcast.
2758 * *) ptes can be read atomically by the architecture.
2760 * *) access_ok is sufficient to validate userspace address ranges.
2762 * The last two assumptions can be relaxed by the addition of helper functions.
2764 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2766 #ifdef CONFIG_HAVE_GUP_FAST
2768 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2771 * This call assumes the caller has pinned the folio, that the lowest page table
2772 * level still points to this folio, and that interrupts have been disabled.
2774 * GUP-fast must reject all secretmem folios.
2776 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2777 * (see comment describing the writable_file_mapping_allowed() function). We
2778 * therefore try to avoid the most egregious case of a long-term mapping doing
2781 * This function cannot be as thorough as that one as the VMA is not available
2782 * in the fast path, so instead we whitelist known good cases and if in doubt,
2783 * fall back to the slow path.
2785 static bool gup_fast_folio_allowed(struct folio
*folio
, unsigned int flags
)
2787 bool reject_file_backed
= false;
2788 struct address_space
*mapping
;
2789 bool check_secretmem
= false;
2790 unsigned long mapping_flags
;
2793 * If we aren't pinning then no problematic write can occur. A long term
2794 * pin is the most egregious case so this is the one we disallow.
2796 if ((flags
& (FOLL_PIN
| FOLL_LONGTERM
| FOLL_WRITE
)) ==
2797 (FOLL_PIN
| FOLL_LONGTERM
| FOLL_WRITE
))
2798 reject_file_backed
= true;
2800 /* We hold a folio reference, so we can safely access folio fields. */
2802 /* secretmem folios are always order-0 folios. */
2803 if (IS_ENABLED(CONFIG_SECRETMEM
) && !folio_test_large(folio
))
2804 check_secretmem
= true;
2806 if (!reject_file_backed
&& !check_secretmem
)
2809 if (WARN_ON_ONCE(folio_test_slab(folio
)))
2812 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2813 if (folio_test_hugetlb(folio
))
2817 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2818 * cannot proceed, which means no actions performed under RCU can
2821 * inodes and thus their mappings are freed under RCU, which means the
2822 * mapping cannot be freed beneath us and thus we can safely dereference
2825 lockdep_assert_irqs_disabled();
2828 * However, there may be operations which _alter_ the mapping, so ensure
2829 * we read it once and only once.
2831 mapping
= READ_ONCE(folio
->mapping
);
2834 * The mapping may have been truncated, in any case we cannot determine
2835 * if this mapping is safe - fall back to slow path to determine how to
2841 /* Anonymous folios pose no problem. */
2842 mapping_flags
= (unsigned long)mapping
& PAGE_MAPPING_FLAGS
;
2844 return mapping_flags
& PAGE_MAPPING_ANON
;
2847 * At this point, we know the mapping is non-null and points to an
2848 * address_space object.
2850 if (check_secretmem
&& secretmem_mapping(mapping
))
2852 /* The only remaining allowed file system is shmem. */
2853 return !reject_file_backed
|| shmem_mapping(mapping
);
2856 static void __maybe_unused
gup_fast_undo_dev_pagemap(int *nr
, int nr_start
,
2857 unsigned int flags
, struct page
**pages
)
2859 while ((*nr
) - nr_start
) {
2860 struct folio
*folio
= page_folio(pages
[--(*nr
)]);
2862 folio_clear_referenced(folio
);
2863 gup_put_folio(folio
, 1, flags
);
2867 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2869 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2872 * To pin the page, GUP-fast needs to do below in order:
2873 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2875 * For the rest of pgtable operations where pgtable updates can be racy
2876 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2879 * Above will work for all pte-level operations, including THP split.
2881 * For THP collapse, it's a bit more complicated because GUP-fast may be
2882 * walking a pgtable page that is being freed (pte is still valid but pmd
2883 * can be cleared already). To avoid race in such condition, we need to
2884 * also check pmd here to make sure pmd doesn't change (corresponds to
2885 * pmdp_collapse_flush() in the THP collapse code path).
