1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 #include <linux/fsnotify.h>
81 #include <trace/events/kmem.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
88 #include <asm/tlbflush.h>
90 #include "pgalloc-track.h"
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
99 unsigned long max_mapnr
;
100 EXPORT_SYMBOL(max_mapnr
);
102 struct page
*mem_map
;
103 EXPORT_SYMBOL(mem_map
);
106 static vm_fault_t
do_fault(struct vm_fault
*vmf
);
107 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
);
108 static bool vmf_pte_changed(struct vm_fault
*vmf
);
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
114 static __always_inline
bool vmf_orig_pte_uffd_wp(struct vm_fault
*vmf
)
116 if (!userfaultfd_wp(vmf
->vma
))
118 if (!(vmf
->flags
& FAULT_FLAG_ORIG_PTE_VALID
))
121 return pte_marker_uffd_wp(vmf
->orig_pte
);
125 * A number of key systems in x86 including ioremap() rely on the assumption
126 * that high_memory defines the upper bound on direct map memory, then end
130 EXPORT_SYMBOL(high_memory
);
133 * Randomize the address space (stacks, mmaps, brk, etc.).
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
138 int randomize_va_space __read_mostly
=
139 #ifdef CONFIG_COMPAT_BRK
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
157 static int __init
disable_randmaps(char *s
)
159 randomize_va_space
= 0;
162 __setup("norandmaps", disable_randmaps
);
164 unsigned long zero_pfn __read_mostly
;
165 EXPORT_SYMBOL(zero_pfn
);
167 unsigned long highest_memmap_pfn __read_mostly
;
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 static int __init
init_zero_pfn(void)
174 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
177 early_initcall(init_zero_pfn
);
179 void mm_trace_rss_stat(struct mm_struct
*mm
, int member
)
181 trace_rss_stat(mm
, member
);
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
188 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
191 pgtable_t token
= pmd_pgtable(*pmd
);
193 pte_free_tlb(tlb
, token
, addr
);
194 mm_dec_nr_ptes(tlb
->mm
);
197 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
198 unsigned long addr
, unsigned long end
,
199 unsigned long floor
, unsigned long ceiling
)
206 pmd
= pmd_offset(pud
, addr
);
208 next
= pmd_addr_end(addr
, end
);
209 if (pmd_none_or_clear_bad(pmd
))
211 free_pte_range(tlb
, pmd
, addr
);
212 } while (pmd
++, addr
= next
, addr
!= end
);
222 if (end
- 1 > ceiling
- 1)
225 pmd
= pmd_offset(pud
, start
);
227 pmd_free_tlb(tlb
, pmd
, start
);
228 mm_dec_nr_pmds(tlb
->mm
);
231 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
232 unsigned long addr
, unsigned long end
,
233 unsigned long floor
, unsigned long ceiling
)
240 pud
= pud_offset(p4d
, addr
);
242 next
= pud_addr_end(addr
, end
);
243 if (pud_none_or_clear_bad(pud
))
245 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
246 } while (pud
++, addr
= next
, addr
!= end
);
256 if (end
- 1 > ceiling
- 1)
259 pud
= pud_offset(p4d
, start
);
261 pud_free_tlb(tlb
, pud
, start
);
262 mm_dec_nr_puds(tlb
->mm
);
265 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
266 unsigned long addr
, unsigned long end
,
267 unsigned long floor
, unsigned long ceiling
)
274 p4d
= p4d_offset(pgd
, addr
);
276 next
= p4d_addr_end(addr
, end
);
277 if (p4d_none_or_clear_bad(p4d
))
279 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
280 } while (p4d
++, addr
= next
, addr
!= end
);
286 ceiling
&= PGDIR_MASK
;
290 if (end
- 1 > ceiling
- 1)
293 p4d
= p4d_offset(pgd
, start
);
295 p4d_free_tlb(tlb
, p4d
, start
);
299 * This function frees user-level page tables of a process.
301 void free_pgd_range(struct mmu_gather
*tlb
,
302 unsigned long addr
, unsigned long end
,
303 unsigned long floor
, unsigned long ceiling
)
309 * The next few lines have given us lots of grief...
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
345 if (end
- 1 > ceiling
- 1)
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
353 tlb_change_page_size(tlb
, PAGE_SIZE
);
354 pgd
= pgd_offset(tlb
->mm
, addr
);
356 next
= pgd_addr_end(addr
, end
);
357 if (pgd_none_or_clear_bad(pgd
))
359 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
360 } while (pgd
++, addr
= next
, addr
!= end
);
363 void free_pgtables(struct mmu_gather
*tlb
, struct ma_state
*mas
,
364 struct vm_area_struct
*vma
, unsigned long floor
,
365 unsigned long ceiling
, bool mm_wr_locked
)
367 struct unlink_vma_file_batch vb
;
370 unsigned long addr
= vma
->vm_start
;
371 struct vm_area_struct
*next
;
374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 * be 0. This will underflow and is okay.
377 next
= mas_find(mas
, ceiling
- 1);
378 if (unlikely(xa_is_zero(next
)))
382 * Hide vma from rmap and truncate_pagecache before freeing
386 vma_start_write(vma
);
387 unlink_anon_vmas(vma
);
389 if (is_vm_hugetlb_page(vma
)) {
390 unlink_file_vma(vma
);
391 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
392 floor
, next
? next
->vm_start
: ceiling
);
394 unlink_file_vma_batch_init(&vb
);
395 unlink_file_vma_batch_add(&vb
, vma
);
398 * Optimization: gather nearby vmas into one call down
400 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
401 && !is_vm_hugetlb_page(next
)) {
403 next
= mas_find(mas
, ceiling
- 1);
404 if (unlikely(xa_is_zero(next
)))
407 vma_start_write(vma
);
408 unlink_anon_vmas(vma
);
409 unlink_file_vma_batch_add(&vb
, vma
);
411 unlink_file_vma_batch_final(&vb
);
412 free_pgd_range(tlb
, addr
, vma
->vm_end
,
413 floor
, next
? next
->vm_start
: ceiling
);
419 void pmd_install(struct mm_struct
*mm
, pmd_t
*pmd
, pgtable_t
*pte
)
421 spinlock_t
*ptl
= pmd_lock(mm
, pmd
);
423 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
426 * Ensure all pte setup (eg. pte page lock and page clearing) are
427 * visible before the pte is made visible to other CPUs by being
428 * put into page tables.
430 * The other side of the story is the pointer chasing in the page
431 * table walking code (when walking the page table without locking;
432 * ie. most of the time). Fortunately, these data accesses consist
433 * of a chain of data-dependent loads, meaning most CPUs (alpha
434 * being the notable exception) will already guarantee loads are
435 * seen in-order. See the alpha page table accessors for the
436 * smp_rmb() barriers in page table walking code.
438 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
439 pmd_populate(mm
, pmd
, *pte
);
445 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
)
447 pgtable_t
new = pte_alloc_one(mm
);
451 pmd_install(mm
, pmd
, &new);
457 int __pte_alloc_kernel(pmd_t
*pmd
)
459 pte_t
*new = pte_alloc_one_kernel(&init_mm
);
463 spin_lock(&init_mm
.page_table_lock
);
464 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
465 smp_wmb(); /* See comment in pmd_install() */
466 pmd_populate_kernel(&init_mm
, pmd
, new);
469 spin_unlock(&init_mm
.page_table_lock
);
471 pte_free_kernel(&init_mm
, new);
475 static inline void init_rss_vec(int *rss
)
477 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
480 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
484 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
486 add_mm_counter(mm
, i
, rss
[i
]);
490 * This function is called to print an error when a bad pte
491 * is found. For example, we might have a PFN-mapped pte in
492 * a region that doesn't allow it.
494 * The calling function must still handle the error.
496 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
497 pte_t pte
, struct page
*page
)
499 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
500 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
501 pud_t
*pud
= pud_offset(p4d
, addr
);
502 pmd_t
*pmd
= pmd_offset(pud
, addr
);
503 struct address_space
*mapping
;
505 static unsigned long resume
;
506 static unsigned long nr_shown
;
507 static unsigned long nr_unshown
;
510 * Allow a burst of 60 reports, then keep quiet for that minute;
511 * or allow a steady drip of one report per second.
513 if (nr_shown
== 60) {
514 if (time_before(jiffies
, resume
)) {
519 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 resume
= jiffies
+ 60 * HZ
;
528 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
529 index
= linear_page_index(vma
, addr
);
531 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
533 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
535 dump_page(page
, "bad pte");
536 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
537 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
538 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
540 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
541 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
542 mapping
? mapping
->a_ops
->read_folio
: NULL
);
544 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
548 * vm_normal_page -- This function gets the "struct page" associated with a pte.
550 * "Special" mappings do not wish to be associated with a "struct page" (either
551 * it doesn't exist, or it exists but they don't want to touch it). In this
552 * case, NULL is returned here. "Normal" mappings do have a struct page.
554 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
555 * pte bit, in which case this function is trivial. Secondly, an architecture
556 * may not have a spare pte bit, which requires a more complicated scheme,
559 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
560 * special mapping (even if there are underlying and valid "struct pages").
561 * COWed pages of a VM_PFNMAP are always normal.
563 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
564 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
565 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
566 * mapping will always honor the rule
568 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570 * And for normal mappings this is false.
572 * This restricts such mappings to be a linear translation from virtual address
573 * to pfn. To get around this restriction, we allow arbitrary mappings so long
574 * as the vma is not a COW mapping; in that case, we know that all ptes are
575 * special (because none can have been COWed).
578 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
581 * page" backing, however the difference is that _all_ pages with a struct
582 * page (that is, those where pfn_valid is true) are refcounted and considered
583 * normal pages by the VM. The only exception are zeropages, which are
584 * *never* refcounted.
586 * The disadvantage is that pages are refcounted (which can be slower and
587 * simply not an option for some PFNMAP users). The advantage is that we
588 * don't have to follow the strict linearity rule of PFNMAP mappings in
589 * order to support COWable mappings.
592 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
595 unsigned long pfn
= pte_pfn(pte
);
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
598 if (likely(!pte_special(pte
)))
600 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
601 return vma
->vm_ops
->find_special_page(vma
, addr
);
602 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
604 if (is_zero_pfn(pfn
))
608 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
609 * and will have refcounts incremented on their struct pages
610 * when they are inserted into PTEs, thus they are safe to
611 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
612 * do not have refcounts. Example of legacy ZONE_DEVICE is
613 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
617 print_bad_pte(vma
, addr
, pte
, NULL
);
621 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
623 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
624 if (vma
->vm_flags
& VM_MIXEDMAP
) {
627 if (is_zero_pfn(pfn
))
632 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
633 if (pfn
== vma
->vm_pgoff
+ off
)
635 if (!is_cow_mapping(vma
->vm_flags
))
640 if (is_zero_pfn(pfn
))
644 if (unlikely(pfn
> highest_memmap_pfn
)) {
645 print_bad_pte(vma
, addr
, pte
, NULL
);
650 * NOTE! We still have PageReserved() pages in the page tables.
651 * eg. VDSO mappings can cause them to exist.
654 VM_WARN_ON_ONCE(is_zero_pfn(pfn
));
655 return pfn_to_page(pfn
);
658 struct folio
*vm_normal_folio(struct vm_area_struct
*vma
, unsigned long addr
,
661 struct page
*page
= vm_normal_page(vma
, addr
, pte
);
664 return page_folio(page
);
668 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
669 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
672 unsigned long pfn
= pmd_pfn(pmd
);
674 /* Currently it's only used for huge pfnmaps */
675 if (unlikely(pmd_special(pmd
)))
678 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
679 if (vma
->vm_flags
& VM_MIXEDMAP
) {
685 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
686 if (pfn
== vma
->vm_pgoff
+ off
)
688 if (!is_cow_mapping(vma
->vm_flags
))
695 if (is_huge_zero_pmd(pmd
))
697 if (unlikely(pfn
> highest_memmap_pfn
))
701 * NOTE! We still have PageReserved() pages in the page tables.
702 * eg. VDSO mappings can cause them to exist.
705 return pfn_to_page(pfn
);
708 struct folio
*vm_normal_folio_pmd(struct vm_area_struct
*vma
,
709 unsigned long addr
, pmd_t pmd
)
711 struct page
*page
= vm_normal_page_pmd(vma
, addr
, pmd
);
714 return page_folio(page
);
719 static void restore_exclusive_pte(struct vm_area_struct
*vma
,
720 struct page
*page
, unsigned long address
,
723 struct folio
*folio
= page_folio(page
);
728 orig_pte
= ptep_get(ptep
);
729 pte
= pte_mkold(mk_pte(page
, READ_ONCE(vma
->vm_page_prot
)));
730 if (pte_swp_soft_dirty(orig_pte
))
731 pte
= pte_mksoft_dirty(pte
);
733 entry
= pte_to_swp_entry(orig_pte
);
734 if (pte_swp_uffd_wp(orig_pte
))
735 pte
= pte_mkuffd_wp(pte
);
736 else if (is_writable_device_exclusive_entry(entry
))
737 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
739 VM_BUG_ON_FOLIO(pte_write(pte
) && (!folio_test_anon(folio
) &&
740 PageAnonExclusive(page
)), folio
);
743 * No need to take a page reference as one was already
744 * created when the swap entry was made.
746 if (folio_test_anon(folio
))
747 folio_add_anon_rmap_pte(folio
, page
, vma
, address
, RMAP_NONE
);
750 * Currently device exclusive access only supports anonymous
751 * memory so the entry shouldn't point to a filebacked page.
755 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
758 * No need to invalidate - it was non-present before. However
759 * secondary CPUs may have mappings that need invalidating.
761 update_mmu_cache(vma
, address
, ptep
);
765 * Tries to restore an exclusive pte if the page lock can be acquired without
769 try_restore_exclusive_pte(pte_t
*src_pte
, struct vm_area_struct
*vma
,
772 swp_entry_t entry
= pte_to_swp_entry(ptep_get(src_pte
));
773 struct page
*page
= pfn_swap_entry_to_page(entry
);
775 if (trylock_page(page
)) {
776 restore_exclusive_pte(vma
, page
, addr
, src_pte
);
785 * copy one vm_area from one task to the other. Assumes the page tables
786 * already present in the new task to be cleared in the whole range
787 * covered by this vma.
791 copy_nonpresent_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
792 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*dst_vma
,
793 struct vm_area_struct
*src_vma
, unsigned long addr
, int *rss
)
795 unsigned long vm_flags
= dst_vma
->vm_flags
;
796 pte_t orig_pte
= ptep_get(src_pte
);
797 pte_t pte
= orig_pte
;
800 swp_entry_t entry
= pte_to_swp_entry(orig_pte
);
802 if (likely(!non_swap_entry(entry
))) {
803 if (swap_duplicate(entry
) < 0)
806 /* make sure dst_mm is on swapoff's mmlist. */
807 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
808 spin_lock(&mmlist_lock
);
809 if (list_empty(&dst_mm
->mmlist
))
810 list_add(&dst_mm
->mmlist
,
812 spin_unlock(&mmlist_lock
);
814 /* Mark the swap entry as shared. */
815 if (pte_swp_exclusive(orig_pte
)) {
816 pte
= pte_swp_clear_exclusive(orig_pte
);
817 set_pte_at(src_mm
, addr
, src_pte
, pte
);
820 } else if (is_migration_entry(entry
)) {
821 folio
= pfn_swap_entry_folio(entry
);
823 rss
[mm_counter(folio
)]++;
825 if (!is_readable_migration_entry(entry
) &&
826 is_cow_mapping(vm_flags
)) {
828 * COW mappings require pages in both parent and child
829 * to be set to read. A previously exclusive entry is
832 entry
= make_readable_migration_entry(
834 pte
= swp_entry_to_pte(entry
);
835 if (pte_swp_soft_dirty(orig_pte
))
836 pte
= pte_swp_mksoft_dirty(pte
);
837 if (pte_swp_uffd_wp(orig_pte
))
838 pte
= pte_swp_mkuffd_wp(pte
);
839 set_pte_at(src_mm
, addr
, src_pte
, pte
);
841 } else if (is_device_private_entry(entry
)) {
842 page
= pfn_swap_entry_to_page(entry
);
843 folio
= page_folio(page
);
846 * Update rss count even for unaddressable pages, as
847 * they should treated just like normal pages in this
850 * We will likely want to have some new rss counters
851 * for unaddressable pages, at some point. But for now
852 * keep things as they are.
855 rss
[mm_counter(folio
)]++;
856 /* Cannot fail as these pages cannot get pinned. */
857 folio_try_dup_anon_rmap_pte(folio
, page
, src_vma
);
860 * We do not preserve soft-dirty information, because so
861 * far, checkpoint/restore is the only feature that
862 * requires that. And checkpoint/restore does not work
863 * when a device driver is involved (you cannot easily
864 * save and restore device driver state).
866 if (is_writable_device_private_entry(entry
) &&
867 is_cow_mapping(vm_flags
)) {
868 entry
= make_readable_device_private_entry(
870 pte
= swp_entry_to_pte(entry
);
871 if (pte_swp_uffd_wp(orig_pte
))
872 pte
= pte_swp_mkuffd_wp(pte
);
873 set_pte_at(src_mm
, addr
, src_pte
, pte
);
875 } else if (is_device_exclusive_entry(entry
)) {
877 * Make device exclusive entries present by restoring the
878 * original entry then copying as for a present pte. Device
879 * exclusive entries currently only support private writable
880 * (ie. COW) mappings.
