Merge tag 'hardening-v6.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-stable.git] / mm / memory.c
blob539c0f7c6d5458791e723ac58e25e5b6b9f73c89
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 #include <linux/fsnotify.h>
81 #include <trace/events/kmem.h>
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
112 * wr-protected).
114 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 if (!userfaultfd_wp(vmf->vma))
117 return false;
118 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 return false;
121 return pte_marker_uffd_wp(vmf->orig_pte);
125 * A number of key systems in x86 including ioremap() rely on the assumption
126 * that high_memory defines the upper bound on direct map memory, then end
127 * of ZONE_NORMAL.
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
133 * Randomize the address space (stacks, mmaps, brk, etc.).
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
141 #else
143 #endif
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
153 return false;
155 #endif
157 static int __init disable_randmaps(char *s)
159 randomize_va_space = 0;
160 return 1;
162 __setup("norandmaps", disable_randmaps);
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
167 unsigned long highest_memmap_pfn __read_mostly;
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 static int __init init_zero_pfn(void)
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
177 early_initcall(init_zero_pfn);
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 trace_rss_stat(mm, member);
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
191 pgtable_t token = pmd_pgtable(*pmd);
192 pmd_clear(pmd);
193 pte_free_tlb(tlb, token, addr);
194 mm_dec_nr_ptes(tlb->mm);
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
201 pmd_t *pmd;
202 unsigned long next;
203 unsigned long start;
205 start = addr;
206 pmd = pmd_offset(pud, addr);
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
211 free_pte_range(tlb, pmd, addr);
212 } while (pmd++, addr = next, addr != end);
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
222 if (end - 1 > ceiling - 1)
223 return;
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
227 pmd_free_tlb(tlb, pmd, start);
228 mm_dec_nr_pmds(tlb->mm);
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
235 pud_t *pud;
236 unsigned long next;
237 unsigned long start;
239 start = addr;
240 pud = pud_offset(p4d, addr);
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 } while (pud++, addr = next, addr != end);
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
256 if (end - 1 > ceiling - 1)
257 return;
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
262 mm_dec_nr_puds(tlb->mm);
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
290 if (end - 1 > ceiling - 1)
291 return;
293 p4d = p4d_offset(pgd, start);
294 pgd_clear(pgd);
295 p4d_free_tlb(tlb, p4d, start);
299 * This function frees user-level page tables of a process.
301 void free_pgd_range(struct mmu_gather *tlb,
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
305 pgd_t *pgd;
306 unsigned long next;
309 * The next few lines have given us lots of grief...
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
334 addr &= PMD_MASK;
335 if (addr < floor) {
336 addr += PMD_SIZE;
337 if (!addr)
338 return;
340 if (ceiling) {
341 ceiling &= PMD_MASK;
342 if (!ceiling)
343 return;
345 if (end - 1 > ceiling - 1)
346 end -= PMD_SIZE;
347 if (addr > end - 1)
348 return;
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
353 tlb_change_page_size(tlb, PAGE_SIZE);
354 pgd = pgd_offset(tlb->mm, addr);
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 } while (pgd++, addr = next, addr != end);
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 struct vm_area_struct *vma, unsigned long floor,
365 unsigned long ceiling, bool mm_wr_locked)
367 struct unlink_vma_file_batch vb;
369 do {
370 unsigned long addr = vma->vm_start;
371 struct vm_area_struct *next;
374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 * be 0. This will underflow and is okay.
377 next = mas_find(mas, ceiling - 1);
378 if (unlikely(xa_is_zero(next)))
379 next = NULL;
382 * Hide vma from rmap and truncate_pagecache before freeing
383 * pgtables
385 if (mm_wr_locked)
386 vma_start_write(vma);
387 unlink_anon_vmas(vma);
389 if (is_vm_hugetlb_page(vma)) {
390 unlink_file_vma(vma);
391 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
392 floor, next ? next->vm_start : ceiling);
393 } else {
394 unlink_file_vma_batch_init(&vb);
395 unlink_file_vma_batch_add(&vb, vma);
398 * Optimization: gather nearby vmas into one call down
400 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
401 && !is_vm_hugetlb_page(next)) {
402 vma = next;
403 next = mas_find(mas, ceiling - 1);
404 if (unlikely(xa_is_zero(next)))
405 next = NULL;
406 if (mm_wr_locked)
407 vma_start_write(vma);
408 unlink_anon_vmas(vma);
409 unlink_file_vma_batch_add(&vb, vma);
411 unlink_file_vma_batch_final(&vb);
412 free_pgd_range(tlb, addr, vma->vm_end,
413 floor, next ? next->vm_start : ceiling);
415 vma = next;
416 } while (vma);
419 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
421 spinlock_t *ptl = pmd_lock(mm, pmd);
423 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
424 mm_inc_nr_ptes(mm);
426 * Ensure all pte setup (eg. pte page lock and page clearing) are
427 * visible before the pte is made visible to other CPUs by being
428 * put into page tables.
430 * The other side of the story is the pointer chasing in the page
431 * table walking code (when walking the page table without locking;
432 * ie. most of the time). Fortunately, these data accesses consist
433 * of a chain of data-dependent loads, meaning most CPUs (alpha
434 * being the notable exception) will already guarantee loads are
435 * seen in-order. See the alpha page table accessors for the
436 * smp_rmb() barriers in page table walking code.
438 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
439 pmd_populate(mm, pmd, *pte);
440 *pte = NULL;
442 spin_unlock(ptl);
445 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
447 pgtable_t new = pte_alloc_one(mm);
448 if (!new)
449 return -ENOMEM;
451 pmd_install(mm, pmd, &new);
452 if (new)
453 pte_free(mm, new);
454 return 0;
457 int __pte_alloc_kernel(pmd_t *pmd)
459 pte_t *new = pte_alloc_one_kernel(&init_mm);
460 if (!new)
461 return -ENOMEM;
463 spin_lock(&init_mm.page_table_lock);
464 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
465 smp_wmb(); /* See comment in pmd_install() */
466 pmd_populate_kernel(&init_mm, pmd, new);
467 new = NULL;
469 spin_unlock(&init_mm.page_table_lock);
470 if (new)
471 pte_free_kernel(&init_mm, new);
472 return 0;
475 static inline void init_rss_vec(int *rss)
477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 int i;
484 for (i = 0; i < NR_MM_COUNTERS; i++)
485 if (rss[i])
486 add_mm_counter(mm, i, rss[i]);
490 * This function is called to print an error when a bad pte
491 * is found. For example, we might have a PFN-mapped pte in
492 * a region that doesn't allow it.
494 * The calling function must still handle the error.
496 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
497 pte_t pte, struct page *page)
499 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
500 p4d_t *p4d = p4d_offset(pgd, addr);
501 pud_t *pud = pud_offset(p4d, addr);
502 pmd_t *pmd = pmd_offset(pud, addr);
503 struct address_space *mapping;
504 pgoff_t index;
505 static unsigned long resume;
506 static unsigned long nr_shown;
507 static unsigned long nr_unshown;
510 * Allow a burst of 60 reports, then keep quiet for that minute;
511 * or allow a steady drip of one report per second.
513 if (nr_shown == 60) {
514 if (time_before(jiffies, resume)) {
515 nr_unshown++;
516 return;
518 if (nr_unshown) {
519 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
520 nr_unshown);
521 nr_unshown = 0;
523 nr_shown = 0;
525 if (nr_shown++ == 0)
526 resume = jiffies + 60 * HZ;
528 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
529 index = linear_page_index(vma, addr);
531 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
532 current->comm,
533 (long long)pte_val(pte), (long long)pmd_val(*pmd));
534 if (page)
535 dump_page(page, "bad pte");
536 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
537 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
538 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
539 vma->vm_file,
540 vma->vm_ops ? vma->vm_ops->fault : NULL,
541 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
542 mapping ? mapping->a_ops->read_folio : NULL);
543 dump_stack();
544 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 * vm_normal_page -- This function gets the "struct page" associated with a pte.
550 * "Special" mappings do not wish to be associated with a "struct page" (either
551 * it doesn't exist, or it exists but they don't want to touch it). In this
552 * case, NULL is returned here. "Normal" mappings do have a struct page.
554 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
555 * pte bit, in which case this function is trivial. Secondly, an architecture
556 * may not have a spare pte bit, which requires a more complicated scheme,
557 * described below.
559 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
560 * special mapping (even if there are underlying and valid "struct pages").
561 * COWed pages of a VM_PFNMAP are always normal.
563 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
564 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
565 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
566 * mapping will always honor the rule
568 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570 * And for normal mappings this is false.
572 * This restricts such mappings to be a linear translation from virtual address
573 * to pfn. To get around this restriction, we allow arbitrary mappings so long
574 * as the vma is not a COW mapping; in that case, we know that all ptes are
575 * special (because none can have been COWed).
578 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
581 * page" backing, however the difference is that _all_ pages with a struct
582 * page (that is, those where pfn_valid is true) are refcounted and considered
583 * normal pages by the VM. The only exception are zeropages, which are
584 * *never* refcounted.
586 * The disadvantage is that pages are refcounted (which can be slower and
587 * simply not an option for some PFNMAP users). The advantage is that we
588 * don't have to follow the strict linearity rule of PFNMAP mappings in
589 * order to support COWable mappings.
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
595 unsigned long pfn = pte_pfn(pte);
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 if (likely(!pte_special(pte)))
599 goto check_pfn;
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
604 if (is_zero_pfn(pfn))
605 return NULL;
606 if (pte_devmap(pte))
608 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
609 * and will have refcounts incremented on their struct pages
610 * when they are inserted into PTEs, thus they are safe to
611 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
612 * do not have refcounts. Example of legacy ZONE_DEVICE is
613 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
615 return NULL;
617 print_bad_pte(vma, addr, pte, NULL);
618 return NULL;
621 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
623 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
624 if (vma->vm_flags & VM_MIXEDMAP) {
625 if (!pfn_valid(pfn))
626 return NULL;
627 if (is_zero_pfn(pfn))
628 return NULL;
629 goto out;
630 } else {
631 unsigned long off;
632 off = (addr - vma->vm_start) >> PAGE_SHIFT;
633 if (pfn == vma->vm_pgoff + off)
634 return NULL;
635 if (!is_cow_mapping(vma->vm_flags))
636 return NULL;
640 if (is_zero_pfn(pfn))
641 return NULL;
643 check_pfn:
644 if (unlikely(pfn > highest_memmap_pfn)) {
645 print_bad_pte(vma, addr, pte, NULL);
646 return NULL;
650 * NOTE! We still have PageReserved() pages in the page tables.
651 * eg. VDSO mappings can cause them to exist.
653 out:
654 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
655 return pfn_to_page(pfn);
658 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte)
661 struct page *page = vm_normal_page(vma, addr, pte);
663 if (page)
664 return page_folio(page);
665 return NULL;
668 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
669 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
670 pmd_t pmd)
672 unsigned long pfn = pmd_pfn(pmd);
674 /* Currently it's only used for huge pfnmaps */
675 if (unlikely(pmd_special(pmd)))
676 return NULL;
678 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
679 if (vma->vm_flags & VM_MIXEDMAP) {
680 if (!pfn_valid(pfn))
681 return NULL;
682 goto out;
683 } else {
684 unsigned long off;
685 off = (addr - vma->vm_start) >> PAGE_SHIFT;
686 if (pfn == vma->vm_pgoff + off)
687 return NULL;
688 if (!is_cow_mapping(vma->vm_flags))
689 return NULL;
693 if (pmd_devmap(pmd))
694 return NULL;
695 if (is_huge_zero_pmd(pmd))
696 return NULL;
697 if (unlikely(pfn > highest_memmap_pfn))
698 return NULL;
701 * NOTE! We still have PageReserved() pages in the page tables.
702 * eg. VDSO mappings can cause them to exist.
704 out:
705 return pfn_to_page(pfn);
708 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
709 unsigned long addr, pmd_t pmd)
711 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
713 if (page)
714 return page_folio(page);
715 return NULL;
717 #endif
719 static void restore_exclusive_pte(struct vm_area_struct *vma,
720 struct page *page, unsigned long address,
721 pte_t *ptep)
723 struct folio *folio = page_folio(page);
724 pte_t orig_pte;
725 pte_t pte;
726 swp_entry_t entry;
728 orig_pte = ptep_get(ptep);
729 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
730 if (pte_swp_soft_dirty(orig_pte))
731 pte = pte_mksoft_dirty(pte);
733 entry = pte_to_swp_entry(orig_pte);
734 if (pte_swp_uffd_wp(orig_pte))
735 pte = pte_mkuffd_wp(pte);
736 else if (is_writable_device_exclusive_entry(entry))
737 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
739 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
740 PageAnonExclusive(page)), folio);
743 * No need to take a page reference as one was already
744 * created when the swap entry was made.
746 if (folio_test_anon(folio))
747 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
748 else
750 * Currently device exclusive access only supports anonymous
751 * memory so the entry shouldn't point to a filebacked page.
753 WARN_ON_ONCE(1);
755 set_pte_at(vma->vm_mm, address, ptep, pte);
758 * No need to invalidate - it was non-present before. However
759 * secondary CPUs may have mappings that need invalidating.
761 update_mmu_cache(vma, address, ptep);
765 * Tries to restore an exclusive pte if the page lock can be acquired without
766 * sleeping.
768 static int
769 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
770 unsigned long addr)
772 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
773 struct page *page = pfn_swap_entry_to_page(entry);
775 if (trylock_page(page)) {
776 restore_exclusive_pte(vma, page, addr, src_pte);
777 unlock_page(page);
778 return 0;
781 return -EBUSY;
785 * copy one vm_area from one task to the other. Assumes the page tables
786 * already present in the new task to be cleared in the whole range
787 * covered by this vma.
790 static unsigned long
791 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
792 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
793 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
795 unsigned long vm_flags = dst_vma->vm_flags;
796 pte_t orig_pte = ptep_get(src_pte);
797 pte_t pte = orig_pte;
798 struct folio *folio;
799 struct page *page;
800 swp_entry_t entry = pte_to_swp_entry(orig_pte);
802 if (likely(!non_swap_entry(entry))) {
803 if (swap_duplicate(entry) < 0)
804 return -EIO;
806 /* make sure dst_mm is on swapoff's mmlist. */
807 if (unlikely(list_empty(&dst_mm->mmlist))) {
808 spin_lock(&mmlist_lock);
809 if (list_empty(&dst_mm->mmlist))
810 list_add(&dst_mm->mmlist,
811 &src_mm->mmlist);
812 spin_unlock(&mmlist_lock);
814 /* Mark the swap entry as shared. */
815 if (pte_swp_exclusive(orig_pte)) {
816 pte = pte_swp_clear_exclusive(orig_pte);
817 set_pte_at(src_mm, addr, src_pte, pte);
819 rss[MM_SWAPENTS]++;
820 } else if (is_migration_entry(entry)) {
821 folio = pfn_swap_entry_folio(entry);
823 rss[mm_counter(folio)]++;
825 if (!is_readable_migration_entry(entry) &&
826 is_cow_mapping(vm_flags)) {
828 * COW mappings require pages in both parent and child
829 * to be set to read. A previously exclusive entry is
830 * now shared.
832 entry = make_readable_migration_entry(
833 swp_offset(entry));
834 pte = swp_entry_to_pte(entry);
835 if (pte_swp_soft_dirty(orig_pte))
836 pte = pte_swp_mksoft_dirty(pte);
837 if (pte_swp_uffd_wp(orig_pte))
838 pte = pte_swp_mkuffd_wp(pte);
839 set_pte_at(src_mm, addr, src_pte, pte);
841 } else if (is_device_private_entry(entry)) {
842 page = pfn_swap_entry_to_page(entry);
843 folio = page_folio(page);
846 * Update rss count even for unaddressable pages, as
847 * they should treated just like normal pages in this
848 * respect.
850 * We will likely want to have some new rss counters
851 * for unaddressable pages, at some point. But for now
852 * keep things as they are.
854 folio_get(folio);
855 rss[mm_counter(folio)]++;
856 /* Cannot fail as these pages cannot get pinned. */
857 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
860 * We do not preserve soft-dirty information, because so
861 * far, checkpoint/restore is the only feature that
862 * requires that. And checkpoint/restore does not work
863 * when a device driver is involved (you cannot easily
864 * save and restore device driver state).
866 if (is_writable_device_private_entry(entry) &&
867 is_cow_mapping(vm_flags)) {
868 entry = make_readable_device_private_entry(
869 swp_offset(entry));
870 pte = swp_entry_to_pte(entry);
871 if (pte_swp_uffd_wp(orig_pte))
872 pte = pte_swp_mkuffd_wp(pte);
873 set_pte_at(src_mm, addr, src_pte, pte);
875 } else if (is_device_exclusive_entry(entry)) {
877 * Make device exclusive entries present by restoring the
878 * original entry then copying as for a present pte. Device
879 * exclusive entries currently only support private writable
880 * (ie. COW) mappings.
882 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
883 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
884 return -EBUSY;
885 return -ENOENT;
886 } else if (is_pte_marker_entry(entry)) {
887 pte_marker marker = copy_pte_marker(entry, dst_vma);
889 if (marker)
890 set_pte_at(dst_mm, addr, dst_pte,
891 make_pte_marker(marker));
892 return 0;
894 if (!userfaultfd_wp(dst_vma))
895 pte = pte_swp_clear_uffd_wp(pte);
896 set_pte_at(dst_mm, addr, dst_pte, pte);
897 return 0;
901 * Copy a present and normal page.
903 * NOTE! The usual case is that this isn't required;
904 * instead, the caller can just increase the page refcount
905 * and re-use the pte the traditional way.
907 * And if we need a pre-allocated page but don't yet have
908 * one, return a negative error to let the preallocation
909 * code know so that it can do so outside the page table
910 * lock.
912 static inline int
913 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
914 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
915 struct folio **prealloc, struct page *page)
917 struct folio *new_folio;
918 pte_t pte;
920 new_folio = *prealloc;
921 if (!new_folio)
922 return -EAGAIN;
925 * We have a prealloc page, all good! Take it
926 * over and copy the page & arm it.
929 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
930 return -EHWPOISON;
932 *prealloc = NULL;
933 __folio_mark_uptodate(new_folio);
934 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
935 folio_add_lru_vma(new_folio, dst_vma);
936 rss[MM_ANONPAGES]++;
938 /* All done, just insert the new page copy in the child */
939 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
940 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
941 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
942 /* Uffd-wp needs to be delivered to dest pte as well */
943 pte = pte_mkuffd_wp(pte);
944 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
945 return 0;
948 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
949 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
950 pte_t pte, unsigned long addr, int nr)
952 struct mm_struct *src_mm = src_vma->vm_mm;
954 /* If it's a COW mapping, write protect it both processes. */
955 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
956 wrprotect_ptes(src_mm, addr, src_pte, nr);
957 pte = pte_wrprotect(pte);
960 /* If it's a shared mapping, mark it clean in the child. */
961 if (src_vma->vm_flags & VM_SHARED)
962 pte = pte_mkclean(pte);
963 pte = pte_mkold(pte);
965 if (!userfaultfd_wp(dst_vma))
966 pte = pte_clear_uffd_wp(pte);
968 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
972 * Copy one present PTE, trying to batch-process subsequent PTEs that map
973 * consecutive pages of the same folio by copying them as well.
975 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
976 * Otherwise, returns the number of copied PTEs (at least 1).
978 static inline int
979 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
980 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
981 int max_nr, int *rss, struct folio **prealloc)
983 struct page *page;
984 struct folio *folio;
985 bool any_writable;
986 fpb_t flags = 0;
987 int err, nr;
989 page = vm_normal_page(src_vma, addr, pte);
990 if (unlikely(!page))
991 goto copy_pte;
993 folio = page_folio(page);
996 * If we likely have to copy, just don't bother with batching. Make
997 * sure that the common "small folio" case is as fast as possible
998 * by keeping the batching logic separate.
1000 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1001 if (src_vma->vm_flags & VM_SHARED)
1002 flags |= FPB_IGNORE_DIRTY;
1003 if (!vma_soft_dirty_enabled(src_vma))
1004 flags |= FPB_IGNORE_SOFT_DIRTY;
1006 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1007 &any_writable, NULL, NULL);
1008 folio_ref_add(folio, nr);
1009 if (folio_test_anon(folio)) {
1010 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1011 nr, src_vma))) {
1012 folio_ref_sub(folio, nr);
1013 return -EAGAIN;
1015 rss[MM_ANONPAGES] += nr;
1016 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1017 } else {
1018 folio_dup_file_rmap_ptes(folio, page, nr);
1019 rss[mm_counter_file(folio)] += nr;
1021 if (any_writable)
1022 pte = pte_mkwrite(pte, src_vma);
1023 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1024 addr, nr);
1025 return nr;
1028 folio_get(folio);
1029 if (folio_test_anon(folio)) {
1031 * If this page may have been pinned by the parent process,
1032 * copy the page immediately for the child so that we'll always
1033 * guarantee the pinned page won't be randomly replaced in the
1034 * future.
1036 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1037 /* Page may be pinned, we have to copy. */
1038 folio_put(folio);
1039 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1040 addr, rss, prealloc, page);
1041 return err ? err : 1;
1043 rss[MM_ANONPAGES]++;
1044 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1045 } else {
1046 folio_dup_file_rmap_pte(folio, page);
1047 rss[mm_counter_file(folio)]++;
1050 copy_pte:
1051 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1052 return 1;
1055 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1056 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1058 struct folio *new_folio;
1060 if (need_zero)
1061 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1062 else
1063 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1065 if (!new_folio)
1066 return NULL;
1068 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1069 folio_put(new_folio);
1070 return NULL;
1072 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1074 return new_folio;
1077 static int
1078 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1080 unsigned long end)
1082 struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 struct mm_struct *src_mm = src_vma->vm_mm;
1084 pte_t *orig_src_pte, *orig_dst_pte;
1085 pte_t *src_pte, *dst_pte;
1086 pmd_t dummy_pmdval;
1087 pte_t ptent;
1088 spinlock_t *src_ptl, *dst_ptl;
1089 int progress, max_nr, ret = 0;
1090 int rss[NR_MM_COUNTERS];
1091 swp_entry_t entry = (swp_entry_t){0};
1092 struct folio *prealloc = NULL;
1093 int nr;
1095 again:
1096 progress = 0;
1097 init_rss_vec(rss);
1100 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1101 * error handling here, assume that exclusive mmap_lock on dst and src
1102 * protects anon from unexpected THP transitions; with shmem and file
1103 * protected by mmap_lock-less collapse skipping areas with anon_vma
1104 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1105 * can remove such assumptions later, but this is good enough for now.
1107 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1108 if (!dst_pte) {
1109 ret = -ENOMEM;
1110 goto out;
1114 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1115 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1116 * the PTE page is stable, and there is no need to get pmdval and do
1117 * pmd_same() check.
1119 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1120 &src_ptl);
1121 if (!src_pte) {
1122 pte_unmap_unlock(dst_pte, dst_ptl);
1123 /* ret == 0 */
1124 goto out;
1126 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1127 orig_src_pte = src_pte;
1128 orig_dst_pte = dst_pte;
1129 arch_enter_lazy_mmu_mode();
1131 do {
1132 nr = 1;
1135 * We are holding two locks at this point - either of them
1136 * could generate latencies in another task on another CPU.