2887 static int gup_fast_pte_range(pmd_t pmd
, pmd_t
*pmdp
, unsigned long addr
,
2888 unsigned long end
, unsigned int flags
, struct page
**pages
,
2891 struct dev_pagemap
*pgmap
= NULL
;
2892 int nr_start
= *nr
, ret
= 0;
2895 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
2899 pte_t pte
= ptep_get_lockless(ptep
);
2901 struct folio
*folio
;
2904 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2905 * pte_access_permitted() better should reject these pages
2906 * either way: otherwise, GUP-fast might succeed in
2907 * cases where ordinary GUP would fail due to VMA access
2910 if (pte_protnone(pte
))
2913 if (!pte_access_permitted(pte
, flags
& FOLL_WRITE
))
2916 if (pte_devmap(pte
)) {
2917 if (unlikely(flags
& FOLL_LONGTERM
))
2920 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
2921 if (unlikely(!pgmap
)) {
2922 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2925 } else if (pte_special(pte
))
2928 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
2929 page
= pte_page(pte
);
2931 folio
= try_grab_folio_fast(page
, 1, flags
);
2935 if (unlikely(pmd_val(pmd
) != pmd_val(*pmdp
)) ||
2936 unlikely(pte_val(pte
) != pte_val(ptep_get(ptep
)))) {
2937 gup_put_folio(folio
, 1, flags
);
2941 if (!gup_fast_folio_allowed(folio
, flags
)) {
2942 gup_put_folio(folio
, 1, flags
);
2946 if (!pte_write(pte
) && gup_must_unshare(NULL
, flags
, page
)) {
2947 gup_put_folio(folio
, 1, flags
);
2952 * We need to make the page accessible if and only if we are
2953 * going to access its content (the FOLL_PIN case). Please
2954 * see Documentation/core-api/pin_user_pages.rst for
2957 if (flags
& FOLL_PIN
) {
2958 ret
= arch_make_folio_accessible(folio
);
2960 gup_put_folio(folio
, 1, flags
);
2964 folio_set_referenced(folio
);
2967 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
2973 put_dev_pagemap(pgmap
);
2980 * If we can't determine whether or not a pte is special, then fail immediately
2981 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2984 * For a futex to be placed on a THP tail page, get_futex_key requires a
2985 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2986 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2988 static int gup_fast_pte_range(pmd_t pmd
, pmd_t
*pmdp
, unsigned long addr
,
2989 unsigned long end
, unsigned int flags
, struct page
**pages
,
2994 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2996 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2997 static int gup_fast_devmap_leaf(unsigned long pfn
, unsigned long addr
,
2998 unsigned long end
, unsigned int flags
, struct page
**pages
, int *nr
)
3001 struct dev_pagemap
*pgmap
= NULL
;
3004 struct folio
*folio
;
3005 struct page
*page
= pfn_to_page(pfn
);
3007 pgmap
= get_dev_pagemap(pfn
, pgmap
);
3008 if (unlikely(!pgmap
)) {
3009 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3013 if (!(flags
& FOLL_PCI_P2PDMA
) && is_pci_p2pdma_page(page
)) {
3014 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3018 folio
= try_grab_folio_fast(page
, 1, flags
);
3020 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3023 folio_set_referenced(folio
);
3027 } while (addr
+= PAGE_SIZE
, addr
!= end
);
3029 put_dev_pagemap(pgmap
);
3033 static int gup_fast_devmap_pmd_leaf(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
3034 unsigned long end
, unsigned int flags
, struct page
**pages
,
3037 unsigned long fault_pfn
;
3040 fault_pfn
= pmd_pfn(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