882 VM_BUG_ON(!is_cow_mapping(src_vma
->vm_flags
));
883 if (try_restore_exclusive_pte(src_pte
, src_vma
, addr
))
886 } else if (is_pte_marker_entry(entry
)) {
887 pte_marker marker
= copy_pte_marker(entry
, dst_vma
);
890 set_pte_at(dst_mm
, addr
, dst_pte
,
891 make_pte_marker(marker
));
894 if (!userfaultfd_wp(dst_vma
))
895 pte
= pte_swp_clear_uffd_wp(pte
);
896 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
901 * Copy a present and normal page.
903 * NOTE! The usual case is that this isn't required;
904 * instead, the caller can just increase the page refcount
905 * and re-use the pte the traditional way.
907 * And if we need a pre-allocated page but don't yet have
908 * one, return a negative error to let the preallocation
909 * code know so that it can do so outside the page table
913 copy_present_page(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
914 pte_t
*dst_pte
, pte_t
*src_pte
, unsigned long addr
, int *rss
,
915 struct folio
**prealloc
, struct page
*page
)
917 struct folio
*new_folio
;
920 new_folio
= *prealloc
;
925 * We have a prealloc page, all good! Take it
926 * over and copy the page & arm it.
929 if (copy_mc_user_highpage(&new_folio
->page
, page
, addr
, src_vma
))
933 __folio_mark_uptodate(new_folio
);
934 folio_add_new_anon_rmap(new_folio
, dst_vma
, addr
, RMAP_EXCLUSIVE
);
935 folio_add_lru_vma(new_folio
, dst_vma
);
938 /* All done, just insert the new page copy in the child */
939 pte
= mk_pte(&new_folio
->page
, dst_vma
->vm_page_prot
);
940 pte
= maybe_mkwrite(pte_mkdirty(pte
), dst_vma
);
941 if (userfaultfd_pte_wp(dst_vma
, ptep_get(src_pte
)))
942 /* Uffd-wp needs to be delivered to dest pte as well */
943 pte
= pte_mkuffd_wp(pte
);
944 set_pte_at(dst_vma
->vm_mm
, addr
, dst_pte
, pte
);
948 static __always_inline
void __copy_present_ptes(struct vm_area_struct
*dst_vma
,
949 struct vm_area_struct
*src_vma
, pte_t
*dst_pte
, pte_t
*src_pte
,
950 pte_t pte
, unsigned long addr
, int nr
)
952 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
954 /* If it's a COW mapping, write protect it both processes. */
955 if (is_cow_mapping(src_vma
->vm_flags
) && pte_write(pte
)) {
956 wrprotect_ptes(src_mm
, addr
, src_pte
, nr
);
957 pte
= pte_wrprotect(pte
);
960 /* If it's a shared mapping, mark it clean in the child. */
961 if (src_vma
->vm_flags
& VM_SHARED
)
962 pte
= pte_mkclean(pte
);
963 pte
= pte_mkold(pte
);
965 if (!userfaultfd_wp(dst_vma
))
966 pte
= pte_clear_uffd_wp(pte
);
968 set_ptes(dst_vma
->vm_mm
, addr
, dst_pte
, pte
, nr
);
972 * Copy one present PTE, trying to batch-process subsequent PTEs that map
973 * consecutive pages of the same folio by copying them as well.
975 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
976 * Otherwise, returns the number of copied PTEs (at least 1).
979 copy_present_ptes(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
980 pte_t
*dst_pte
, pte_t
*src_pte
, pte_t pte
, unsigned long addr
,
981 int max_nr
, int *rss
, struct folio
**prealloc
)
989 page
= vm_normal_page(src_vma
, addr
, pte
);
993 folio
= page_folio(page
);
996 * If we likely have to copy, just don't bother with batching. Make
997 * sure that the common "small folio" case is as fast as possible
998 * by keeping the batching logic separate.
1000 if (unlikely(!*prealloc
&& folio_test_large(folio
) && max_nr
!= 1)) {
1001 if (src_vma
->vm_flags
& VM_SHARED
)
1002 flags
|= FPB_IGNORE_DIRTY
;
1003 if (!vma_soft_dirty_enabled(src_vma
))
1004 flags
|= FPB_IGNORE_SOFT_DIRTY
;
1006 nr
= folio_pte_batch(folio
, addr
, src_pte
, pte
, max_nr
, flags
,
1007 &any_writable
, NULL
, NULL
);
1008 folio_ref_add(folio
, nr
);
1009 if (folio_test_anon(folio
)) {
1010 if (unlikely(folio_try_dup_anon_rmap_ptes(folio
, page
,
1012 folio_ref_sub(folio
, nr
);
1015 rss
[MM_ANONPAGES
] += nr
;
1016 VM_WARN_ON_FOLIO(PageAnonExclusive(page
), folio
);
1018 folio_dup_file_rmap_ptes(folio
, page
, nr
);
1019 rss
[mm_counter_file(folio
)] += nr
;
1022 pte
= pte_mkwrite(pte
, src_vma
);
1023 __copy_present_ptes(dst_vma
, src_vma
, dst_pte
, src_pte
, pte
,
1029 if (folio_test_anon(folio
)) {
1031 * If this page may have been pinned by the parent process,
1032 * copy the page immediately for the child so that we'll always
1033 * guarantee the pinned page won't be randomly replaced in the
1036 if (unlikely(folio_try_dup_anon_rmap_pte(folio
, page
, src_vma
))) {
1037 /* Page may be pinned, we have to copy. */
1039 err
= copy_present_page(dst_vma
, src_vma
, dst_pte
, src_pte
,
1040 addr
, rss
, prealloc
, page
);
1041 return err
? err
: 1;
1043 rss
[MM_ANONPAGES
]++;
1044 VM_WARN_ON_FOLIO(PageAnonExclusive(page
), folio
);
1046 folio_dup_file_rmap_pte(folio
, page
);
1047 rss
[mm_counter_file(folio
)]++;
1051 __copy_present_ptes(dst_vma
, src_vma
, dst_pte
, src_pte
, pte
, addr
, 1);
1055 static inline struct folio
*folio_prealloc(struct mm_struct
*src_mm
,
1056 struct vm_area_struct
*vma
, unsigned long addr
, bool need_zero
)
1058 struct folio
*new_folio
;
1061 new_folio
= vma_alloc_zeroed_movable_folio(vma
, addr
);
1063 new_folio
= vma_alloc_folio(GFP_HIGHUSER_MOVABLE
, 0, vma
, addr
);
1068 if (mem_cgroup_charge(new_folio
, src_mm
, GFP_KERNEL
)) {
1069 folio_put(new_folio
);
1072 folio_throttle_swaprate(new_folio
, GFP_KERNEL
);
1078 copy_pte_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
1079 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
1082 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1083 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
1084 pte_t
*orig_src_pte
, *orig_dst_pte
;
1085 pte_t
*src_pte
, *dst_pte
;
1088 spinlock_t
*src_ptl
, *dst_ptl
;
1089 int progress
, max_nr
, ret
= 0;
1090 int rss
[NR_MM_COUNTERS
];
1091 swp_entry_t entry
= (swp_entry_t
){0};
1092 struct folio
*prealloc
= NULL
;
1100 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1101 * error handling here, assume that exclusive mmap_lock on dst and src
1102 * protects anon from unexpected THP transitions; with shmem and file
1103 * protected by mmap_lock-less collapse skipping areas with anon_vma
1104 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1105 * can remove such assumptions later, but this is good enough for now.
1107 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
1114 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1115 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1116 * the PTE page is stable, and there is no need to get pmdval and do
1119 src_pte
= pte_offset_map_rw_nolock(src_mm
, src_pmd
, addr
, &dummy_pmdval
,
1122 pte_unmap_unlock(dst_pte
, dst_ptl
);
1126 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1127 orig_src_pte
= src_pte
;
1128 orig_dst_pte
= dst_pte
;
1129 arch_enter_lazy_mmu_mode();
1135 * We are holding two locks at this point - either of them
1136 * could generate latencies in another task on another CPU.
1138 if (progress
>= 32) {
1140 if (need_resched() ||
1141 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
1144 ptent
= ptep_get(src_pte
);
1145 if (pte_none(ptent
)) {
1149 if (unlikely(!pte_present(ptent
))) {
1150 ret
= copy_nonpresent_pte(dst_mm
, src_mm
,
1155 entry
= pte_to_swp_entry(ptep_get(src_pte
));
1157 } else if (ret
== -EBUSY
) {
1163 ptent
= ptep_get(src_pte
);
1164 VM_WARN_ON_ONCE(!pte_present(ptent
));
1167 * Device exclusive entry restored, continue by copying
1168 * the now present pte.
1170 WARN_ON_ONCE(ret
!= -ENOENT
);
1172 /* copy_present_ptes() will clear `*prealloc' if consumed */
1173 max_nr
= (end
- addr
) / PAGE_SIZE
;
1174 ret
= copy_present_ptes(dst_vma
, src_vma
, dst_pte
, src_pte
,
1175 ptent
, addr
, max_nr
, rss
, &prealloc
);
1177 * If we need a pre-allocated page for this pte, drop the
1178 * locks, allocate, and try again.
1179 * If copy failed due to hwpoison in source page, break out.
1181 if (unlikely(ret
== -EAGAIN
|| ret
== -EHWPOISON
))
1183 if (unlikely(prealloc
)) {
1185 * pre-alloc page cannot be reused by next time so as
1186 * to strictly follow mempolicy (e.g., alloc_page_vma()
1187 * will allocate page according to address). This
1188 * could only happen if one pinned pte changed.
1190 folio_put(prealloc
);
1195 } while (dst_pte
+= nr
, src_pte
+= nr
, addr
+= PAGE_SIZE
* nr
,
1198 arch_leave_lazy_mmu_mode();
1199 pte_unmap_unlock(orig_src_pte
, src_ptl
);
1200 add_mm_rss_vec(dst_mm
, rss
);
1201 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
1205 VM_WARN_ON_ONCE(!entry
.val
);
1206 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0) {
1211 } else if (ret
== -EBUSY
|| unlikely(ret
== -EHWPOISON
)) {
1213 } else if (ret
== -EAGAIN
) {
1214 prealloc
= folio_prealloc(src_mm
, src_vma
, addr
, false);
1217 } else if (ret
< 0) {
1221 /* We've captured and resolved the error. Reset, try again. */
1227 if (unlikely(prealloc
))
1228 folio_put(prealloc
);
1233 copy_pmd_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
1234 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1237 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1238 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
1239 pmd_t
*src_pmd
, *dst_pmd
;
1242 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1245 src_pmd
= pmd_offset(src_pud
, addr
);
1247 next
= pmd_addr_end(addr
, end
);
1248 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
1249 || pmd_devmap(*src_pmd
)) {
1251 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, src_vma
);
1252 err
= copy_huge_pmd(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1253 addr
, dst_vma
, src_vma
);
1260 if (pmd_none_or_clear_bad(src_pmd
))
1262 if (copy_pte_range(dst_vma
, src_vma
, dst_pmd
, src_pmd
,
1265 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1270 copy_pud_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
1271 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, unsigned long addr
,
1274 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1275 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
1276 pud_t
*src_pud
, *dst_pud
;
1279 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
1282 src_pud
= pud_offset(src_p4d
, addr
);
1284 next
= pud_addr_end(addr
, end
);
1285 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1288 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, src_vma
);
1289 err
= copy_huge_pud(dst_mm
, src_mm
,
1290 dst_pud
, src_pud
, addr
, src_vma
);
1297 if (pud_none_or_clear_bad(src_pud
))
1299 if (copy_pmd_range(dst_vma
, src_vma
, dst_pud
, src_pud
,
1302 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1307 copy_p4d_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
1308 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, unsigned long addr
,
1311 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1312 p4d_t
*src_p4d
, *dst_p4d
;
1315 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
1318 src_p4d
= p4d_offset(src_pgd
, addr
);
1320 next
= p4d_addr_end(addr
, end
);
1321 if (p4d_none_or_clear_bad(src_p4d
))
1323 if (copy_pud_range(dst_vma
, src_vma
, dst_p4d
, src_p4d
,
1326 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
1331 * Return true if the vma needs to copy the pgtable during this fork(). Return
1332 * false when we can speed up fork() by allowing lazy page faults later until
1333 * when the child accesses the memory range.
1336 vma_needs_copy(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
)
1339 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1340 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1341 * contains uffd-wp protection information, that's something we can't
1342 * retrieve from page cache, and skip copying will lose those info.
1344 if (userfaultfd_wp(dst_vma
))
1347 if (src_vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
1350 if (src_vma
->anon_vma
)
1354 * Don't copy ptes where a page fault will fill them correctly. Fork
1355 * becomes much lighter when there are big shared or private readonly
1356 * mappings. The tradeoff is that copy_page_range is more efficient
1363 copy_page_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
)
1365 pgd_t
*src_pgd
, *dst_pgd
;
1367 unsigned long addr
= src_vma
->vm_start
;
1368 unsigned long end
= src_vma
->vm_end
;
1369 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1370 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
1371 struct mmu_notifier_range range
;
1375 if (!vma_needs_copy(dst_vma
, src_vma
))
1378 if (is_vm_hugetlb_page(src_vma
))
1379 return copy_hugetlb_page_range(dst_mm
, src_mm
, dst_vma
, src_vma
);
1381 if (unlikely(src_vma
->vm_flags
& VM_PFNMAP
)) {
1383 * We do not free on error cases below as remove_vma
1384 * gets called on error from higher level routine
1386 ret
= track_pfn_copy(src_vma
);
1392 * We need to invalidate the secondary MMU mappings only when
1393 * there could be a permission downgrade on the ptes of the
1394 * parent mm. And a permission downgrade will only happen if
1395 * is_cow_mapping() returns true.
1397 is_cow
= is_cow_mapping(src_vma
->vm_flags
);
1400 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_PAGE
,
1401 0, src_mm
, addr
, end
);
1402 mmu_notifier_invalidate_range_start(&range
);
1404 * Disabling preemption is not needed for the write side, as
1405 * the read side doesn't spin, but goes to the mmap_lock.
1407 * Use the raw variant of the seqcount_t write API to avoid
1408 * lockdep complaining about preemptibility.
1410 vma_assert_write_locked(src_vma
);
1411 raw_write_seqcount_begin(&src_mm
->write_protect_seq
);
1415 dst_pgd
= pgd_offset(dst_mm
, addr
);
1416 src_pgd
= pgd_offset(src_mm
, addr
);
1418 next
= pgd_addr_end(addr
, end
);
1419 if (pgd_none_or_clear_bad(src_pgd
))
1421 if (unlikely(copy_p4d_range(dst_vma
, src_vma
, dst_pgd
, src_pgd
,
1423 untrack_pfn_clear(dst_vma
);
1427 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1430 raw_write_seqcount_end(&src_mm
->write_protect_seq
);
1431 mmu_notifier_invalidate_range_end(&range
);
1436 /* Whether we should zap all COWed (private) pages too */
1437 static inline bool should_zap_cows(struct zap_details
*details
)
1439 /* By default, zap all pages */
1440 if (!details
|| details
->reclaim_pt
)
1443 /* Or, we zap COWed pages only if the caller wants to */
1444 return details
->even_cows
;
1447 /* Decides whether we should zap this folio with the folio pointer specified */
1448 static inline bool should_zap_folio(struct zap_details
*details
,
1449 struct folio
*folio
)
1451 /* If we can make a decision without *folio.. */
1452 if (should_zap_cows(details
))
1455 /* Otherwise we should only zap non-anon folios */
1456 return !folio_test_anon(folio
);
1459 static inline bool zap_drop_markers(struct zap_details
*details
)
1464 return details
->zap_flags
& ZAP_FLAG_DROP_MARKER
;
1468 * This function makes sure that we'll replace the none pte with an uffd-wp
1469 * swap special pte marker when necessary. Must be with the pgtable lock held.
1471 * Returns true if uffd-wp ptes was installed, false otherwise.
1474 zap_install_uffd_wp_if_needed(struct vm_area_struct
*vma
,
1475 unsigned long addr
, pte_t
*pte
, int nr
,
1476 struct zap_details
*details
, pte_t pteval
)
1478 bool was_installed
= false;
1480 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1481 /* Zap on anonymous always means dropping everything */
1482 if (vma_is_anonymous(vma
))
1485 if (zap_drop_markers(details
))
1489 /* the PFN in the PTE is irrelevant. */
1490 if (pte_install_uffd_wp_if_needed(vma
, addr
, pte
, pteval
))
1491 was_installed
= true;
1498 return was_installed
;
1501 static __always_inline
void zap_present_folio_ptes(struct mmu_gather
*tlb
,
1502 struct vm_area_struct
*vma
, struct folio
*folio
,
1503 struct page
*page
, pte_t
*pte
, pte_t ptent
, unsigned int nr
,
1504 unsigned long addr
, struct zap_details
*details
, int *rss
,
1505 bool *force_flush
, bool *force_break
, bool *any_skipped
)
1507 struct mm_struct
*mm
= tlb
->mm
;
1508 bool delay_rmap
= false;
1510 if (!folio_test_anon(folio
)) {
1511 ptent
= get_and_clear_full_ptes(mm
, addr
, pte
, nr
, tlb
->fullmm
);
1512 if (pte_dirty(ptent
)) {
1513 folio_mark_dirty(folio
);
1514 if (tlb_delay_rmap(tlb
)) {
1516 *force_flush
= true;
1519 if (pte_young(ptent
) && likely(vma_has_recency(vma
)))
1520 folio_mark_accessed(folio
);
1521 rss
[mm_counter(folio
)] -= nr
;
1523 /* We don't need up-to-date accessed/dirty bits. */
1524 clear_full_ptes(mm
, addr
, pte
, nr
, tlb
->fullmm
);
1525 rss
[MM_ANONPAGES
] -= nr
;
1527 /* Checking a single PTE in a batch is sufficient. */
1528 arch_check_zapped_pte(vma
, ptent
);
1529 tlb_remove_tlb_entries(tlb
, pte
, nr
, addr
);
1530 if (unlikely(userfaultfd_pte_wp(vma
, ptent
)))
1531 *any_skipped
= zap_install_uffd_wp_if_needed(vma
, addr
, pte
,
1532 nr
, details
, ptent
);
1535 folio_remove_rmap_ptes(folio
, page
, nr
, vma
);
1537 if (unlikely(folio_mapcount(folio
) < 0))
1538 print_bad_pte(vma
, addr
, ptent
, page
);
1540 if (unlikely(__tlb_remove_folio_pages(tlb
, page
, nr
, delay_rmap
))) {
1541 *force_flush
= true;
1542 *force_break
= true;
1547 * Zap or skip at least one present PTE, trying to batch-process subsequent
1548 * PTEs that map consecutive pages of the same folio.