1138 if (progress >= 32) {
1139 progress = 0;
1140 if (need_resched() ||
1141 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1142 break;
1144 ptent = ptep_get(src_pte);
1145 if (pte_none(ptent)) {
1146 progress++;
1147 continue;
1149 if (unlikely(!pte_present(ptent))) {
1150 ret = copy_nonpresent_pte(dst_mm, src_mm,
1151 dst_pte, src_pte,
1152 dst_vma, src_vma,
1153 addr, rss);
1154 if (ret == -EIO) {
1155 entry = pte_to_swp_entry(ptep_get(src_pte));
1156 break;
1157 } else if (ret == -EBUSY) {
1158 break;
1159 } else if (!ret) {
1160 progress += 8;
1161 continue;
1163 ptent = ptep_get(src_pte);
1164 VM_WARN_ON_ONCE(!pte_present(ptent));
1167 * Device exclusive entry restored, continue by copying
1168 * the now present pte.
1170 WARN_ON_ONCE(ret != -ENOENT);
1172 /* copy_present_ptes() will clear `*prealloc' if consumed */
1173 max_nr = (end - addr) / PAGE_SIZE;
1174 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1175 ptent, addr, max_nr, rss, &prealloc);
1177 * If we need a pre-allocated page for this pte, drop the
1178 * locks, allocate, and try again.
1179 * If copy failed due to hwpoison in source page, break out.
1181 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1182 break;
1183 if (unlikely(prealloc)) {
1185 * pre-alloc page cannot be reused by next time so as
1186 * to strictly follow mempolicy (e.g., alloc_page_vma()
1187 * will allocate page according to address). This
1188 * could only happen if one pinned pte changed.
1190 folio_put(prealloc);
1191 prealloc = NULL;
1193 nr = ret;
1194 progress += 8 * nr;
1195 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1196 addr != end);
1198 arch_leave_lazy_mmu_mode();
1199 pte_unmap_unlock(orig_src_pte, src_ptl);
1200 add_mm_rss_vec(dst_mm, rss);
1201 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1202 cond_resched();
1204 if (ret == -EIO) {
1205 VM_WARN_ON_ONCE(!entry.val);
1206 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1207 ret = -ENOMEM;
1208 goto out;
1210 entry.val = 0;
1211 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1212 goto out;
1213 } else if (ret == -EAGAIN) {
1214 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1215 if (!prealloc)
1216 return -ENOMEM;
1217 } else if (ret < 0) {
1218 VM_WARN_ON_ONCE(1);
1221 /* We've captured and resolved the error. Reset, try again. */
1222 ret = 0;
1224 if (addr != end)
1225 goto again;
1226 out:
1227 if (unlikely(prealloc))
1228 folio_put(prealloc);
1229 return ret;
1232 static inline int
1233 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1234 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1235 unsigned long end)
1237 struct mm_struct *dst_mm = dst_vma->vm_mm;
1238 struct mm_struct *src_mm = src_vma->vm_mm;
1239 pmd_t *src_pmd, *dst_pmd;
1240 unsigned long next;
1242 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1243 if (!dst_pmd)
1244 return -ENOMEM;
1245 src_pmd = pmd_offset(src_pud, addr);
1246 do {
1247 next = pmd_addr_end(addr, end);
1248 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1249 || pmd_devmap(*src_pmd)) {
1250 int err;
1251 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1252 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1253 addr, dst_vma, src_vma);
1254 if (err == -ENOMEM)
1255 return -ENOMEM;
1256 if (!err)
1257 continue;
1258 /* fall through */
1260 if (pmd_none_or_clear_bad(src_pmd))
1261 continue;
1262 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1263 addr, next))
1264 return -ENOMEM;
1265 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1266 return 0;
1269 static inline int
1270 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1271 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1272 unsigned long end)
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
1276 pud_t *src_pud, *dst_pud;
1277 unsigned long next;
1279 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1280 if (!dst_pud)
1281 return -ENOMEM;
1282 src_pud = pud_offset(src_p4d, addr);
1283 do {
1284 next = pud_addr_end(addr, end);
1285 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1286 int err;
1288 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1289 err = copy_huge_pud(dst_mm, src_mm,
1290 dst_pud, src_pud, addr, src_vma);
1291 if (err == -ENOMEM)
1292 return -ENOMEM;
1293 if (!err)
1294 continue;
1295 /* fall through */
1297 if (pud_none_or_clear_bad(src_pud))
1298 continue;
1299 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1300 addr, next))
1301 return -ENOMEM;
1302 } while (dst_pud++, src_pud++, addr = next, addr != end);
1303 return 0;
1306 static inline int
1307 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1308 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1309 unsigned long end)
1311 struct mm_struct *dst_mm = dst_vma->vm_mm;
1312 p4d_t *src_p4d, *dst_p4d;
1313 unsigned long next;
1315 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1316 if (!dst_p4d)
1317 return -ENOMEM;
1318 src_p4d = p4d_offset(src_pgd, addr);
1319 do {
1320 next = p4d_addr_end(addr, end);
1321 if (p4d_none_or_clear_bad(src_p4d))
1322 continue;
1323 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1324 addr, next))
1325 return -ENOMEM;
1326 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1327 return 0;
1331 * Return true if the vma needs to copy the pgtable during this fork(). Return
1332 * false when we can speed up fork() by allowing lazy page faults later until
1333 * when the child accesses the memory range.
1335 static bool
1336 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1339 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1340 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1341 * contains uffd-wp protection information, that's something we can't
1342 * retrieve from page cache, and skip copying will lose those info.
1344 if (userfaultfd_wp(dst_vma))
1345 return true;
1347 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1348 return true;
1350 if (src_vma->anon_vma)
1351 return true;
1354 * Don't copy ptes where a page fault will fill them correctly. Fork
1355 * becomes much lighter when there are big shared or private readonly
1356 * mappings. The tradeoff is that copy_page_range is more efficient
1357 * than faulting.
1359 return false;
1363 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1365 pgd_t *src_pgd, *dst_pgd;
1366 unsigned long next;
1367 unsigned long addr = src_vma->vm_start;
1368 unsigned long end = src_vma->vm_end;
1369 struct mm_struct *dst_mm = dst_vma->vm_mm;
1370 struct mm_struct *src_mm = src_vma->vm_mm;
1371 struct mmu_notifier_range range;
1372 bool is_cow;
1373 int ret;
1375 if (!vma_needs_copy(dst_vma, src_vma))
1376 return 0;
1378 if (is_vm_hugetlb_page(src_vma))
1379 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1381 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1383 * We do not free on error cases below as remove_vma
1384 * gets called on error from higher level routine
1386 ret = track_pfn_copy(src_vma);
1387 if (ret)
1388 return ret;
1392 * We need to invalidate the secondary MMU mappings only when
1393 * there could be a permission downgrade on the ptes of the
1394 * parent mm. And a permission downgrade will only happen if
1395 * is_cow_mapping() returns true.
1397 is_cow = is_cow_mapping(src_vma->vm_flags);
1399 if (is_cow) {
1400 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1401 0, src_mm, addr, end);
1402 mmu_notifier_invalidate_range_start(&range);
1404 * Disabling preemption is not needed for the write side, as
1405 * the read side doesn't spin, but goes to the mmap_lock.
1407 * Use the raw variant of the seqcount_t write API to avoid
1408 * lockdep complaining about preemptibility.
1410 vma_assert_write_locked(src_vma);
1411 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1414 ret = 0;
1415 dst_pgd = pgd_offset(dst_mm, addr);
1416 src_pgd = pgd_offset(src_mm, addr);
1417 do {
1418 next = pgd_addr_end(addr, end);
1419 if (pgd_none_or_clear_bad(src_pgd))
1420 continue;
1421 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1422 addr, next))) {
1423 untrack_pfn_clear(dst_vma);
1424 ret = -ENOMEM;
1425 break;
1427 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1429 if (is_cow) {
1430 raw_write_seqcount_end(&src_mm->write_protect_seq);
1431 mmu_notifier_invalidate_range_end(&range);
1433 return ret;
1436 /* Whether we should zap all COWed (private) pages too */
1437 static inline bool should_zap_cows(struct zap_details *details)
1439 /* By default, zap all pages */
1440 if (!details || details->reclaim_pt)
1441 return true;
1443 /* Or, we zap COWed pages only if the caller wants to */
1444 return details->even_cows;
1447 /* Decides whether we should zap this folio with the folio pointer specified */
1448 static inline bool should_zap_folio(struct zap_details *details,
1449 struct folio *folio)
1451 /* If we can make a decision without *folio.. */
1452 if (should_zap_cows(details))
1453 return true;
1455 /* Otherwise we should only zap non-anon folios */
1456 return !folio_test_anon(folio);
1459 static inline bool zap_drop_markers(struct zap_details *details)
1461 if (!details)
1462 return false;
1464 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1468 * This function makes sure that we'll replace the none pte with an uffd-wp
1469 * swap special pte marker when necessary. Must be with the pgtable lock held.
1471 * Returns true if uffd-wp ptes was installed, false otherwise.
1473 static inline bool
1474 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1475 unsigned long addr, pte_t *pte, int nr,
1476 struct zap_details *details, pte_t pteval)
1478 bool was_installed = false;
1480 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1481 /* Zap on anonymous always means dropping everything */
1482 if (vma_is_anonymous(vma))
1483 return false;
1485 if (zap_drop_markers(details))
1486 return false;
1488 for (;;) {
1489 /* the PFN in the PTE is irrelevant. */
1490 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1491 was_installed = true;
1492 if (--nr == 0)
1493 break;
1494 pte++;
1495 addr += PAGE_SIZE;
1497 #endif
1498 return was_installed;
1501 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1502 struct vm_area_struct *vma, struct folio *folio,
1503 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1504 unsigned long addr, struct zap_details *details, int *rss,
1505 bool *force_flush, bool *force_break, bool *any_skipped)
1507 struct mm_struct *mm = tlb->mm;
1508 bool delay_rmap = false;
1510 if (!folio_test_anon(folio)) {
1511 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1512 if (pte_dirty(ptent)) {
1513 folio_mark_dirty(folio);
1514 if (tlb_delay_rmap(tlb)) {
1515 delay_rmap = true;
1516 *force_flush = true;
1519 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1520 folio_mark_accessed(folio);
1521 rss[mm_counter(folio)] -= nr;
1522 } else {
1523 /* We don't need up-to-date accessed/dirty bits. */
1524 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1525 rss[MM_ANONPAGES] -= nr;
1527 /* Checking a single PTE in a batch is sufficient. */
1528 arch_check_zapped_pte(vma, ptent);
1529 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1530 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1531 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1532 nr, details, ptent);
1534 if (!delay_rmap) {
1535 folio_remove_rmap_ptes(folio, page, nr, vma);
1537 if (unlikely(folio_mapcount(folio) < 0))
1538 print_bad_pte(vma, addr, ptent, page);
1540 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1541 *force_flush = true;
1542 *force_break = true;
1547 * Zap or skip at least one present PTE, trying to batch-process subsequent
1548 * PTEs that map consecutive pages of the same folio.
1550 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1552 static inline int zap_present_ptes(struct mmu_gather *tlb,
1553 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1554 unsigned int max_nr, unsigned long addr,
1555 struct zap_details *details, int *rss, bool *force_flush,
1556 bool *force_break, bool *any_skipped)
1558 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1559 struct mm_struct *mm = tlb->mm;
1560 struct folio *folio;
1561 struct page *page;
1562 int nr;
1564 page = vm_normal_page(vma, addr, ptent);
1565 if (!page) {
1566 /* We don't need up-to-date accessed/dirty bits. */
1567 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1568 arch_check_zapped_pte(vma, ptent);
1569 tlb_remove_tlb_entry(tlb, pte, addr);
1570 if (userfaultfd_pte_wp(vma, ptent))
1571 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1572 pte, 1, details, ptent);
1573 ksm_might_unmap_zero_page(mm, ptent);
1574 return 1;
1577 folio = page_folio(page);
1578 if (unlikely(!should_zap_folio(details, folio))) {
1579 *any_skipped = true;
1580 return 1;
1584 * Make sure that the common "small folio" case is as fast as possible
1585 * by keeping the batching logic separate.
1587 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1588 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1589 NULL, NULL, NULL);
1591 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1592 addr, details, rss, force_flush,
1593 force_break, any_skipped);
1594 return nr;
1596 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1597 details, rss, force_flush, force_break, any_skipped);
1598 return 1;
1601 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1602 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1603 unsigned int max_nr, unsigned long addr,
1604 struct zap_details *details, int *rss, bool *any_skipped)
1606 swp_entry_t entry;
1607 int nr = 1;
1609 *any_skipped = true;
1610 entry = pte_to_swp_entry(ptent);
1611 if (is_device_private_entry(entry) ||
1612 is_device_exclusive_entry(entry)) {
1613 struct page *page = pfn_swap_entry_to_page(entry);
1614 struct folio *folio = page_folio(page);
1616 if (unlikely(!should_zap_folio(details, folio)))
1617 return 1;
1619 * Both device private/exclusive mappings should only
1620 * work with anonymous page so far, so we don't need to
1621 * consider uffd-wp bit when zap. For more information,
1622 * see zap_install_uffd_wp_if_needed().
1624 WARN_ON_ONCE(!vma_is_anonymous(vma));
1625 rss[mm_counter(folio)]--;
1626 if (is_device_private_entry(entry))
1627 folio_remove_rmap_pte(folio, page, vma);
1628 folio_put(folio);
1629 } else if (!non_swap_entry(entry)) {
1630 /* Genuine swap entries, hence a private anon pages */
1631 if (!should_zap_cows(details))
1632 return 1;
1634 nr = swap_pte_batch(pte, max_nr, ptent);
1635 rss[MM_SWAPENTS] -= nr;
1636 free_swap_and_cache_nr(entry, nr);
1637 } else if (is_migration_entry(entry)) {
1638 struct folio *folio = pfn_swap_entry_folio(entry);
1640 if (!should_zap_folio(details, folio))
1641 return 1;
1642 rss[mm_counter(folio)]--;
1643 } else if (pte_marker_entry_uffd_wp(entry)) {
1645 * For anon: always drop the marker; for file: only
1646 * drop the marker if explicitly requested.
1648 if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1649 return 1;
1650 } else if (is_guard_swp_entry(entry)) {
1652 * Ordinary zapping should not remove guard PTE
1653 * markers. Only do so if we should remove PTE markers
1654 * in general.
1656 if (!zap_drop_markers(details))
1657 return 1;
1658 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1659 if (!should_zap_cows(details))
1660 return 1;
1661 } else {
1662 /* We should have covered all the swap entry types */
1663 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1664 WARN_ON_ONCE(1);
1666 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1667 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1669 return nr;
1672 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1673 struct vm_area_struct *vma, pte_t *pte,
1674 unsigned long addr, unsigned long end,
1675 struct zap_details *details, int *rss,
1676 bool *force_flush, bool *force_break,
1677 bool *any_skipped)
1679 pte_t ptent = ptep_get(pte);
1680 int max_nr = (end - addr) / PAGE_SIZE;
1681 int nr = 0;
1683 /* Skip all consecutive none ptes */
1684 if (pte_none(ptent)) {
1685 for (nr = 1; nr < max_nr; nr++) {
1686 ptent = ptep_get(pte + nr);
1687 if (!pte_none(ptent))
1688 break;
1690 max_nr -= nr;
1691 if (!max_nr)
1692 return nr;
1693 pte += nr;
1694 addr += nr * PAGE_SIZE;
1697 if (pte_present(ptent))
1698 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1699 details, rss, force_flush, force_break,
1700 any_skipped);
1701 else
1702 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1703 details, rss, any_skipped);
1705 return nr;
1708 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1709 struct vm_area_struct *vma, pmd_t *pmd,
1710 unsigned long addr, unsigned long end,
1711 struct zap_details *details)
1713 bool force_flush = false, force_break = false;
1714 struct mm_struct *mm = tlb->mm;
1715 int rss[NR_MM_COUNTERS];
1716 spinlock_t *ptl;
1717 pte_t *start_pte;
1718 pte_t *pte;
1719 pmd_t pmdval;
1720 unsigned long start = addr;
1721 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1722 bool direct_reclaim = false;
1723 int nr;
1725 retry:
1726 tlb_change_page_size(tlb, PAGE_SIZE);
1727 init_rss_vec(rss);
1728 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1729 if (!pte)
1730 return addr;
1732 flush_tlb_batched_pending(mm);
1733 arch_enter_lazy_mmu_mode();
1734 do {
1735 bool any_skipped = false;
1737 if (need_resched())
1738 break;
1740 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1741 &force_flush, &force_break, &any_skipped);
1742 if (any_skipped)
1743 can_reclaim_pt = false;
1744 if (unlikely(force_break)) {
1745 addr += nr * PAGE_SIZE;
1746 break;
1748 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1750 if (can_reclaim_pt && addr == end)
1751 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1753 add_mm_rss_vec(mm, rss);
1754 arch_leave_lazy_mmu_mode();
1756 /* Do the actual TLB flush before dropping ptl */
1757 if (force_flush) {
1758 tlb_flush_mmu_tlbonly(tlb);
1759 tlb_flush_rmaps(tlb, vma);
1761 pte_unmap_unlock(start_pte, ptl);
1764 * If we forced a TLB flush (either due to running out of
1765 * batch buffers or because we needed to flush dirty TLB
1766 * entries before releasing the ptl), free the batched
1767 * memory too. Come back again if we didn't do everything.
1769 if (force_flush)
1770 tlb_flush_mmu(tlb);
1772 if (addr != end) {
1773 cond_resched();
1774 force_flush = false;
1775 force_break = false;
1776 goto retry;
1779 if (can_reclaim_pt) {
1780 if (direct_reclaim)
1781 free_pte(mm, start, tlb, pmdval);
1782 else
1783 try_to_free_pte(mm, pmd, start, tlb);
1786 return addr;
1789 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1790 struct vm_area_struct *vma, pud_t *pud,
1791 unsigned long addr, unsigned long end,
1792 struct zap_details *details)
1794 pmd_t *pmd;
1795 unsigned long next;
1797 pmd = pmd_offset(pud, addr);
1798 do {
1799 next = pmd_addr_end(addr, end);
1800 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1801 if (next - addr != HPAGE_PMD_SIZE)
1802 __split_huge_pmd(vma, pmd, addr, false, NULL);
1803 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1804 addr = next;
1805 continue;
1807 /* fall through */
1808 } else if (details && details->single_folio &&
1809 folio_test_pmd_mappable(details->single_folio) &&
1810 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1811 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1813 * Take and drop THP pmd lock so that we cannot return
1814 * prematurely, while zap_huge_pmd() has cleared *pmd,
1815 * but not yet decremented compound_mapcount().
1817 spin_unlock(ptl);
1819 if (pmd_none(*pmd)) {
1820 addr = next;
1821 continue;
1823 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1824 if (addr != next)
1825 pmd--;
1826 } while (pmd++, cond_resched(), addr != end);
1828 return addr;
1831 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1832 struct vm_area_struct *vma, p4d_t *p4d,
1833 unsigned long addr, unsigned long end,
1834 struct zap_details *details)
1836 pud_t *pud;
1837 unsigned long next;
1839 pud = pud_offset(p4d, addr);
1840 do {
1841 next = pud_addr_end(addr, end);
1842 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1843 if (next - addr != HPAGE_PUD_SIZE) {
1844 mmap_assert_locked(tlb->mm);
1845 split_huge_pud(vma, pud, addr);
1846 } else if (zap_huge_pud(tlb, vma, pud, addr))
1847 goto next;
1848 /* fall through */
1850 if (pud_none_or_clear_bad(pud))
1851 continue;
1852 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1853 next:
1854 cond_resched();
1855 } while (pud++, addr = next, addr != end);
1857 return addr;
1860 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1861 struct vm_area_struct *vma, pgd_t *pgd,
1862 unsigned long addr, unsigned long end,
1863 struct zap_details *details)
1865 p4d_t *p4d;
1866 unsigned long next;
1868 p4d = p4d_offset(pgd, addr);
1869 do {
1870 next = p4d_addr_end(addr, end);
1871 if (p4d_none_or_clear_bad(p4d))
1872 continue;
1873 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1874 } while (p4d++, addr = next, addr != end);
1876 return addr;
1879 void unmap_page_range(struct mmu_gather *tlb,
1880 struct vm_area_struct *vma,
1881 unsigned long addr, unsigned long end,
1882 struct zap_details *details)
1884 pgd_t *pgd;
1885 unsigned long next;
1887 BUG_ON(addr >= end);
1888 tlb_start_vma(tlb, vma);
1889 pgd = pgd_offset(vma->vm_mm, addr);
1890 do {
1891 next = pgd_addr_end(addr, end);
1892 if (pgd_none_or_clear_bad(pgd))
1893 continue;
1894 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1895 } while (pgd++, addr = next, addr != end);
1896 tlb_end_vma(tlb, vma);
1900 static void unmap_single_vma(struct mmu_gather *tlb,
1901 struct vm_area_struct *vma, unsigned long start_addr,
1902 unsigned long end_addr,
1903 struct zap_details *details, bool mm_wr_locked)
1905 unsigned long start = max(vma->vm_start, start_addr);
1906 unsigned long end;
1908 if (start >= vma->vm_end)
1909 return;
1910 end = min(vma->vm_end, end_addr);
1911 if (end <= vma->vm_start)
1912 return;
1914 if (vma->vm_file)
1915 uprobe_munmap(vma, start, end);
1917 if (unlikely(vma->vm_flags & VM_PFNMAP))
1918 untrack_pfn(vma, 0, 0, mm_wr_locked);
1920 if (start != end) {
1921 if (unlikely(is_vm_hugetlb_page(vma))) {
1923 * It is undesirable to test vma->vm_file as it
1924 * should be non-null for valid hugetlb area.
1925 * However, vm_file will be NULL in the error
1926 * cleanup path of mmap_region. When
1927 * hugetlbfs ->mmap method fails,
1928 * mmap_region() nullifies vma->vm_file
1929 * before calling this function to clean up.
1930 * Since no pte has actually been setup, it is
1931 * safe to do nothing in this case.
1933 if (vma->vm_file) {
1934 zap_flags_t zap_flags = details ?
1935 details->zap_flags : 0;
1936 __unmap_hugepage_range(tlb, vma, start, end,
1937 NULL, zap_flags);
1939 } else
1940 unmap_page_range(tlb, vma, start, end, details);
1945 * unmap_vmas - unmap a range of memory covered by a list of vma's
1946 * @tlb: address of the caller's struct mmu_gather
1947 * @mas: the maple state
1948 * @vma: the starting vma
1949 * @start_addr: virtual address at which to start unmapping
1950 * @end_addr: virtual address at which to end unmapping
1951 * @tree_end: The maximum index to check
1952 * @mm_wr_locked: lock flag
1954 * Unmap all pages in the vma list.
1956 * Only addresses between `start' and `end' will be unmapped.
1958 * The VMA list must be sorted in ascending virtual address order.
1960 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1961 * range after unmap_vmas() returns. So the only responsibility here is to
1962 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1963 * drops the lock and schedules.