3041 if (!gup_fast_devmap_leaf(fault_pfn
, addr
, end
, flags
, pages
, nr
))
3044 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
3045 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3051 static int gup_fast_devmap_pud_leaf(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
3052 unsigned long end
, unsigned int flags
, struct page
**pages
,
3055 unsigned long fault_pfn
;
3058 fault_pfn
= pud_pfn(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
3059 if (!gup_fast_devmap_leaf(fault_pfn
, addr
, end
, flags
, pages
, nr
))
3062 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
3063 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3069 static int gup_fast_devmap_pmd_leaf(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
3070 unsigned long end
, unsigned int flags
, struct page
**pages
,
3077 static int gup_fast_devmap_pud_leaf(pud_t pud
, pud_t
*pudp
, unsigned long addr
,
3078 unsigned long end
, unsigned int flags
, struct page
**pages
,
3086 static int gup_fast_pmd_leaf(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
3087 unsigned long end
, unsigned int flags
, struct page
**pages
,
3091 struct folio
*folio
;
3094 if (!pmd_access_permitted(orig
, flags
& FOLL_WRITE
))
3097 if (pmd_special(orig
))
3100 if (pmd_devmap(orig
)) {
3101 if (unlikely(flags
& FOLL_LONGTERM
))
3103 return gup_fast_devmap_pmd_leaf(orig
, pmdp
, addr
, end
, flags
,
3107 page
= pmd_page(orig
);
3108 refs
= record_subpages(page
, PMD_SIZE
, addr
, end
, pages
+ *nr
);
3110 folio
= try_grab_folio_fast(page
, refs
, flags
);
3114 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
3115 gup_put_folio(folio
, refs
, flags
);
3119 if (!gup_fast_folio_allowed(folio
, flags
)) {
3120 gup_put_folio(folio
, refs
, flags
);
3123 if (!pmd_write(orig
) && gup_must_unshare(NULL
, flags
, &folio
->page
)) {
3124 gup_put_folio(folio
, refs
, flags
);
3129 folio_set_referenced(folio
);
3133 static int gup_fast_pud_leaf(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
3134 unsigned long end
, unsigned int flags
, struct page
**pages
,
3138 struct folio
*folio
;
3141 if (!pud_access_permitted(orig
, flags
& FOLL_WRITE
))
3144 if (pud_special(orig
))
3147 if (pud_devmap(orig
)) {
3148 if (unlikely(flags
& FOLL_LONGTERM
))
3150 return gup_fast_devmap_pud_leaf(orig
, pudp
, addr
, end
, flags
,
3154 page
= pud_page(orig
);
3155 refs
= record_subpages(page
, PUD_SIZE
, addr
, end
, pages
+ *nr
);
3157 folio
= try_grab_folio_fast(page
, refs
, flags
);
3161 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
3162 gup_put_folio(folio
, refs
, flags
);
3166 if (!gup_fast_folio_allowed(folio
, flags
)) {
3167 gup_put_folio(folio
, refs
, flags
);
3171 if (!pud_write(orig
) && gup_must_unshare(NULL
, flags
, &folio
->page
)) {
3172 gup_put_folio(folio
, refs
, flags
);
3177 folio_set_referenced(folio
);
3181 static int gup_fast_pgd_leaf(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
3182 unsigned long end
, unsigned int flags
, struct page
**pages
,
3187 struct folio
*folio
;
3189 if (!pgd_access_permitted(orig
, flags
& FOLL_WRITE
))
3192 BUILD_BUG_ON(pgd_devmap(orig
));
3194 page
= pgd_page(orig
);
3195 refs
= record_subpages(page
, PGDIR_SIZE
, addr
, end
, pages
+ *nr
);
3197 folio
= try_grab_folio_fast(page
, refs
, flags
);
3201 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
3202 gup_put_folio(folio
, refs
, flags
);
3206 if (!pgd_write(orig
) && gup_must_unshare(NULL