1550 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1552 static inline int zap_present_ptes(struct mmu_gather
*tlb
,
1553 struct vm_area_struct
*vma
, pte_t
*pte
, pte_t ptent
,
1554 unsigned int max_nr
, unsigned long addr
,
1555 struct zap_details
*details
, int *rss
, bool *force_flush
,
1556 bool *force_break
, bool *any_skipped
)
1558 const fpb_t fpb_flags
= FPB_IGNORE_DIRTY
| FPB_IGNORE_SOFT_DIRTY
;
1559 struct mm_struct
*mm
= tlb
->mm
;
1560 struct folio
*folio
;
1564 page
= vm_normal_page(vma
, addr
, ptent
);
1566 /* We don't need up-to-date accessed/dirty bits. */
1567 ptep_get_and_clear_full(mm
, addr
, pte
, tlb
->fullmm
);
1568 arch_check_zapped_pte(vma
, ptent
);
1569 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1570 if (userfaultfd_pte_wp(vma
, ptent
))
1571 *any_skipped
= zap_install_uffd_wp_if_needed(vma
, addr
,
1572 pte
, 1, details
, ptent
);
1573 ksm_might_unmap_zero_page(mm
, ptent
);
1577 folio
= page_folio(page
);
1578 if (unlikely(!should_zap_folio(details
, folio
))) {
1579 *any_skipped
= true;
1584 * Make sure that the common "small folio" case is as fast as possible
1585 * by keeping the batching logic separate.
1587 if (unlikely(folio_test_large(folio
) && max_nr
!= 1)) {
1588 nr
= folio_pte_batch(folio
, addr
, pte
, ptent
, max_nr
, fpb_flags
,
1591 zap_present_folio_ptes(tlb
, vma
, folio
, page
, pte
, ptent
, nr
,
1592 addr
, details
, rss
, force_flush
,
1593 force_break
, any_skipped
);
1596 zap_present_folio_ptes(tlb
, vma
, folio
, page
, pte
, ptent
, 1, addr
,
1597 details
, rss
, force_flush
, force_break
, any_skipped
);
1601 static inline int zap_nonpresent_ptes(struct mmu_gather
*tlb
,
1602 struct vm_area_struct
*vma
, pte_t
*pte
, pte_t ptent
,
1603 unsigned int max_nr
, unsigned long addr
,
1604 struct zap_details
*details
, int *rss
, bool *any_skipped
)
1609 *any_skipped
= true;
1610 entry
= pte_to_swp_entry(ptent
);
1611 if (is_device_private_entry(entry
) ||
1612 is_device_exclusive_entry(entry
)) {
1613 struct page
*page
= pfn_swap_entry_to_page(entry
);
1614 struct folio
*folio
= page_folio(page
);
1616 if (unlikely(!should_zap_folio(details
, folio
)))
1619 * Both device private/exclusive mappings should only
1620 * work with anonymous page so far, so we don't need to
1621 * consider uffd-wp bit when zap. For more information,
1622 * see zap_install_uffd_wp_if_needed().
1624 WARN_ON_ONCE(!vma_is_anonymous(vma
));
1625 rss
[mm_counter(folio
)]--;
1626 if (is_device_private_entry(entry
))
1627 folio_remove_rmap_pte(folio
, page
, vma
);
1629 } else if (!non_swap_entry(entry
)) {
1630 /* Genuine swap entries, hence a private anon pages */
1631 if (!should_zap_cows(details
))
1634 nr
= swap_pte_batch(pte
, max_nr
, ptent
);
1635 rss
[MM_SWAPENTS
] -= nr
;
1636 free_swap_and_cache_nr(entry
, nr
);
1637 } else if (is_migration_entry(entry
)) {
1638 struct folio
*folio
= pfn_swap_entry_folio(entry
);
1640 if (!should_zap_folio(details
, folio
))
1642 rss
[mm_counter(folio
)]--;
1643 } else if (pte_marker_entry_uffd_wp(entry
)) {
1645 * For anon: always drop the marker; for file: only
1646 * drop the marker if explicitly requested.
1648 if (!vma_is_anonymous(vma
) && !zap_drop_markers(details
))
1650 } else if (is_guard_swp_entry(entry
)) {
1652 * Ordinary zapping should not remove guard PTE
1653 * markers. Only do so if we should remove PTE markers
1656 if (!zap_drop_markers(details
))
1658 } else if (is_hwpoison_entry(entry
) || is_poisoned_swp_entry(entry
)) {
1659 if (!should_zap_cows(details
))
1662 /* We should have covered all the swap entry types */
1663 pr_alert("unrecognized swap entry 0x%lx\n", entry
.val
);
1666 clear_not_present_full_ptes(vma
->vm_mm
, addr
, pte
, nr
, tlb
->fullmm
);
1667 *any_skipped
= zap_install_uffd_wp_if_needed(vma
, addr
, pte
, nr
, details
, ptent
);
1672 static inline int do_zap_pte_range(struct mmu_gather
*tlb
,
1673 struct vm_area_struct
*vma
, pte_t
*pte
,
1674 unsigned long addr
, unsigned long end
,
1675 struct zap_details
*details
, int *rss
,
1676 bool *force_flush
, bool *force_break
,
1679 pte_t ptent
= ptep_get(pte
);
1680 int max_nr
= (end
- addr
) / PAGE_SIZE
;
1683 /* Skip all consecutive none ptes */
1684 if (pte_none(ptent
)) {
1685 for (nr
= 1; nr
< max_nr
; nr
++) {
1686 ptent
= ptep_get(pte
+ nr
);
1687 if (!pte_none(ptent
))
1694 addr
+= nr
* PAGE_SIZE
;
1697 if (pte_present(ptent
))
1698 nr
+= zap_present_ptes(tlb
, vma
, pte
, ptent
, max_nr
, addr
,
1699 details
, rss
, force_flush
, force_break
,
1702 nr
+= zap_nonpresent_ptes(tlb
, vma
, pte
, ptent
, max_nr
, addr
,
1703 details
, rss
, any_skipped
);
1708 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1709 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1710 unsigned long addr
, unsigned long end
,
1711 struct zap_details
*details
)
1713 bool force_flush
= false, force_break
= false;
1714 struct mm_struct
*mm
= tlb
->mm
;
1715 int rss
[NR_MM_COUNTERS
];
1720 unsigned long start
= addr
;
1721 bool can_reclaim_pt
= reclaim_pt_is_enabled(start
, end
, details
);
1722 bool direct_reclaim
= false;
1726 tlb_change_page_size(tlb
, PAGE_SIZE
);
1728 start_pte
= pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1732 flush_tlb_batched_pending(mm
);
1733 arch_enter_lazy_mmu_mode();
1735 bool any_skipped
= false;
1740 nr
= do_zap_pte_range(tlb
, vma
, pte
, addr
, end
, details
, rss
,
1741 &force_flush
, &force_break
, &any_skipped
);
1743 can_reclaim_pt
= false;
1744 if (unlikely(force_break
)) {
1745 addr
+= nr
* PAGE_SIZE
;
1748 } while (pte
+= nr
, addr
+= PAGE_SIZE
* nr
, addr
!= end
);
1750 if (can_reclaim_pt
&& addr
== end
)
1751 direct_reclaim
= try_get_and_clear_pmd(mm
, pmd
, &pmdval
);
1753 add_mm_rss_vec(mm
, rss
);
1754 arch_leave_lazy_mmu_mode();
1756 /* Do the actual TLB flush before dropping ptl */
1758 tlb_flush_mmu_tlbonly(tlb
);
1759 tlb_flush_rmaps(tlb
, vma
);
1761 pte_unmap_unlock(start_pte
, ptl
);
1764 * If we forced a TLB flush (either due to running out of
1765 * batch buffers or because we needed to flush dirty TLB
1766 * entries before releasing the ptl), free the batched
1767 * memory too. Come back again if we didn't do everything.
1774 force_flush
= false;
1775 force_break
= false;
1779 if (can_reclaim_pt
) {
1781 free_pte(mm
, start
, tlb
, pmdval
);
1783 try_to_free_pte(mm
, pmd
, start
, tlb
);
1789 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1790 struct vm_area_struct
*vma
, pud_t
*pud
,
1791 unsigned long addr
, unsigned long end
,
1792 struct zap_details
*details
)
1797 pmd
= pmd_offset(pud
, addr
);
1799 next
= pmd_addr_end(addr
, end
);
1800 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1801 if (next
- addr
!= HPAGE_PMD_SIZE
)
1802 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1803 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
)) {
1808 } else if (details
&& details
->single_folio
&&
1809 folio_test_pmd_mappable(details
->single_folio
) &&
1810 next
- addr
== HPAGE_PMD_SIZE
&& pmd_none(*pmd
)) {
1811 spinlock_t
*ptl
= pmd_lock(tlb
->mm
, pmd
);
1813 * Take and drop THP pmd lock so that we cannot return
1814 * prematurely, while zap_huge_pmd() has cleared *pmd,
1815 * but not yet decremented compound_mapcount().
1819 if (pmd_none(*pmd
)) {
1823 addr
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1826 } while (pmd
++, cond_resched(), addr
!= end
);
1831 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1832 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1833 unsigned long addr
, unsigned long end
,
1834 struct zap_details
*details
)
1839 pud
= pud_offset(p4d
, addr
);
1841 next
= pud_addr_end(addr
, end
);
1842 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1843 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1844 mmap_assert_locked(tlb
->mm
);
1845 split_huge_pud(vma
, pud
, addr
);
1846 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1850 if (pud_none_or_clear_bad(pud
))
1852 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1855 } while (pud
++, addr
= next
, addr
!= end
);
1860 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1861 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1862 unsigned long addr
, unsigned long end
,
1863 struct zap_details
*details
)
1868 p4d
= p4d_offset(pgd
, addr
);
1870 next
= p4d_addr_end(addr
, end
);
1871 if (p4d_none_or_clear_bad(p4d
))
1873 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1874 } while (p4d
++, addr
= next
, addr
!= end
);
1879 void unmap_page_range(struct mmu_gather
*tlb
,
1880 struct vm_area_struct
*vma
,
1881 unsigned long addr
, unsigned long end
,
1882 struct zap_details
*details
)
1887 BUG_ON(addr
>= end
);
1888 tlb_start_vma(tlb
, vma
);
1889 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1891 next
= pgd_addr_end(addr
, end
);
1892 if (pgd_none_or_clear_bad(pgd
))
1894 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1895 } while (pgd
++, addr
= next
, addr
!= end
);
1896 tlb_end_vma(tlb
, vma
);
1900 static void unmap_single_vma(struct mmu_gather
*tlb
,
1901 struct vm_area_struct
*vma
, unsigned long start_addr
,
1902 unsigned long end_addr
,
1903 struct zap_details
*details
, bool mm_wr_locked
)
1905 unsigned long start
= max(vma
->vm_start
, start_addr
);
1908 if (start
>= vma
->vm_end
)
1910 end
= min(vma
->vm_end
, end_addr
);
1911 if (end
<= vma
->vm_start
)
1915 uprobe_munmap(vma
, start
, end
);
1917 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1918 untrack_pfn(vma
, 0, 0, mm_wr_locked
);
1921 if (unlikely(is_vm_hugetlb_page(vma
))) {
1923 * It is undesirable to test vma->vm_file as it
1924 * should be non-null for valid hugetlb area.
1925 * However, vm_file will be NULL in the error
1926 * cleanup path of mmap_region. When
1927 * hugetlbfs ->mmap method fails,
1928 * mmap_region() nullifies vma->vm_file
1929 * before calling this function to clean up.
1930 * Since no pte has actually been setup, it is
1931 * safe to do nothing in this case.
1934 zap_flags_t zap_flags
= details
?
1935 details
->zap_flags
: 0;
1936 __unmap_hugepage_range(tlb
, vma
, start
, end
,
1940 unmap_page_range(tlb
, vma
, start
, end
, details
);
1945 * unmap_vmas - unmap a range of memory covered by a list of vma's
1946 * @tlb: address of the caller's struct mmu_gather
1947 * @mas: the maple state
1948 * @vma: the starting vma
1949 * @start_addr: virtual address at which to start unmapping
1950 * @end_addr: virtual address at which to end unmapping
1951 * @tree_end: The maximum index to check
1952 * @mm_wr_locked: lock flag
1954 * Unmap all pages in the vma list.
1956 * Only addresses between `start' and `end' will be unmapped.
1958 * The VMA list must be sorted in ascending virtual address order.
1960 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1961 * range after unmap_vmas() returns. So the only responsibility here is to
1962 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1963 * drops the lock and schedules.
1965 void unmap_vmas(struct mmu_gather
*tlb
, struct ma_state
*mas
,
1966 struct vm_area_struct
*vma
, unsigned long start_addr
,
1967 unsigned long end_addr
, unsigned long tree_end
,
1970 struct mmu_notifier_range range
;
1971 struct zap_details details
= {
1972 .zap_flags
= ZAP_FLAG_DROP_MARKER
| ZAP_FLAG_UNMAP
,
1973 /* Careful - we need to zap private pages too! */
1977 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
->vm_mm
,
1978 start_addr
, end_addr
);
1979 mmu_notifier_invalidate_range_start(&range
);
1981 unsigned long start
= start_addr
;
1982 unsigned long end
= end_addr
;
1983 hugetlb_zap_begin(vma
, &start
, &end
);
1984 unmap_single_vma(tlb
, vma
, start
, end
, &details
,
1986 hugetlb_zap_end(vma
, &details
);
1987 vma
= mas_find(mas
, tree_end
- 1);
1988 } while (vma
&& likely(!xa_is_zero(vma
)));
1989 mmu_notifier_invalidate_range_end(&range
);
1993 * zap_page_range_single - remove user pages in a given range
1994 * @vma: vm_area_struct holding the applicable pages
1995 * @address: starting address of pages to zap
1996 * @size: number of bytes to zap
1997 * @details: details of shared cache invalidation
1999 * The range must fit into one VMA.
2001 void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
2002 unsigned long size
, struct zap_details
*details
)
2004 const unsigned long end
= address
+ size
;
2005 struct mmu_notifier_range range
;
2006 struct mmu_gather tlb
;
2008 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
->vm_mm
,
2010 hugetlb_zap_begin(vma
, &range
.start
, &range
.end
);
2011 tlb_gather_mmu(&tlb
, vma
->vm_mm
);
2012 update_hiwater_rss(vma
->vm_mm
);
2013 mmu_notifier_invalidate_range_start(&range
);
2015 * unmap 'address-end' not 'range.start-range.end' as range
2016 * could have been expanded for hugetlb pmd sharing.
2018 unmap_single_vma(&tlb
, vma
, address
, end
, details
, false);
2019 mmu_notifier_invalidate_range_end(&range
);
2020 tlb_finish_mmu(&tlb
);
2021 hugetlb_zap_end(vma
, details
);
2025 * zap_vma_ptes - remove ptes mapping the vma
2026 * @vma: vm_area_struct holding ptes to be zapped
2027 * @address: starting address of pages to zap
2028 * @size: number of bytes to zap
2030 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2032 * The entire address range must be fully contained within the vma.
2035 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
2038 if (!range_in_vma(vma
, address
, address
+ size
) ||
2039 !(vma
->vm_flags
& VM_PFNMAP
))
2042 zap_page_range_single(vma
, address
, size
, NULL
);
2044 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
2046 static pmd_t
*walk_to_pmd(struct mm_struct
*mm
, unsigned long addr
)
2053 pgd
= pgd_offset(mm
, addr
);
2054 p4d
= p4d_alloc(mm
, pgd
, addr
);
2057 pud
= pud_alloc(mm
, p4d
, addr
);
2060 pmd
= pmd_alloc(mm
, pud
, addr
);
2064 VM_BUG_ON(pmd_trans_huge(*pmd
));
2068 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2071 pmd_t
*pmd
= walk_to_pmd(mm
, addr
);
2075 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2078 static bool vm_mixed_zeropage_allowed(struct vm_area_struct
*vma
)
2080 VM_WARN_ON_ONCE(vma
->vm_flags
& VM_PFNMAP
);
2082 * Whoever wants to forbid the zeropage after some zeropages
2083 * might already have been mapped has to scan the page tables and
2084 * bail out on any zeropages. Zeropages in COW mappings can
2085 * be unshared using FAULT_FLAG_UNSHARE faults.