1965 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1966 struct vm_area_struct *vma, unsigned long start_addr,
1967 unsigned long end_addr, unsigned long tree_end,
1968 bool mm_wr_locked)
1970 struct mmu_notifier_range range;
1971 struct zap_details details = {
1972 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1973 /* Careful - we need to zap private pages too! */
1974 .even_cows = true,
1977 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1978 start_addr, end_addr);
1979 mmu_notifier_invalidate_range_start(&range);
1980 do {
1981 unsigned long start = start_addr;
1982 unsigned long end = end_addr;
1983 hugetlb_zap_begin(vma, &start, &end);
1984 unmap_single_vma(tlb, vma, start, end, &details,
1985 mm_wr_locked);
1986 hugetlb_zap_end(vma, &details);
1987 vma = mas_find(mas, tree_end - 1);
1988 } while (vma && likely(!xa_is_zero(vma)));
1989 mmu_notifier_invalidate_range_end(&range);
1993 * zap_page_range_single - remove user pages in a given range
1994 * @vma: vm_area_struct holding the applicable pages
1995 * @address: starting address of pages to zap
1996 * @size: number of bytes to zap
1997 * @details: details of shared cache invalidation
1999 * The range must fit into one VMA.
2001 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2002 unsigned long size, struct zap_details *details)
2004 const unsigned long end = address + size;
2005 struct mmu_notifier_range range;
2006 struct mmu_gather tlb;
2008 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2009 address, end);
2010 hugetlb_zap_begin(vma, &range.start, &range.end);
2011 tlb_gather_mmu(&tlb, vma->vm_mm);
2012 update_hiwater_rss(vma->vm_mm);
2013 mmu_notifier_invalidate_range_start(&range);
2015 * unmap 'address-end' not 'range.start-range.end' as range
2016 * could have been expanded for hugetlb pmd sharing.
2018 unmap_single_vma(&tlb, vma, address, end, details, false);
2019 mmu_notifier_invalidate_range_end(&range);
2020 tlb_finish_mmu(&tlb);
2021 hugetlb_zap_end(vma, details);
2025 * zap_vma_ptes - remove ptes mapping the vma
2026 * @vma: vm_area_struct holding ptes to be zapped
2027 * @address: starting address of pages to zap
2028 * @size: number of bytes to zap
2030 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2032 * The entire address range must be fully contained within the vma.
2035 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2036 unsigned long size)
2038 if (!range_in_vma(vma, address, address + size) ||
2039 !(vma->vm_flags & VM_PFNMAP))
2040 return;
2042 zap_page_range_single(vma, address, size, NULL);
2044 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2046 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2048 pgd_t *pgd;
2049 p4d_t *p4d;
2050 pud_t *pud;
2051 pmd_t *pmd;
2053 pgd = pgd_offset(mm, addr);
2054 p4d = p4d_alloc(mm, pgd, addr);
2055 if (!p4d)
2056 return NULL;
2057 pud = pud_alloc(mm, p4d, addr);
2058 if (!pud)
2059 return NULL;
2060 pmd = pmd_alloc(mm, pud, addr);
2061 if (!pmd)
2062 return NULL;
2064 VM_BUG_ON(pmd_trans_huge(*pmd));
2065 return pmd;
2068 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2069 spinlock_t **ptl)
2071 pmd_t *pmd = walk_to_pmd(mm, addr);
2073 if (!pmd)
2074 return NULL;
2075 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2078 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2080 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2082 * Whoever wants to forbid the zeropage after some zeropages
2083 * might already have been mapped has to scan the page tables and
2084 * bail out on any zeropages. Zeropages in COW mappings can
2085 * be unshared using FAULT_FLAG_UNSHARE faults.
2087 if (mm_forbids_zeropage(vma->vm_mm))
2088 return false;
2089 /* zeropages in COW mappings are common and unproblematic. */
2090 if (is_cow_mapping(vma->vm_flags))
2091 return true;
2092 /* Mappings that do not allow for writable PTEs are unproblematic. */
2093 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2094 return true;
2096 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2097 * find the shared zeropage and longterm-pin it, which would
2098 * be problematic as soon as the zeropage gets replaced by a different
2099 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2100 * now differ to what GUP looked up. FSDAX is incompatible to
2101 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2102 * check_vma_flags).
2104 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2105 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2108 static int validate_page_before_insert(struct vm_area_struct *vma,
2109 struct page *page)
2111 struct folio *folio = page_folio(page);
2113 if (!folio_ref_count(folio))
2114 return -EINVAL;
2115 if (unlikely(is_zero_folio(folio))) {
2116 if (!vm_mixed_zeropage_allowed(vma))
2117 return -EINVAL;
2118 return 0;
2120 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2121 page_has_type(page))
2122 return -EINVAL;
2123 flush_dcache_folio(folio);
2124 return 0;
2127 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2128 unsigned long addr, struct page *page, pgprot_t prot)
2130 struct folio *folio = page_folio(page);
2131 pte_t pteval;
2133 if (!pte_none(ptep_get(pte)))
2134 return -EBUSY;
2135 /* Ok, finally just insert the thing.. */
2136 pteval = mk_pte(page, prot);
2137 if (unlikely(is_zero_folio(folio))) {
2138 pteval = pte_mkspecial(pteval);
2139 } else {
2140 folio_get(folio);
2141 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2142 folio_add_file_rmap_pte(folio, page, vma);
2144 set_pte_at(vma->vm_mm, addr, pte, pteval);
2145 return 0;
2148 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2149 struct page *page, pgprot_t prot)
2151 int retval;
2152 pte_t *pte;
2153 spinlock_t *ptl;
2155 retval = validate_page_before_insert(vma, page);
2156 if (retval)
2157 goto out;
2158 retval = -ENOMEM;
2159 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2160 if (!pte)
2161 goto out;
2162 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2163 pte_unmap_unlock(pte, ptl);
2164 out:
2165 return retval;
2168 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2169 unsigned long addr, struct page *page, pgprot_t prot)
2171 int err;
2173 err = validate_page_before_insert(vma, page);
2174 if (err)
2175 return err;
2176 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2179 /* insert_pages() amortizes the cost of spinlock operations
2180 * when inserting pages in a loop.
2182 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2183 struct page **pages, unsigned long *num, pgprot_t prot)
2185 pmd_t *pmd = NULL;
2186 pte_t *start_pte, *pte;
2187 spinlock_t *pte_lock;
2188 struct mm_struct *const mm = vma->vm_mm;
2189 unsigned long curr_page_idx = 0;
2190 unsigned long remaining_pages_total = *num;
2191 unsigned long pages_to_write_in_pmd;
2192 int ret;
2193 more:
2194 ret = -EFAULT;
2195 pmd = walk_to_pmd(mm, addr);
2196 if (!pmd)
2197 goto out;
2199 pages_to_write_in_pmd = min_t(unsigned long,
2200 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2202 /* Allocate the PTE if necessary; takes PMD lock once only. */
2203 ret = -ENOMEM;
2204 if (pte_alloc(mm, pmd))
2205 goto out;
2207 while (pages_to_write_in_pmd) {
2208 int pte_idx = 0;
2209 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2211 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2212 if (!start_pte) {
2213 ret = -EFAULT;
2214 goto out;
2216 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2217 int err = insert_page_in_batch_locked(vma, pte,
2218 addr, pages[curr_page_idx], prot);
2219 if (unlikely(err)) {
2220 pte_unmap_unlock(start_pte, pte_lock);
2221 ret = err;
2222 remaining_pages_total -= pte_idx;
2223 goto out;
2225 addr += PAGE_SIZE;
2226 ++curr_page_idx;
2228 pte_unmap_unlock(start_pte, pte_lock);
2229 pages_to_write_in_pmd -= batch_size;
2230 remaining_pages_total -= batch_size;
2232 if (remaining_pages_total)
2233 goto more;
2234 ret = 0;
2235 out:
2236 *num = remaining_pages_total;
2237 return ret;
2241 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2242 * @vma: user vma to map to
2243 * @addr: target start user address of these pages
2244 * @pages: source kernel pages
2245 * @num: in: number of pages to map. out: number of pages that were *not*
2246 * mapped. (0 means all pages were successfully mapped).
2248 * Preferred over vm_insert_page() when inserting multiple pages.
2250 * In case of error, we may have mapped a subset of the provided
2251 * pages. It is the caller's responsibility to account for this case.
2253 * The same restrictions apply as in vm_insert_page().
2255 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2256 struct page **pages, unsigned long *num)
2258 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2260 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2261 return -EFAULT;
2262 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2263 BUG_ON(mmap_read_trylock(vma->vm_mm));
2264 BUG_ON(vma->vm_flags & VM_PFNMAP);
2265 vm_flags_set(vma, VM_MIXEDMAP);
2267 /* Defer page refcount checking till we're about to map that page. */
2268 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2270 EXPORT_SYMBOL(vm_insert_pages);
2273 * vm_insert_page - insert single page into user vma
2274 * @vma: user vma to map to
2275 * @addr: target user address of this page
2276 * @page: source kernel page
2278 * This allows drivers to insert individual pages they've allocated
2279 * into a user vma. The zeropage is supported in some VMAs,
2280 * see vm_mixed_zeropage_allowed().
2282 * The page has to be a nice clean _individual_ kernel allocation.
2283 * If you allocate a compound page, you need to have marked it as
2284 * such (__GFP_COMP), or manually just split the page up yourself
2285 * (see split_page()).
2287 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2288 * took an arbitrary page protection parameter. This doesn't allow
2289 * that. Your vma protection will have to be set up correctly, which
2290 * means that if you want a shared writable mapping, you'd better
2291 * ask for a shared writable mapping!
2293 * The page does not need to be reserved.
2295 * Usually this function is called from f_op->mmap() handler
2296 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2297 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2298 * function from other places, for example from page-fault handler.
2300 * Return: %0 on success, negative error code otherwise.
2302 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2303 struct page *page)
2305 if (addr < vma->vm_start || addr >= vma->vm_end)
2306 return -EFAULT;
2307 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2308 BUG_ON(mmap_read_trylock(vma->vm_mm));
2309 BUG_ON(vma->vm_flags & VM_PFNMAP);
2310 vm_flags_set(vma, VM_MIXEDMAP);
2312 return insert_page(vma, addr, page, vma->vm_page_prot);
2314 EXPORT_SYMBOL(vm_insert_page);
2317 * __vm_map_pages - maps range of kernel pages into user vma
2318 * @vma: user vma to map to
2319 * @pages: pointer to array of source kernel pages
2320 * @num: number of pages in page array
2321 * @offset: user's requested vm_pgoff
2323 * This allows drivers to map range of kernel pages into a user vma.
2324 * The zeropage is supported in some VMAs, see
2325 * vm_mixed_zeropage_allowed().
2327 * Return: 0 on success and error code otherwise.
2329 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2330 unsigned long num, unsigned long offset)
2332 unsigned long count = vma_pages(vma);
2333 unsigned long uaddr = vma->vm_start;
2334 int ret, i;
2336 /* Fail if the user requested offset is beyond the end of the object */
2337 if (offset >= num)
2338 return -ENXIO;
2340 /* Fail if the user requested size exceeds available object size */
2341 if (count > num - offset)
2342 return -ENXIO;
2344 for (i = 0; i < count; i++) {
2345 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2346 if (ret < 0)
2347 return ret;
2348 uaddr += PAGE_SIZE;
2351 return 0;
2355 * vm_map_pages - maps range of kernel pages starts with non zero offset
2356 * @vma: user vma to map to
2357 * @pages: pointer to array of source kernel pages
2358 * @num: number of pages in page array
2360 * Maps an object consisting of @num pages, catering for the user's
2361 * requested vm_pgoff
2363 * If we fail to insert any page into the vma, the function will return
2364 * immediately leaving any previously inserted pages present. Callers
2365 * from the mmap handler may immediately return the error as their caller
2366 * will destroy the vma, removing any successfully inserted pages. Other
2367 * callers should make their own arrangements for calling unmap_region().
2369 * Context: Process context. Called by mmap handlers.
2370 * Return: 0 on success and error code otherwise.
2372 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2373 unsigned long num)
2375 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2377 EXPORT_SYMBOL(vm_map_pages);
2380 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2381 * @vma: user vma to map to
2382 * @pages: pointer to array of source kernel pages
2383 * @num: number of pages in page array
2385 * Similar to vm_map_pages(), except that it explicitly sets the offset
2386 * to 0. This function is intended for the drivers that did not consider
2387 * vm_pgoff.
2389 * Context: Process context. Called by mmap handlers.
2390 * Return: 0 on success and error code otherwise.
2392 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2393 unsigned long num)
2395 return __vm_map_pages(vma, pages, num, 0);
2397 EXPORT_SYMBOL(vm_map_pages_zero);
2399 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2400 pfn_t pfn, pgprot_t prot, bool mkwrite)
2402 struct mm_struct *mm = vma->vm_mm;
2403 pte_t *pte, entry;
2404 spinlock_t *ptl;
2406 pte = get_locked_pte(mm, addr, &ptl);
2407 if (!pte)
2408 return VM_FAULT_OOM;
2409 entry = ptep_get(pte);
2410 if (!pte_none(entry)) {
2411 if (mkwrite) {
2413 * For read faults on private mappings the PFN passed
2414 * in may not match the PFN we have mapped if the
2415 * mapped PFN is a writeable COW page. In the mkwrite
2416 * case we are creating a writable PTE for a shared
2417 * mapping and we expect the PFNs to match. If they
2418 * don't match, we are likely racing with block
2419 * allocation and mapping invalidation so just skip the
2420 * update.
2422 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2423 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2424 goto out_unlock;
2426 entry = pte_mkyoung(entry);
2427 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2428 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2429 update_mmu_cache(vma, addr, pte);
2431 goto out_unlock;
2434 /* Ok, finally just insert the thing.. */
2435 if (pfn_t_devmap(pfn))
2436 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2437 else
2438 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2440 if (mkwrite) {
2441 entry = pte_mkyoung(entry);
2442 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2445 set_pte_at(mm, addr, pte, entry);
2446 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2448 out_unlock:
2449 pte_unmap_unlock(pte, ptl);
2450 return VM_FAULT_NOPAGE;
2454 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2455 * @vma: user vma to map to
2456 * @addr: target user address of this page
2457 * @pfn: source kernel pfn
2458 * @pgprot: pgprot flags for the inserted page
2460 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2461 * to override pgprot on a per-page basis.
2463 * This only makes sense for IO mappings, and it makes no sense for
2464 * COW mappings. In general, using multiple vmas is preferable;
2465 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2466 * impractical.
2468 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2469 * caching- and encryption bits different than those of @vma->vm_page_prot,
2470 * because the caching- or encryption mode may not be known at mmap() time.
2472 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2473 * to set caching and encryption bits for those vmas (except for COW pages).
2474 * This is ensured by core vm only modifying these page table entries using
2475 * functions that don't touch caching- or encryption bits, using pte_modify()
2476 * if needed. (See for example mprotect()).
2478 * Also when new page-table entries are created, this is only done using the
2479 * fault() callback, and never using the value of vma->vm_page_prot,
2480 * except for page-table entries that point to anonymous pages as the result
2481 * of COW.
2483 * Context: Process context. May allocate using %GFP_KERNEL.
2484 * Return: vm_fault_t value.
2486 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2487 unsigned long pfn, pgprot_t pgprot)
2490 * Technically, architectures with pte_special can avoid all these
2491 * restrictions (same for remap_pfn_range). However we would like
2492 * consistency in testing and feature parity among all, so we should
2493 * try to keep these invariants in place for everybody.
2495 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2496 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2497 (VM_PFNMAP|VM_MIXEDMAP));
2498 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2499 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2501 if (addr < vma->vm_start || addr >= vma->vm_end)
2502 return VM_FAULT_SIGBUS;
2504 if (!pfn_modify_allowed(pfn, pgprot))
2505 return VM_FAULT_SIGBUS;
2507 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2509 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2510 false);
2512 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2515 * vmf_insert_pfn - insert single pfn into user vma
2516 * @vma: user vma to map to
2517 * @addr: target user address of this page
2518 * @pfn: source kernel pfn
2520 * Similar to vm_insert_page, this allows drivers to insert individual pages
2521 * they've allocated into a user vma. Same comments apply.
2523 * This function should only be called from a vm_ops->fault handler, and
2524 * in that case the handler should return the result of this function.
2526 * vma cannot be a COW mapping.
2528 * As this is called only for pages that do not currently exist, we
2529 * do not need to flush old virtual caches or the TLB.
2531 * Context: Process context. May allocate using %GFP_KERNEL.
2532 * Return: vm_fault_t value.
2534 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2535 unsigned long pfn)
2537 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2539 EXPORT_SYMBOL(vmf_insert_pfn);
2541 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2543 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2544 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2545 return false;
2546 /* these checks mirror the abort conditions in vm_normal_page */
2547 if (vma->vm_flags & VM_MIXEDMAP)
2548 return true;
2549 if (pfn_t_devmap(pfn))
2550 return true;
2551 if (pfn_t_special(pfn))
2552 return true;
2553 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2554 return true;
2555 return false;
2558 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2559 unsigned long addr, pfn_t pfn, bool mkwrite)
2561 pgprot_t pgprot = vma->vm_page_prot;
2562 int err;
2564 if (!vm_mixed_ok(vma, pfn, mkwrite))
2565 return VM_FAULT_SIGBUS;
2567 if (addr < vma->vm_start || addr >= vma->vm_end)
2568 return VM_FAULT_SIGBUS;
2570 track_pfn_insert(vma, &pgprot, pfn);
2572 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2573 return VM_FAULT_SIGBUS;
2576 * If we don't have pte special, then we have to use the pfn_valid()
2577 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2578 * refcount the page if pfn_valid is true (hence insert_page rather
2579 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2580 * without pte special, it would there be refcounted as a normal page.
2582 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2583 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2584 struct page *page;
2587 * At this point we are committed to insert_page()
2588 * regardless of whether the caller specified flags that
2589 * result in pfn_t_has_page() == false.
2591 page = pfn_to_page(pfn_t_to_pfn(pfn));
2592 err = insert_page(vma, addr, page, pgprot);
2593 } else {
2594 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2597 if (err == -ENOMEM)
2598 return VM_FAULT_OOM;
2599 if (err < 0 && err != -EBUSY)
2600 return VM_FAULT_SIGBUS;
2602 return VM_FAULT_NOPAGE;
2605 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2606 pfn_t pfn)
2608 return __vm_insert_mixed(vma, addr, pfn, false);
2610 EXPORT_SYMBOL(vmf_insert_mixed);
2613 * If the insertion of PTE failed because someone else already added a
2614 * different entry in the mean time, we treat that as success as we assume
2615 * the same entry was actually inserted.
2617 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2618 unsigned long addr, pfn_t pfn)
2620 return __vm_insert_mixed(vma, addr, pfn, true);
2624 * maps a range of physical memory into the requested pages. the old
2625 * mappings are removed. any references to nonexistent pages results
2626 * in null mappings (currently treated as "copy-on-access")
2628 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2629 unsigned long addr, unsigned long end,
2630 unsigned long pfn, pgprot_t prot)
2632 pte_t *pte, *mapped_pte;
2633 spinlock_t *ptl;
2634 int err = 0;
2636 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2637 if (!pte)
2638 return -ENOMEM;
2639 arch_enter_lazy_mmu_mode();
2640 do {
2641 BUG_ON(!pte_none(ptep_get(pte)));
2642 if (!pfn_modify_allowed(pfn, prot)) {
2643 err = -EACCES;
2644 break;
2646 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2647 pfn++;
2648 } while (pte++, addr += PAGE_SIZE, addr != end);
2649 arch_leave_lazy_mmu_mode();
2650 pte_unmap_unlock(mapped_pte, ptl);
2651 return err;
2654 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2655 unsigned long addr, unsigned long end,
2656 unsigned long pfn, pgprot_t prot)
2658 pmd_t *pmd;
2659 unsigned long next;
2660 int err;
2662 pfn -= addr >> PAGE_SHIFT;
2663 pmd = pmd_alloc(mm, pud, addr);
2664 if (!pmd)
2665 return -ENOMEM;
2666 VM_BUG_ON(pmd_trans_huge(*pmd));
2667 do {
2668 next = pmd_addr_end(addr, end);
2669 err = remap_pte_range(mm, pmd, addr, next,
2670 pfn + (addr >> PAGE_SHIFT), prot);
2671 if (err)
2672 return err;
2673 } while (pmd++, addr = next, addr != end);
2674 return 0;
2677 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2678 unsigned long addr, unsigned long end,
2679 unsigned long pfn, pgprot_t prot)
2681 pud_t *pud;
2682 unsigned long next;
2683 int err;
2685 pfn -= addr >> PAGE_SHIFT;
2686 pud = pud_alloc(mm, p4d, addr);
2687 if (!pud)
2688 return -ENOMEM;
2689 do {
2690 next = pud_addr_end(addr, end);
2691 err = remap_pmd_range(mm, pud, addr, next,
2692 pfn + (addr >> PAGE_SHIFT), prot);
2693 if (err)
2694 return err;
2695 } while (pud++, addr = next, addr != end);
2696 return 0;
2699 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2700 unsigned long addr, unsigned long end,
2701 unsigned long pfn, pgprot_t prot)
2703 p4d_t *p4d;
2704 unsigned long next;
2705 int err;
2707 pfn -= addr >> PAGE_SHIFT;
2708 p4d = p4d_alloc(mm, pgd, addr);
2709 if (!p4d)
2710 return -ENOMEM;
2711 do {
2712 next = p4d_addr_end(addr, end);
2713 err = remap_pud_range(mm, p4d, addr, next,
2714 pfn + (addr >> PAGE_SHIFT), prot);
2715 if (err)
2716 return err;
2717 } while (p4d++, addr = next, addr != end);
2718 return 0;
2721 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2722 unsigned long pfn, unsigned long size, pgprot_t prot)
2724 pgd_t *pgd;
2725 unsigned long next;
2726 unsigned long end = addr + PAGE_ALIGN(size);
2727 struct mm_struct *mm = vma->vm_mm;
2728 int err;
2730 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2731 return -EINVAL;
2734 * Physically remapped pages are special. Tell the
2735 * rest of the world about it:
2736 * VM_IO tells people not to look at these pages
2737 * (accesses can have side effects).
2738 * VM_PFNMAP tells the core MM that the base pages are just
2739 * raw PFN mappings, and do not have a "struct page" associated
2740 * with them.
2741 * VM_DONTEXPAND
2742 * Disable vma merging and expanding with mremap().
2743 * VM_DONTDUMP
2744 * Omit vma from core dump, even when VM_IO turned off.
2746 * There's a horrible special case to handle copy-on-write
2747 * behaviour that some programs depend on. We mark the "original"
2748 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2749 * See vm_normal_page() for details.
2751 if (is_cow_mapping(vma->vm_flags)) {
2752 if (addr != vma->vm_start || end != vma->vm_end)
2753 return -EINVAL;
2754 vma->vm_pgoff = pfn;
2757 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2759 BUG_ON(addr >= end);
2760 pfn -= addr >> PAGE_SHIFT;
2761 pgd = pgd_offset(mm, addr);
2762 flush_cache_range(vma, addr, end);
2763 do {
2764 next = pgd_addr_end(addr, end);
2765 err = remap_p4d_range(mm, pgd, addr, next,
2766 pfn + (addr >> PAGE_SHIFT), prot);
2767 if (err)
2768 return err;
2769 } while (pgd++, addr = next, addr != end);
2771 return 0;
2775 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2776 * must have pre-validated the caching bits of the pgprot_t.