, flags
, &folio
->page
)) {
3207 gup_put_folio(folio
, refs
, flags
);
3211 if (!gup_fast_folio_allowed(folio
, flags
)) {
3212 gup_put_folio(folio
, refs
, flags
);
3217 folio_set_referenced(folio
);
3221 static int gup_fast_pmd_range(pud_t
*pudp
, pud_t pud
, unsigned long addr
,
3222 unsigned long end
, unsigned int flags
, struct page
**pages
,
3228 pmdp
= pmd_offset_lockless(pudp
, pud
, addr
);
3230 pmd_t pmd
= pmdp_get_lockless(pmdp
);
3232 next
= pmd_addr_end(addr
, end
);
3233 if (!pmd_present(pmd
))
3236 if (unlikely(pmd_leaf(pmd
))) {
3237 /* See gup_fast_pte_range() */
3238 if (pmd_protnone(pmd
))
3241 if (!gup_fast_pmd_leaf(pmd
, pmdp
, addr
, next
, flags
,
3245 } else if (!gup_fast_pte_range(pmd
, pmdp
, addr
, next
, flags
,
3248 } while (pmdp
++, addr
= next
, addr
!= end
);
3253 static int gup_fast_pud_range(p4d_t
*p4dp
, p4d_t p4d
, unsigned long addr
,
3254 unsigned long end
, unsigned int flags
, struct page
**pages
,
3260 pudp
= pud_offset_lockless(p4dp
, p4d
, addr
);
3262 pud_t pud
= READ_ONCE(*pudp
);
3264 next
= pud_addr_end(addr
, end
);
3265 if (unlikely(!pud_present(pud
)))
3267 if (unlikely(pud_leaf(pud
))) {
3268 if (!gup_fast_pud_leaf(pud
, pudp
, addr
, next
, flags
,
3271 } else if (!gup_fast_pmd_range(pudp
, pud
, addr
, next
, flags
,
3274 } while (pudp
++, addr
= next
, addr
!= end
);
3279 static int gup_fast_p4d_range(pgd_t
*pgdp
, pgd_t pgd
, unsigned long addr
,
3280 unsigned long end
, unsigned int flags
, struct page
**pages
,
3286 p4dp
= p4d_offset_lockless(pgdp
, pgd
, addr
);
3288 p4d_t p4d
= READ_ONCE(*p4dp
);
3290 next
= p4d_addr_end(addr
, end
);
3291 if (!p4d_present(p4d
))
3293 BUILD_BUG_ON(p4d_leaf(p4d
));
3294 if (!gup_fast_pud_range(p4dp
, p4d
, addr
, next
, flags
,
3297 } while (p4dp
++, addr
= next
, addr
!= end
);
3302 static void gup_fast_pgd_range(unsigned long addr
, unsigned long end
,
3303 unsigned int flags
, struct page
**pages
, int *nr
)
3308 pgdp
= pgd_offset(current
->mm
, addr
);
3310 pgd_t pgd
= READ_ONCE(*pgdp
);
3312 next
= pgd_addr_end(addr
, end
);
3315 if (unlikely(pgd_leaf(pgd
))) {
3316 if (!gup_fast_pgd_leaf(pgd
, pgdp
, addr
, next
, flags
,
3319 } else if (!gup_fast_p4d_range(pgdp
, pgd
, addr
, next
, flags
,
3322 } while (pgdp
++, addr
= next
, addr
!= end
);
3325 static inline void gup_fast_pgd_range(unsigned long addr
, unsigned long end
,
3326 unsigned int flags
, struct page
**pages
, int *nr
)
3329 #endif /* CONFIG_HAVE_GUP_FAST */
3331 #ifndef gup_fast_permitted
3333 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3334 * we need to fall back to the slow version:
3336 static bool gup_fast_permitted(unsigned long start
, unsigned long end
)
3342 static unsigned long gup_fast(unsigned long start
, unsigned long end
,
3343 unsigned int gup_flags
, struct page
**pages
)
3345 unsigned long flags
;
3349 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST
) ||
3350 !gup_fast_permitted(start
, end
))
3353 if (gup_flags
& FOLL_PIN
) {
3354 if (!raw_seqcount_try_begin(¤t
->mm
->write_protect_seq
, seq
))
3359 * Disable interrupts. The nested form is used, in order to allow full,
3360 * general purpose use of this routine.
3362 * With interrupts disabled, we block page table pages from being freed
3363 * from under us. See struct mmu_table_batch comments in
3364 * include/asm-generic/tlb.h for more details.
3366 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3367 * that come from THPs splitting.