2087 if (mm_forbids_zeropage(vma
->vm_mm
))
2089 /* zeropages in COW mappings are common and unproblematic. */
2090 if (is_cow_mapping(vma
->vm_flags
))
2092 /* Mappings that do not allow for writable PTEs are unproblematic. */
2093 if (!(vma
->vm_flags
& (VM_WRITE
| VM_MAYWRITE
)))
2096 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2097 * find the shared zeropage and longterm-pin it, which would
2098 * be problematic as soon as the zeropage gets replaced by a different
2099 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2100 * now differ to what GUP looked up. FSDAX is incompatible to
2101 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2104 return vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
&&
2105 (vma_is_fsdax(vma
) || vma
->vm_flags
& VM_IO
);
2108 static int validate_page_before_insert(struct vm_area_struct
*vma
,
2111 struct folio
*folio
= page_folio(page
);
2113 if (!folio_ref_count(folio
))
2115 if (unlikely(is_zero_folio(folio
))) {
2116 if (!vm_mixed_zeropage_allowed(vma
))
2120 if (folio_test_anon(folio
) || folio_test_slab(folio
) ||
2121 page_has_type(page
))
2123 flush_dcache_folio(folio
);
2127 static int insert_page_into_pte_locked(struct vm_area_struct
*vma
, pte_t
*pte
,
2128 unsigned long addr
, struct page
*page
, pgprot_t prot
)
2130 struct folio
*folio
= page_folio(page
);
2133 if (!pte_none(ptep_get(pte
)))
2135 /* Ok, finally just insert the thing.. */
2136 pteval
= mk_pte(page
, prot
);
2137 if (unlikely(is_zero_folio(folio
))) {
2138 pteval
= pte_mkspecial(pteval
);
2141 inc_mm_counter(vma
->vm_mm
, mm_counter_file(folio
));
2142 folio_add_file_rmap_pte(folio
, page
, vma
);
2144 set_pte_at(vma
->vm_mm
, addr
, pte
, pteval
);
2148 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2149 struct page
*page
, pgprot_t prot
)
2155 retval
= validate_page_before_insert(vma
, page
);
2159 pte
= get_locked_pte(vma
->vm_mm
, addr
, &ptl
);
2162 retval
= insert_page_into_pte_locked(vma
, pte
, addr
, page
, prot
);
2163 pte_unmap_unlock(pte
, ptl
);
2168 static int insert_page_in_batch_locked(struct vm_area_struct
*vma
, pte_t
*pte
,
2169 unsigned long addr
, struct page
*page
, pgprot_t prot
)
2173 err
= validate_page_before_insert(vma
, page
);
2176 return insert_page_into_pte_locked(vma
, pte
, addr
, page
, prot
);
2179 /* insert_pages() amortizes the cost of spinlock operations
2180 * when inserting pages in a loop.
2182 static int insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
2183 struct page
**pages
, unsigned long *num
, pgprot_t prot
)
2186 pte_t
*start_pte
, *pte
;
2187 spinlock_t
*pte_lock
;
2188 struct mm_struct
*const mm
= vma
->vm_mm
;
2189 unsigned long curr_page_idx
= 0;
2190 unsigned long remaining_pages_total
= *num
;
2191 unsigned long pages_to_write_in_pmd
;
2195 pmd
= walk_to_pmd(mm
, addr
);
2199 pages_to_write_in_pmd
= min_t(unsigned long,
2200 remaining_pages_total
, PTRS_PER_PTE
- pte_index(addr
));
2202 /* Allocate the PTE if necessary; takes PMD lock once only. */
2204 if (pte_alloc(mm
, pmd
))
2207 while (pages_to_write_in_pmd
) {
2209 const int batch_size
= min_t(int, pages_to_write_in_pmd
, 8);
2211 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &pte_lock
);
2216 for (pte
= start_pte
; pte_idx
< batch_size
; ++pte
, ++pte_idx
) {
2217 int err
= insert_page_in_batch_locked(vma
, pte
,
2218 addr
, pages
[curr_page_idx
], prot
);
2219 if (unlikely(err
)) {
2220 pte_unmap_unlock(start_pte
, pte_lock
);
2222 remaining_pages_total
-= pte_idx
;
2228 pte_unmap_unlock(start_pte
, pte_lock
);
2229 pages_to_write_in_pmd
-= batch_size
;
2230 remaining_pages_total
-= batch_size
;
2232 if (remaining_pages_total
)
2236 *num
= remaining_pages_total
;
2241 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2242 * @vma: user vma to map to
2243 * @addr: target start user address of these pages
2244 * @pages: source kernel pages
2245 * @num: in: number of pages to map. out: number of pages that were *not*
2246 * mapped. (0 means all pages were successfully mapped).
2248 * Preferred over vm_insert_page() when inserting multiple pages.
2250 * In case of error, we may have mapped a subset of the provided
2251 * pages. It is the caller's responsibility to account for this case.
2253 * The same restrictions apply as in vm_insert_page().
2255 int vm_insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
2256 struct page
**pages
, unsigned long *num
)
2258 const unsigned long end_addr
= addr
+ (*num
* PAGE_SIZE
) - 1;
2260 if (addr
< vma
->vm_start
|| end_addr
>= vma
->vm_end
)
2262 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2263 BUG_ON(mmap_read_trylock(vma
->vm_mm
));
2264 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2265 vm_flags_set(vma
, VM_MIXEDMAP
);
2267 /* Defer page refcount checking till we're about to map that page. */
2268 return insert_pages(vma
, addr
, pages
, num
, vma
->vm_page_prot
);
2270 EXPORT_SYMBOL(vm_insert_pages
);
2273 * vm_insert_page - insert single page into user vma
2274 * @vma: user vma to map to
2275 * @addr: target user address of this page
2276 * @page: source kernel page
2278 * This allows drivers to insert individual pages they've allocated
2279 * into a user vma. The zeropage is supported in some VMAs,
2280 * see vm_mixed_zeropage_allowed().
2282 * The page has to be a nice clean _individual_ kernel allocation.
2283 * If you allocate a compound page, you need to have marked it as
2284 * such (__GFP_COMP), or manually just split the page up yourself
2285 * (see split_page()).
2287 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2288 * took an arbitrary page protection parameter. This doesn't allow
2289 * that. Your vma protection will have to be set up correctly, which
2290 * means that if you want a shared writable mapping, you'd better
2291 * ask for a shared writable mapping!
2293 * The page does not need to be reserved.
2295 * Usually this function is called from f_op->mmap() handler
2296 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2297 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2298 * function from other places, for example from page-fault handler.
2300 * Return: %0 on success, negative error code otherwise.
2302 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2305 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2307 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2308 BUG_ON(mmap_read_trylock(vma
->vm_mm
));
2309 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2310 vm_flags_set(vma
, VM_MIXEDMAP
);
2312 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2314 EXPORT_SYMBOL(vm_insert_page
);
2317 * __vm_map_pages - maps range of kernel pages into user vma
2318 * @vma: user vma to map to
2319 * @pages: pointer to array of source kernel pages
2320 * @num: number of pages in page array
2321 * @offset: user's requested vm_pgoff
2323 * This allows drivers to map range of kernel pages into a user vma.
2324 * The zeropage is supported in some VMAs, see
2325 * vm_mixed_zeropage_allowed().
2327 * Return: 0 on success and error code otherwise.
2329 static int __vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
2330 unsigned long num
, unsigned long offset
)
2332 unsigned long count
= vma_pages(vma
);
2333 unsigned long uaddr
= vma
->vm_start
;
2336 /* Fail if the user requested offset is beyond the end of the object */
2340 /* Fail if the user requested size exceeds available object size */
2341 if (count
> num
- offset
)
2344 for (i
= 0; i
< count
; i
++) {
2345 ret
= vm_insert_page(vma
, uaddr
, pages
[offset
+ i
]);
2355 * vm_map_pages - maps range of kernel pages starts with non zero offset
2356 * @vma: user vma to map to
2357 * @pages: pointer to array of source kernel pages
2358 * @num: number of pages in page array
2360 * Maps an object consisting of @num pages, catering for the user's
2361 * requested vm_pgoff
2363 * If we fail to insert any page into the vma, the function will return
2364 * immediately leaving any previously inserted pages present. Callers
2365 * from the mmap handler may immediately return the error as their caller
2366 * will destroy the vma, removing any successfully inserted pages. Other
2367 * callers should make their own arrangements for calling unmap_region().
2369 * Context: Process context. Called by mmap handlers.
2370 * Return: 0 on success and error code otherwise.
2372 int vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
2375 return __vm_map_pages(vma
, pages
, num
, vma
->vm_pgoff
);
2377 EXPORT_SYMBOL(vm_map_pages
);
2380 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2381 * @vma: user vma to map to
2382 * @pages: pointer to array of source kernel pages
2383 * @num: number of pages in page array
2385 * Similar to vm_map_pages(), except that it explicitly sets the offset
2386 * to 0. This function is intended for the drivers that did not consider
2389 * Context: Process context. Called by mmap handlers.
2390 * Return: 0 on success and error code otherwise.
2392 int vm_map_pages_zero(struct vm_area_struct
*vma
, struct page
**pages
,
2395 return __vm_map_pages(vma
, pages
, num
, 0);
2397 EXPORT_SYMBOL(vm_map_pages_zero
);
2399 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2400 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
2402 struct mm_struct
*mm
= vma
->vm_mm
;
2406 pte
= get_locked_pte(mm
, addr
, &ptl
);
2408 return VM_FAULT_OOM
;
2409 entry
= ptep_get(pte
);
2410 if (!pte_none(entry
)) {
2413 * For read faults on private mappings the PFN passed
2414 * in may not match the PFN we have mapped if the
2415 * mapped PFN is a writeable COW page. In the mkwrite
2416 * case we are creating a writable PTE for a shared
2417 * mapping and we expect the PFNs to match. If they
2418 * don't match, we are likely racing with block
2419 * allocation and mapping invalidation so just skip the
2422 if (pte_pfn(entry
) != pfn_t_to_pfn(pfn
)) {
2423 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry
)));
2426 entry
= pte_mkyoung(entry
);
2427 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2428 if (ptep_set_access_flags(vma
, addr
, pte
, entry
, 1))
2429 update_mmu_cache(vma
, addr
, pte
);
2434 /* Ok, finally just insert the thing.. */
2435 if (pfn_t_devmap(pfn
))
2436 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
2438 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
2441 entry
= pte_mkyoung(entry
);
2442 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2445 set_pte_at(mm
, addr
, pte
, entry
);
2446 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2449 pte_unmap_unlock(pte
, ptl
);
2450 return VM_FAULT_NOPAGE
;
2454 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2455 * @vma: user vma to map to
2456 * @addr: target user address of this page
2457 * @pfn: source kernel pfn
2458 * @pgprot: pgprot flags for the inserted page
2460 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2461 * to override pgprot on a per-page basis.
2463 * This only makes sense for IO mappings, and it makes no sense for
2464 * COW mappings. In general, using multiple vmas is preferable;
2465 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2468 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2469 * caching- and encryption bits different than those of @vma->vm_page_prot,
2470 * because the caching- or encryption mode may not be known at mmap() time.
2472 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2473 * to set caching and encryption bits for those vmas (except for COW pages).
2474 * This is ensured by core vm only modifying these page table entries using
2475 * functions that don't touch caching- or encryption bits, using pte_modify()
2476 * if needed. (See for example mprotect()).
2478 * Also when new page-table entries are created, this is only done using the
2479 * fault() callback, and never using the value of vma->vm_page_prot,
2480 * except for page-table entries that point to anonymous pages as the result
2483 * Context: Process context. May allocate using %GFP_KERNEL.
2484 * Return: vm_fault_t value.
2486 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
2487 unsigned long pfn
, pgprot_t pgprot
)
2490 * Technically, architectures with pte_special can avoid all these
2491 * restrictions (same for remap_pfn_range). However we would like
2492 * consistency in testing and feature parity among all, so we should
2493 * try to keep these invariants in place for everybody.
2495 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2496 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2497 (VM_PFNMAP
|VM_MIXEDMAP
));
2498 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2499 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2501 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2502 return VM_FAULT_SIGBUS
;
2504 if (!pfn_modify_allowed(pfn
, pgprot
))
2505 return VM_FAULT_SIGBUS
;
2507 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
2509 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
2512 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
2515 * vmf_insert_pfn - insert single pfn into user vma
2516 * @vma: user vma to map to
2517 * @addr: target user address of this page
2518 * @pfn: source kernel pfn
2520 * Similar to vm_insert_page, this allows drivers to insert individual pages
2521 * they've allocated into a user vma. Same comments apply.
2523 * This function should only be called from a vm_ops->fault handler, and
2524 * in that case the handler should return the result of this function.
2526 * vma cannot be a COW mapping.
2528 * As this is called only for pages that do not currently exist, we
2529 * do not need to flush old virtual caches or the TLB.
2531 * Context: Process context. May allocate using %GFP_KERNEL.
2532 * Return: vm_fault_t value.
2534 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2537 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
2539 EXPORT_SYMBOL(vmf_insert_pfn
);
2541 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
, bool mkwrite
)
2543 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn
))) &&
2544 (mkwrite
|| !vm_mixed_zeropage_allowed(vma
)))
2546 /* these checks mirror the abort conditions in vm_normal_page */
2547 if (vma
->vm_flags
& VM_MIXEDMAP
)
2549 if (pfn_t_devmap(pfn
))
2551 if (pfn_t_special(pfn
))
2553 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
2558 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
2559 unsigned long addr
, pfn_t pfn
, bool mkwrite
)
2561 pgprot_t pgprot
= vma
->vm_page_prot
;
2564 if (!vm_mixed_ok(vma
, pfn
, mkwrite
))
2565 return VM_FAULT_SIGBUS
;
2567 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2568 return VM_FAULT_SIGBUS
;
2570 track_pfn_insert(vma
, &pgprot
, pfn
);
2572 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
2573 return VM_FAULT_SIGBUS
;
2576 * If we don't have pte special, then we have to use the pfn_valid()
2577 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2578 * refcount the page if pfn_valid is true (hence insert_page rather
2579 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2580 * without pte special, it would there be refcounted as a normal page.
2582 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
2583 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
2587 * At this point we are committed to insert_page()
2588 * regardless of whether the caller specified flags that
2589 * result in pfn_t_has_page() == false.
2591 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
2592 err
= insert_page(vma
, addr
, page
, pgprot
);
2594 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
2598 return VM_FAULT_OOM
;
2599 if (err
< 0 && err
!= -EBUSY
)
2600 return VM_FAULT_SIGBUS
;
2602 return VM_FAULT_NOPAGE
;
2605 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2608 return __vm_insert_mixed(vma
, addr
, pfn
, false);
2610 EXPORT_SYMBOL(vmf_insert_mixed
);
2613 * If the insertion of PTE failed because someone else already added a
2614 * different entry in the mean time, we treat that as success as we assume
2615 * the same entry was actually inserted.
2617 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
2618 unsigned long addr
, pfn_t pfn
)
2620 return __vm_insert_mixed(vma
, addr
, pfn
, true);
2624 * maps a range of physical memory into the requested pages. the old
2625 * mappings are removed. any references to nonexistent pages results
2626 * in null mappings (currently treated as "copy-on-access")
2628 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2629 unsigned long addr
, unsigned long end
,
2630 unsigned long pfn
, pgprot_t prot
)
2632 pte_t
*pte
, *mapped_pte
;
2636 mapped_pte
= pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2639 arch_enter_lazy_mmu_mode();
2641 BUG_ON(!pte_none(ptep_get(pte
)));
2642 if (!pfn_modify_allowed(pfn
, prot
)) {
2646 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2648 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2649 arch_leave_lazy_mmu_mode();
2650 pte_unmap_unlock(mapped_pte
, ptl
);
2654 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2655 unsigned long addr
, unsigned long end
,
2656 unsigned long pfn
, pgprot_t prot
)
2662 pfn
-= addr
>> PAGE_SHIFT
;
2663 pmd
= pmd_alloc(mm
, pud
, addr
);
2666 VM_BUG_ON(pmd_trans_huge(*pmd
));
2668 next
= pmd_addr_end(addr
, end
);
2669 err
= remap_pte_range(mm
, pmd
, addr
, next
,
2670 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2673 } while (pmd
++, addr
= next
, addr
!= end
);
2677 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2678 unsigned long addr
, unsigned long end
,
2679 unsigned long pfn
, pgprot_t prot
)
2685 pfn
-= addr
>> PAGE_SHIFT
;
2686 pud
= pud_alloc(mm
, p4d
, addr
);
2690 next
= pud_addr_end(addr
, end
);
2691 err
= remap_pmd_range(mm
, pud
, addr
, next
,
2692 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2695 } while (pud
++, addr
= next
, addr
!= end
);
2699 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2700 unsigned long addr
, unsigned long end
,
2701 unsigned long pfn
, pgprot_t prot
)
2707 pfn
-= addr
>> PAGE_SHIFT
;
2708 p4d
= p4d_alloc(mm
, pgd
, addr
);
2712 next
= p4d_addr_end(addr
, end
);
2713 err
= remap_pud_range(mm
, p4d
, addr
, next
,
2714 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2717 } while (p4d
++, addr
= next
, addr
!= end
);
2721 static int remap_pfn_range_internal(struct vm_area_struct
*vma
, unsigned long addr
,
2722 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2726 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2727 struct mm_struct
*mm
= vma
->vm_mm
;
2730 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr
)))
2734 * Physically remapped pages are special. Tell the
2735 * rest of the world about it:
2736 * VM_IO tells people not to look at these pages
2737 * (accesses can have side effects).