2778 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2779 unsigned long pfn, unsigned long size, pgprot_t prot)
2781 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2783 if (!error)
2784 return 0;
2787 * A partial pfn range mapping is dangerous: it does not
2788 * maintain page reference counts, and callers may free
2789 * pages due to the error. So zap it early.
2791 zap_page_range_single(vma, addr, size, NULL);
2792 return error;
2796 * remap_pfn_range - remap kernel memory to userspace
2797 * @vma: user vma to map to
2798 * @addr: target page aligned user address to start at
2799 * @pfn: page frame number of kernel physical memory address
2800 * @size: size of mapping area
2801 * @prot: page protection flags for this mapping
2803 * Note: this is only safe if the mm semaphore is held when called.
2805 * Return: %0 on success, negative error code otherwise.
2807 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2808 unsigned long pfn, unsigned long size, pgprot_t prot)
2810 int err;
2812 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2813 if (err)
2814 return -EINVAL;
2816 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2817 if (err)
2818 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2819 return err;
2821 EXPORT_SYMBOL(remap_pfn_range);
2824 * vm_iomap_memory - remap memory to userspace
2825 * @vma: user vma to map to
2826 * @start: start of the physical memory to be mapped
2827 * @len: size of area
2829 * This is a simplified io_remap_pfn_range() for common driver use. The
2830 * driver just needs to give us the physical memory range to be mapped,
2831 * we'll figure out the rest from the vma information.
2833 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2834 * whatever write-combining details or similar.
2836 * Return: %0 on success, negative error code otherwise.
2838 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2840 unsigned long vm_len, pfn, pages;
2842 /* Check that the physical memory area passed in looks valid */
2843 if (start + len < start)
2844 return -EINVAL;
2846 * You *really* shouldn't map things that aren't page-aligned,
2847 * but we've historically allowed it because IO memory might
2848 * just have smaller alignment.
2850 len += start & ~PAGE_MASK;
2851 pfn = start >> PAGE_SHIFT;
2852 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2853 if (pfn + pages < pfn)
2854 return -EINVAL;
2856 /* We start the mapping 'vm_pgoff' pages into the area */
2857 if (vma->vm_pgoff > pages)
2858 return -EINVAL;
2859 pfn += vma->vm_pgoff;
2860 pages -= vma->vm_pgoff;
2862 /* Can we fit all of the mapping? */
2863 vm_len = vma->vm_end - vma->vm_start;
2864 if (vm_len >> PAGE_SHIFT > pages)
2865 return -EINVAL;
2867 /* Ok, let it rip */
2868 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2870 EXPORT_SYMBOL(vm_iomap_memory);
2872 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2873 unsigned long addr, unsigned long end,
2874 pte_fn_t fn, void *data, bool create,
2875 pgtbl_mod_mask *mask)
2877 pte_t *pte, *mapped_pte;
2878 int err = 0;
2879 spinlock_t *ptl;
2881 if (create) {
2882 mapped_pte = pte = (mm == &init_mm) ?
2883 pte_alloc_kernel_track(pmd, addr, mask) :
2884 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2885 if (!pte)
2886 return -ENOMEM;
2887 } else {
2888 mapped_pte = pte = (mm == &init_mm) ?
2889 pte_offset_kernel(pmd, addr) :
2890 pte_offset_map_lock(mm, pmd, addr, &ptl);
2891 if (!pte)
2892 return -EINVAL;
2895 arch_enter_lazy_mmu_mode();
2897 if (fn) {
2898 do {
2899 if (create || !pte_none(ptep_get(pte))) {
2900 err = fn(pte++, addr, data);
2901 if (err)
2902 break;
2904 } while (addr += PAGE_SIZE, addr != end);
2906 *mask |= PGTBL_PTE_MODIFIED;
2908 arch_leave_lazy_mmu_mode();
2910 if (mm != &init_mm)
2911 pte_unmap_unlock(mapped_pte, ptl);
2912 return err;
2915 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2916 unsigned long addr, unsigned long end,
2917 pte_fn_t fn, void *data, bool create,
2918 pgtbl_mod_mask *mask)
2920 pmd_t *pmd;
2921 unsigned long next;
2922 int err = 0;
2924 BUG_ON(pud_leaf(*pud));
2926 if (create) {
2927 pmd = pmd_alloc_track(mm, pud, addr, mask);
2928 if (!pmd)
2929 return -ENOMEM;
2930 } else {
2931 pmd = pmd_offset(pud, addr);
2933 do {
2934 next = pmd_addr_end(addr, end);
2935 if (pmd_none(*pmd) && !create)
2936 continue;
2937 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2938 return -EINVAL;
2939 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2940 if (!create)
2941 continue;
2942 pmd_clear_bad(pmd);
2944 err = apply_to_pte_range(mm, pmd, addr, next,
2945 fn, data, create, mask);
2946 if (err)
2947 break;
2948 } while (pmd++, addr = next, addr != end);
2950 return err;
2953 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2954 unsigned long addr, unsigned long end,
2955 pte_fn_t fn, void *data, bool create,
2956 pgtbl_mod_mask *mask)
2958 pud_t *pud;
2959 unsigned long next;
2960 int err = 0;
2962 if (create) {
2963 pud = pud_alloc_track(mm, p4d, addr, mask);
2964 if (!pud)
2965 return -ENOMEM;
2966 } else {
2967 pud = pud_offset(p4d, addr);
2969 do {
2970 next = pud_addr_end(addr, end);
2971 if (pud_none(*pud) && !create)
2972 continue;
2973 if (WARN_ON_ONCE(pud_leaf(*pud)))
2974 return -EINVAL;
2975 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2976 if (!create)
2977 continue;
2978 pud_clear_bad(pud);
2980 err = apply_to_pmd_range(mm, pud, addr, next,
2981 fn, data, create, mask);
2982 if (err)
2983 break;
2984 } while (pud++, addr = next, addr != end);
2986 return err;
2989 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2990 unsigned long addr, unsigned long end,
2991 pte_fn_t fn, void *data, bool create,
2992 pgtbl_mod_mask *mask)
2994 p4d_t *p4d;
2995 unsigned long next;
2996 int err = 0;
2998 if (create) {
2999 p4d = p4d_alloc_track(mm, pgd, addr, mask);
3000 if (!p4d)
3001 return -ENOMEM;
3002 } else {
3003 p4d = p4d_offset(pgd, addr);
3005 do {
3006 next = p4d_addr_end(addr, end);
3007 if (p4d_none(*p4d) && !create)
3008 continue;
3009 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3010 return -EINVAL;
3011 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3012 if (!create)
3013 continue;
3014 p4d_clear_bad(p4d);
3016 err = apply_to_pud_range(mm, p4d, addr, next,
3017 fn, data, create, mask);
3018 if (err)
3019 break;
3020 } while (p4d++, addr = next, addr != end);
3022 return err;
3025 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3026 unsigned long size, pte_fn_t fn,
3027 void *data, bool create)
3029 pgd_t *pgd;
3030 unsigned long start = addr, next;
3031 unsigned long end = addr + size;
3032 pgtbl_mod_mask mask = 0;
3033 int err = 0;
3035 if (WARN_ON(addr >= end))
3036 return -EINVAL;
3038 pgd = pgd_offset(mm, addr);
3039 do {
3040 next = pgd_addr_end(addr, end);
3041 if (pgd_none(*pgd) && !create)
3042 continue;
3043 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
3044 return -EINVAL;
3045 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3046 if (!create)
3047 continue;
3048 pgd_clear_bad(pgd);
3050 err = apply_to_p4d_range(mm, pgd, addr, next,
3051 fn, data, create, &mask);
3052 if (err)
3053 break;
3054 } while (pgd++, addr = next, addr != end);
3056 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3057 arch_sync_kernel_mappings(start, start + size);
3059 return err;
3063 * Scan a region of virtual memory, filling in page tables as necessary
3064 * and calling a provided function on each leaf page table.
3066 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3067 unsigned long size, pte_fn_t fn, void *data)
3069 return __apply_to_page_range(mm, addr, size, fn, data, true);
3071 EXPORT_SYMBOL_GPL(apply_to_page_range);
3074 * Scan a region of virtual memory, calling a provided function on
3075 * each leaf page table where it exists.
3077 * Unlike apply_to_page_range, this does _not_ fill in page tables
3078 * where they are absent.
3080 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3081 unsigned long size, pte_fn_t fn, void *data)
3083 return __apply_to_page_range(mm, addr, size, fn, data, false);
3087 * handle_pte_fault chooses page fault handler according to an entry which was
3088 * read non-atomically. Before making any commitment, on those architectures
3089 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3090 * parts, do_swap_page must check under lock before unmapping the pte and
3091 * proceeding (but do_wp_page is only called after already making such a check;
3092 * and do_anonymous_page can safely check later on).
3094 static inline int pte_unmap_same(struct vm_fault *vmf)
3096 int same = 1;
3097 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3098 if (sizeof(pte_t) > sizeof(unsigned long)) {
3099 spin_lock(vmf->ptl);
3100 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3101 spin_unlock(vmf->ptl);
3103 #endif
3104 pte_unmap(vmf->pte);
3105 vmf->pte = NULL;
3106 return same;
3110 * Return:
3111 * 0: copied succeeded
3112 * -EHWPOISON: copy failed due to hwpoison in source page
3113 * -EAGAIN: copied failed (some other reason)
3115 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3116 struct vm_fault *vmf)
3118 int ret;
3119 void *kaddr;
3120 void __user *uaddr;
3121 struct vm_area_struct *vma = vmf->vma;
3122 struct mm_struct *mm = vma->vm_mm;
3123 unsigned long addr = vmf->address;
3125 if (likely(src)) {
3126 if (copy_mc_user_highpage(dst, src, addr, vma))
3127 return -EHWPOISON;
3128 return 0;
3132 * If the source page was a PFN mapping, we don't have
3133 * a "struct page" for it. We do a best-effort copy by
3134 * just copying from the original user address. If that
3135 * fails, we just zero-fill it. Live with it.
3137 kaddr = kmap_local_page(dst);
3138 pagefault_disable();
3139 uaddr = (void __user *)(addr & PAGE_MASK);
3142 * On architectures with software "accessed" bits, we would
3143 * take a double page fault, so mark it accessed here.
3145 vmf->pte = NULL;
3146 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3147 pte_t entry;
3149 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3150 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3152 * Other thread has already handled the fault
3153 * and update local tlb only
3155 if (vmf->pte)
3156 update_mmu_tlb(vma, addr, vmf->pte);
3157 ret = -EAGAIN;
3158 goto pte_unlock;
3161 entry = pte_mkyoung(vmf->orig_pte);
3162 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3163 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3167 * This really shouldn't fail, because the page is there
3168 * in the page tables. But it might just be unreadable,
3169 * in which case we just give up and fill the result with
3170 * zeroes.
3172 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3173 if (vmf->pte)
3174 goto warn;
3176 /* Re-validate under PTL if the page is still mapped */
3177 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3178 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3179 /* The PTE changed under us, update local tlb */
3180 if (vmf->pte)
3181 update_mmu_tlb(vma, addr, vmf->pte);
3182 ret = -EAGAIN;
3183 goto pte_unlock;
3187 * The same page can be mapped back since last copy attempt.
3188 * Try to copy again under PTL.
3190 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3192 * Give a warn in case there can be some obscure
3193 * use-case
3195 warn:
3196 WARN_ON_ONCE(1);
3197 clear_page(kaddr);
3201 ret = 0;
3203 pte_unlock:
3204 if (vmf->pte)
3205 pte_unmap_unlock(vmf->pte, vmf->ptl);
3206 pagefault_enable();
3207 kunmap_local(kaddr);
3208 flush_dcache_page(dst);
3210 return ret;
3213 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3215 struct file *vm_file = vma->vm_file;
3217 if (vm_file)
3218 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3221 * Special mappings (e.g. VDSO) do not have any file so fake
3222 * a default GFP_KERNEL for them.
3224 return GFP_KERNEL;
3228 * Notify the address space that the page is about to become writable so that
3229 * it can prohibit this or wait for the page to get into an appropriate state.
3231 * We do this without the lock held, so that it can sleep if it needs to.
3233 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3235 vm_fault_t ret;
3236 unsigned int old_flags = vmf->flags;
3238 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3240 if (vmf->vma->vm_file &&
3241 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3242 return VM_FAULT_SIGBUS;
3244 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3245 /* Restore original flags so that caller is not surprised */
3246 vmf->flags = old_flags;
3247 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3248 return ret;
3249 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3250 folio_lock(folio);
3251 if (!folio->mapping) {
3252 folio_unlock(folio);
3253 return 0; /* retry */
3255 ret |= VM_FAULT_LOCKED;
3256 } else
3257 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3258 return ret;
3262 * Handle dirtying of a page in shared file mapping on a write fault.
3264 * The function expects the page to be locked and unlocks it.
3266 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3268 struct vm_area_struct *vma = vmf->vma;
3269 struct address_space *mapping;
3270 struct folio *folio = page_folio(vmf->page);
3271 bool dirtied;
3272 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3274 dirtied = folio_mark_dirty(folio);
3275 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3277 * Take a local copy of the address_space - folio.mapping may be zeroed
3278 * by truncate after folio_unlock(). The address_space itself remains
3279 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3280 * release semantics to prevent the compiler from undoing this copying.
3282 mapping = folio_raw_mapping(folio);
3283 folio_unlock(folio);
3285 if (!page_mkwrite)
3286 file_update_time(vma->vm_file);
3289 * Throttle page dirtying rate down to writeback speed.
3291 * mapping may be NULL here because some device drivers do not
3292 * set page.mapping but still dirty their pages
3294 * Drop the mmap_lock before waiting on IO, if we can. The file
3295 * is pinning the mapping, as per above.
3297 if ((dirtied || page_mkwrite) && mapping) {
3298 struct file *fpin;
3300 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3301 balance_dirty_pages_ratelimited(mapping);
3302 if (fpin) {
3303 fput(fpin);
3304 return VM_FAULT_COMPLETED;
3308 return 0;
3312 * Handle write page faults for pages that can be reused in the current vma
3314 * This can happen either due to the mapping being with the VM_SHARED flag,
3315 * or due to us being the last reference standing to the page. In either
3316 * case, all we need to do here is to mark the page as writable and update
3317 * any related book-keeping.
3319 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3320 __releases(vmf->ptl)
3322 struct vm_area_struct *vma = vmf->vma;
3323 pte_t entry;
3325 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3326 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3328 if (folio) {
3329 VM_BUG_ON(folio_test_anon(folio) &&
3330 !PageAnonExclusive(vmf->page));
3332 * Clear the folio's cpupid information as the existing
3333 * information potentially belongs to a now completely
3334 * unrelated process.
3336 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3339 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3340 entry = pte_mkyoung(vmf->orig_pte);
3341 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3342 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3343 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3344 pte_unmap_unlock(vmf->pte, vmf->ptl);
3345 count_vm_event(PGREUSE);
3349 * We could add a bitflag somewhere, but for now, we know that all
3350 * vm_ops that have a ->map_pages have been audited and don't need
3351 * the mmap_lock to be held.
3353 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3355 struct vm_area_struct *vma = vmf->vma;
3357 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3358 return 0;
3359 vma_end_read(vma);
3360 return VM_FAULT_RETRY;
3364 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3365 * @vmf: The vm_fault descriptor passed from the fault handler.
3367 * When preparing to insert an anonymous page into a VMA from a
3368 * fault handler, call this function rather than anon_vma_prepare().
3369 * If this vma does not already have an associated anon_vma and we are
3370 * only protected by the per-VMA lock, the caller must retry with the
3371 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3372 * determine if this VMA can share its anon_vma, and that's not safe to
3373 * do with only the per-VMA lock held for this VMA.
3375 * Return: 0 if fault handling can proceed. Any other value should be
3376 * returned to the caller.
3378 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3380 struct vm_area_struct *vma = vmf->vma;
3381 vm_fault_t ret = 0;
3383 if (likely(vma->anon_vma))
3384 return 0;
3385 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3386 if (!mmap_read_trylock(vma->vm_mm))
3387 return VM_FAULT_RETRY;
3389 if (__anon_vma_prepare(vma))
3390 ret = VM_FAULT_OOM;
3391 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3392 mmap_read_unlock(vma->vm_mm);
3393 return ret;
3397 * Handle the case of a page which we actually need to copy to a new page,
3398 * either due to COW or unsharing.
3400 * Called with mmap_lock locked and the old page referenced, but
3401 * without the ptl held.
3403 * High level logic flow:
3405 * - Allocate a page, copy the content of the old page to the new one.
3406 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3407 * - Take the PTL. If the pte changed, bail out and release the allocated page
3408 * - If the pte is still the way we remember it, update the page table and all
3409 * relevant references. This includes dropping the reference the page-table
3410 * held to the old page, as well as updating the rmap.
3411 * - In any case, unlock the PTL and drop the reference we took to the old page.
3413 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3415 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3416 struct vm_area_struct *vma = vmf->vma;
3417 struct mm_struct *mm = vma->vm_mm;
3418 struct folio *old_folio = NULL;
3419 struct folio *new_folio = NULL;
3420 pte_t entry;
3421 int page_copied = 0;
3422 struct mmu_notifier_range range;
3423 vm_fault_t ret;
3424 bool pfn_is_zero;
3426 delayacct_wpcopy_start();
3428 if (vmf->page)
3429 old_folio = page_folio(vmf->page);
3430 ret = vmf_anon_prepare(vmf);
3431 if (unlikely(ret))
3432 goto out;
3434 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3435 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3436 if (!new_folio)
3437 goto oom;
3439 if (!pfn_is_zero) {
3440 int err;
3442 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3443 if (err) {
3445 * COW failed, if the fault was solved by other,
3446 * it's fine. If not, userspace would re-fault on
3447 * the same address and we will handle the fault
3448 * from the second attempt.
3449 * The -EHWPOISON case will not be retried.
3451 folio_put(new_folio);
3452 if (old_folio)
3453 folio_put(old_folio);
3455 delayacct_wpcopy_end();
3456 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3458 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3461 __folio_mark_uptodate(new_folio);
3463 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3464 vmf->address & PAGE_MASK,
3465 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3466 mmu_notifier_invalidate_range_start(&range);
3469 * Re-check the pte - we dropped the lock
3471 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3472 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3473 if (old_folio) {
3474 if (!folio_test_anon(old_folio)) {
3475 dec_mm_counter(mm, mm_counter_file(old_folio));
3476 inc_mm_counter(mm, MM_ANONPAGES);
3478 } else {
3479 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3480 inc_mm_counter(mm, MM_ANONPAGES);
3482 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3483 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3484 entry = pte_sw_mkyoung(entry);
3485 if (unlikely(unshare)) {
3486 if (pte_soft_dirty(vmf->orig_pte))
3487 entry = pte_mksoft_dirty(entry);
3488 if (pte_uffd_wp(vmf->orig_pte))
3489 entry = pte_mkuffd_wp(entry);
3490 } else {
3491 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3495 * Clear the pte entry and flush it first, before updating the
3496 * pte with the new entry, to keep TLBs on different CPUs in
3497 * sync. This code used to set the new PTE then flush TLBs, but
3498 * that left a window where the new PTE could be loaded into
3499 * some TLBs while the old PTE remains in others.
3501 ptep_clear_flush(vma, vmf->address, vmf->pte);
3502 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3503 folio_add_lru_vma(new_folio, vma);
3504 BUG_ON(unshare && pte_write(entry));
3505 set_pte_at(mm, vmf->address, vmf->pte, entry);
3506 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3507 if (old_folio) {
3509 * Only after switching the pte to the new page may
3510 * we remove the mapcount here. Otherwise another
3511 * process may come and find the rmap count decremented
3512 * before the pte is switched to the new page, and
3513 * "reuse" the old page writing into it while our pte
3514 * here still points into it and can be read by other
3515 * threads.
3517 * The critical issue is to order this
3518 * folio_remove_rmap_pte() with the ptp_clear_flush
3519 * above. Those stores are ordered by (if nothing else,)
3520 * the barrier present in the atomic_add_negative
3521 * in folio_remove_rmap_pte();
3523 * Then the TLB flush in ptep_clear_flush ensures that
3524 * no process can access the old page before the
3525 * decremented mapcount is visible. And the old page
3526 * cannot be reused until after the decremented
3527 * mapcount is visible. So transitively, TLBs to
3528 * old page will be flushed before it can be reused.
3530 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3533 /* Free the old page.. */
3534 new_folio = old_folio;
3535 page_copied = 1;
3536 pte_unmap_unlock(vmf->pte, vmf->ptl);
3537 } else if (vmf->pte) {
3538 update_mmu_tlb(vma, vmf->address, vmf->pte);
3539 pte_unmap_unlock(vmf->pte, vmf->ptl);
3542 mmu_notifier_invalidate_range_end(&range);
3544 if (new_folio)
3545 folio_put(new_folio);
3546 if (old_folio) {
3547 if (page_copied)
3548 free_swap_cache(old_folio);
3549 folio_put(old_folio);
3552 delayacct_wpcopy_end();
3553 return 0;
3554 oom:
3555 ret = VM_FAULT_OOM;
3556 out:
3557 if (old_folio)
3558 folio_put(old_folio);
3560 delayacct_wpcopy_end();
3561 return ret;
3565 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3566 * writeable once the page is prepared
3568 * @vmf: structure describing the fault
3569 * @folio: the folio of vmf->page
3571 * This function handles all that is needed to finish a write page fault in a
3572 * shared mapping due to PTE being read-only once the mapped page is prepared.
3573 * It handles locking of PTE and modifying it.
3575 * The function expects the page to be locked or other protection against
3576 * concurrent faults / writeback (such as DAX radix tree locks).
3578 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3579 * we acquired PTE lock.
3581 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3583 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3584 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3585 &vmf->ptl);
3586 if (!vmf->pte)
3587 return VM_FAULT_NOPAGE;
3589 * We might have raced with another page fault while we released the
3590 * pte_offset_map_lock.