3369 local_irq_save(flags
);
3370 gup_fast_pgd_range(start
, end
, gup_flags
, pages
, &nr_pinned
);
3371 local_irq_restore(flags
);
3374 * When pinning pages for DMA there could be a concurrent write protect
3375 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3377 if (gup_flags
& FOLL_PIN
) {
3378 if (read_seqcount_retry(¤t
->mm
->write_protect_seq
, seq
)) {
3379 gup_fast_unpin_user_pages(pages
, nr_pinned
);
3382 sanity_check_pinned_pages(pages
, nr_pinned
);
3388 static int gup_fast_fallback(unsigned long start
, unsigned long nr_pages
,
3389 unsigned int gup_flags
, struct page
**pages
)
3391 unsigned long len
, end
;
3392 unsigned long nr_pinned
;
3396 if (WARN_ON_ONCE(gup_flags
& ~(FOLL_WRITE
| FOLL_LONGTERM
|
3397 FOLL_FORCE
| FOLL_PIN
| FOLL_GET
|
3398 FOLL_FAST_ONLY
| FOLL_NOFAULT
|
3399 FOLL_PCI_P2PDMA
| FOLL_HONOR_NUMA_FAULT
)))
3402 if (gup_flags
& FOLL_PIN
)
3403 mm_set_has_pinned_flag(¤t
->mm
->flags
);
3405 if (!(gup_flags
& FOLL_FAST_ONLY
))
3406 might_lock_read(¤t
->mm
->mmap_lock
);
3408 start
= untagged_addr(start
) & PAGE_MASK
;
3409 len
= nr_pages
<< PAGE_SHIFT
;
3410 if (check_add_overflow(start
, len
, &end
))
3412 if (end
> TASK_SIZE_MAX
)
3414 if (unlikely(!access_ok((void __user
*)start
, len
)))
3417 nr_pinned
= gup_fast(start
, end
, gup_flags
, pages
);
3418 if (nr_pinned
== nr_pages
|| gup_flags
& FOLL_FAST_ONLY
)
3421 /* Slow path: try to get the remaining pages with get_user_pages */
3422 start
+= nr_pinned
<< PAGE_SHIFT
;
3424 ret
= __gup_longterm_locked(current
->mm
, start
, nr_pages
- nr_pinned
,
3426 gup_flags
| FOLL_TOUCH
| FOLL_UNLOCKABLE
);
3429 * The caller has to unpin the pages we already pinned so
3430 * returning -errno is not an option
3436 return ret
+ nr_pinned
;
3440 * get_user_pages_fast_only() - pin user pages in memory
3441 * @start: starting user address
3442 * @nr_pages: number of pages from start to pin
3443 * @gup_flags: flags modifying pin behaviour
3444 * @pages: array that receives pointers to the pages pinned.
3445 * Should be at least nr_pages long.
3447 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3450 * If the architecture does not support this function, simply return with no
3453 * Careful, careful! COW breaking can go either way, so a non-write
3454 * access can get ambiguous page results. If you call this function without
3455 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3457 int get_user_pages_fast_only(unsigned long start
, int nr_pages
,
3458 unsigned int gup_flags
, struct page
**pages
)
3461 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3462 * because gup fast is always a "pin with a +1 page refcount" request.
3464 * FOLL_FAST_ONLY is required in order to match the API description of
3465 * this routine: no fall back to regular ("slow") GUP.
3467 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
,
3468 FOLL_GET
| FOLL_FAST_ONLY
))
3471 return gup_fast_fallback(start
, nr_pages
, gup_flags
, pages
);
3473 EXPORT_SYMBOL_GPL(get_user_pages_fast_only
);
3476 * get_user_pages_fast() - pin user pages in memory
3477 * @start: starting user address
3478 * @nr_pages: number of pages from start to pin
3479 * @gup_flags: flags modifying pin behaviour
3480 * @pages: array that receives pointers to the pages pinned.
3481 * Should be at least nr_pages long.
3483 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3484 * If not successful, it will fall back to taking the lock and
3485 * calling get_user_pages().
3487 * Returns number of pages pinned. This may be fewer than the number requested.
3488 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3491 int get_user_pages_fast(unsigned long start
, int nr_pages
,
3492 unsigned int gup_flags
, struct page
**pages
)
3495 * The caller may or may not have explicitly set FOLL_GET; either way is
3496 * OK. However, internally (within mm/gup.c), gup fast variants must set
3497 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3500 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_GET
))
3502 return gup_fast_fallback(start
, nr_pages
, gup_flags
, pages
);
3504 EXPORT_SYMBOL_GPL(get_user_pages_fast
);
3507 * pin_user_pages_fast() - pin user pages in memory without taking locks
3509 * @start: starting user address
3510 * @nr_pages: number of pages from start to pin
3511 * @gup_flags: flags modifying pin behaviour
3512 * @pages: array that receives pointers to the pages pinned.
3513 * Should be at least nr_pages long.
3515 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3516 * get_user_pages_fast() for documentation on the function arguments, because
3517 * the arguments here are identical.