2738 * VM_PFNMAP tells the core MM that the base pages are just
2739 * raw PFN mappings, and do not have a "struct page" associated
2742 * Disable vma merging and expanding with mremap().
2744 * Omit vma from core dump, even when VM_IO turned off.
2746 * There's a horrible special case to handle copy-on-write
2747 * behaviour that some programs depend on. We mark the "original"
2748 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2749 * See vm_normal_page() for details.
2751 if (is_cow_mapping(vma
->vm_flags
)) {
2752 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2754 vma
->vm_pgoff
= pfn
;
2757 vm_flags_set(vma
, VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
);
2759 BUG_ON(addr
>= end
);
2760 pfn
-= addr
>> PAGE_SHIFT
;
2761 pgd
= pgd_offset(mm
, addr
);
2762 flush_cache_range(vma
, addr
, end
);
2764 next
= pgd_addr_end(addr
, end
);
2765 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2766 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2769 } while (pgd
++, addr
= next
, addr
!= end
);
2775 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2776 * must have pre-validated the caching bits of the pgprot_t.
2778 int remap_pfn_range_notrack(struct vm_area_struct
*vma
, unsigned long addr
,
2779 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2781 int error
= remap_pfn_range_internal(vma
, addr
, pfn
, size
, prot
);
2787 * A partial pfn range mapping is dangerous: it does not
2788 * maintain page reference counts, and callers may free
2789 * pages due to the error. So zap it early.
2791 zap_page_range_single(vma
, addr
, size
, NULL
);
2796 * remap_pfn_range - remap kernel memory to userspace
2797 * @vma: user vma to map to
2798 * @addr: target page aligned user address to start at
2799 * @pfn: page frame number of kernel physical memory address
2800 * @size: size of mapping area
2801 * @prot: page protection flags for this mapping
2803 * Note: this is only safe if the mm semaphore is held when called.
2805 * Return: %0 on success, negative error code otherwise.
2807 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2808 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2812 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
2816 err
= remap_pfn_range_notrack(vma
, addr
, pfn
, size
, prot
);
2818 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
), true);
2821 EXPORT_SYMBOL(remap_pfn_range
);
2824 * vm_iomap_memory - remap memory to userspace
2825 * @vma: user vma to map to
2826 * @start: start of the physical memory to be mapped
2827 * @len: size of area
2829 * This is a simplified io_remap_pfn_range() for common driver use. The
2830 * driver just needs to give us the physical memory range to be mapped,
2831 * we'll figure out the rest from the vma information.
2833 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2834 * whatever write-combining details or similar.
2836 * Return: %0 on success, negative error code otherwise.
2838 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2840 unsigned long vm_len
, pfn
, pages
;
2842 /* Check that the physical memory area passed in looks valid */
2843 if (start
+ len
< start
)
2846 * You *really* shouldn't map things that aren't page-aligned,
2847 * but we've historically allowed it because IO memory might
2848 * just have smaller alignment.
2850 len
+= start
& ~PAGE_MASK
;
2851 pfn
= start
>> PAGE_SHIFT
;
2852 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2853 if (pfn
+ pages
< pfn
)
2856 /* We start the mapping 'vm_pgoff' pages into the area */
2857 if (vma
->vm_pgoff
> pages
)
2859 pfn
+= vma
->vm_pgoff
;
2860 pages
-= vma
->vm_pgoff
;
2862 /* Can we fit all of the mapping? */
2863 vm_len
= vma
->vm_end
- vma
->vm_start
;
2864 if (vm_len
>> PAGE_SHIFT
> pages
)
2867 /* Ok, let it rip */
2868 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2870 EXPORT_SYMBOL(vm_iomap_memory
);
2872 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2873 unsigned long addr
, unsigned long end
,
2874 pte_fn_t fn
, void *data
, bool create
,
2875 pgtbl_mod_mask
*mask
)
2877 pte_t
*pte
, *mapped_pte
;
2882 mapped_pte
= pte
= (mm
== &init_mm
) ?
2883 pte_alloc_kernel_track(pmd
, addr
, mask
) :
2884 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2888 mapped_pte
= pte
= (mm
== &init_mm
) ?
2889 pte_offset_kernel(pmd
, addr
) :
2890 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
2895 arch_enter_lazy_mmu_mode();
2899 if (create
|| !pte_none(ptep_get(pte
))) {
2900 err
= fn(pte
++, addr
, data
);
2904 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2906 *mask
|= PGTBL_PTE_MODIFIED
;
2908 arch_leave_lazy_mmu_mode();
2911 pte_unmap_unlock(mapped_pte
, ptl
);
2915 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2916 unsigned long addr
, unsigned long end
,
2917 pte_fn_t fn
, void *data
, bool create
,
2918 pgtbl_mod_mask
*mask
)
2924 BUG_ON(pud_leaf(*pud
));
2927 pmd
= pmd_alloc_track(mm
, pud
, addr
, mask
);
2931 pmd
= pmd_offset(pud
, addr
);
2934 next
= pmd_addr_end(addr
, end
);
2935 if (pmd_none(*pmd
) && !create
)
2937 if (WARN_ON_ONCE(pmd_leaf(*pmd
)))
2939 if (!pmd_none(*pmd
) && WARN_ON_ONCE(pmd_bad(*pmd
))) {
2944 err
= apply_to_pte_range(mm
, pmd
, addr
, next
,
2945 fn
, data
, create
, mask
);
2948 } while (pmd
++, addr
= next
, addr
!= end
);
2953 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2954 unsigned long addr
, unsigned long end
,
2955 pte_fn_t fn
, void *data
, bool create
,
2956 pgtbl_mod_mask
*mask
)
2963 pud
= pud_alloc_track(mm
, p4d
, addr
, mask
);
2967 pud
= pud_offset(p4d
, addr
);
2970 next
= pud_addr_end(addr
, end
);
2971 if (pud_none(*pud
) && !create
)
2973 if (WARN_ON_ONCE(pud_leaf(*pud
)))
2975 if (!pud_none(*pud
) && WARN_ON_ONCE(pud_bad(*pud
))) {
2980 err
= apply_to_pmd_range(mm
, pud
, addr
, next
,
2981 fn
, data
, create
, mask
);
2984 } while (pud
++, addr
= next
, addr
!= end
);
2989 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2990 unsigned long addr
, unsigned long end
,
2991 pte_fn_t fn
, void *data
, bool create
,
2992 pgtbl_mod_mask
*mask
)
2999 p4d
= p4d_alloc_track(mm
, pgd
, addr
, mask
);
3003 p4d
= p4d_offset(pgd
, addr
);
3006 next
= p4d_addr_end(addr
, end
);
3007 if (p4d_none(*p4d
) && !create
)
3009 if (WARN_ON_ONCE(p4d_leaf(*p4d
)))
3011 if (!p4d_none(*p4d
) && WARN_ON_ONCE(p4d_bad(*p4d
))) {
3016 err
= apply_to_pud_range(mm
, p4d
, addr
, next
,
3017 fn
, data
, create
, mask
);
3020 } while (p4d
++, addr
= next
, addr
!= end
);
3025 static int __apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
3026 unsigned long size
, pte_fn_t fn
,
3027 void *data
, bool create
)
3030 unsigned long start
= addr
, next
;
3031 unsigned long end
= addr
+ size
;
3032 pgtbl_mod_mask mask
= 0;
3035 if (WARN_ON(addr
>= end
))
3038 pgd
= pgd_offset(mm
, addr
);
3040 next
= pgd_addr_end(addr
, end
);
3041 if (pgd_none(*pgd
) && !create
)
3043 if (WARN_ON_ONCE(pgd_leaf(*pgd
)))
3045 if (!pgd_none(*pgd
) && WARN_ON_ONCE(pgd_bad(*pgd
))) {
3050 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
,
3051 fn
, data
, create
, &mask
);
3054 } while (pgd
++, addr
= next
, addr
!= end
);
3056 if (mask
& ARCH_PAGE_TABLE_SYNC_MASK
)
3057 arch_sync_kernel_mappings(start
, start
+ size
);
3063 * Scan a region of virtual memory, filling in page tables as necessary
3064 * and calling a provided function on each leaf page table.
3066 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
3067 unsigned long size
, pte_fn_t fn
, void *data
)
3069 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, true);
3071 EXPORT_SYMBOL_GPL(apply_to_page_range
);
3074 * Scan a region of virtual memory, calling a provided function on
3075 * each leaf page table where it exists.
3077 * Unlike apply_to_page_range, this does _not_ fill in page tables
3078 * where they are absent.
3080 int apply_to_existing_page_range(struct mm_struct
*mm
, unsigned long addr
,
3081 unsigned long size
, pte_fn_t fn
, void *data
)
3083 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, false);
3087 * handle_pte_fault chooses page fault handler according to an entry which was
3088 * read non-atomically. Before making any commitment, on those architectures
3089 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3090 * parts, do_swap_page must check under lock before unmapping the pte and
3091 * proceeding (but do_wp_page is only called after already making such a check;
3092 * and do_anonymous_page can safely check later on).
3094 static inline int pte_unmap_same(struct vm_fault
*vmf
)
3097 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3098 if (sizeof(pte_t
) > sizeof(unsigned long)) {
3099 spin_lock(vmf
->ptl
);
3100 same
= pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
);
3101 spin_unlock(vmf
->ptl
);
3104 pte_unmap(vmf
->pte
);
3111 * 0: copied succeeded
3112 * -EHWPOISON: copy failed due to hwpoison in source page
3113 * -EAGAIN: copied failed (some other reason)
3115 static inline int __wp_page_copy_user(struct page
*dst
, struct page
*src
,
3116 struct vm_fault
*vmf
)
3121 struct vm_area_struct
*vma
= vmf
->vma
;
3122 struct mm_struct
*mm
= vma
->vm_mm
;
3123 unsigned long addr
= vmf
->address
;
3126 if (copy_mc_user_highpage(dst
, src
, addr
, vma
))
3132 * If the source page was a PFN mapping, we don't have
3133 * a "struct page" for it. We do a best-effort copy by
3134 * just copying from the original user address. If that
3135 * fails, we just zero-fill it. Live with it.
3137 kaddr
= kmap_local_page(dst
);
3138 pagefault_disable();
3139 uaddr
= (void __user
*)(addr
& PAGE_MASK
);
3142 * On architectures with software "accessed" bits, we would
3143 * take a double page fault, so mark it accessed here.
3146 if (!arch_has_hw_pte_young() && !pte_young(vmf
->orig_pte
)) {
3149 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
3150 if (unlikely(!vmf
->pte
|| !pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
))) {
3152 * Other thread has already handled the fault
3153 * and update local tlb only
3156 update_mmu_tlb(vma
, addr
, vmf
->pte
);
3161 entry
= pte_mkyoung(vmf
->orig_pte
);
3162 if (ptep_set_access_flags(vma
, addr
, vmf
->pte
, entry
, 0))
3163 update_mmu_cache_range(vmf
, vma
, addr
, vmf
->pte
, 1);
3167 * This really shouldn't fail, because the page is there
3168 * in the page tables. But it might just be unreadable,
3169 * in which case we just give up and fill the result with
3172 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
3176 /* Re-validate under PTL if the page is still mapped */
3177 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
3178 if (unlikely(!vmf
->pte
|| !pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
))) {
3179 /* The PTE changed under us, update local tlb */
3181 update_mmu_tlb(vma
, addr
, vmf
->pte
);
3187 * The same page can be mapped back since last copy attempt.
3188 * Try to copy again under PTL.
3190 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
3192 * Give a warn in case there can be some obscure
3205 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3207 kunmap_local(kaddr
);
3208 flush_dcache_page(dst
);
3213 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
3215 struct file
*vm_file
= vma
->vm_file
;
3218 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
3221 * Special mappings (e.g. VDSO) do not have any file so fake
3222 * a default GFP_KERNEL for them.
3228 * Notify the address space that the page is about to become writable so that
3229 * it can prohibit this or wait for the page to get into an appropriate state.
3231 * We do this without the lock held, so that it can sleep if it needs to.
3233 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
, struct folio
*folio
)
3236 unsigned int old_flags
= vmf
->flags
;
3238 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
3240 if (vmf
->vma
->vm_file
&&
3241 IS_SWAPFILE(vmf
->vma
->vm_file
->f_mapping
->host
))
3242 return VM_FAULT_SIGBUS
;
3244 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
3245 /* Restore original flags so that caller is not surprised */
3246 vmf
->flags
= old_flags
;
3247 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
3249 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
3251 if (!folio
->mapping
) {
3252 folio_unlock(folio
);
3253 return 0; /* retry */
3255 ret
|= VM_FAULT_LOCKED
;
3257 VM_BUG_ON_FOLIO(!folio_test_locked(folio
), folio
);
3262 * Handle dirtying of a page in shared file mapping on a write fault.
3264 * The function expects the page to be locked and unlocks it.
3266 static vm_fault_t
fault_dirty_shared_page(struct vm_fault
*vmf
)
3268 struct vm_area_struct
*vma
= vmf
->vma
;
3269 struct address_space
*mapping
;
3270 struct folio
*folio
= page_folio(vmf
->page
);
3272 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
3274 dirtied
= folio_mark_dirty(folio
);
3275 VM_BUG_ON_FOLIO(folio_test_anon(folio
), folio
);
3277 * Take a local copy of the address_space - folio.mapping may be zeroed
3278 * by truncate after folio_unlock(). The address_space itself remains
3279 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3280 * release semantics to prevent the compiler from undoing this copying.
3282 mapping
= folio_raw_mapping(folio
);
3283 folio_unlock(folio
);
3286 file_update_time(vma
->vm_file
);
3289 * Throttle page dirtying rate down to writeback speed.
3291 * mapping may be NULL here because some device drivers do not
3292 * set page.mapping but still dirty their pages
3294 * Drop the mmap_lock before waiting on IO, if we can. The file
3295 * is pinning the mapping, as per above.
3297 if ((dirtied
|| page_mkwrite
) && mapping
) {
3300 fpin
= maybe_unlock_mmap_for_io(vmf
, NULL
);
3301 balance_dirty_pages_ratelimited(mapping
);
3304 return VM_FAULT_COMPLETED
;
3312 * Handle write page faults for pages that can be reused in the current vma
3314 * This can happen either due to the mapping being with the VM_SHARED flag,
3315 * or due to us being the last reference standing to the page. In either
3316 * case, all we need to do here is to mark the page as writable and update
3317 * any related book-keeping.
3319 static inline void wp_page_reuse(struct vm_fault
*vmf
, struct folio
*folio
)
3320 __releases(vmf
->ptl
)
3322 struct vm_area_struct
*vma
= vmf
->vma
;
3325 VM_BUG_ON(!(vmf
->flags
& FAULT_FLAG_WRITE
));
3326 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf
->orig_pte
)));
3329 VM_BUG_ON(folio_test_anon(folio
) &&
3330 !PageAnonExclusive(vmf
->page
));
3332 * Clear the folio's cpupid information as the existing
3333 * information potentially belongs to a now completely
3334 * unrelated process.
3336 folio_xchg_last_cpupid(folio
, (1 << LAST_CPUPID_SHIFT
) - 1);
3339 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
3340 entry
= pte_mkyoung(vmf
->orig_pte
);
3341 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3342 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
3343 update_mmu_cache_range(vmf
, vma
, vmf
->address
, vmf
->pte
, 1);
3344 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3345 count_vm_event(PGREUSE
);
3349 * We could add a bitflag somewhere, but for now, we know that all
3350 * vm_ops that have a ->map_pages have been audited and don't need
3351 * the mmap_lock to be held.
3353 static inline vm_fault_t
vmf_can_call_fault(const struct vm_fault
*vmf
)
3355 struct vm_area_struct
*vma
= vmf
->vma
;
3357 if (vma
->vm_ops
->map_pages
|| !(vmf
->flags
& FAULT_FLAG_VMA_LOCK
))
3360 return VM_FAULT_RETRY
;
3364 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3365 * @vmf: The vm_fault descriptor passed from the fault handler.
3367 * When preparing to insert an anonymous page into a VMA from a
3368 * fault handler, call this function rather than anon_vma_prepare().
3369 * If this vma does not already have an associated anon_vma and we are
3370 * only protected by the per-VMA lock, the caller must retry with the
3371 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3372 * determine if this VMA can share its anon_vma, and that's not safe to
3373 * do with only the per-VMA lock held for this VMA.
3375 * Return: 0 if fault handling can proceed. Any other value should be
3376 * returned to the caller.
3378 vm_fault_t
__vmf_anon_prepare(struct vm_fault
*vmf
)
3380 struct vm_area_struct
*vma
= vmf
->vma
;
3383 if (likely(vma
->anon_vma
))
3385 if (vmf
->flags
& FAULT_FLAG_VMA_LOCK
) {
3386 if (!mmap_read_trylock(vma
->vm_mm
))
3387 return VM_FAULT_RETRY
;
3389 if (__anon_vma_prepare(vma
))
3391 if (vmf
->flags
& FAULT_FLAG_VMA_LOCK
)
3392 mmap_read_unlock(vma
->vm_mm
);
3397 * Handle the case of a page which we actually need to copy to a new page,
3398 * either due to COW or unsharing.