3592 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3593 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3594 pte_unmap_unlock(vmf->pte, vmf->ptl);
3595 return VM_FAULT_NOPAGE;
3597 wp_page_reuse(vmf, folio);
3598 return 0;
3602 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3603 * mapping
3605 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3607 struct vm_area_struct *vma = vmf->vma;
3609 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3610 vm_fault_t ret;
3612 pte_unmap_unlock(vmf->pte, vmf->ptl);
3613 ret = vmf_can_call_fault(vmf);
3614 if (ret)
3615 return ret;
3617 vmf->flags |= FAULT_FLAG_MKWRITE;
3618 ret = vma->vm_ops->pfn_mkwrite(vmf);
3619 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3620 return ret;
3621 return finish_mkwrite_fault(vmf, NULL);
3623 wp_page_reuse(vmf, NULL);
3624 return 0;
3627 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3628 __releases(vmf->ptl)
3630 struct vm_area_struct *vma = vmf->vma;
3631 vm_fault_t ret = 0;
3633 folio_get(folio);
3635 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3636 vm_fault_t tmp;
3638 pte_unmap_unlock(vmf->pte, vmf->ptl);
3639 tmp = vmf_can_call_fault(vmf);
3640 if (tmp) {
3641 folio_put(folio);
3642 return tmp;
3645 tmp = do_page_mkwrite(vmf, folio);
3646 if (unlikely(!tmp || (tmp &
3647 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3648 folio_put(folio);
3649 return tmp;
3651 tmp = finish_mkwrite_fault(vmf, folio);
3652 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3653 folio_unlock(folio);
3654 folio_put(folio);
3655 return tmp;
3657 } else {
3658 wp_page_reuse(vmf, folio);
3659 folio_lock(folio);
3661 ret |= fault_dirty_shared_page(vmf);
3662 folio_put(folio);
3664 return ret;
3667 static bool wp_can_reuse_anon_folio(struct folio *folio,
3668 struct vm_area_struct *vma)
3671 * We could currently only reuse a subpage of a large folio if no
3672 * other subpages of the large folios are still mapped. However,
3673 * let's just consistently not reuse subpages even if we could
3674 * reuse in that scenario, and give back a large folio a bit
3675 * sooner.
3677 if (folio_test_large(folio))
3678 return false;
3681 * We have to verify under folio lock: these early checks are
3682 * just an optimization to avoid locking the folio and freeing
3683 * the swapcache if there is little hope that we can reuse.
3685 * KSM doesn't necessarily raise the folio refcount.
3687 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3688 return false;
3689 if (!folio_test_lru(folio))
3691 * We cannot easily detect+handle references from
3692 * remote LRU caches or references to LRU folios.
3694 lru_add_drain();
3695 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3696 return false;
3697 if (!folio_trylock(folio))
3698 return false;
3699 if (folio_test_swapcache(folio))
3700 folio_free_swap(folio);
3701 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3702 folio_unlock(folio);
3703 return false;
3706 * Ok, we've got the only folio reference from our mapping
3707 * and the folio is locked, it's dark out, and we're wearing
3708 * sunglasses. Hit it.
3710 folio_move_anon_rmap(folio, vma);
3711 folio_unlock(folio);
3712 return true;
3716 * This routine handles present pages, when
3717 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3718 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3719 * (FAULT_FLAG_UNSHARE)
3721 * It is done by copying the page to a new address and decrementing the
3722 * shared-page counter for the old page.
3724 * Note that this routine assumes that the protection checks have been
3725 * done by the caller (the low-level page fault routine in most cases).
3726 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3727 * done any necessary COW.
3729 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3730 * though the page will change only once the write actually happens. This
3731 * avoids a few races, and potentially makes it more efficient.
3733 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3734 * but allow concurrent faults), with pte both mapped and locked.
3735 * We return with mmap_lock still held, but pte unmapped and unlocked.
3737 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3738 __releases(vmf->ptl)
3740 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3741 struct vm_area_struct *vma = vmf->vma;
3742 struct folio *folio = NULL;
3743 pte_t pte;
3745 if (likely(!unshare)) {
3746 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3747 if (!userfaultfd_wp_async(vma)) {
3748 pte_unmap_unlock(vmf->pte, vmf->ptl);
3749 return handle_userfault(vmf, VM_UFFD_WP);
3753 * Nothing needed (cache flush, TLB invalidations,
3754 * etc.) because we're only removing the uffd-wp bit,
3755 * which is completely invisible to the user.
3757 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3759 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3761 * Update this to be prepared for following up CoW
3762 * handling
3764 vmf->orig_pte = pte;
3768 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3769 * is flushed in this case before copying.
3771 if (unlikely(userfaultfd_wp(vmf->vma) &&
3772 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3773 flush_tlb_page(vmf->vma, vmf->address);
3776 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3778 if (vmf->page)
3779 folio = page_folio(vmf->page);
3782 * Shared mapping: we are guaranteed to have VM_WRITE and
3783 * FAULT_FLAG_WRITE set at this point.
3785 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3787 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3788 * VM_PFNMAP VMA.
3790 * We should not cow pages in a shared writeable mapping.
3791 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3793 if (!vmf->page)
3794 return wp_pfn_shared(vmf);
3795 return wp_page_shared(vmf, folio);
3799 * Private mapping: create an exclusive anonymous page copy if reuse
3800 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3802 * If we encounter a page that is marked exclusive, we must reuse
3803 * the page without further checks.
3805 if (folio && folio_test_anon(folio) &&
3806 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3807 if (!PageAnonExclusive(vmf->page))
3808 SetPageAnonExclusive(vmf->page);
3809 if (unlikely(unshare)) {
3810 pte_unmap_unlock(vmf->pte, vmf->ptl);
3811 return 0;
3813 wp_page_reuse(vmf, folio);
3814 return 0;
3817 * Ok, we need to copy. Oh, well..
3819 if (folio)
3820 folio_get(folio);
3822 pte_unmap_unlock(vmf->pte, vmf->ptl);
3823 #ifdef CONFIG_KSM
3824 if (folio && folio_test_ksm(folio))
3825 count_vm_event(COW_KSM);
3826 #endif
3827 return wp_page_copy(vmf);
3830 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3831 unsigned long start_addr, unsigned long end_addr,
3832 struct zap_details *details)
3834 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3837 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3838 pgoff_t first_index,
3839 pgoff_t last_index,
3840 struct zap_details *details)
3842 struct vm_area_struct *vma;
3843 pgoff_t vba, vea, zba, zea;
3845 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3846 vba = vma->vm_pgoff;
3847 vea = vba + vma_pages(vma) - 1;
3848 zba = max(first_index, vba);
3849 zea = min(last_index, vea);
3851 unmap_mapping_range_vma(vma,
3852 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3853 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3854 details);
3859 * unmap_mapping_folio() - Unmap single folio from processes.
3860 * @folio: The locked folio to be unmapped.
3862 * Unmap this folio from any userspace process which still has it mmaped.
3863 * Typically, for efficiency, the range of nearby pages has already been
3864 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3865 * truncation or invalidation holds the lock on a folio, it may find that
3866 * the page has been remapped again: and then uses unmap_mapping_folio()
3867 * to unmap it finally.
3869 void unmap_mapping_folio(struct folio *folio)
3871 struct address_space *mapping = folio->mapping;
3872 struct zap_details details = { };
3873 pgoff_t first_index;
3874 pgoff_t last_index;
3876 VM_BUG_ON(!folio_test_locked(folio));
3878 first_index = folio->index;
3879 last_index = folio_next_index(folio) - 1;
3881 details.even_cows = false;
3882 details.single_folio = folio;
3883 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3885 i_mmap_lock_read(mapping);
3886 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3887 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3888 last_index, &details);
3889 i_mmap_unlock_read(mapping);
3893 * unmap_mapping_pages() - Unmap pages from processes.
3894 * @mapping: The address space containing pages to be unmapped.
3895 * @start: Index of first page to be unmapped.
3896 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3897 * @even_cows: Whether to unmap even private COWed pages.
3899 * Unmap the pages in this address space from any userspace process which
3900 * has them mmaped. Generally, you want to remove COWed pages as well when
3901 * a file is being truncated, but not when invalidating pages from the page
3902 * cache.
3904 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3905 pgoff_t nr, bool even_cows)
3907 struct zap_details details = { };
3908 pgoff_t first_index = start;
3909 pgoff_t last_index = start + nr - 1;
3911 details.even_cows = even_cows;
3912 if (last_index < first_index)
3913 last_index = ULONG_MAX;
3915 i_mmap_lock_read(mapping);
3916 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3917 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3918 last_index, &details);
3919 i_mmap_unlock_read(mapping);
3921 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3924 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3925 * address_space corresponding to the specified byte range in the underlying
3926 * file.
3928 * @mapping: the address space containing mmaps to be unmapped.
3929 * @holebegin: byte in first page to unmap, relative to the start of
3930 * the underlying file. This will be rounded down to a PAGE_SIZE
3931 * boundary. Note that this is different from truncate_pagecache(), which
3932 * must keep the partial page. In contrast, we must get rid of
3933 * partial pages.
3934 * @holelen: size of prospective hole in bytes. This will be rounded
3935 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3936 * end of the file.
3937 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3938 * but 0 when invalidating pagecache, don't throw away private data.
3940 void unmap_mapping_range(struct address_space *mapping,
3941 loff_t const holebegin, loff_t const holelen, int even_cows)
3943 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3944 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3946 /* Check for overflow. */
3947 if (sizeof(holelen) > sizeof(hlen)) {
3948 long long holeend =
3949 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3950 if (holeend & ~(long long)ULONG_MAX)
3951 hlen = ULONG_MAX - hba + 1;
3954 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3956 EXPORT_SYMBOL(unmap_mapping_range);
3959 * Restore a potential device exclusive pte to a working pte entry
3961 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3963 struct folio *folio = page_folio(vmf->page);
3964 struct vm_area_struct *vma = vmf->vma;
3965 struct mmu_notifier_range range;
3966 vm_fault_t ret;
3969 * We need a reference to lock the folio because we don't hold
3970 * the PTL so a racing thread can remove the device-exclusive
3971 * entry and unmap it. If the folio is free the entry must
3972 * have been removed already. If it happens to have already
3973 * been re-allocated after being freed all we do is lock and
3974 * unlock it.
3976 if (!folio_try_get(folio))
3977 return 0;
3979 ret = folio_lock_or_retry(folio, vmf);
3980 if (ret) {
3981 folio_put(folio);
3982 return ret;
3984 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3985 vma->vm_mm, vmf->address & PAGE_MASK,
3986 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3987 mmu_notifier_invalidate_range_start(&range);
3989 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3990 &vmf->ptl);
3991 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3992 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3994 if (vmf->pte)
3995 pte_unmap_unlock(vmf->pte, vmf->ptl);
3996 folio_unlock(folio);
3997 folio_put(folio);
3999 mmu_notifier_invalidate_range_end(&range);
4000 return 0;
4003 static inline bool should_try_to_free_swap(struct folio *folio,
4004 struct vm_area_struct *vma,
4005 unsigned int fault_flags)
4007 if (!folio_test_swapcache(folio))
4008 return false;
4009 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4010 folio_test_mlocked(folio))
4011 return true;
4013 * If we want to map a page that's in the swapcache writable, we
4014 * have to detect via the refcount if we're really the exclusive
4015 * user. Try freeing the swapcache to get rid of the swapcache
4016 * reference only in case it's likely that we'll be the exlusive user.
4018 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4019 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4022 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4024 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4025 vmf->address, &vmf->ptl);
4026 if (!vmf->pte)
4027 return 0;
4029 * Be careful so that we will only recover a special uffd-wp pte into a
4030 * none pte. Otherwise it means the pte could have changed, so retry.
4032 * This should also cover the case where e.g. the pte changed
4033 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4034 * So is_pte_marker() check is not enough to safely drop the pte.
4036 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4037 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4038 pte_unmap_unlock(vmf->pte, vmf->ptl);
4039 return 0;
4042 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4044 if (vma_is_anonymous(vmf->vma))
4045 return do_anonymous_page(vmf);
4046 else
4047 return do_fault(vmf);
4051 * This is actually a page-missing access, but with uffd-wp special pte
4052 * installed. It means this pte was wr-protected before being unmapped.
4054 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4057 * Just in case there're leftover special ptes even after the region
4058 * got unregistered - we can simply clear them.
4060 if (unlikely(!userfaultfd_wp(vmf->vma)))
4061 return pte_marker_clear(vmf);
4063 return do_pte_missing(vmf);
4066 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4068 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4069 unsigned long marker = pte_marker_get(entry);
4072 * PTE markers should never be empty. If anything weird happened,
4073 * the best thing to do is to kill the process along with its mm.
4075 if (WARN_ON_ONCE(!marker))
4076 return VM_FAULT_SIGBUS;
4078 /* Higher priority than uffd-wp when data corrupted */
4079 if (marker & PTE_MARKER_POISONED)
4080 return VM_FAULT_HWPOISON;
4082 /* Hitting a guard page is always a fatal condition. */
4083 if (marker & PTE_MARKER_GUARD)
4084 return VM_FAULT_SIGSEGV;
4086 if (pte_marker_entry_uffd_wp(entry))
4087 return pte_marker_handle_uffd_wp(vmf);
4089 /* This is an unknown pte marker */
4090 return VM_FAULT_SIGBUS;
4093 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4095 struct vm_area_struct *vma = vmf->vma;
4096 struct folio *folio;
4097 swp_entry_t entry;
4099 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4100 if (!folio)
4101 return NULL;
4103 entry = pte_to_swp_entry(vmf->orig_pte);
4104 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4105 GFP_KERNEL, entry)) {
4106 folio_put(folio);
4107 return NULL;
4110 return folio;
4113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4114 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4116 struct swap_info_struct *si = swp_swap_info(entry);
4117 pgoff_t offset = swp_offset(entry);
4118 int i;
4121 * While allocating a large folio and doing swap_read_folio, which is
4122 * the case the being faulted pte doesn't have swapcache. We need to
4123 * ensure all PTEs have no cache as well, otherwise, we might go to
4124 * swap devices while the content is in swapcache.
4126 for (i = 0; i < max_nr; i++) {
4127 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4128 return i;
4131 return i;
4135 * Check if the PTEs within a range are contiguous swap entries
4136 * and have consistent swapcache, zeromap.
4138 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4140 unsigned long addr;
4141 swp_entry_t entry;
4142 int idx;
4143 pte_t pte;
4145 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4146 idx = (vmf->address - addr) / PAGE_SIZE;
4147 pte = ptep_get(ptep);
4149 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4150 return false;
4151 entry = pte_to_swp_entry(pte);
4152 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4153 return false;
4156 * swap_read_folio() can't handle the case a large folio is hybridly
4157 * from different backends. And they are likely corner cases. Similar
4158 * things might be added once zswap support large folios.
4160 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4161 return false;
4162 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4163 return false;
4165 return true;
4168 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4169 unsigned long addr,
4170 unsigned long orders)
4172 int order, nr;
4174 order = highest_order(orders);
4177 * To swap in a THP with nr pages, we require that its first swap_offset
4178 * is aligned with that number, as it was when the THP was swapped out.
4179 * This helps filter out most invalid entries.
4181 while (orders) {
4182 nr = 1 << order;
4183 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4184 break;
4185 order = next_order(&orders, order);
4188 return orders;
4191 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4193 struct vm_area_struct *vma = vmf->vma;
4194 unsigned long orders;
4195 struct folio *folio;
4196 unsigned long addr;
4197 swp_entry_t entry;
4198 spinlock_t *ptl;
4199 pte_t *pte;
4200 gfp_t gfp;
4201 int order;
4204 * If uffd is active for the vma we need per-page fault fidelity to
4205 * maintain the uffd semantics.
4207 if (unlikely(userfaultfd_armed(vma)))
4208 goto fallback;
4211 * A large swapped out folio could be partially or fully in zswap. We
4212 * lack handling for such cases, so fallback to swapping in order-0
4213 * folio.
4215 if (!zswap_never_enabled())
4216 goto fallback;
4218 entry = pte_to_swp_entry(vmf->orig_pte);
4220 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4221 * and suitable for swapping THP.
4223 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4224 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4225 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4226 orders = thp_swap_suitable_orders(swp_offset(entry),
4227 vmf->address, orders);
4229 if (!orders)
4230 goto fallback;
4232 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4233 vmf->address & PMD_MASK, &ptl);
4234 if (unlikely(!pte))
4235 goto fallback;
4238 * For do_swap_page, find the highest order where the aligned range is
4239 * completely swap entries with contiguous swap offsets.
4241 order = highest_order(orders);
4242 while (orders) {
4243 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4244 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4245 break;
4246 order = next_order(&orders, order);
4249 pte_unmap_unlock(pte, ptl);
4251 /* Try allocating the highest of the remaining orders. */
4252 gfp = vma_thp_gfp_mask(vma);
4253 while (orders) {
4254 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4255 folio = vma_alloc_folio(gfp, order, vma, addr);
4256 if (folio) {
4257 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4258 gfp, entry))
4259 return folio;
4260 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4261 folio_put(folio);
4263 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4264 order = next_order(&orders, order);
4267 fallback:
4268 return __alloc_swap_folio(vmf);
4270 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4271 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4273 return __alloc_swap_folio(vmf);
4275 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4277 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4280 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4281 * but allow concurrent faults), and pte mapped but not yet locked.
4282 * We return with pte unmapped and unlocked.
4284 * We return with the mmap_lock locked or unlocked in the same cases
4285 * as does filemap_fault().
4287 vm_fault_t do_swap_page(struct vm_fault *vmf)
4289 struct vm_area_struct *vma = vmf->vma;
4290 struct folio *swapcache, *folio = NULL;
4291 DECLARE_WAITQUEUE(wait, current);
4292 struct page *page;
4293 struct swap_info_struct *si = NULL;
4294 rmap_t rmap_flags = RMAP_NONE;
4295 bool need_clear_cache = false;
4296 bool exclusive = false;
4297 swp_entry_t entry;
4298 pte_t pte;
4299 vm_fault_t ret = 0;
4300 void *shadow = NULL;
4301 int nr_pages;
4302 unsigned long page_idx;
4303 unsigned long address;
4304 pte_t *ptep;
4306 if (!pte_unmap_same(vmf))
4307 goto out;
4309 entry = pte_to_swp_entry(vmf->orig_pte);
4310 if (unlikely(non_swap_entry(entry))) {
4311 if (is_migration_entry(entry)) {
4312 migration_entry_wait(vma->vm_mm, vmf->pmd,
4313 vmf->address);
4314 } else if (is_device_exclusive_entry(entry)) {
4315 vmf->page = pfn_swap_entry_to_page(entry);
4316 ret = remove_device_exclusive_entry(vmf);
4317 } else if (is_device_private_entry(entry)) {
4318 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4320 * migrate_to_ram is not yet ready to operate
4321 * under VMA lock.
4323 vma_end_read(vma);
4324 ret = VM_FAULT_RETRY;
4325 goto out;
4328 vmf->page = pfn_swap_entry_to_page(entry);
4329 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4330 vmf->address, &vmf->ptl);
4331 if (unlikely(!vmf->pte ||
4332 !pte_same(ptep_get(vmf->pte),
4333 vmf->orig_pte)))
4334 goto unlock;
4337 * Get a page reference while we know the page can't be
4338 * freed.
4340 get_page(vmf->page);
4341 pte_unmap_unlock(vmf->pte, vmf->ptl);
4342 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4343 put_page(vmf->page);
4344 } else if (is_hwpoison_entry(entry)) {
4345 ret = VM_FAULT_HWPOISON;
4346 } else if (is_pte_marker_entry(entry)) {
4347 ret = handle_pte_marker(vmf);
4348 } else {
4349 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4350 ret = VM_FAULT_SIGBUS;
4352 goto out;
4355 /* Prevent swapoff from happening to us. */
4356 si = get_swap_device(entry);
4357 if (unlikely(!si))
4358 goto out;
4360 folio = swap_cache_get_folio(entry, vma, vmf->address);
4361 if (folio)
4362 page = folio_file_page(folio, swp_offset(entry));
4363 swapcache = folio;
4365 if (!folio) {
4366 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4367 __swap_count(entry) == 1) {
4368 /* skip swapcache */
4369 folio = alloc_swap_folio(vmf);
4370 if (folio) {
4371 __folio_set_locked(folio);
4372 __folio_set_swapbacked(folio);
4374 nr_pages = folio_nr_pages(folio);
4375 if (folio_test_large(folio))
4376 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4378 * Prevent parallel swapin from proceeding with
4379 * the cache flag. Otherwise, another thread
4380 * may finish swapin first, free the entry, and
4381 * swapout reusing the same entry. It's
4382 * undetectable as pte_same() returns true due
4383 * to entry reuse.
4385 if (swapcache_prepare(entry, nr_pages)) {
4387 * Relax a bit to prevent rapid
4388 * repeated page faults.
4390 add_wait_queue(&swapcache_wq, &wait);
4391 schedule_timeout_uninterruptible(1);
4392 remove_wait_queue(&swapcache_wq, &wait);
4393 goto out_page;
4395 need_clear_cache = true;
4397 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4399 shadow = get_shadow_from_swap_cache(entry);
4400 if (shadow)
4401 workingset_refault(folio, shadow);
4403 folio_add_lru(folio);
4405 /* To provide entry to swap_read_folio() */
4406 folio->swap = entry;
4407 swap_read_folio(folio, NULL);
4408 folio->private = NULL;
4410 } else {
4411 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4412 vmf);
4413 swapcache = folio;
4416 if (!folio) {
4418 * Back out if somebody else faulted in this pte
4419 * while we released the pte lock.
4421 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4422 vmf->address, &vmf->ptl);
4423 if (likely(vmf->pte &&
4424 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4425 ret = VM_FAULT_OOM;
4426 goto unlock;
4429 /* Had to read the page from swap area: Major fault */
4430 ret = VM_FAULT_MAJOR;
4431 count_vm_event(PGMAJFAULT);
4432 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4433 page = folio_file_page(folio, swp_offset(entry));
4434 } else if (PageHWPoison(page)) {
4436 * hwpoisoned dirty swapcache pages are kept for killing
4437 * owner processes (which may be unknown at hwpoison time)
4439 ret = VM_FAULT_HWPOISON;
4440 goto out_release;
4443 ret |= folio_lock_or_retry(folio, vmf);
4444 if (ret & VM_FAULT_RETRY)
4445 goto out_release;
4447 if (swapcache) {
4449 * Make sure folio_free_swap() or swapoff did not release the
4450 * swapcache from under us. The page pin, and pte_same test
4451 * below, are not enough to exclude that. Even if it is still
4452 * swapcache, we need to check that the page's swap has not
4453 * changed.
4455 if (unlikely(!folio_test_swapcache(folio) ||
4456 page_swap_entry(page).val != entry.val))
4457 goto out_page;
4460 * KSM sometimes has to copy on read faults, for example, if
4461 * page->index of !PageKSM() pages would be nonlinear inside the
4462 * anon VMA -- PageKSM() is lost on actual swapout.
4464 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4465 if (unlikely(!folio)) {
4466 ret = VM_FAULT_OOM;
4467 folio = swapcache;
4468 goto out_page;
4469 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4470 ret = VM_FAULT_HWPOISON;
4471 folio = swapcache;
4472 goto out_page;
4474 if (folio != swapcache)
4475 page = folio_page(folio, 0);
4478 * If we want to map a page that's in the swapcache writable, we
4479 * have to detect via the refcount if we're really the exclusive
4480 * owner. Try removing the extra reference from the local LRU
4481 * caches if required.
4483 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4484 !folio_test_ksm(folio) && !folio_test_lru(folio))
4485 lru_add_drain();
4488 folio_throttle_swaprate(folio, GFP_KERNEL);
4491 * Back out if somebody else already faulted in this pte.