3519 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3520 * see Documentation/core-api/pin_user_pages.rst for further details.
3522 * Note that if a zero_page is amongst the returned pages, it will not have
3523 * pins in it and unpin_user_page() will not remove pins from it.
3525 int pin_user_pages_fast(unsigned long start
, int nr_pages
,
3526 unsigned int gup_flags
, struct page
**pages
)
3528 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_PIN
))
3530 return gup_fast_fallback(start
, nr_pages
, gup_flags
, pages
);
3532 EXPORT_SYMBOL_GPL(pin_user_pages_fast
);
3535 * pin_user_pages_remote() - pin pages of a remote process
3537 * @mm: mm_struct of target mm
3538 * @start: starting user address
3539 * @nr_pages: number of pages from start to pin
3540 * @gup_flags: flags modifying lookup behaviour
3541 * @pages: array that receives pointers to the pages pinned.
3542 * Should be at least nr_pages long.
3543 * @locked: pointer to lock flag indicating whether lock is held and
3544 * subsequently whether VM_FAULT_RETRY functionality can be
3545 * utilised. Lock must initially be held.
3547 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3548 * get_user_pages_remote() for documentation on the function arguments, because
3549 * the arguments here are identical.
3551 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3552 * see Documentation/core-api/pin_user_pages.rst for details.
3554 * Note that if a zero_page is amongst the returned pages, it will not have
3555 * pins in it and unpin_user_page*() will not remove pins from it.
3557 long pin_user_pages_remote(struct mm_struct
*mm
,
3558 unsigned long start
, unsigned long nr_pages
,
3559 unsigned int gup_flags
, struct page
**pages
,
3562 int local_locked
= 1;
3564 if (!is_valid_gup_args(pages
, locked
, &gup_flags
,
3565 FOLL_PIN
| FOLL_TOUCH
| FOLL_REMOTE
))
3567 return __gup_longterm_locked(mm
, start
, nr_pages
, pages
,
3568 locked
? locked
: &local_locked
,
3571 EXPORT_SYMBOL(pin_user_pages_remote
);
3574 * pin_user_pages() - pin user pages in memory for use by other devices
3576 * @start: starting user address
3577 * @nr_pages: number of pages from start to pin
3578 * @gup_flags: flags modifying lookup behaviour
3579 * @pages: array that receives pointers to the pages pinned.
3580 * Should be at least nr_pages long.
3582 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3585 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3586 * see Documentation/core-api/pin_user_pages.rst for details.
3588 * Note that if a zero_page is amongst the returned pages, it will not have
3589 * pins in it and unpin_user_page*() will not remove pins from it.
3591 long pin_user_pages(unsigned long start
, unsigned long nr_pages
,
3592 unsigned int gup_flags
, struct page
**pages
)
3596 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_PIN
))
3598 return __gup_longterm_locked(current
->mm
, start
, nr_pages
,
3599 pages
, &locked
, gup_flags
);
3601 EXPORT_SYMBOL(pin_user_pages
);
3604 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3605 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3606 * FOLL_PIN and rejects FOLL_GET.
3608 * Note that if a zero_page is amongst the returned pages, it will not have
3609 * pins in it and unpin_user_page*() will not remove pins from it.
3611 long pin_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
3612 struct page
**pages
, unsigned int gup_flags
)
3616 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
,
3617 FOLL_PIN
| FOLL_TOUCH
| FOLL_UNLOCKABLE
))
3620 return __gup_longterm_locked(current
->mm
, start
, nr_pages
, pages
,
3621 &locked
, gup_flags
);
3623 EXPORT_SYMBOL(pin_user_pages_unlocked
);
3626 * memfd_pin_folios() - pin folios associated with a memfd
3627 * @memfd: the memfd whose folios are to be pinned
3628 * @start: the first memfd offset
3629 * @end: the last memfd offset (inclusive)
3630 * @folios: array that receives pointers to the folios pinned
3631 * @max_folios: maximum number of entries in @folios
3632 * @offset: the offset into the first folio
3634 * Attempt to pin folios associated with a memfd in the contiguous range
3635 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3636 * the folios can either be found in the page cache or need to be allocated
3637 * if necessary. Once the folios are located, they are all pinned via
3638 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3639 * And, eventually, these pinned folios must be released either using
3640 * unpin_folios() or unpin_folio().