3400 * Called with mmap_lock locked and the old page referenced, but
3401 * without the ptl held.
3403 * High level logic flow:
3405 * - Allocate a page, copy the content of the old page to the new one.
3406 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3407 * - Take the PTL. If the pte changed, bail out and release the allocated page
3408 * - If the pte is still the way we remember it, update the page table and all
3409 * relevant references. This includes dropping the reference the page-table
3410 * held to the old page, as well as updating the rmap.
3411 * - In any case, unlock the PTL and drop the reference we took to the old page.
3413 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
3415 const bool unshare
= vmf
->flags
& FAULT_FLAG_UNSHARE
;
3416 struct vm_area_struct
*vma
= vmf
->vma
;
3417 struct mm_struct
*mm
= vma
->vm_mm
;
3418 struct folio
*old_folio
= NULL
;
3419 struct folio
*new_folio
= NULL
;
3421 int page_copied
= 0;
3422 struct mmu_notifier_range range
;
3426 delayacct_wpcopy_start();
3429 old_folio
= page_folio(vmf
->page
);
3430 ret
= vmf_anon_prepare(vmf
);
3434 pfn_is_zero
= is_zero_pfn(pte_pfn(vmf
->orig_pte
));
3435 new_folio
= folio_prealloc(mm
, vma
, vmf
->address
, pfn_is_zero
);
3442 err
= __wp_page_copy_user(&new_folio
->page
, vmf
->page
, vmf
);
3445 * COW failed, if the fault was solved by other,
3446 * it's fine. If not, userspace would re-fault on
3447 * the same address and we will handle the fault
3448 * from the second attempt.
3449 * The -EHWPOISON case will not be retried.
3451 folio_put(new_folio
);
3453 folio_put(old_folio
);
3455 delayacct_wpcopy_end();
3456 return err
== -EHWPOISON
? VM_FAULT_HWPOISON
: 0;
3458 kmsan_copy_page_meta(&new_folio
->page
, vmf
->page
);
3461 __folio_mark_uptodate(new_folio
);
3463 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, mm
,
3464 vmf
->address
& PAGE_MASK
,
3465 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
);
3466 mmu_notifier_invalidate_range_start(&range
);
3469 * Re-check the pte - we dropped the lock
3471 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
3472 if (likely(vmf
->pte
&& pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
))) {
3474 if (!folio_test_anon(old_folio
)) {
3475 dec_mm_counter(mm
, mm_counter_file(old_folio
));
3476 inc_mm_counter(mm
, MM_ANONPAGES
);
3479 ksm_might_unmap_zero_page(mm
, vmf
->orig_pte
);
3480 inc_mm_counter(mm
, MM_ANONPAGES
);
3482 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
3483 entry
= mk_pte(&new_folio
->page
, vma
->vm_page_prot
);
3484 entry
= pte_sw_mkyoung(entry
);
3485 if (unlikely(unshare
)) {
3486 if (pte_soft_dirty(vmf
->orig_pte
))
3487 entry
= pte_mksoft_dirty(entry
);
3488 if (pte_uffd_wp(vmf
->orig_pte
))
3489 entry
= pte_mkuffd_wp(entry
);
3491 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3495 * Clear the pte entry and flush it first, before updating the
3496 * pte with the new entry, to keep TLBs on different CPUs in
3497 * sync. This code used to set the new PTE then flush TLBs, but
3498 * that left a window where the new PTE could be loaded into
3499 * some TLBs while the old PTE remains in others.
3501 ptep_clear_flush(vma
, vmf
->address
, vmf
->pte
);
3502 folio_add_new_anon_rmap(new_folio
, vma
, vmf
->address
, RMAP_EXCLUSIVE
);
3503 folio_add_lru_vma(new_folio
, vma
);
3504 BUG_ON(unshare
&& pte_write(entry
));
3505 set_pte_at(mm
, vmf
->address
, vmf
->pte
, entry
);
3506 update_mmu_cache_range(vmf
, vma
, vmf
->address
, vmf
->pte
, 1);
3509 * Only after switching the pte to the new page may
3510 * we remove the mapcount here. Otherwise another
3511 * process may come and find the rmap count decremented
3512 * before the pte is switched to the new page, and
3513 * "reuse" the old page writing into it while our pte
3514 * here still points into it and can be read by other
3517 * The critical issue is to order this
3518 * folio_remove_rmap_pte() with the ptp_clear_flush
3519 * above. Those stores are ordered by (if nothing else,)
3520 * the barrier present in the atomic_add_negative
3521 * in folio_remove_rmap_pte();
3523 * Then the TLB flush in ptep_clear_flush ensures that
3524 * no process can access the old page before the
3525 * decremented mapcount is visible. And the old page
3526 * cannot be reused until after the decremented
3527 * mapcount is visible. So transitively, TLBs to
3528 * old page will be flushed before it can be reused.
3530 folio_remove_rmap_pte(old_folio
, vmf
->page
, vma
);
3533 /* Free the old page.. */
3534 new_folio
= old_folio
;
3536 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3537 } else if (vmf
->pte
) {
3538 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
3539 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3542 mmu_notifier_invalidate_range_end(&range
);
3545 folio_put(new_folio
);
3548 free_swap_cache(old_folio
);
3549 folio_put(old_folio
);
3552 delayacct_wpcopy_end();
3558 folio_put(old_folio
);
3560 delayacct_wpcopy_end();
3565 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3566 * writeable once the page is prepared
3568 * @vmf: structure describing the fault
3569 * @folio: the folio of vmf->page
3571 * This function handles all that is needed to finish a write page fault in a
3572 * shared mapping due to PTE being read-only once the mapped page is prepared.
3573 * It handles locking of PTE and modifying it.
3575 * The function expects the page to be locked or other protection against
3576 * concurrent faults / writeback (such as DAX radix tree locks).
3578 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3579 * we acquired PTE lock.
3581 static vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
, struct folio
*folio
)
3583 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
3584 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3587 return VM_FAULT_NOPAGE
;
3589 * We might have raced with another page fault while we released the
3590 * pte_offset_map_lock.
3592 if (!pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
)) {
3593 update_mmu_tlb(vmf
->vma
, vmf
->address
, vmf
->pte
);
3594 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3595 return VM_FAULT_NOPAGE
;
3597 wp_page_reuse(vmf
, folio
);
3602 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3605 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
3607 struct vm_area_struct
*vma
= vmf
->vma
;
3609 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
3612 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3613 ret
= vmf_can_call_fault(vmf
);
3617 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
3618 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
3619 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
3621 return finish_mkwrite_fault(vmf
, NULL
);
3623 wp_page_reuse(vmf
, NULL
);
3627 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
, struct folio
*folio
)
3628 __releases(vmf
->ptl
)
3630 struct vm_area_struct
*vma
= vmf
->vma
;
3635 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
3638 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3639 tmp
= vmf_can_call_fault(vmf
);
3645 tmp
= do_page_mkwrite(vmf
, folio
);
3646 if (unlikely(!tmp
|| (tmp
&
3647 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3651 tmp
= finish_mkwrite_fault(vmf
, folio
);
3652 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
3653 folio_unlock(folio
);
3658 wp_page_reuse(vmf
, folio
);
3661 ret
|= fault_dirty_shared_page(vmf
);
3667 static bool wp_can_reuse_anon_folio(struct folio
*folio
,
3668 struct vm_area_struct
*vma
)
3671 * We could currently only reuse a subpage of a large folio if no
3672 * other subpages of the large folios are still mapped. However,
3673 * let's just consistently not reuse subpages even if we could
3674 * reuse in that scenario, and give back a large folio a bit
3677 if (folio_test_large(folio
))
3681 * We have to verify under folio lock: these early checks are
3682 * just an optimization to avoid locking the folio and freeing
3683 * the swapcache if there is little hope that we can reuse.
3685 * KSM doesn't necessarily raise the folio refcount.
3687 if (folio_test_ksm(folio
) || folio_ref_count(folio
) > 3)
3689 if (!folio_test_lru(folio
))
3691 * We cannot easily detect+handle references from
3692 * remote LRU caches or references to LRU folios.
3695 if (folio_ref_count(folio
) > 1 + folio_test_swapcache(folio
))
3697 if (!folio_trylock(folio
))
3699 if (folio_test_swapcache(folio
))
3700 folio_free_swap(folio
);
3701 if (folio_test_ksm(folio
) || folio_ref_count(folio
) != 1) {
3702 folio_unlock(folio
);
3706 * Ok, we've got the only folio reference from our mapping
3707 * and the folio is locked, it's dark out, and we're wearing
3708 * sunglasses. Hit it.
3710 folio_move_anon_rmap(folio
, vma
);
3711 folio_unlock(folio
);
3716 * This routine handles present pages, when
3717 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3718 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3719 * (FAULT_FLAG_UNSHARE)
3721 * It is done by copying the page to a new address and decrementing the
3722 * shared-page counter for the old page.
3724 * Note that this routine assumes that the protection checks have been
3725 * done by the caller (the low-level page fault routine in most cases).
3726 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3727 * done any necessary COW.
3729 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3730 * though the page will change only once the write actually happens. This
3731 * avoids a few races, and potentially makes it more efficient.
3733 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3734 * but allow concurrent faults), with pte both mapped and locked.
3735 * We return with mmap_lock still held, but pte unmapped and unlocked.
3737 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
3738 __releases(vmf
->ptl
)
3740 const bool unshare
= vmf
->flags
& FAULT_FLAG_UNSHARE
;
3741 struct vm_area_struct
*vma
= vmf
->vma
;
3742 struct folio
*folio
= NULL
;
3745 if (likely(!unshare
)) {
3746 if (userfaultfd_pte_wp(vma
, ptep_get(vmf
->pte
))) {
3747 if (!userfaultfd_wp_async(vma
)) {
3748 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3749 return handle_userfault(vmf
, VM_UFFD_WP
);
3753 * Nothing needed (cache flush, TLB invalidations,
3754 * etc.) because we're only removing the uffd-wp bit,
3755 * which is completely invisible to the user.
3757 pte
= pte_clear_uffd_wp(ptep_get(vmf
->pte
));
3759 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3761 * Update this to be prepared for following up CoW
3764 vmf
->orig_pte
= pte
;
3768 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3769 * is flushed in this case before copying.
3771 if (unlikely(userfaultfd_wp(vmf
->vma
) &&
3772 mm_tlb_flush_pending(vmf
->vma
->vm_mm
)))
3773 flush_tlb_page(vmf
->vma
, vmf
->address
);
3776 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
3779 folio
= page_folio(vmf
->page
);
3782 * Shared mapping: we are guaranteed to have VM_WRITE and
3783 * FAULT_FLAG_WRITE set at this point.
3785 if (vma
->vm_flags
& (VM_SHARED
| VM_MAYSHARE
)) {
3787 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3790 * We should not cow pages in a shared writeable mapping.
3791 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3794 return wp_pfn_shared(vmf
);
3795 return wp_page_shared(vmf
, folio
);
3799 * Private mapping: create an exclusive anonymous page copy if reuse
3800 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3802 * If we encounter a page that is marked exclusive, we must reuse
3803 * the page without further checks.
3805 if (folio
&& folio_test_anon(folio
) &&
3806 (PageAnonExclusive(vmf
->page
) || wp_can_reuse_anon_folio(folio
, vma
))) {
3807 if (!PageAnonExclusive(vmf
->page
))
3808 SetPageAnonExclusive(vmf
->page
);
3809 if (unlikely(unshare
)) {
3810 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3813 wp_page_reuse(vmf
, folio
);
3817 * Ok, we need to copy. Oh, well..
3822 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3824 if (folio
&& folio_test_ksm(folio
))
3825 count_vm_event(COW_KSM
);
3827 return wp_page_copy(vmf
);
3830 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
3831 unsigned long start_addr
, unsigned long end_addr
,
3832 struct zap_details
*details
)
3834 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
3837 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
3838 pgoff_t first_index
,
3840 struct zap_details
*details
)
3842 struct vm_area_struct
*vma
;
3843 pgoff_t vba
, vea
, zba
, zea
;
3845 vma_interval_tree_foreach(vma
, root
, first_index
, last_index
) {
3846 vba
= vma
->vm_pgoff
;
3847 vea
= vba
+ vma_pages(vma
) - 1;
3848 zba
= max(first_index
, vba
);
3849 zea
= min(last_index
, vea
);
3851 unmap_mapping_range_vma(vma
,
3852 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
3853 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
3859 * unmap_mapping_folio() - Unmap single folio from processes.
3860 * @folio: The locked folio to be unmapped.
3862 * Unmap this folio from any userspace process which still has it mmaped.
3863 * Typically, for efficiency, the range of nearby pages has already been
3864 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3865 * truncation or invalidation holds the lock on a folio, it may find that
3866 * the page has been remapped again: and then uses unmap_mapping_folio()
3867 * to unmap it finally.
3869 void unmap_mapping_folio(struct folio
*folio
)
3871 struct address_space
*mapping
= folio
->mapping
;
3872 struct zap_details details
= { };
3873 pgoff_t first_index
;
3876 VM_BUG_ON(!folio_test_locked(folio
));
3878 first_index
= folio
->index
;
3879 last_index
= folio_next_index(folio
) - 1;
3881 details
.even_cows
= false;
3882 details
.single_folio
= folio
;
3883 details
.zap_flags
= ZAP_FLAG_DROP_MARKER
;
3885 i_mmap_lock_read(mapping
);
3886 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
3887 unmap_mapping_range_tree(&mapping
->i_mmap
, first_index
,
3888 last_index
, &details
);
3889 i_mmap_unlock_read(mapping
);
3893 * unmap_mapping_pages() - Unmap pages from processes.
3894 * @mapping: The address space containing pages to be unmapped.
3895 * @start: Index of first page to be unmapped.
3896 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3897 * @even_cows: Whether to unmap even private COWed pages.
3899 * Unmap the pages in this address space from any userspace process which
3900 * has them mmaped. Generally, you want to remove COWed pages as well when
3901 * a file is being truncated, but not when invalidating pages from the page
3904 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
3905 pgoff_t nr
, bool even_cows
)
3907 struct zap_details details
= { };
3908 pgoff_t first_index
= start
;
3909 pgoff_t last_index
= start
+ nr
- 1;
3911 details
.even_cows
= even_cows
;
3912 if (last_index
< first_index
)
3913 last_index
= ULONG_MAX
;
3915 i_mmap_lock_read(mapping
);
3916 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
3917 unmap_mapping_range_tree(&mapping
->i_mmap
, first_index
,
3918 last_index
, &details
);
3919 i_mmap_unlock_read(mapping
);
3921 EXPORT_SYMBOL_GPL(unmap_mapping_pages
);
3924 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3925 * address_space corresponding to the specified byte range in the underlying
3928 * @mapping: the address space containing mmaps to be unmapped.
3929 * @holebegin: byte in first page to unmap, relative to the start of
3930 * the underlying file. This will be rounded down to a PAGE_SIZE
3931 * boundary. Note that this is different from truncate_pagecache(), which
3932 * must keep the partial page. In contrast, we must get rid of
3934 * @holelen: size of prospective hole in bytes. This will be rounded
3935 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3937 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3938 * but 0 when invalidating pagecache, don't throw away private data.
3940 void unmap_mapping_range(struct address_space
*mapping
,
3941 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
3943 pgoff_t hba
= (pgoff_t
)(holebegin
) >> PAGE_SHIFT
;
3944 pgoff_t hlen
= ((pgoff_t
)(holelen
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3946 /* Check for overflow. */
3947 if (sizeof(holelen
) > sizeof(hlen
)) {
3949 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3950 if (holeend
& ~(long long)ULONG_MAX
)
3951 hlen
= ULONG_MAX
- hba
+ 1;
3954 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
3956 EXPORT_SYMBOL(unmap_mapping_range
);
3959 * Restore a potential device exclusive pte to a working pte entry
3961 static vm_fault_t
remove_device_exclusive_entry(struct vm_fault
*vmf
)
3963 struct folio
*folio
= page_folio(vmf
->page
);
3964 struct vm_area_struct
*vma
= vmf
->vma
;
3965 struct mmu_notifier_range range
;
3969 * We need a reference to lock the folio because we don't hold
3970 * the PTL so a racing thread can remove the device-exclusive
3971 * entry and unmap it. If the folio is free the entry must
3972 * have been removed already. If it happens to have already
3973 * been re-allocated after being freed all we do is lock and
3976 if (!folio_try_get(folio
))
3979 ret
= folio_lock_or_retry(folio
, vmf
);
3984 mmu_notifier_range_init_owner(&range
, MMU_NOTIFY_EXCLUSIVE
, 0,
3985 vma
->vm_mm
, vmf
->address
& PAGE_MASK
,
3986 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
, NULL
);
3987 mmu_notifier_invalidate_range_start(&range
);
3989 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3991 if (likely(vmf
->pte
&& pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
)))
3992 restore_exclusive_pte(vma
, vmf
->page
, vmf
->address
, vmf
->pte
);
3995 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3996 folio_unlock(folio
);
3999 mmu_notifier_invalidate_range_end(&range
);
4003 static inline bool should_try_to_free_swap(struct folio
*folio
,
4004 struct vm_area_struct
*vma
,
4005 unsigned int fault_flags
)
4007 if (!folio_test_swapcache(folio
))
4009 if (mem_cgroup_swap_full(folio
) || (vma
->vm_flags
& VM_LOCKED
) ||
4010 folio_test_mlocked(folio
))
4013 * If we want to map a page that's in the swapcache writable, we
4014 * have to detect via the refcount if we're really the exclusive
4015 * user. Try freeing the swapcache to get rid of the swapcache
4016 * reference only in case it's likely that we'll be the exlusive user.