4493 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4494 &vmf->ptl);
4495 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4496 goto out_nomap;
4498 if (unlikely(!folio_test_uptodate(folio))) {
4499 ret = VM_FAULT_SIGBUS;
4500 goto out_nomap;
4503 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4504 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4505 unsigned long nr = folio_nr_pages(folio);
4506 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4507 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4508 pte_t *folio_ptep = vmf->pte - idx;
4509 pte_t folio_pte = ptep_get(folio_ptep);
4511 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4512 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4513 goto out_nomap;
4515 page_idx = idx;
4516 address = folio_start;
4517 ptep = folio_ptep;
4518 goto check_folio;
4521 nr_pages = 1;
4522 page_idx = 0;
4523 address = vmf->address;
4524 ptep = vmf->pte;
4525 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4526 int nr = folio_nr_pages(folio);
4527 unsigned long idx = folio_page_idx(folio, page);
4528 unsigned long folio_start = address - idx * PAGE_SIZE;
4529 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4530 pte_t *folio_ptep;
4531 pte_t folio_pte;
4533 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4534 goto check_folio;
4535 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4536 goto check_folio;
4538 folio_ptep = vmf->pte - idx;
4539 folio_pte = ptep_get(folio_ptep);
4540 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4541 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4542 goto check_folio;
4544 page_idx = idx;
4545 address = folio_start;
4546 ptep = folio_ptep;
4547 nr_pages = nr;
4548 entry = folio->swap;
4549 page = &folio->page;
4552 check_folio:
4554 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4555 * must never point at an anonymous page in the swapcache that is
4556 * PG_anon_exclusive. Sanity check that this holds and especially, that
4557 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4558 * check after taking the PT lock and making sure that nobody
4559 * concurrently faulted in this page and set PG_anon_exclusive.
4561 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4562 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4565 * Check under PT lock (to protect against concurrent fork() sharing
4566 * the swap entry concurrently) for certainly exclusive pages.
4568 if (!folio_test_ksm(folio)) {
4569 exclusive = pte_swp_exclusive(vmf->orig_pte);
4570 if (folio != swapcache) {
4572 * We have a fresh page that is not exposed to the
4573 * swapcache -> certainly exclusive.
4575 exclusive = true;
4576 } else if (exclusive && folio_test_writeback(folio) &&
4577 data_race(si->flags & SWP_STABLE_WRITES)) {
4579 * This is tricky: not all swap backends support
4580 * concurrent page modifications while under writeback.
4582 * So if we stumble over such a page in the swapcache
4583 * we must not set the page exclusive, otherwise we can
4584 * map it writable without further checks and modify it
4585 * while still under writeback.
4587 * For these problematic swap backends, simply drop the
4588 * exclusive marker: this is perfectly fine as we start
4589 * writeback only if we fully unmapped the page and
4590 * there are no unexpected references on the page after
4591 * unmapping succeeded. After fully unmapped, no
4592 * further GUP references (FOLL_GET and FOLL_PIN) can
4593 * appear, so dropping the exclusive marker and mapping
4594 * it only R/O is fine.
4596 exclusive = false;
4601 * Some architectures may have to restore extra metadata to the page
4602 * when reading from swap. This metadata may be indexed by swap entry
4603 * so this must be called before swap_free().
4605 arch_swap_restore(folio_swap(entry, folio), folio);
4608 * Remove the swap entry and conditionally try to free up the swapcache.
4609 * We're already holding a reference on the page but haven't mapped it
4610 * yet.
4612 swap_free_nr(entry, nr_pages);
4613 if (should_try_to_free_swap(folio, vma, vmf->flags))
4614 folio_free_swap(folio);
4616 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4617 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4618 pte = mk_pte(page, vma->vm_page_prot);
4619 if (pte_swp_soft_dirty(vmf->orig_pte))
4620 pte = pte_mksoft_dirty(pte);
4621 if (pte_swp_uffd_wp(vmf->orig_pte))
4622 pte = pte_mkuffd_wp(pte);
4625 * Same logic as in do_wp_page(); however, optimize for pages that are
4626 * certainly not shared either because we just allocated them without
4627 * exposing them to the swapcache or because the swap entry indicates
4628 * exclusivity.
4630 if (!folio_test_ksm(folio) &&
4631 (exclusive || folio_ref_count(folio) == 1)) {
4632 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4633 !pte_needs_soft_dirty_wp(vma, pte)) {
4634 pte = pte_mkwrite(pte, vma);
4635 if (vmf->flags & FAULT_FLAG_WRITE) {
4636 pte = pte_mkdirty(pte);
4637 vmf->flags &= ~FAULT_FLAG_WRITE;
4640 rmap_flags |= RMAP_EXCLUSIVE;
4642 folio_ref_add(folio, nr_pages - 1);
4643 flush_icache_pages(vma, page, nr_pages);
4644 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4646 /* ksm created a completely new copy */
4647 if (unlikely(folio != swapcache && swapcache)) {
4648 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4649 folio_add_lru_vma(folio, vma);
4650 } else if (!folio_test_anon(folio)) {
4652 * We currently only expect small !anon folios which are either
4653 * fully exclusive or fully shared, or new allocated large
4654 * folios which are fully exclusive. If we ever get large
4655 * folios within swapcache here, we have to be careful.
4657 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4658 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4659 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4660 } else {
4661 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4662 rmap_flags);
4665 VM_BUG_ON(!folio_test_anon(folio) ||
4666 (pte_write(pte) && !PageAnonExclusive(page)));
4667 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4668 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4669 pte, pte, nr_pages);
4671 folio_unlock(folio);
4672 if (folio != swapcache && swapcache) {
4674 * Hold the lock to avoid the swap entry to be reused
4675 * until we take the PT lock for the pte_same() check
4676 * (to avoid false positives from pte_same). For
4677 * further safety release the lock after the swap_free
4678 * so that the swap count won't change under a
4679 * parallel locked swapcache.
4681 folio_unlock(swapcache);
4682 folio_put(swapcache);
4685 if (vmf->flags & FAULT_FLAG_WRITE) {
4686 ret |= do_wp_page(vmf);
4687 if (ret & VM_FAULT_ERROR)
4688 ret &= VM_FAULT_ERROR;
4689 goto out;
4692 /* No need to invalidate - it was non-present before */
4693 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4694 unlock:
4695 if (vmf->pte)
4696 pte_unmap_unlock(vmf->pte, vmf->ptl);
4697 out:
4698 /* Clear the swap cache pin for direct swapin after PTL unlock */
4699 if (need_clear_cache) {
4700 swapcache_clear(si, entry, nr_pages);
4701 if (waitqueue_active(&swapcache_wq))
4702 wake_up(&swapcache_wq);
4704 if (si)
4705 put_swap_device(si);
4706 return ret;
4707 out_nomap:
4708 if (vmf->pte)
4709 pte_unmap_unlock(vmf->pte, vmf->ptl);
4710 out_page:
4711 folio_unlock(folio);
4712 out_release:
4713 folio_put(folio);
4714 if (folio != swapcache && swapcache) {
4715 folio_unlock(swapcache);
4716 folio_put(swapcache);
4718 if (need_clear_cache) {
4719 swapcache_clear(si, entry, nr_pages);
4720 if (waitqueue_active(&swapcache_wq))
4721 wake_up(&swapcache_wq);
4723 if (si)
4724 put_swap_device(si);
4725 return ret;
4728 static bool pte_range_none(pte_t *pte, int nr_pages)
4730 int i;
4732 for (i = 0; i < nr_pages; i++) {
4733 if (!pte_none(ptep_get_lockless(pte + i)))
4734 return false;
4737 return true;
4740 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4742 struct vm_area_struct *vma = vmf->vma;
4743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4744 unsigned long orders;
4745 struct folio *folio;
4746 unsigned long addr;
4747 pte_t *pte;
4748 gfp_t gfp;
4749 int order;
4752 * If uffd is active for the vma we need per-page fault fidelity to
4753 * maintain the uffd semantics.
4755 if (unlikely(userfaultfd_armed(vma)))
4756 goto fallback;
4759 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4760 * for this vma. Then filter out the orders that can't be allocated over
4761 * the faulting address and still be fully contained in the vma.
4763 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4764 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4765 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4767 if (!orders)
4768 goto fallback;
4770 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4771 if (!pte)
4772 return ERR_PTR(-EAGAIN);
4775 * Find the highest order where the aligned range is completely
4776 * pte_none(). Note that all remaining orders will be completely
4777 * pte_none().
4779 order = highest_order(orders);
4780 while (orders) {
4781 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4782 if (pte_range_none(pte + pte_index(addr), 1 << order))
4783 break;
4784 order = next_order(&orders, order);
4787 pte_unmap(pte);
4789 if (!orders)
4790 goto fallback;
4792 /* Try allocating the highest of the remaining orders. */
4793 gfp = vma_thp_gfp_mask(vma);
4794 while (orders) {
4795 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4796 folio = vma_alloc_folio(gfp, order, vma, addr);
4797 if (folio) {
4798 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4799 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4800 folio_put(folio);
4801 goto next;
4803 folio_throttle_swaprate(folio, gfp);
4805 * When a folio is not zeroed during allocation
4806 * (__GFP_ZERO not used) or user folios require special
4807 * handling, folio_zero_user() is used to make sure
4808 * that the page corresponding to the faulting address
4809 * will be hot in the cache after zeroing.
4811 if (user_alloc_needs_zeroing())
4812 folio_zero_user(folio, vmf->address);
4813 return folio;
4815 next:
4816 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4817 order = next_order(&orders, order);
4820 fallback:
4821 #endif
4822 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4826 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4827 * but allow concurrent faults), and pte mapped but not yet locked.
4828 * We return with mmap_lock still held, but pte unmapped and unlocked.
4830 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4832 struct vm_area_struct *vma = vmf->vma;
4833 unsigned long addr = vmf->address;
4834 struct folio *folio;
4835 vm_fault_t ret = 0;
4836 int nr_pages = 1;
4837 pte_t entry;
4839 /* File mapping without ->vm_ops ? */
4840 if (vma->vm_flags & VM_SHARED)
4841 return VM_FAULT_SIGBUS;
4844 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4845 * be distinguished from a transient failure of pte_offset_map().
4847 if (pte_alloc(vma->vm_mm, vmf->pmd))
4848 return VM_FAULT_OOM;
4850 /* Use the zero-page for reads */
4851 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4852 !mm_forbids_zeropage(vma->vm_mm)) {
4853 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4854 vma->vm_page_prot));
4855 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4856 vmf->address, &vmf->ptl);
4857 if (!vmf->pte)
4858 goto unlock;
4859 if (vmf_pte_changed(vmf)) {
4860 update_mmu_tlb(vma, vmf->address, vmf->pte);
4861 goto unlock;
4863 ret = check_stable_address_space(vma->vm_mm);
4864 if (ret)
4865 goto unlock;
4866 /* Deliver the page fault to userland, check inside PT lock */
4867 if (userfaultfd_missing(vma)) {
4868 pte_unmap_unlock(vmf->pte, vmf->ptl);
4869 return handle_userfault(vmf, VM_UFFD_MISSING);
4871 goto setpte;
4874 /* Allocate our own private page. */
4875 ret = vmf_anon_prepare(vmf);
4876 if (ret)
4877 return ret;
4878 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4879 folio = alloc_anon_folio(vmf);
4880 if (IS_ERR(folio))
4881 return 0;
4882 if (!folio)
4883 goto oom;
4885 nr_pages = folio_nr_pages(folio);
4886 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4889 * The memory barrier inside __folio_mark_uptodate makes sure that
4890 * preceding stores to the page contents become visible before
4891 * the set_pte_at() write.
4893 __folio_mark_uptodate(folio);
4895 entry = mk_pte(&folio->page, vma->vm_page_prot);
4896 entry = pte_sw_mkyoung(entry);
4897 if (vma->vm_flags & VM_WRITE)
4898 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4900 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4901 if (!vmf->pte)
4902 goto release;
4903 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4904 update_mmu_tlb(vma, addr, vmf->pte);
4905 goto release;
4906 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4907 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4908 goto release;
4911 ret = check_stable_address_space(vma->vm_mm);
4912 if (ret)
4913 goto release;
4915 /* Deliver the page fault to userland, check inside PT lock */
4916 if (userfaultfd_missing(vma)) {
4917 pte_unmap_unlock(vmf->pte, vmf->ptl);
4918 folio_put(folio);
4919 return handle_userfault(vmf, VM_UFFD_MISSING);
4922 folio_ref_add(folio, nr_pages - 1);
4923 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4924 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4925 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4926 folio_add_lru_vma(folio, vma);
4927 setpte:
4928 if (vmf_orig_pte_uffd_wp(vmf))
4929 entry = pte_mkuffd_wp(entry);
4930 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4932 /* No need to invalidate - it was non-present before */
4933 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4934 unlock:
4935 if (vmf->pte)
4936 pte_unmap_unlock(vmf->pte, vmf->ptl);
4937 return ret;
4938 release:
4939 folio_put(folio);
4940 goto unlock;
4941 oom:
4942 return VM_FAULT_OOM;
4946 * The mmap_lock must have been held on entry, and may have been
4947 * released depending on flags and vma->vm_ops->fault() return value.
4948 * See filemap_fault() and __lock_page_retry().
4950 static vm_fault_t __do_fault(struct vm_fault *vmf)
4952 struct vm_area_struct *vma = vmf->vma;
4953 struct folio *folio;
4954 vm_fault_t ret;
4957 * Preallocate pte before we take page_lock because this might lead to
4958 * deadlocks for memcg reclaim which waits for pages under writeback:
4959 * lock_page(A)
4960 * SetPageWriteback(A)
4961 * unlock_page(A)
4962 * lock_page(B)
4963 * lock_page(B)
4964 * pte_alloc_one
4965 * shrink_folio_list
4966 * wait_on_page_writeback(A)
4967 * SetPageWriteback(B)
4968 * unlock_page(B)
4969 * # flush A, B to clear the writeback
4971 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4972 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4973 if (!vmf->prealloc_pte)
4974 return VM_FAULT_OOM;
4977 ret = vma->vm_ops->fault(vmf);
4978 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4979 VM_FAULT_DONE_COW)))
4980 return ret;
4982 folio = page_folio(vmf->page);
4983 if (unlikely(PageHWPoison(vmf->page))) {
4984 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4985 if (ret & VM_FAULT_LOCKED) {
4986 if (page_mapped(vmf->page))
4987 unmap_mapping_folio(folio);
4988 /* Retry if a clean folio was removed from the cache. */
4989 if (mapping_evict_folio(folio->mapping, folio))
4990 poisonret = VM_FAULT_NOPAGE;
4991 folio_unlock(folio);
4993 folio_put(folio);
4994 vmf->page = NULL;
4995 return poisonret;
4998 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4999 folio_lock(folio);
5000 else
5001 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5003 return ret;
5006 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5007 static void deposit_prealloc_pte(struct vm_fault *vmf)
5009 struct vm_area_struct *vma = vmf->vma;
5011 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5013 * We are going to consume the prealloc table,
5014 * count that as nr_ptes.
5016 mm_inc_nr_ptes(vma->vm_mm);
5017 vmf->prealloc_pte = NULL;
5020 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5022 struct folio *folio = page_folio(page);
5023 struct vm_area_struct *vma = vmf->vma;
5024 bool write = vmf->flags & FAULT_FLAG_WRITE;
5025 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5026 pmd_t entry;
5027 vm_fault_t ret = VM_FAULT_FALLBACK;
5030 * It is too late to allocate a small folio, we already have a large
5031 * folio in the pagecache: especially s390 KVM cannot tolerate any
5032 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5033 * PMD mappings if THPs are disabled.
5035 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
5036 return ret;
5038 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5039 return ret;
5041 if (folio_order(folio) != HPAGE_PMD_ORDER)
5042 return ret;
5043 page = &folio->page;
5046 * Just backoff if any subpage of a THP is corrupted otherwise
5047 * the corrupted page may mapped by PMD silently to escape the
5048 * check. This kind of THP just can be PTE mapped. Access to
5049 * the corrupted subpage should trigger SIGBUS as expected.
5051 if (unlikely(folio_test_has_hwpoisoned(folio)))
5052 return ret;
5055 * Archs like ppc64 need additional space to store information
5056 * related to pte entry. Use the preallocated table for that.
5058 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5059 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5060 if (!vmf->prealloc_pte)
5061 return VM_FAULT_OOM;
5064 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5065 if (unlikely(!pmd_none(*vmf->pmd)))
5066 goto out;
5068 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5070 entry = mk_huge_pmd(page, vma->vm_page_prot);
5071 if (write)
5072 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5074 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5075 folio_add_file_rmap_pmd(folio, page, vma);
5078 * deposit and withdraw with pmd lock held
5080 if (arch_needs_pgtable_deposit())
5081 deposit_prealloc_pte(vmf);
5083 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5085 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5087 /* fault is handled */
5088 ret = 0;
5089 count_vm_event(THP_FILE_MAPPED);
5090 out:
5091 spin_unlock(vmf->ptl);
5092 return ret;
5094 #else
5095 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5097 return VM_FAULT_FALLBACK;
5099 #endif
5102 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5103 * @vmf: Fault decription.
5104 * @folio: The folio that contains @page.
5105 * @page: The first page to create a PTE for.
5106 * @nr: The number of PTEs to create.
5107 * @addr: The first address to create a PTE for.
5109 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5110 struct page *page, unsigned int nr, unsigned long addr)
5112 struct vm_area_struct *vma = vmf->vma;
5113 bool write = vmf->flags & FAULT_FLAG_WRITE;
5114 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5115 pte_t entry;
5117 flush_icache_pages(vma, page, nr);
5118 entry = mk_pte(page, vma->vm_page_prot);
5120 if (prefault && arch_wants_old_prefaulted_pte())
5121 entry = pte_mkold(entry);
5122 else
5123 entry = pte_sw_mkyoung(entry);
5125 if (write)
5126 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5127 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5128 entry = pte_mkuffd_wp(entry);
5129 /* copy-on-write page */
5130 if (write && !(vma->vm_flags & VM_SHARED)) {
5131 VM_BUG_ON_FOLIO(nr != 1, folio);
5132 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5133 folio_add_lru_vma(folio, vma);
5134 } else {
5135 folio_add_file_rmap_ptes(folio, page, nr, vma);
5137 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5139 /* no need to invalidate: a not-present page won't be cached */
5140 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5143 static bool vmf_pte_changed(struct vm_fault *vmf)
5145 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5146 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5148 return !pte_none(ptep_get(vmf->pte));
5152 * finish_fault - finish page fault once we have prepared the page to fault
5154 * @vmf: structure describing the fault
5156 * This function handles all that is needed to finish a page fault once the
5157 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5158 * given page, adds reverse page mapping, handles memcg charges and LRU
5159 * addition.
5161 * The function expects the page to be locked and on success it consumes a
5162 * reference of a page being mapped (for the PTE which maps it).
5164 * Return: %0 on success, %VM_FAULT_ code in case of error.
5166 vm_fault_t finish_fault(struct vm_fault *vmf)
5168 struct vm_area_struct *vma = vmf->vma;
5169 struct page *page;
5170 struct folio *folio;
5171 vm_fault_t ret;
5172 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5173 !(vma->vm_flags & VM_SHARED);
5174 int type, nr_pages;
5175 unsigned long addr = vmf->address;
5177 /* Did we COW the page? */
5178 if (is_cow)
5179 page = vmf->cow_page;
5180 else
5181 page = vmf->page;
5184 * check even for read faults because we might have lost our CoWed
5185 * page
5187 if (!(vma->vm_flags & VM_SHARED)) {
5188 ret = check_stable_address_space(vma->vm_mm);
5189 if (ret)
5190 return ret;
5193 if (pmd_none(*vmf->pmd)) {
5194 if (PageTransCompound(page)) {
5195 ret = do_set_pmd(vmf, page);
5196 if (ret != VM_FAULT_FALLBACK)
5197 return ret;
5200 if (vmf->prealloc_pte)
5201 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5202 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5203 return VM_FAULT_OOM;
5206 folio = page_folio(page);
5207 nr_pages = folio_nr_pages(folio);
5210 * Using per-page fault to maintain the uffd semantics, and same
5211 * approach also applies to non-anonymous-shmem faults to avoid
5212 * inflating the RSS of the process.
5214 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5215 nr_pages = 1;
5216 } else if (nr_pages > 1) {
5217 pgoff_t idx = folio_page_idx(folio, page);
5218 /* The page offset of vmf->address within the VMA. */
5219 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5220 /* The index of the entry in the pagetable for fault page. */
5221 pgoff_t pte_off = pte_index(vmf->address);
5224 * Fallback to per-page fault in case the folio size in page
5225 * cache beyond the VMA limits and PMD pagetable limits.
5227 if (unlikely(vma_off < idx ||
5228 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5229 pte_off < idx ||
5230 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5231 nr_pages = 1;
5232 } else {
5233 /* Now we can set mappings for the whole large folio. */
5234 addr = vmf->address - idx * PAGE_SIZE;
5235 page = &folio->page;
5239 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5240 addr, &vmf->ptl);
5241 if (!vmf->pte)
5242 return VM_FAULT_NOPAGE;
5244 /* Re-check under ptl */
5245 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5246 update_mmu_tlb(vma, addr, vmf->pte);
5247 ret = VM_FAULT_NOPAGE;
5248 goto unlock;
5249 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5250 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5251 ret = VM_FAULT_NOPAGE;
5252 goto unlock;
5255 folio_ref_add(folio, nr_pages - 1);
5256 set_pte_range(vmf, folio, page, nr_pages, addr);
5257 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5258 add_mm_counter(vma->vm_mm, type, nr_pages);
5259 ret = 0;
5261 unlock:
5262 pte_unmap_unlock(vmf->pte, vmf->ptl);
5263 return ret;
5266 static unsigned long fault_around_pages __read_mostly =
5267 65536 >> PAGE_SHIFT;
5269 #ifdef CONFIG_DEBUG_FS
5270 static int fault_around_bytes_get(void *data, u64 *val)
5272 *val = fault_around_pages << PAGE_SHIFT;
5273 return 0;
5277 * fault_around_bytes must be rounded down to the nearest page order as it's
5278 * what do_fault_around() expects to see.
5280 static int fault_around_bytes_set(void *data, u64 val)
5282 if (val / PAGE_SIZE > PTRS_PER_PTE)
5283 return -EINVAL;
5286 * The minimum value is 1 page, however this results in no fault-around
5287 * at all. See should_fault_around().
5289 val = max(val, PAGE_SIZE);
5290 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5292 return 0;
5294 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5295 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5297 static int __init fault_around_debugfs(void)
5299 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5300 &fault_around_bytes_fops);
5301 return 0;
5303 late_initcall(fault_around_debugfs);
5304 #endif
5307 * do_fault_around() tries to map few pages around the fault address. The hope
5308 * is that the pages will be needed soon and this will lower the number of
5309 * faults to handle.
5311 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5312 * not ready to be mapped: not up-to-date, locked, etc.
5314 * This function doesn't cross VMA or page table boundaries, in order to call
5315 * map_pages() and acquire a PTE lock only once.
5317 * fault_around_pages defines how many pages we'll try to map.
5318 * do_fault_around() expects it to be set to a power of two less than or equal
5319 * to PTRS_PER_PTE.
5321 * The virtual address of the area that we map is naturally aligned to
5322 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5323 * (and therefore to page order). This way it's easier to guarantee
5324 * that we don't cross page table boundaries.