3642 * It must be noted that the folios may be pinned for an indefinite amount
3643 * of time. And, in most cases, the duration of time they may stay pinned
3644 * would be controlled by the userspace. This behavior is effectively the
3645 * same as using FOLL_LONGTERM with other GUP APIs.
3647 * Returns number of folios pinned, which could be less than @max_folios
3648 * as it depends on the folio sizes that cover the range [start, end].
3649 * If no folios were pinned, it returns -errno.
3651 long memfd_pin_folios(struct file
*memfd
, loff_t start
, loff_t end
,
3652 struct folio
**folios
, unsigned int max_folios
,
3655 unsigned int flags
, nr_folios
, nr_found
;
3656 unsigned int i
, pgshift
= PAGE_SHIFT
;
3657 pgoff_t start_idx
, end_idx
, next_idx
;
3658 struct folio
*folio
= NULL
;
3659 struct folio_batch fbatch
;
3663 if (start
< 0 || start
> end
|| !max_folios
)
3669 if (!shmem_file(memfd
) && !is_file_hugepages(memfd
))
3672 if (end
>= i_size_read(file_inode(memfd
)))
3675 if (is_file_hugepages(memfd
)) {
3676 h
= hstate_file(memfd
);
3677 pgshift
= huge_page_shift(h
);
3680 flags
= memalloc_pin_save();
3683 start_idx
= start
>> pgshift
;
3684 end_idx
= end
>> pgshift
;
3685 if (is_file_hugepages(memfd
)) {
3686 start_idx
<<= huge_page_order(h
);
3687 end_idx
<<= huge_page_order(h
);
3690 folio_batch_init(&fbatch
);
3691 while (start_idx
<= end_idx
&& nr_folios
< max_folios
) {
3693 * In most cases, we should be able to find the folios
3694 * in the page cache. If we cannot find them for some
3695 * reason, we try to allocate them and add them to the
3698 nr_found
= filemap_get_folios_contig(memfd
->f_mapping
,
3708 for (i
= 0; i
< nr_found
; i
++) {
3710 * As there can be multiple entries for a
3711 * given folio in the batch returned by
3712 * filemap_get_folios_contig(), the below
3713 * check is to ensure that we pin and return a
3714 * unique set of folios between start and end.
3717 next_idx
!= folio_index(fbatch
.folios
[i
]))
3720 folio
= page_folio(&fbatch
.folios
[i
]->page
);
3722 if (try_grab_folio(folio
, 1, FOLL_PIN
)) {
3723 folio_batch_release(&fbatch
);
3729 *offset
= offset_in_folio(folio
, start
);
3731 folios
[nr_folios
] = folio
;
3732 next_idx
= folio_next_index(folio
);
3733 if (++nr_folios
== max_folios
)
3738 folio_batch_release(&fbatch
);
3740 folio
= memfd_alloc_folio(memfd
, start_idx
);
3741 if (IS_ERR(folio
)) {
3742 ret
= PTR_ERR(folio
);
3750 ret
= check_and_migrate_movable_folios(nr_folios
, folios
);
3751 } while (ret
== -EAGAIN
);
3753 memalloc_pin_restore(flags
);
3754 return ret
? ret
: nr_folios
;
3756 memalloc_pin_restore(flags
);
3757 unpin_folios(folios
, nr_folios
);
3761 EXPORT_SYMBOL_GPL(memfd_pin_folios
);
3764 * folio_add_pins() - add pins to an already-pinned folio
3765 * @folio: the folio to add more pins to
3766 * @pins: number of pins to add
3768 * Try to add more pins to an already-pinned folio. The semantics
3769 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3772 * This function is helpful when having obtained a pin on a large folio
3773 * using memfd_pin_folios(), but wanting to logically unpin parts
3774 * (e.g., individual pages) of the folio later, for example, using
3775 * unpin_user_page_range_dirty_lock().
3777 * This is not the right interface to initially pin a folio.
3779 int folio_add_pins(struct folio
*folio
, unsigned int pins
)
3781 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio
));
3783 return try_grab_folio(folio
, pins
, FOLL_PIN
);
3785 EXPORT_SYMBOL_GPL(folio_add_pins
);