4018 return (fault_flags
& FAULT_FLAG_WRITE
) && !folio_test_ksm(folio
) &&
4019 folio_ref_count(folio
) == (1 + folio_nr_pages(folio
));
4022 static vm_fault_t
pte_marker_clear(struct vm_fault
*vmf
)
4024 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
,
4025 vmf
->address
, &vmf
->ptl
);
4029 * Be careful so that we will only recover a special uffd-wp pte into a
4030 * none pte. Otherwise it means the pte could have changed, so retry.
4032 * This should also cover the case where e.g. the pte changed
4033 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4034 * So is_pte_marker() check is not enough to safely drop the pte.
4036 if (pte_same(vmf
->orig_pte
, ptep_get(vmf
->pte
)))
4037 pte_clear(vmf
->vma
->vm_mm
, vmf
->address
, vmf
->pte
);
4038 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4042 static vm_fault_t
do_pte_missing(struct vm_fault
*vmf
)
4044 if (vma_is_anonymous(vmf
->vma
))
4045 return do_anonymous_page(vmf
);
4047 return do_fault(vmf
);
4051 * This is actually a page-missing access, but with uffd-wp special pte
4052 * installed. It means this pte was wr-protected before being unmapped.
4054 static vm_fault_t
pte_marker_handle_uffd_wp(struct vm_fault
*vmf
)
4057 * Just in case there're leftover special ptes even after the region
4058 * got unregistered - we can simply clear them.
4060 if (unlikely(!userfaultfd_wp(vmf
->vma
)))
4061 return pte_marker_clear(vmf
);
4063 return do_pte_missing(vmf
);
4066 static vm_fault_t
handle_pte_marker(struct vm_fault
*vmf
)
4068 swp_entry_t entry
= pte_to_swp_entry(vmf
->orig_pte
);
4069 unsigned long marker
= pte_marker_get(entry
);
4072 * PTE markers should never be empty. If anything weird happened,
4073 * the best thing to do is to kill the process along with its mm.
4075 if (WARN_ON_ONCE(!marker
))
4076 return VM_FAULT_SIGBUS
;
4078 /* Higher priority than uffd-wp when data corrupted */
4079 if (marker
& PTE_MARKER_POISONED
)
4080 return VM_FAULT_HWPOISON
;
4082 /* Hitting a guard page is always a fatal condition. */
4083 if (marker
& PTE_MARKER_GUARD
)
4084 return VM_FAULT_SIGSEGV
;
4086 if (pte_marker_entry_uffd_wp(entry
))
4087 return pte_marker_handle_uffd_wp(vmf
);
4089 /* This is an unknown pte marker */
4090 return VM_FAULT_SIGBUS
;
4093 static struct folio
*__alloc_swap_folio(struct vm_fault
*vmf
)
4095 struct vm_area_struct
*vma
= vmf
->vma
;
4096 struct folio
*folio
;
4099 folio
= vma_alloc_folio(GFP_HIGHUSER_MOVABLE
, 0, vma
, vmf
->address
);
4103 entry
= pte_to_swp_entry(vmf
->orig_pte
);
4104 if (mem_cgroup_swapin_charge_folio(folio
, vma
->vm_mm
,
4105 GFP_KERNEL
, entry
)) {
4113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4114 static inline int non_swapcache_batch(swp_entry_t entry
, int max_nr
)
4116 struct swap_info_struct
*si
= swp_swap_info(entry
);
4117 pgoff_t offset
= swp_offset(entry
);
4121 * While allocating a large folio and doing swap_read_folio, which is
4122 * the case the being faulted pte doesn't have swapcache. We need to
4123 * ensure all PTEs have no cache as well, otherwise, we might go to
4124 * swap devices while the content is in swapcache.
4126 for (i
= 0; i
< max_nr
; i
++) {
4127 if ((si
->swap_map
[offset
+ i
] & SWAP_HAS_CACHE
))
4135 * Check if the PTEs within a range are contiguous swap entries
4136 * and have consistent swapcache, zeromap.
4138 static bool can_swapin_thp(struct vm_fault
*vmf
, pte_t
*ptep
, int nr_pages
)
4145 addr
= ALIGN_DOWN(vmf
->address
, nr_pages
* PAGE_SIZE
);
4146 idx
= (vmf
->address
- addr
) / PAGE_SIZE
;
4147 pte
= ptep_get(ptep
);
4149 if (!pte_same(pte
, pte_move_swp_offset(vmf
->orig_pte
, -idx
)))
4151 entry
= pte_to_swp_entry(pte
);
4152 if (swap_pte_batch(ptep
, nr_pages
, pte
) != nr_pages
)
4156 * swap_read_folio() can't handle the case a large folio is hybridly
4157 * from different backends. And they are likely corner cases. Similar
4158 * things might be added once zswap support large folios.
4160 if (unlikely(swap_zeromap_batch(entry
, nr_pages
, NULL
) != nr_pages
))
4162 if (unlikely(non_swapcache_batch(entry
, nr_pages
) != nr_pages
))
4168 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset
,
4170 unsigned long orders
)
4174 order
= highest_order(orders
);
4177 * To swap in a THP with nr pages, we require that its first swap_offset
4178 * is aligned with that number, as it was when the THP was swapped out.
4179 * This helps filter out most invalid entries.
4183 if ((addr
>> PAGE_SHIFT
) % nr
== swp_offset
% nr
)
4185 order
= next_order(&orders
, order
);
4191 static struct folio
*alloc_swap_folio(struct vm_fault
*vmf
)
4193 struct vm_area_struct
*vma
= vmf
->vma
;
4194 unsigned long orders
;
4195 struct folio
*folio
;
4204 * If uffd is active for the vma we need per-page fault fidelity to
4205 * maintain the uffd semantics.
4207 if (unlikely(userfaultfd_armed(vma
)))
4211 * A large swapped out folio could be partially or fully in zswap. We
4212 * lack handling for such cases, so fallback to swapping in order-0
4215 if (!zswap_never_enabled())
4218 entry
= pte_to_swp_entry(vmf
->orig_pte
);
4220 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4221 * and suitable for swapping THP.
4223 orders
= thp_vma_allowable_orders(vma
, vma
->vm_flags
,
4224 TVA_IN_PF
| TVA_ENFORCE_SYSFS
, BIT(PMD_ORDER
) - 1);
4225 orders
= thp_vma_suitable_orders(vma
, vmf
->address
, orders
);
4226 orders
= thp_swap_suitable_orders(swp_offset(entry
),
4227 vmf
->address
, orders
);
4232 pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
,
4233 vmf
->address
& PMD_MASK
, &ptl
);
4238 * For do_swap_page, find the highest order where the aligned range is
4239 * completely swap entries with contiguous swap offsets.
4241 order
= highest_order(orders
);
4243 addr
= ALIGN_DOWN(vmf
->address
, PAGE_SIZE
<< order
);
4244 if (can_swapin_thp(vmf
, pte
+ pte_index(addr
), 1 << order
))
4246 order
= next_order(&orders
, order
);
4249 pte_unmap_unlock(pte
, ptl
);
4251 /* Try allocating the highest of the remaining orders. */
4252 gfp
= vma_thp_gfp_mask(vma
);
4254 addr
= ALIGN_DOWN(vmf
->address
, PAGE_SIZE
<< order
);
4255 folio
= vma_alloc_folio(gfp
, order
, vma
, addr
);
4257 if (!mem_cgroup_swapin_charge_folio(folio
, vma
->vm_mm
,
4260 count_mthp_stat(order
, MTHP_STAT_SWPIN_FALLBACK_CHARGE
);
4263 count_mthp_stat(order
, MTHP_STAT_SWPIN_FALLBACK
);
4264 order
= next_order(&orders
, order
);
4268 return __alloc_swap_folio(vmf
);
4270 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4271 static struct folio
*alloc_swap_folio(struct vm_fault
*vmf
)
4273 return __alloc_swap_folio(vmf
);
4275 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4277 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq
);
4280 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4281 * but allow concurrent faults), and pte mapped but not yet locked.
4282 * We return with pte unmapped and unlocked.
4284 * We return with the mmap_lock locked or unlocked in the same cases
4285 * as does filemap_fault().
4287 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
4289 struct vm_area_struct
*vma
= vmf
->vma
;
4290 struct folio
*swapcache
, *folio
= NULL
;
4291 DECLARE_WAITQUEUE(wait
, current
);
4293 struct swap_info_struct
*si
= NULL
;
4294 rmap_t rmap_flags
= RMAP_NONE
;
4295 bool need_clear_cache
= false;
4296 bool exclusive
= false;
4300 void *shadow
= NULL
;
4302 unsigned long page_idx
;
4303 unsigned long address
;
4306 if (!pte_unmap_same(vmf
))
4309 entry
= pte_to_swp_entry(vmf
->orig_pte
);
4310 if (unlikely(non_swap_entry(entry
))) {
4311 if (is_migration_entry(entry
)) {
4312 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
4314 } else if (is_device_exclusive_entry(entry
)) {
4315 vmf
->page
= pfn_swap_entry_to_page(entry
);
4316 ret
= remove_device_exclusive_entry(vmf
);
4317 } else if (is_device_private_entry(entry
)) {
4318 if (vmf
->flags
& FAULT_FLAG_VMA_LOCK
) {
4320 * migrate_to_ram is not yet ready to operate
4324 ret
= VM_FAULT_RETRY
;
4328 vmf
->page
= pfn_swap_entry_to_page(entry
);
4329 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
4330 vmf
->address
, &vmf
->ptl
);
4331 if (unlikely(!vmf
->pte
||
4332 !pte_same(ptep_get(vmf
->pte
),
4337 * Get a page reference while we know the page can't be
4340 get_page(vmf
->page
);
4341 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4342 ret
= vmf
->page
->pgmap
->ops
->migrate_to_ram(vmf
);
4343 put_page(vmf
->page
);
4344 } else if (is_hwpoison_entry(entry
)) {
4345 ret
= VM_FAULT_HWPOISON
;
4346 } else if (is_pte_marker_entry(entry
)) {
4347 ret
= handle_pte_marker(vmf
);
4349 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
4350 ret
= VM_FAULT_SIGBUS
;
4355 /* Prevent swapoff from happening to us. */
4356 si
= get_swap_device(entry
);
4360 folio
= swap_cache_get_folio(entry
, vma
, vmf
->address
);
4362 page
= folio_file_page(folio
, swp_offset(entry
));
4366 if (data_race(si
->flags
& SWP_SYNCHRONOUS_IO
) &&
4367 __swap_count(entry
) == 1) {
4368 /* skip swapcache */
4369 folio
= alloc_swap_folio(vmf
);
4371 __folio_set_locked(folio
);
4372 __folio_set_swapbacked(folio
);
4374 nr_pages
= folio_nr_pages(folio
);
4375 if (folio_test_large(folio
))
4376 entry
.val
= ALIGN_DOWN(entry
.val
, nr_pages
);
4378 * Prevent parallel swapin from proceeding with
4379 * the cache flag. Otherwise, another thread
4380 * may finish swapin first, free the entry, and
4381 * swapout reusing the same entry. It's
4382 * undetectable as pte_same() returns true due
4385 if (swapcache_prepare(entry
, nr_pages
)) {
4387 * Relax a bit to prevent rapid
4388 * repeated page faults.
4390 add_wait_queue(&swapcache_wq
, &wait
);
4391 schedule_timeout_uninterruptible(1);
4392 remove_wait_queue(&swapcache_wq
, &wait
);
4395 need_clear_cache
= true;
4397 mem_cgroup_swapin_uncharge_swap(entry
, nr_pages
);
4399 shadow
= get_shadow_from_swap_cache(entry
);
4401 workingset_refault(folio
, shadow
);
4403 folio_add_lru(folio
);
4405 /* To provide entry to swap_read_folio() */
4406 folio
->swap
= entry
;
4407 swap_read_folio(folio
, NULL
);
4408 folio
->private = NULL
;
4411 folio
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
4418 * Back out if somebody else faulted in this pte
4419 * while we released the pte lock.
4421 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
4422 vmf
->address
, &vmf
->ptl
);
4423 if (likely(vmf
->pte
&&
4424 pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
)))
4429 /* Had to read the page from swap area: Major fault */
4430 ret
= VM_FAULT_MAJOR
;
4431 count_vm_event(PGMAJFAULT
);
4432 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
4433 page
= folio_file_page(folio
, swp_offset(entry
));
4434 } else if (PageHWPoison(page
)) {
4436 * hwpoisoned dirty swapcache pages are kept for killing
4437 * owner processes (which may be unknown at hwpoison time)
4439 ret
= VM_FAULT_HWPOISON
;
4443 ret
|= folio_lock_or_retry(folio
, vmf
);
4444 if (ret
& VM_FAULT_RETRY
)
4449 * Make sure folio_free_swap() or swapoff did not release the
4450 * swapcache from under us. The page pin, and pte_same test
4451 * below, are not enough to exclude that. Even if it is still
4452 * swapcache, we need to check that the page's swap has not
4455 if (unlikely(!folio_test_swapcache(folio
) ||
4456 page_swap_entry(page
).val
!= entry
.val
))
4460 * KSM sometimes has to copy on read faults, for example, if
4461 * page->index of !PageKSM() pages would be nonlinear inside the
4462 * anon VMA -- PageKSM() is lost on actual swapout.
4464 folio
= ksm_might_need_to_copy(folio
, vma
, vmf
->address
);
4465 if (unlikely(!folio
)) {
4469 } else if (unlikely(folio
== ERR_PTR(-EHWPOISON
))) {
4470 ret
= VM_FAULT_HWPOISON
;
4474 if (folio
!= swapcache
)
4475 page
= folio_page(folio
, 0);
4478 * If we want to map a page that's in the swapcache writable, we
4479 * have to detect via the refcount if we're really the exclusive
4480 * owner. Try removing the extra reference from the local LRU
4481 * caches if required.
4483 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && folio
== swapcache
&&
4484 !folio_test_ksm(folio
) && !folio_test_lru(folio
))
4488 folio_throttle_swaprate(folio
, GFP_KERNEL
);
4491 * Back out if somebody else already faulted in this pte.
4493 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
4495 if (unlikely(!vmf
->pte
|| !pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
)))
4498 if (unlikely(!folio_test_uptodate(folio
))) {
4499 ret
= VM_FAULT_SIGBUS
;
4503 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4504 if (folio_test_large(folio
) && !folio_test_swapcache(folio
)) {
4505 unsigned long nr
= folio_nr_pages(folio
);
4506 unsigned long folio_start
= ALIGN_DOWN(vmf
->address
, nr
* PAGE_SIZE
);
4507 unsigned long idx
= (vmf
->address
- folio_start
) / PAGE_SIZE
;
4508 pte_t
*folio_ptep
= vmf
->pte
- idx
;
4509 pte_t folio_pte
= ptep_get(folio_ptep
);
4511 if (!pte_same(folio_pte
, pte_move_swp_offset(vmf
->orig_pte
, -idx
)) ||
4512 swap_pte_batch(folio_ptep
, nr
, folio_pte
) != nr
)
4516 address
= folio_start
;
4523 address
= vmf
->address
;
4525 if (folio_test_large(folio
) && folio_test_swapcache(folio
)) {
4526 int nr
= folio_nr_pages(folio
);
4527 unsigned long idx
= folio_page_idx(folio
, page
);
4528 unsigned long folio_start
= address
- idx
* PAGE_SIZE
;
4529 unsigned long folio_end
= folio_start
+ nr
* PAGE_SIZE
;
4533 if (unlikely(folio_start
< max(address
& PMD_MASK
, vma
->vm_start
)))
4535 if (unlikely(folio_end
> pmd_addr_end(address
, vma
->vm_end
)))
4538 folio_ptep
= vmf
->pte
- idx
;
4539 folio_pte
= ptep_get(folio_ptep
);
4540 if (!pte_same(folio_pte
, pte_move_swp_offset(vmf
->orig_pte
, -idx
)) ||
4541 swap_pte_batch(folio_ptep
, nr
, folio_pte
) != nr
)
4545 address
= folio_start
;
4548 entry
= folio
->swap
;
4549 page
= &folio
->page
;
4554 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4555 * must never point at an anonymous page in the swapcache that is
4556 * PG_anon_exclusive. Sanity check that this holds and especially, that
4557 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4558 * check after taking the PT lock and making sure that nobody
4559 * concurrently faulted in this page and set PG_anon_exclusive.
4561 BUG_ON(!folio_test_anon(folio
) && folio_test_mappedtodisk(folio
));
4562 BUG_ON(folio_test_anon(folio
) && PageAnonExclusive(page
));
4565 * Check under PT lock (to protect against concurrent fork() sharing
4566 * the swap entry concurrently) for certainly exclusive pages.
4568 if (!folio_test_ksm(folio
)) {
4569 exclusive
= pte_swp_exclusive(vmf
->orig_pte
);
4570 if (folio
!= swapcache
) {
4572 * We have a fresh page that is not exposed to the
4573 * swapcache -> certainly exclusive.
4576 } else if (exclusive
&& folio_test_writeback(folio
) &&
4577 data_race(si
->flags
& SWP_STABLE_WRITES
)) {
4579 * This is tricky: not all swap backends support
4580 * concurrent page modifications while under writeback.