5326 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5328 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5329 pgoff_t pte_off = pte_index(vmf->address);
5330 /* The page offset of vmf->address within the VMA. */
5331 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5332 pgoff_t from_pte, to_pte;
5333 vm_fault_t ret;
5335 /* The PTE offset of the start address, clamped to the VMA. */
5336 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5337 pte_off - min(pte_off, vma_off));
5339 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5340 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5341 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5343 if (pmd_none(*vmf->pmd)) {
5344 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5345 if (!vmf->prealloc_pte)
5346 return VM_FAULT_OOM;
5349 rcu_read_lock();
5350 ret = vmf->vma->vm_ops->map_pages(vmf,
5351 vmf->pgoff + from_pte - pte_off,
5352 vmf->pgoff + to_pte - pte_off);
5353 rcu_read_unlock();
5355 return ret;
5358 /* Return true if we should do read fault-around, false otherwise */
5359 static inline bool should_fault_around(struct vm_fault *vmf)
5361 /* No ->map_pages? No way to fault around... */
5362 if (!vmf->vma->vm_ops->map_pages)
5363 return false;
5365 if (uffd_disable_fault_around(vmf->vma))
5366 return false;
5368 /* A single page implies no faulting 'around' at all. */
5369 return fault_around_pages > 1;
5372 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5374 vm_fault_t ret = 0;
5375 struct folio *folio;
5378 * Let's call ->map_pages() first and use ->fault() as fallback
5379 * if page by the offset is not ready to be mapped (cold cache or
5380 * something).
5382 if (should_fault_around(vmf)) {
5383 ret = do_fault_around(vmf);
5384 if (ret)
5385 return ret;
5388 ret = vmf_can_call_fault(vmf);
5389 if (ret)
5390 return ret;
5392 ret = __do_fault(vmf);
5393 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5394 return ret;
5396 ret |= finish_fault(vmf);
5397 folio = page_folio(vmf->page);
5398 folio_unlock(folio);
5399 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5400 folio_put(folio);
5401 return ret;
5404 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5406 struct vm_area_struct *vma = vmf->vma;
5407 struct folio *folio;
5408 vm_fault_t ret;
5410 ret = vmf_can_call_fault(vmf);
5411 if (!ret)
5412 ret = vmf_anon_prepare(vmf);
5413 if (ret)
5414 return ret;
5416 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5417 if (!folio)
5418 return VM_FAULT_OOM;
5420 vmf->cow_page = &folio->page;
5422 ret = __do_fault(vmf);
5423 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5424 goto uncharge_out;
5425 if (ret & VM_FAULT_DONE_COW)
5426 return ret;
5428 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5429 ret = VM_FAULT_HWPOISON;
5430 goto unlock;
5432 __folio_mark_uptodate(folio);
5434 ret |= finish_fault(vmf);
5435 unlock:
5436 unlock_page(vmf->page);
5437 put_page(vmf->page);
5438 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5439 goto uncharge_out;
5440 return ret;
5441 uncharge_out:
5442 folio_put(folio);
5443 return ret;
5446 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5448 struct vm_area_struct *vma = vmf->vma;
5449 vm_fault_t ret, tmp;
5450 struct folio *folio;
5452 ret = vmf_can_call_fault(vmf);
5453 if (ret)
5454 return ret;
5456 ret = __do_fault(vmf);
5457 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5458 return ret;
5460 folio = page_folio(vmf->page);
5463 * Check if the backing address space wants to know that the page is
5464 * about to become writable
5466 if (vma->vm_ops->page_mkwrite) {
5467 folio_unlock(folio);
5468 tmp = do_page_mkwrite(vmf, folio);
5469 if (unlikely(!tmp ||
5470 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5471 folio_put(folio);
5472 return tmp;
5476 ret |= finish_fault(vmf);
5477 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5478 VM_FAULT_RETRY))) {
5479 folio_unlock(folio);
5480 folio_put(folio);
5481 return ret;
5484 ret |= fault_dirty_shared_page(vmf);
5485 return ret;
5489 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5490 * but allow concurrent faults).
5491 * The mmap_lock may have been released depending on flags and our
5492 * return value. See filemap_fault() and __folio_lock_or_retry().
5493 * If mmap_lock is released, vma may become invalid (for example
5494 * by other thread calling munmap()).
5496 static vm_fault_t do_fault(struct vm_fault *vmf)
5498 struct vm_area_struct *vma = vmf->vma;
5499 struct mm_struct *vm_mm = vma->vm_mm;
5500 vm_fault_t ret;
5503 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5505 if (!vma->vm_ops->fault) {
5506 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5507 vmf->address, &vmf->ptl);
5508 if (unlikely(!vmf->pte))
5509 ret = VM_FAULT_SIGBUS;
5510 else {
5512 * Make sure this is not a temporary clearing of pte
5513 * by holding ptl and checking again. A R/M/W update
5514 * of pte involves: take ptl, clearing the pte so that
5515 * we don't have concurrent modification by hardware
5516 * followed by an update.
5518 if (unlikely(pte_none(ptep_get(vmf->pte))))
5519 ret = VM_FAULT_SIGBUS;
5520 else
5521 ret = VM_FAULT_NOPAGE;
5523 pte_unmap_unlock(vmf->pte, vmf->ptl);
5525 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5526 ret = do_read_fault(vmf);
5527 else if (!(vma->vm_flags & VM_SHARED))
5528 ret = do_cow_fault(vmf);
5529 else
5530 ret = do_shared_fault(vmf);
5532 /* preallocated pagetable is unused: free it */
5533 if (vmf->prealloc_pte) {
5534 pte_free(vm_mm, vmf->prealloc_pte);
5535 vmf->prealloc_pte = NULL;
5537 return ret;
5540 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5541 unsigned long addr, int *flags,
5542 bool writable, int *last_cpupid)
5544 struct vm_area_struct *vma = vmf->vma;
5547 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5548 * much anyway since they can be in shared cache state. This misses
5549 * the case where a mapping is writable but the process never writes
5550 * to it but pte_write gets cleared during protection updates and
5551 * pte_dirty has unpredictable behaviour between PTE scan updates,
5552 * background writeback, dirty balancing and application behaviour.
5554 if (!writable)
5555 *flags |= TNF_NO_GROUP;
5558 * Flag if the folio is shared between multiple address spaces. This
5559 * is later used when determining whether to group tasks together
5561 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5562 *flags |= TNF_SHARED;
5564 * For memory tiering mode, cpupid of slow memory page is used
5565 * to record page access time. So use default value.
5567 if (folio_use_access_time(folio))
5568 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5569 else
5570 *last_cpupid = folio_last_cpupid(folio);
5572 /* Record the current PID acceesing VMA */
5573 vma_set_access_pid_bit(vma);
5575 count_vm_numa_event(NUMA_HINT_FAULTS);
5576 #ifdef CONFIG_NUMA_BALANCING
5577 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5578 #endif
5579 if (folio_nid(folio) == numa_node_id()) {
5580 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5581 *flags |= TNF_FAULT_LOCAL;
5584 return mpol_misplaced(folio, vmf, addr);
5587 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5588 unsigned long fault_addr, pte_t *fault_pte,
5589 bool writable)
5591 pte_t pte, old_pte;
5593 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5594 pte = pte_modify(old_pte, vma->vm_page_prot);
5595 pte = pte_mkyoung(pte);
5596 if (writable)
5597 pte = pte_mkwrite(pte, vma);
5598 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5599 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5602 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5603 struct folio *folio, pte_t fault_pte,
5604 bool ignore_writable, bool pte_write_upgrade)
5606 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5607 unsigned long start, end, addr = vmf->address;
5608 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5609 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5610 pte_t *start_ptep;
5612 /* Stay within the VMA and within the page table. */
5613 start = max3(addr_start, pt_start, vma->vm_start);
5614 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5615 vma->vm_end);
5616 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5618 /* Restore all PTEs' mapping of the large folio */
5619 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5620 pte_t ptent = ptep_get(start_ptep);
5621 bool writable = false;
5623 if (!pte_present(ptent) || !pte_protnone(ptent))
5624 continue;
5626 if (pfn_folio(pte_pfn(ptent)) != folio)
5627 continue;
5629 if (!ignore_writable) {
5630 ptent = pte_modify(ptent, vma->vm_page_prot);
5631 writable = pte_write(ptent);
5632 if (!writable && pte_write_upgrade &&
5633 can_change_pte_writable(vma, addr, ptent))
5634 writable = true;
5637 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5641 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5643 struct vm_area_struct *vma = vmf->vma;
5644 struct folio *folio = NULL;
5645 int nid = NUMA_NO_NODE;
5646 bool writable = false, ignore_writable = false;
5647 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5648 int last_cpupid;
5649 int target_nid;
5650 pte_t pte, old_pte;
5651 int flags = 0, nr_pages;
5654 * The pte cannot be used safely until we verify, while holding the page
5655 * table lock, that its contents have not changed during fault handling.
5657 spin_lock(vmf->ptl);
5658 /* Read the live PTE from the page tables: */
5659 old_pte = ptep_get(vmf->pte);
5661 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5662 pte_unmap_unlock(vmf->pte, vmf->ptl);
5663 return 0;
5666 pte = pte_modify(old_pte, vma->vm_page_prot);
5669 * Detect now whether the PTE could be writable; this information
5670 * is only valid while holding the PT lock.
5672 writable = pte_write(pte);
5673 if (!writable && pte_write_upgrade &&
5674 can_change_pte_writable(vma, vmf->address, pte))
5675 writable = true;
5677 folio = vm_normal_folio(vma, vmf->address, pte);
5678 if (!folio || folio_is_zone_device(folio))
5679 goto out_map;
5681 nid = folio_nid(folio);
5682 nr_pages = folio_nr_pages(folio);
5684 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5685 writable, &last_cpupid);
5686 if (target_nid == NUMA_NO_NODE)
5687 goto out_map;
5688 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5689 flags |= TNF_MIGRATE_FAIL;
5690 goto out_map;
5692 /* The folio is isolated and isolation code holds a folio reference. */
5693 pte_unmap_unlock(vmf->pte, vmf->ptl);
5694 writable = false;
5695 ignore_writable = true;
5697 /* Migrate to the requested node */
5698 if (!migrate_misplaced_folio(folio, target_nid)) {
5699 nid = target_nid;
5700 flags |= TNF_MIGRATED;
5701 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5702 return 0;
5705 flags |= TNF_MIGRATE_FAIL;
5706 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5707 vmf->address, &vmf->ptl);
5708 if (unlikely(!vmf->pte))
5709 return 0;
5710 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5711 pte_unmap_unlock(vmf->pte, vmf->ptl);
5712 return 0;
5714 out_map:
5716 * Make it present again, depending on how arch implements
5717 * non-accessible ptes, some can allow access by kernel mode.
5719 if (folio && folio_test_large(folio))
5720 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5721 pte_write_upgrade);
5722 else
5723 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5724 writable);
5725 pte_unmap_unlock(vmf->pte, vmf->ptl);
5727 if (nid != NUMA_NO_NODE)
5728 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5729 return 0;
5732 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5734 struct vm_area_struct *vma = vmf->vma;
5736 if (vma_is_anonymous(vma))
5737 return do_huge_pmd_anonymous_page(vmf);
5739 * Currently we just emit PAGE_SIZE for our fault events, so don't allow
5740 * a huge fault if we have a pre content watch on this file. This would
5741 * be trivial to support, but there would need to be tests to ensure
5742 * this works properly and those don't exist currently.
5744 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5745 return VM_FAULT_FALLBACK;
5746 if (vma->vm_ops->huge_fault)
5747 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5748 return VM_FAULT_FALLBACK;
5751 /* `inline' is required to avoid gcc 4.1.2 build error */
5752 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5754 struct vm_area_struct *vma = vmf->vma;
5755 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5756 vm_fault_t ret;
5758 if (vma_is_anonymous(vma)) {
5759 if (likely(!unshare) &&
5760 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5761 if (userfaultfd_wp_async(vmf->vma))
5762 goto split;
5763 return handle_userfault(vmf, VM_UFFD_WP);
5765 return do_huge_pmd_wp_page(vmf);
5768 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5769 /* See comment in create_huge_pmd. */
5770 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5771 goto split;
5772 if (vma->vm_ops->huge_fault) {
5773 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5774 if (!(ret & VM_FAULT_FALLBACK))
5775 return ret;
5779 split:
5780 /* COW or write-notify handled on pte level: split pmd. */
5781 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5783 return VM_FAULT_FALLBACK;
5786 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5788 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5789 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5790 struct vm_area_struct *vma = vmf->vma;
5791 /* No support for anonymous transparent PUD pages yet */
5792 if (vma_is_anonymous(vma))
5793 return VM_FAULT_FALLBACK;
5794 /* See comment in create_huge_pmd. */
5795 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5796 return VM_FAULT_FALLBACK;
5797 if (vma->vm_ops->huge_fault)
5798 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5800 return VM_FAULT_FALLBACK;
5803 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5805 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5806 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5807 struct vm_area_struct *vma = vmf->vma;
5808 vm_fault_t ret;
5810 /* No support for anonymous transparent PUD pages yet */
5811 if (vma_is_anonymous(vma))
5812 goto split;
5813 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5814 /* See comment in create_huge_pmd. */
5815 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5816 goto split;
5817 if (vma->vm_ops->huge_fault) {
5818 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5819 if (!(ret & VM_FAULT_FALLBACK))
5820 return ret;
5823 split:
5824 /* COW or write-notify not handled on PUD level: split pud.*/
5825 __split_huge_pud(vma, vmf->pud, vmf->address);
5826 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5827 return VM_FAULT_FALLBACK;
5831 * These routines also need to handle stuff like marking pages dirty
5832 * and/or accessed for architectures that don't do it in hardware (most
5833 * RISC architectures). The early dirtying is also good on the i386.
5835 * There is also a hook called "update_mmu_cache()" that architectures
5836 * with external mmu caches can use to update those (ie the Sparc or
5837 * PowerPC hashed page tables that act as extended TLBs).
5839 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5840 * concurrent faults).
5842 * The mmap_lock may have been released depending on flags and our return value.
5843 * See filemap_fault() and __folio_lock_or_retry().
5845 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5847 pte_t entry;
5849 if (unlikely(pmd_none(*vmf->pmd))) {
5851 * Leave __pte_alloc() until later: because vm_ops->fault may
5852 * want to allocate huge page, and if we expose page table
5853 * for an instant, it will be difficult to retract from
5854 * concurrent faults and from rmap lookups.
5856 vmf->pte = NULL;
5857 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5858 } else {
5859 pmd_t dummy_pmdval;
5862 * A regular pmd is established and it can't morph into a huge
5863 * pmd by anon khugepaged, since that takes mmap_lock in write
5864 * mode; but shmem or file collapse to THP could still morph
5865 * it into a huge pmd: just retry later if so.
5867 * Use the maywrite version to indicate that vmf->pte may be
5868 * modified, but since we will use pte_same() to detect the
5869 * change of the !pte_none() entry, there is no need to recheck
5870 * the pmdval. Here we chooes to pass a dummy variable instead
5871 * of NULL, which helps new user think about why this place is
5872 * special.
5874 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5875 vmf->address, &dummy_pmdval,
5876 &vmf->ptl);
5877 if (unlikely(!vmf->pte))
5878 return 0;
5879 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5880 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5882 if (pte_none(vmf->orig_pte)) {
5883 pte_unmap(vmf->pte);
5884 vmf->pte = NULL;
5888 if (!vmf->pte)
5889 return do_pte_missing(vmf);
5891 if (!pte_present(vmf->orig_pte))
5892 return do_swap_page(vmf);
5894 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5895 return do_numa_page(vmf);
5897 spin_lock(vmf->ptl);
5898 entry = vmf->orig_pte;
5899 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5900 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5901 goto unlock;
5903 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5904 if (!pte_write(entry))
5905 return do_wp_page(vmf);
5906 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5907 entry = pte_mkdirty(entry);
5909 entry = pte_mkyoung(entry);
5910 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5911 vmf->flags & FAULT_FLAG_WRITE)) {
5912 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5913 vmf->pte, 1);
5914 } else {
5915 /* Skip spurious TLB flush for retried page fault */
5916 if (vmf->flags & FAULT_FLAG_TRIED)
5917 goto unlock;
5919 * This is needed only for protection faults but the arch code
5920 * is not yet telling us if this is a protection fault or not.
5921 * This still avoids useless tlb flushes for .text page faults
5922 * with threads.
5924 if (vmf->flags & FAULT_FLAG_WRITE)
5925 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5926 vmf->pte);
5928 unlock:
5929 pte_unmap_unlock(vmf->pte, vmf->ptl);
5930 return 0;
5934 * On entry, we hold either the VMA lock or the mmap_lock
5935 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5936 * the result, the mmap_lock is not held on exit. See filemap_fault()
5937 * and __folio_lock_or_retry().
5939 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5940 unsigned long address, unsigned int flags)
5942 struct vm_fault vmf = {
5943 .vma = vma,
5944 .address = address & PAGE_MASK,
5945 .real_address = address,
5946 .flags = flags,
5947 .pgoff = linear_page_index(vma, address),
5948 .gfp_mask = __get_fault_gfp_mask(vma),
5950 struct mm_struct *mm = vma->vm_mm;
5951 unsigned long vm_flags = vma->vm_flags;
5952 pgd_t *pgd;
5953 p4d_t *p4d;
5954 vm_fault_t ret;
5956 pgd = pgd_offset(mm, address);
5957 p4d = p4d_alloc(mm, pgd, address);
5958 if (!p4d)
5959 return VM_FAULT_OOM;
5961 vmf.pud = pud_alloc(mm, p4d, address);
5962 if (!vmf.pud)
5963 return VM_FAULT_OOM;
5964 retry_pud:
5965 if (pud_none(*vmf.pud) &&
5966 thp_vma_allowable_order(vma, vm_flags,
5967 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5968 ret = create_huge_pud(&vmf);
5969 if (!(ret & VM_FAULT_FALLBACK))
5970 return ret;
5971 } else {
5972 pud_t orig_pud = *vmf.pud;
5974 barrier();
5975 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5978 * TODO once we support anonymous PUDs: NUMA case and
5979 * FAULT_FLAG_UNSHARE handling.
5981 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5982 ret = wp_huge_pud(&vmf, orig_pud);
5983 if (!(ret & VM_FAULT_FALLBACK))
5984 return ret;
5985 } else {
5986 huge_pud_set_accessed(&vmf, orig_pud);
5987 return 0;
5992 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5993 if (!vmf.pmd)
5994 return VM_FAULT_OOM;
5996 /* Huge pud page fault raced with pmd_alloc? */
5997 if (pud_trans_unstable(vmf.pud))
5998 goto retry_pud;
6000 if (pmd_none(*vmf.pmd) &&
6001 thp_vma_allowable_order(vma, vm_flags,
6002 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
6003 ret = create_huge_pmd(&vmf);
6004 if (!(ret & VM_FAULT_FALLBACK))
6005 return ret;
6006 } else {
6007 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6009 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
6010 VM_BUG_ON(thp_migration_supported() &&
6011 !is_pmd_migration_entry(vmf.orig_pmd));
6012 if (is_pmd_migration_entry(vmf.orig_pmd))
6013 pmd_migration_entry_wait(mm, vmf.pmd);
6014 return 0;
6016 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
6017 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6018 return do_huge_pmd_numa_page(&vmf);
6020 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6021 !pmd_write(vmf.orig_pmd)) {
6022 ret = wp_huge_pmd(&vmf);
6023 if (!(ret & VM_FAULT_FALLBACK))
6024 return ret;
6025 } else {
6026 huge_pmd_set_accessed(&vmf);
6027 return 0;
6032 return handle_pte_fault(&vmf);
6036 * mm_account_fault - Do page fault accounting
6037 * @mm: mm from which memcg should be extracted. It can be NULL.
6038 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6039 * of perf event counters, but we'll still do the per-task accounting to
6040 * the task who triggered this page fault.
6041 * @address: the faulted address.
6042 * @flags: the fault flags.
6043 * @ret: the fault retcode.
6045 * This will take care of most of the page fault accounting. Meanwhile, it
6046 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6047 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6048 * still be in per-arch page fault handlers at the entry of page fault.
6050 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6051 unsigned long address, unsigned int flags,
6052 vm_fault_t ret)
6054 bool major;
6056 /* Incomplete faults will be accounted upon completion. */
6057 if (ret & VM_FAULT_RETRY)
6058 return;
6061 * To preserve the behavior of older kernels, PGFAULT counters record
6062 * both successful and failed faults, as opposed to perf counters,
6063 * which ignore failed cases.
6065 count_vm_event(PGFAULT);
6066 count_memcg_event_mm(mm, PGFAULT);
6069 * Do not account for unsuccessful faults (e.g. when the address wasn't
6070 * valid). That includes arch_vma_access_permitted() failing before
6071 * reaching here. So this is not a "this many hardware page faults"
6072 * counter. We should use the hw profiling for that.
6074 if (ret & VM_FAULT_ERROR)
6075 return;
6078 * We define the fault as a major fault when the final successful fault
6079 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6080 * handle it immediately previously).
6082 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6084 if (major)
6085 current->maj_flt++;
6086 else
6087 current->min_flt++;
6090 * If the fault is done for GUP, regs will be NULL. We only do the
6091 * accounting for the per thread fault counters who triggered the
6092 * fault, and we skip the perf event updates.
6094 if (!regs)
6095 return;
6097 if (major)
6098 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6099 else
6100 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6103 #ifdef CONFIG_LRU_GEN
6104 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6106 /* the LRU algorithm only applies to accesses with recency */
6107 current->in_lru_fault = vma_has_recency(vma);
6110 static void lru_gen_exit_fault(void)
6112 current->in_lru_fault = false;
6114 #else
6115 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6119 static void lru_gen_exit_fault(void)
6122 #endif /* CONFIG_LRU_GEN */
6124 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6125 unsigned int *flags)
6127 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6128 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6129 return VM_FAULT_SIGSEGV;
6131 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6132 * just treat it like an ordinary read-fault otherwise.
6134 if (!is_cow_mapping(vma->vm_flags))
6135 *flags &= ~FAULT_FLAG_UNSHARE;
6136 } else if (*flags & FAULT_FLAG_WRITE) {
6137 /* Write faults on read-only mappings are impossible ... */
6138 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6139 return VM_FAULT_SIGSEGV;
6140 /* ... and FOLL_FORCE only applies to COW mappings. */
6141 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6142 !is_cow_mapping(vma->vm_flags)))
6143 return VM_FAULT_SIGSEGV;
6145 #ifdef CONFIG_PER_VMA_LOCK
6147 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6148 * the assumption that lock is dropped on VM_FAULT_RETRY.
6150 if (WARN_ON_ONCE((*flags &
6151 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6152 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6153 return VM_FAULT_SIGSEGV;
6154 #endif
6156 return 0;
6160 * By the time we get here, we already hold either the VMA lock or the
6161 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6163 * The mmap_lock may have been released depending on flags and our
6164 * return value. See filemap_fault() and __folio_lock_or_retry().
6166 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6167 unsigned int flags, struct pt_regs *regs)
6169 /* If the fault handler drops the mmap_lock, vma may be freed */
6170 struct mm_struct *mm = vma->vm_mm;
6171 vm_fault_t ret;
6172 bool is_droppable;
6174 __set_current_state(TASK_RUNNING);
6176 ret = sanitize_fault_flags(vma, &flags);
6177 if (ret)
6178 goto out;
6180 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6181 flags & FAULT_FLAG_INSTRUCTION,
6182 flags & FAULT_FLAG_REMOTE)) {
6183 ret = VM_FAULT_SIGSEGV;
6184 goto out;
6187 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6190 * Enable the memcg OOM handling for faults triggered in user
6191 * space. Kernel faults are handled more gracefully.
6193 if (flags & FAULT_FLAG_USER)
6194 mem_cgroup_enter_user_fault();
6196 lru_gen_enter_fault(vma);
6198 if (unlikely(is_vm_hugetlb_page(vma)))
6199 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6200 else
6201 ret = __handle_mm_fault(vma, address, flags);
6204 * Warning: It is no longer safe to dereference vma-> after this point,
6205 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6206 * vma might be destroyed from underneath us.
6209 lru_gen_exit_fault();
6211 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6212 if (is_droppable)
6213 ret &= ~VM_FAULT_OOM;
6215 if (flags & FAULT_FLAG_USER) {
6216 mem_cgroup_exit_user_fault();
6218 * The task may have entered a memcg OOM situation but
6219 * if the allocation error was handled gracefully (no
6220 * VM_FAULT_OOM), there is no need to kill anything.
6221 * Just clean up the OOM state peacefully.
6223 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6224 mem_cgroup_oom_synchronize(false);
6226 out:
6227 mm_account_fault(mm, regs, address, flags, ret);
6229 return ret;
6231 EXPORT_SYMBOL_GPL(handle_mm_fault);
6233 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6234 #include <linux/extable.h>
6236 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6238 if (likely(mmap_read_trylock(mm)))
6239 return true;
6241 if (regs && !user_mode(regs)) {
6242 unsigned long ip = exception_ip(regs);
6243 if (!search_exception_tables(ip))
6244 return false;
6247 return !mmap_read_lock_killable(mm);
6250 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6253 * We don't have this operation yet.
6255 * It should be easy enough to do: it's basically a
6256 * atomic_long_try_cmpxchg_acquire()
6257 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6258 * it also needs the proper lockdep magic etc.
6260 return false;
6263 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6265 mmap_read_unlock(mm);
6266 if (regs && !user_mode(regs)) {
6267 unsigned long ip = exception_ip(regs);
6268 if (!search_exception_tables(ip))
6269 return false;
6271 return !mmap_write_lock_killable(mm);
6275 * Helper for page fault handling.
6277 * This is kind of equivalent to "mmap_read_lock()" followed
6278 * by "find_extend_vma()", except it's a lot more careful about
6279 * the locking (and will drop the lock on failure).
6281 * For example, if we have a kernel bug that causes a page
6282 * fault, we don't want to just use mmap_read_lock() to get
6283 * the mm lock, because that would deadlock if the bug were
6284 * to happen while we're holding the mm lock for writing.
6286 * So this checks the exception tables on kernel faults in
6287 * order to only do this all for instructions that are actually
6288 * expected to fault.
6290 * We can also actually take the mm lock for writing if we
6291 * need to extend the vma, which helps the VM layer a lot.
6293 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6294 unsigned long addr, struct pt_regs *regs)
6296 struct vm_area_struct *vma;
6298 if (!get_mmap_lock_carefully(mm, regs))
6299 return NULL;
6301 vma = find_vma(mm, addr);
6302 if (likely(vma && (vma->vm_start <= addr)))
6303 return vma;
6306 * Well, dang. We might still be successful, but only
6307 * if we can extend a vma to do so.
6309 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6310 mmap_read_unlock(mm);
6311 return NULL;
6315 * We can try to upgrade the mmap lock atomically,
6316 * in which case we can continue to use the vma
6317 * we already looked up.
6319 * Otherwise we'll have to drop the mmap lock and
6320 * re-take it, and also look up the vma again,
6321 * re-checking it.
6323 if (!mmap_upgrade_trylock(mm)) {
6324 if (!upgrade_mmap_lock_carefully(mm, regs))
6325 return NULL;
6327 vma = find_vma(mm, addr);
6328 if (!vma)
6329 goto fail;
6330 if (vma->vm_start <= addr)
6331 goto success;
6332 if (!(vma->vm_flags & VM_GROWSDOWN))
6333 goto fail;
6336 if (expand_stack_locked(vma, addr))
6337 goto fail;
6339 success:
6340 mmap_write_downgrade(mm);
6341 return vma;
6343 fail:
6344 mmap_write_unlock(mm);
6345 return NULL;
6347 #endif
6349 #ifdef CONFIG_PER_VMA_LOCK
6351 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6352 * stable and not isolated. If the VMA is not found or is being modified the
6353 * function returns NULL.
6355 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6356 unsigned long address)
6358 MA_STATE(mas, &mm->mm_mt, address, address);
6359 struct vm_area_struct *vma;
6361 rcu_read_lock();
6362 retry:
6363 vma = mas_walk(&mas);
6364 if (!vma)
6365 goto inval;
6367 if (!vma_start_read(vma))
6368 goto inval;
6370 /* Check if the VMA got isolated after we found it */
6371 if (vma->detached) {
6372 vma_end_read(vma);
6373 count_vm_vma_lock_event(VMA_LOCK_MISS);
6374 /* The area was replaced with another one */
6375 goto retry;
6378 * At this point, we have a stable reference to a VMA: The VMA is
6379 * locked and we know it hasn't already been isolated.
6380 * From here on, we can access the VMA without worrying about which
6381 * fields are accessible for RCU readers.
6384 /* Check since vm_start/vm_end might change before we lock the VMA */
6385 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6386 goto inval_end_read;
6388 rcu_read_unlock();
6389 return vma;
6391 inval_end_read:
6392 vma_end_read(vma);
6393 inval:
6394 rcu_read_unlock();
6395 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6396 return NULL;
6398 #endif /* CONFIG_PER_VMA_LOCK */
6400 #ifndef __PAGETABLE_P4D_FOLDED
6402 * Allocate p4d page table.
6403 * We've already handled the fast-path in-line.
6405 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6407 p4d_t *new = p4d_alloc_one(mm, address);
6408 if (!new)
6409 return -ENOMEM;
6411 spin_lock(&mm->page_table_lock);
6412 if (pgd_present(*pgd)) { /* Another has populated it */
6413 p4d_free(mm, new);
6414 } else {
6415 smp_wmb(); /* See comment in pmd_install() */
6416 pgd_populate(mm, pgd, new);
6418 spin_unlock(&mm->page_table_lock);
6419 return 0;
6421 #endif /* __PAGETABLE_P4D_FOLDED */
6423 #ifndef __PAGETABLE_PUD_FOLDED
6425 * Allocate page upper directory.
6426 * We've already handled the fast-path in-line.
6428 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6430 pud_t *new = pud_alloc_one(mm, address);
6431 if (!new)
6432 return -ENOMEM;
6434 spin_lock(&mm->page_table_lock);
6435 if (!p4d_present(*p4d)) {
6436 mm_inc_nr_puds(mm);
6437 smp_wmb(); /* See comment in pmd_install() */
6438 p4d_populate(mm, p4d, new);
6439 } else /* Another has populated it */
6440 pud_free(mm, new);
6441 spin_unlock(&mm->page_table_lock);
6442 return 0;
6444 #endif /* __PAGETABLE_PUD_FOLDED */
6446 #ifndef __PAGETABLE_PMD_FOLDED
6448 * Allocate page middle directory.
6449 * We've already handled the fast-path in-line.
6451 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6453 spinlock_t *ptl;
6454 pmd_t *new = pmd_alloc_one(mm, address);
6455 if (!new)
6456 return -ENOMEM;
6458 ptl = pud_lock(mm, pud);
6459 if (!pud_present(*pud)) {
6460 mm_inc_nr_pmds(mm);
6461 smp_wmb(); /* See comment in pmd_install() */
6462 pud_populate(mm, pud, new);
6463 } else { /* Another has populated it */
6464 pmd_free(mm, new);
6466 spin_unlock(ptl);
6467 return 0;
6469 #endif /* __PAGETABLE_PMD_FOLDED */
6471 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6472 spinlock_t *lock, pte_t *ptep,
6473 pgprot_t pgprot, unsigned long pfn_base,
6474 unsigned long addr_mask, bool writable,
6475 bool special)
6477 args->lock = lock;
6478 args->ptep = ptep;
6479 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6480 args->pgprot = pgprot;
6481 args->writable = writable;
6482 args->special = special;
6485 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6487 #ifdef CONFIG_LOCKDEP
6488 struct file *file = vma->vm_file;
6489 struct address_space *mapping = file ? file->f_mapping : NULL;
6491 if (mapping)
6492 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6493 lockdep_is_held(&vma->vm_mm->mmap_lock));
6494 else
6495 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6496 #endif
6500 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6501 * @args: Pointer to struct @follow_pfnmap_args
6503 * The caller needs to setup args->vma and args->address to point to the
6504 * virtual address as the target of such lookup. On a successful return,
6505 * the results will be put into other output fields.
6507 * After the caller finished using the fields, the caller must invoke
6508 * another follow_pfnmap_end() to proper releases the locks and resources
6509 * of such look up request.
6511 * During the start() and end() calls, the results in @args will be valid
6512 * as proper locks will be held. After the end() is called, all the fields
6513 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6514 * use of such information after end() may require proper synchronizations
6515 * by the caller with page table updates, otherwise it can create a
6516 * security bug.
6518 * If the PTE maps a refcounted page, callers are responsible to protect
6519 * against invalidation with MMU notifiers; otherwise access to the PFN at
6520 * a later point in time can trigger use-after-free.
6522 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6523 * should be taken for read, and the mmap semaphore cannot be released
6524 * before the end() is invoked.
6526 * This function must not be used to modify PTE content.
6528 * Return: zero on success, negative otherwise.
6530 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6532 struct vm_area_struct *vma = args->vma;
6533 unsigned long address = args->address;
6534 struct mm_struct *mm = vma->vm_mm;
6535 spinlock_t *lock;
6536 pgd_t *pgdp;
6537 p4d_t *p4dp, p4d;
6538 pud_t *pudp, pud;
6539 pmd_t *pmdp, pmd;
6540 pte_t *ptep, pte;
6542 pfnmap_lockdep_assert(vma);
6544 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6545 goto out;
6547 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6548 goto out;
6549 retry:
6550 pgdp = pgd_offset(mm, address);
6551 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6552 goto out;
6554 p4dp = p4d_offset(pgdp, address);
6555 p4d = READ_ONCE(*p4dp);
6556 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6557 goto out;
6559 pudp = pud_offset(p4dp, address);
6560 pud = READ_ONCE(*pudp);
6561 if (pud_none(pud))
6562 goto out;
6563 if (pud_leaf(pud)) {
6564 lock = pud_lock(mm, pudp);
6565 if (!unlikely(pud_leaf(pud))) {
6566 spin_unlock(lock);
6567 goto retry;
6569 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6570 pud_pfn(pud), PUD_MASK, pud_write(pud),
6571 pud_special(pud));
6572 return 0;
6575 pmdp = pmd_offset(pudp, address);
6576 pmd = pmdp_get_lockless(pmdp);
6577 if (pmd_leaf(pmd)) {
6578 lock = pmd_lock(mm, pmdp);
6579 if (!unlikely(pmd_leaf(pmd))) {
6580 spin_unlock(lock);
6581 goto retry;
6583 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6584 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6585 pmd_special(pmd));
6586 return 0;
6589 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6590 if (!ptep)
6591 goto out;
6592 pte = ptep_get(ptep);
6593 if (!pte_present(pte))
6594 goto unlock;
6595 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6596 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6597 pte_special(pte));
6598 return 0;
6599 unlock:
6600 pte_unmap_unlock(ptep, lock);
6601 out:
6602 return -EINVAL;
6604 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6607 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6608 * @args: Pointer to struct @follow_pfnmap_args
6610 * Must be used in pair of follow_pfnmap_start(). See the start() function
6611 * above for more information.
6613 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6615 if (args->lock)
6616 spin_unlock(args->lock);
6617 if (args->ptep)
6618 pte_unmap(args->ptep);
6620 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6622 #ifdef CONFIG_HAVE_IOREMAP_PROT
6624 * generic_access_phys - generic implementation for iomem mmap access
6625 * @vma: the vma to access
6626 * @addr: userspace address, not relative offset within @vma
6627 * @buf: buffer to read/write
6628 * @len: length of transfer
6629 * @write: set to FOLL_WRITE when writing, otherwise reading
6631 * This is a generic implementation for &vm_operations_struct.access for an
6632 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6633 * not page based.
6635 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6636 void *buf, int len, int write)
6638 resource_size_t phys_addr;
6639 unsigned long prot = 0;
6640 void __iomem *maddr;
6641 int offset = offset_in_page(addr);
6642 int ret = -EINVAL;
6643 bool writable;
6644 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6646 retry:
6647 if (follow_pfnmap_start(&args))
6648 return -EINVAL;
6649 prot = pgprot_val(args.pgprot);
6650 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6651 writable = args.writable;
6652 follow_pfnmap_end(&args);
6654 if ((write & FOLL_WRITE) && !writable)
6655 return -EINVAL;
6657 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6658 if (!maddr)
6659 return -ENOMEM;
6661 if (follow_pfnmap_start(&args))
6662 goto out_unmap;
6664 if ((prot != pgprot_val(args.pgprot)) ||
6665 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6666 (writable != args.writable)) {
6667 follow_pfnmap_end(&args);
6668 iounmap(maddr);
6669 goto retry;
6672 if (write)
6673 memcpy_toio(maddr + offset, buf, len);
6674 else
6675 memcpy_fromio(buf, maddr + offset, len);
6676 ret = len;
6677 follow_pfnmap_end(&args);
6678 out_unmap:
6679 iounmap(maddr);
6681 return ret;
6683 EXPORT_SYMBOL_GPL(generic_access_phys);
6684 #endif
6687 * Access another process' address space as given in mm.
6689 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6690 void *buf, int len, unsigned int gup_flags)
6692 void *old_buf = buf;
6693 int write = gup_flags & FOLL_WRITE;
6695 if (mmap_read_lock_killable(mm))
6696 return 0;
6698 /* Untag the address before looking up the VMA */
6699 addr = untagged_addr_remote(mm, addr);
6701 /* Avoid triggering the temporary warning in __get_user_pages */
6702 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6703 return 0;
6705 /* ignore errors, just check how much was successfully transferred */
6706 while (len) {
6707 int bytes, offset;
6708 void *maddr;
6709 struct vm_area_struct *vma = NULL;
6710 struct page *page = get_user_page_vma_remote(mm, addr,
6711 gup_flags, &vma);
6713 if (IS_ERR(page)) {
6714 /* We might need to expand the stack to access it */
6715 vma = vma_lookup(mm, addr);
6716 if (!vma) {
6717 vma = expand_stack(mm, addr);
6719 /* mmap_lock was dropped on failure */
6720 if (!vma)
6721 return buf - old_buf;
6723 /* Try again if stack expansion worked */
6724 continue;
6728 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6729 * we can access using slightly different code.
6731 bytes = 0;
6732 #ifdef CONFIG_HAVE_IOREMAP_PROT
6733 if (vma->vm_ops && vma->vm_ops->access)
6734 bytes = vma->vm_ops->access(vma, addr, buf,
6735 len, write);
6736 #endif
6737 if (bytes <= 0)
6738 break;
6739 } else {
6740 bytes = len;
6741 offset = addr & (PAGE_SIZE-1);
6742 if (bytes > PAGE_SIZE-offset)
6743 bytes = PAGE_SIZE-offset;
6745 maddr = kmap_local_page(page);
6746 if (write) {
6747 copy_to_user_page(vma, page, addr,
6748 maddr + offset, buf, bytes);
6749 set_page_dirty_lock(page);
6750 } else {
6751 copy_from_user_page(vma, page, addr,
6752 buf, maddr + offset, bytes);
6754 unmap_and_put_page(page, maddr);
6756 len -= bytes;
6757 buf += bytes;
6758 addr += bytes;
6760 mmap_read_unlock(mm);
6762 return buf - old_buf;
6766 * access_remote_vm - access another process' address space
6767 * @mm: the mm_struct of the target address space
6768 * @addr: start address to access
6769 * @buf: source or destination buffer
6770 * @len: number of bytes to transfer
6771 * @gup_flags: flags modifying lookup behaviour
6773 * The caller must hold a reference on @mm.
6775 * Return: number of bytes copied from source to destination.
6777 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6778 void *buf, int len, unsigned int gup_flags)
6780 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6784 * Access another process' address space.
6785 * Source/target buffer must be kernel space,
6786 * Do not walk the page table directly, use get_user_pages
6788 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6789 void *buf, int len, unsigned int gup_flags)
6791 struct mm_struct *mm;
6792 int ret;
6794 mm = get_task_mm(tsk);
6795 if (!mm)
6796 return 0;
6798 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6800 mmput(mm);
6802 return ret;
6804 EXPORT_SYMBOL_GPL(access_process_vm);
6807 * Print the name of a VMA.
6809 void print_vma_addr(char *prefix, unsigned long ip)
6811 struct mm_struct *mm = current->mm;
6812 struct vm_area_struct *vma;
6815 * we might be running from an atomic context so we cannot sleep
6817 if (!mmap_read_trylock(mm))
6818 return;
6820 vma = vma_lookup(mm, ip);
6821 if (vma && vma->vm_file) {
6822 struct file *f = vma->vm_file;
6823 ip -= vma->vm_start;
6824 ip += vma->vm_pgoff << PAGE_SHIFT;
6825 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6826 vma->vm_start,
6827 vma->vm_end - vma->vm_start);
6829 mmap_read_unlock(mm);
6832 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6833 void __might_fault(const char *file, int line)
6835 if (pagefault_disabled())
6836 return;
6837 __might_sleep(file, line);
6838 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6839 if (current->mm)
6840 might_lock_read(&current->mm->mmap_lock);
6841 #endif
6843 EXPORT_SYMBOL(__might_fault);
6844 #endif
6846 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6848 * Process all subpages of the specified huge page with the specified
6849 * operation. The target subpage will be processed last to keep its
6850 * cache lines hot.
6852 static inline int process_huge_page(
6853 unsigned long addr_hint, unsigned int nr_pages,
6854 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6855 void *arg)
6857 int i, n, base, l, ret;
6858 unsigned long addr = addr_hint &
6859 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6861 /* Process target subpage last to keep its cache lines hot */
6862 might_sleep();
6863 n = (addr_hint - addr) / PAGE_SIZE;
6864 if (2 * n <= nr_pages) {
6865 /* If target subpage in first half of huge page */
6866 base = 0;
6867 l = n;
6868 /* Process subpages at the end of huge page */
6869 for (i = nr_pages - 1; i >= 2 * n; i--) {
6870 cond_resched();
6871 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6872 if (ret)
6873 return ret;
6875 } else {
6876 /* If target subpage in second half of huge page */
6877 base = nr_pages - 2 * (nr_pages - n);
6878 l = nr_pages - n;
6879 /* Process subpages at the begin of huge page */
6880 for (i = 0; i < base; i++) {
6881 cond_resched();
6882 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6883 if (ret)
6884 return ret;
6888 * Process remaining subpages in left-right-left-right pattern
6889 * towards the target subpage
6891 for (i = 0; i < l; i++) {
6892 int left_idx = base + i;
6893 int right_idx = base + 2 * l - 1 - i;
6895 cond_resched();
6896 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6897 if (ret)
6898 return ret;
6899 cond_resched();
6900 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6901 if (ret)
6902 return ret;
6904 return 0;
6907 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6908 unsigned int nr_pages)
6910 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
6911 int i;
6913 might_sleep();
6914 for (i = 0; i < nr_pages; i++) {
6915 cond_resched();
6916 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6920 static int clear_subpage(unsigned long addr, int idx, void *arg)
6922 struct folio *folio = arg;
6924 clear_user_highpage(folio_page(folio, idx), addr);
6925 return 0;
6929 * folio_zero_user - Zero a folio which will be mapped to userspace.
6930 * @folio: The folio to zero.
6931 * @addr_hint: The address will be accessed or the base address if uncelar.
6933 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6935 unsigned int nr_pages = folio_nr_pages(folio);
6937 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6938 clear_gigantic_page(folio, addr_hint, nr_pages);
6939 else
6940 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6943 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6944 unsigned long addr_hint,
6945 struct vm_area_struct *vma,
6946 unsigned int nr_pages)
6948 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
6949 struct page *dst_page;
6950 struct page *src_page;
6951 int i;
6953 for (i = 0; i < nr_pages; i++) {
6954 dst_page = folio_page(dst, i);
6955 src_page = folio_page(src, i);
6957 cond_resched();
6958 if (copy_mc_user_highpage(dst_page, src_page,
6959 addr + i*PAGE_SIZE, vma))
6960 return -EHWPOISON;
6962 return 0;
6965 struct copy_subpage_arg {
6966 struct folio *dst;
6967 struct folio *src;
6968 struct vm_area_struct *vma;
6971 static int copy_subpage(unsigned long addr, int idx, void *arg)
6973 struct copy_subpage_arg *copy_arg = arg;
6974 struct page *dst = folio_page(copy_arg->dst, idx);
6975 struct page *src = folio_page(copy_arg->src, idx);
6977 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6978 return -EHWPOISON;
6979 return 0;
6982 int copy_user_large_folio(struct folio *dst, struct folio *src,
6983 unsigned long addr_hint, struct vm_area_struct *vma)
6985 unsigned int nr_pages = folio_nr_pages(dst);
6986 struct copy_subpage_arg arg = {
6987 .dst = dst,
6988 .src = src,
6989 .vma = vma,
6992 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6993 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6995 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6998 long copy_folio_from_user(struct folio *dst_folio,
6999 const void __user *usr_src,
7000 bool allow_pagefault)
7002 void *kaddr;
7003 unsigned long i, rc = 0;
7004 unsigned int nr_pages = folio_nr_pages(dst_folio);
7005 unsigned long ret_val = nr_pages * PAGE_SIZE;
7006 struct page *subpage;
7008 for (i = 0; i < nr_pages; i++) {
7009 subpage = folio_page(dst_folio, i);
7010 kaddr = kmap_local_page(subpage);
7011 if (!allow_pagefault)
7012 pagefault_disable();
7013 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7014 if (!allow_pagefault)
7015 pagefault_enable();
7016 kunmap_local(kaddr);
7018 ret_val -= (PAGE_SIZE - rc);
7019 if (rc)
7020 break;
7022 flush_dcache_page(subpage);
7024 cond_resched();
7026 return ret_val;
7028 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7030 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7032 static struct kmem_cache *page_ptl_cachep;
7034 void __init ptlock_cache_init(void)
7036 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7037 SLAB_PANIC, NULL);
7040 bool ptlock_alloc(struct ptdesc *ptdesc)
7042 spinlock_t *ptl;
7044 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7045 if (!ptl)
7046 return false;
7047 ptdesc->ptl = ptl;
7048 return true;
7051 void ptlock_free(struct ptdesc *ptdesc)
7053 if (ptdesc->ptl)
7054 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7056 #endif
7058 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7060 if (is_vm_hugetlb_page(vma))
7061 hugetlb_vma_lock_read(vma);
7064 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7066 if (is_vm_hugetlb_page(vma))
7067 hugetlb_vma_unlock_read(vma);