4582 * So if we stumble over such a page in the swapcache
4583 * we must not set the page exclusive, otherwise we can
4584 * map it writable without further checks and modify it
4585 * while still under writeback.
4587 * For these problematic swap backends, simply drop the
4588 * exclusive marker: this is perfectly fine as we start
4589 * writeback only if we fully unmapped the page and
4590 * there are no unexpected references on the page after
4591 * unmapping succeeded. After fully unmapped, no
4592 * further GUP references (FOLL_GET and FOLL_PIN) can
4593 * appear, so dropping the exclusive marker and mapping
4594 * it only R/O is fine.
4601 * Some architectures may have to restore extra metadata to the page
4602 * when reading from swap. This metadata may be indexed by swap entry
4603 * so this must be called before swap_free().
4605 arch_swap_restore(folio_swap(entry
, folio
), folio
);
4608 * Remove the swap entry and conditionally try to free up the swapcache.
4609 * We're already holding a reference on the page but haven't mapped it
4612 swap_free_nr(entry
, nr_pages
);
4613 if (should_try_to_free_swap(folio
, vma
, vmf
->flags
))
4614 folio_free_swap(folio
);
4616 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, nr_pages
);
4617 add_mm_counter(vma
->vm_mm
, MM_SWAPENTS
, -nr_pages
);
4618 pte
= mk_pte(page
, vma
->vm_page_prot
);
4619 if (pte_swp_soft_dirty(vmf
->orig_pte
))
4620 pte
= pte_mksoft_dirty(pte
);
4621 if (pte_swp_uffd_wp(vmf
->orig_pte
))
4622 pte
= pte_mkuffd_wp(pte
);
4625 * Same logic as in do_wp_page(); however, optimize for pages that are
4626 * certainly not shared either because we just allocated them without
4627 * exposing them to the swapcache or because the swap entry indicates
4630 if (!folio_test_ksm(folio
) &&
4631 (exclusive
|| folio_ref_count(folio
) == 1)) {
4632 if ((vma
->vm_flags
& VM_WRITE
) && !userfaultfd_pte_wp(vma
, pte
) &&
4633 !pte_needs_soft_dirty_wp(vma
, pte
)) {
4634 pte
= pte_mkwrite(pte
, vma
);
4635 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4636 pte
= pte_mkdirty(pte
);
4637 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
4640 rmap_flags
|= RMAP_EXCLUSIVE
;
4642 folio_ref_add(folio
, nr_pages
- 1);
4643 flush_icache_pages(vma
, page
, nr_pages
);
4644 vmf
->orig_pte
= pte_advance_pfn(pte
, page_idx
);
4646 /* ksm created a completely new copy */
4647 if (unlikely(folio
!= swapcache
&& swapcache
)) {
4648 folio_add_new_anon_rmap(folio
, vma
, address
, RMAP_EXCLUSIVE
);
4649 folio_add_lru_vma(folio
, vma
);
4650 } else if (!folio_test_anon(folio
)) {
4652 * We currently only expect small !anon folios which are either
4653 * fully exclusive or fully shared, or new allocated large
4654 * folios which are fully exclusive. If we ever get large
4655 * folios within swapcache here, we have to be careful.
4657 VM_WARN_ON_ONCE(folio_test_large(folio
) && folio_test_swapcache(folio
));
4658 VM_WARN_ON_FOLIO(!folio_test_locked(folio
), folio
);
4659 folio_add_new_anon_rmap(folio
, vma
, address
, rmap_flags
);
4661 folio_add_anon_rmap_ptes(folio
, page
, nr_pages
, vma
, address
,
4665 VM_BUG_ON(!folio_test_anon(folio
) ||
4666 (pte_write(pte
) && !PageAnonExclusive(page
)));
4667 set_ptes(vma
->vm_mm
, address
, ptep
, pte
, nr_pages
);
4668 arch_do_swap_page_nr(vma
->vm_mm
, vma
, address
,
4669 pte
, pte
, nr_pages
);
4671 folio_unlock(folio
);
4672 if (folio
!= swapcache
&& swapcache
) {
4674 * Hold the lock to avoid the swap entry to be reused
4675 * until we take the PT lock for the pte_same() check
4676 * (to avoid false positives from pte_same). For
4677 * further safety release the lock after the swap_free
4678 * so that the swap count won't change under a
4679 * parallel locked swapcache.
4681 folio_unlock(swapcache
);
4682 folio_put(swapcache
);
4685 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4686 ret
|= do_wp_page(vmf
);
4687 if (ret
& VM_FAULT_ERROR
)
4688 ret
&= VM_FAULT_ERROR
;
4692 /* No need to invalidate - it was non-present before */
4693 update_mmu_cache_range(vmf
, vma
, address
, ptep
, nr_pages
);
4696 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4698 /* Clear the swap cache pin for direct swapin after PTL unlock */
4699 if (need_clear_cache
) {
4700 swapcache_clear(si
, entry
, nr_pages
);
4701 if (waitqueue_active(&swapcache_wq
))
4702 wake_up(&swapcache_wq
);
4705 put_swap_device(si
);
4709 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4711 folio_unlock(folio
);
4714 if (folio
!= swapcache
&& swapcache
) {
4715 folio_unlock(swapcache
);
4716 folio_put(swapcache
);
4718 if (need_clear_cache
) {
4719 swapcache_clear(si
, entry
, nr_pages
);
4720 if (waitqueue_active(&swapcache_wq
))
4721 wake_up(&swapcache_wq
);
4724 put_swap_device(si
);
4728 static bool pte_range_none(pte_t
*pte
, int nr_pages
)
4732 for (i
= 0; i
< nr_pages
; i
++) {
4733 if (!pte_none(ptep_get_lockless(pte
+ i
)))
4740 static struct folio
*alloc_anon_folio(struct vm_fault
*vmf
)
4742 struct vm_area_struct
*vma
= vmf
->vma
;
4743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4744 unsigned long orders
;
4745 struct folio
*folio
;
4752 * If uffd is active for the vma we need per-page fault fidelity to
4753 * maintain the uffd semantics.
4755 if (unlikely(userfaultfd_armed(vma
)))
4759 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4760 * for this vma. Then filter out the orders that can't be allocated over
4761 * the faulting address and still be fully contained in the vma.
4763 orders
= thp_vma_allowable_orders(vma
, vma
->vm_flags
,
4764 TVA_IN_PF
| TVA_ENFORCE_SYSFS
, BIT(PMD_ORDER
) - 1);
4765 orders
= thp_vma_suitable_orders(vma
, vmf
->address
, orders
);
4770 pte
= pte_offset_map(vmf
->pmd
, vmf
->address
& PMD_MASK
);
4772 return ERR_PTR(-EAGAIN
);
4775 * Find the highest order where the aligned range is completely
4776 * pte_none(). Note that all remaining orders will be completely
4779 order
= highest_order(orders
);
4781 addr
= ALIGN_DOWN(vmf
->address
, PAGE_SIZE
<< order
);
4782 if (pte_range_none(pte
+ pte_index(addr
), 1 << order
))
4784 order
= next_order(&orders
, order
);
4792 /* Try allocating the highest of the remaining orders. */
4793 gfp
= vma_thp_gfp_mask(vma
);
4795 addr
= ALIGN_DOWN(vmf
->address
, PAGE_SIZE
<< order
);
4796 folio
= vma_alloc_folio(gfp
, order
, vma
, addr
);
4798 if (mem_cgroup_charge(folio
, vma
->vm_mm
, gfp
)) {
4799 count_mthp_stat(order
, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE
);
4803 folio_throttle_swaprate(folio
, gfp
);
4805 * When a folio is not zeroed during allocation
4806 * (__GFP_ZERO not used) or user folios require special
4807 * handling, folio_zero_user() is used to make sure
4808 * that the page corresponding to the faulting address
4809 * will be hot in the cache after zeroing.
4811 if (user_alloc_needs_zeroing())
4812 folio_zero_user(folio
, vmf
->address
);
4816 count_mthp_stat(order
, MTHP_STAT_ANON_FAULT_FALLBACK
);
4817 order
= next_order(&orders
, order
);
4822 return folio_prealloc(vma
->vm_mm
, vma
, vmf
->address
, true);
4826 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4827 * but allow concurrent faults), and pte mapped but not yet locked.
4828 * We return with mmap_lock still held, but pte unmapped and unlocked.
4830 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
4832 struct vm_area_struct
*vma
= vmf
->vma
;
4833 unsigned long addr
= vmf
->address
;
4834 struct folio
*folio
;
4839 /* File mapping without ->vm_ops ? */
4840 if (vma
->vm_flags
& VM_SHARED
)
4841 return VM_FAULT_SIGBUS
;
4844 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4845 * be distinguished from a transient failure of pte_offset_map().
4847 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
))
4848 return VM_FAULT_OOM
;
4850 /* Use the zero-page for reads */
4851 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
4852 !mm_forbids_zeropage(vma
->vm_mm
)) {
4853 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
4854 vma
->vm_page_prot
));
4855 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
4856 vmf
->address
, &vmf
->ptl
);
4859 if (vmf_pte_changed(vmf
)) {
4860 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
4863 ret
= check_stable_address_space(vma
->vm_mm
);
4866 /* Deliver the page fault to userland, check inside PT lock */
4867 if (userfaultfd_missing(vma
)) {
4868 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4869 return handle_userfault(vmf
, VM_UFFD_MISSING
);
4874 /* Allocate our own private page. */
4875 ret
= vmf_anon_prepare(vmf
);
4878 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4879 folio
= alloc_anon_folio(vmf
);
4885 nr_pages
= folio_nr_pages(folio
);
4886 addr
= ALIGN_DOWN(vmf
->address
, nr_pages
* PAGE_SIZE
);
4889 * The memory barrier inside __folio_mark_uptodate makes sure that
4890 * preceding stores to the page contents become visible before
4891 * the set_pte_at() write.
4893 __folio_mark_uptodate(folio
);
4895 entry
= mk_pte(&folio
->page
, vma
->vm_page_prot
);
4896 entry
= pte_sw_mkyoung(entry
);
4897 if (vma
->vm_flags
& VM_WRITE
)
4898 entry
= pte_mkwrite(pte_mkdirty(entry
), vma
);
4900 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
4903 if (nr_pages
== 1 && vmf_pte_changed(vmf
)) {
4904 update_mmu_tlb(vma
, addr
, vmf
->pte
);
4906 } else if (nr_pages
> 1 && !pte_range_none(vmf
->pte
, nr_pages
)) {
4907 update_mmu_tlb_range(vma
, addr
, vmf
->pte
, nr_pages
);
4911 ret
= check_stable_address_space(vma
->vm_mm
);
4915 /* Deliver the page fault to userland, check inside PT lock */
4916 if (userfaultfd_missing(vma
)) {
4917 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4919 return handle_userfault(vmf
, VM_UFFD_MISSING
);
4922 folio_ref_add(folio
, nr_pages
- 1);
4923 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, nr_pages
);
4924 count_mthp_stat(folio_order(folio
), MTHP_STAT_ANON_FAULT_ALLOC
);
4925 folio_add_new_anon_rmap(folio
, vma
, addr
, RMAP_EXCLUSIVE
);
4926 folio_add_lru_vma(folio
, vma
);
4928 if (vmf_orig_pte_uffd_wp(vmf
))
4929 entry
= pte_mkuffd_wp(entry
);
4930 set_ptes(vma
->vm_mm
, addr
, vmf
->pte
, entry
, nr_pages
);
4932 /* No need to invalidate - it was non-present before */
4933 update_mmu_cache_range(vmf
, vma
, addr
, vmf
->pte
, nr_pages
);
4936 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4942 return VM_FAULT_OOM
;
4946 * The mmap_lock must have been held on entry, and may have been
4947 * released depending on flags and vma->vm_ops->fault() return value.
4948 * See filemap_fault() and __lock_page_retry().
4950 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
4952 struct vm_area_struct
*vma
= vmf
->vma
;
4953 struct folio
*folio
;
4957 * Preallocate pte before we take page_lock because this might lead to
4958 * deadlocks for memcg reclaim which waits for pages under writeback:
4960 * SetPageWriteback(A)
4966 * wait_on_page_writeback(A)
4967 * SetPageWriteback(B)
4969 * # flush A, B to clear the writeback
4971 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
4972 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
4973 if (!vmf
->prealloc_pte
)
4974 return VM_FAULT_OOM
;
4977 ret
= vma
->vm_ops
->fault(vmf
);
4978 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
4979 VM_FAULT_DONE_COW
)))
4982 folio
= page_folio(vmf
->page
);
4983 if (unlikely(PageHWPoison(vmf
->page
))) {
4984 vm_fault_t poisonret
= VM_FAULT_HWPOISON
;
4985 if (ret
& VM_FAULT_LOCKED
) {
4986 if (page_mapped(vmf
->page
))
4987 unmap_mapping_folio(folio
);
4988 /* Retry if a clean folio was removed from the cache. */
4989 if (mapping_evict_folio(folio
->mapping
, folio
))
4990 poisonret
= VM_FAULT_NOPAGE
;
4991 folio_unlock(folio
);
4998 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
5001 VM_BUG_ON_PAGE(!folio_test_locked(folio
), vmf
->page
);
5006 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5007 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
5009 struct vm_area_struct
*vma
= vmf
->vma
;
5011 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
5013 * We are going to consume the prealloc table,
5014 * count that as nr_ptes.
5016 mm_inc_nr_ptes(vma
->vm_mm
);
5017 vmf
->prealloc_pte
= NULL
;
5020 vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
5022 struct folio
*folio
= page_folio(page
);
5023 struct vm_area_struct
*vma
= vmf
->vma
;
5024 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
5025 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
5027 vm_fault_t ret
= VM_FAULT_FALLBACK
;
5030 * It is too late to allocate a small folio, we already have a large
5031 * folio in the pagecache: especially s390 KVM cannot tolerate any
5032 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5033 * PMD mappings if THPs are disabled.
5035 if (thp_disabled_by_hw() || vma_thp_disabled(vma
, vma
->vm_flags
))
5038 if (!thp_vma_suitable_order(vma
, haddr
, PMD_ORDER
))
5041 if (folio_order(folio
) != HPAGE_PMD_ORDER
)
5043 page
= &folio
->page
;
5046 * Just backoff if any subpage of a THP is corrupted otherwise
5047 * the corrupted page may mapped by PMD silently to escape the
5048 * check. This kind of THP just can be PTE mapped. Access to
5049 * the corrupted subpage should trigger SIGBUS as expected.
5051 if (unlikely(folio_test_has_hwpoisoned(folio
)))
5055 * Archs like ppc64 need additional space to store information
5056 * related to pte entry. Use the preallocated table for that.
5058 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
5059 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
5060 if (!vmf
->prealloc_pte
)
5061 return VM_FAULT_OOM
;
5064 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
5065 if (unlikely(!pmd_none(*vmf
->pmd
)))
5068 flush_icache_pages(vma
, page
, HPAGE_PMD_NR
);
5070 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
5072 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
5074 add_mm_counter(vma
->vm_mm
, mm_counter_file(folio
), HPAGE_PMD_NR
);
5075 folio_add_file_rmap_pmd(folio
, page
, vma
);
5078 * deposit and withdraw with pmd lock held
5080 if (arch_needs_pgtable_deposit())
5081 deposit_prealloc_pte(vmf
);
5083 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
5085 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
5087 /* fault is handled */
5089 count_vm_event(THP_FILE_MAPPED
);
5091 spin_unlock(vmf
->ptl
);
5095 vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
5097 return VM_FAULT_FALLBACK
;
5102 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5103 * @vmf: Fault decription.
5104 * @folio: The folio that contains @page.
5105 * @page: The first page to create a PTE for.
5106 * @nr: The number of PTEs to create.
5107 * @addr: The first address to create a PTE for.
5109 void set_pte_range(struct vm_fault
*vmf
, struct folio
*folio
,
5110 struct page
*page
, unsigned int nr
, unsigned long addr
)
5112 struct vm_area_struct
*vma
= vmf
->vma
;
5113 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
5114 bool prefault
= !in_range(vmf
->address
, addr
, nr
* PAGE_SIZE
);
5117 flush_icache_pages(vma
, page
, nr
);
5118 entry
= mk_pte(page
, vma
->vm_page_prot
);
5120 if (prefault
&& arch_wants_old_prefaulted_pte())
5121 entry
= pte_mkold(entry
);
5123 entry
= pte_sw_mkyoung(entry
);
5126 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
5127 if (unlikely(vmf_orig_pte_uffd_wp(vmf
)))
5128 entry
= pte_mkuffd_wp(entry
);
5129 /* copy-on-write page */
5130 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
5131 VM_BUG_ON_FOLIO(nr
!= 1, folio
);
5132 folio_add_new_anon_rmap(folio
, vma
, addr
, RMAP_EXCLUSIVE
);
5133 folio_add_lru_vma(folio
, vma
);
5135 folio_add_file_rmap_ptes(folio
, page
, nr
, vma
);
5137 set_ptes(vma
->vm_mm
, addr
, vmf
->pte
, entry
, nr
);
5139 /* no need to invalidate: a not-present page won't be cached */
5140 update_mmu_cache_range(vmf
, vma
, addr
, vmf
->pte
, nr
);
5143 static bool vmf_pte_changed(struct vm_fault
*vmf
)
5145 if (vmf
->flags
& FAULT_FLAG_ORIG_PTE_VALID
)
5146 return !pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
);
5148 return !pte_none(ptep_get(vmf
->pte
));
5152 * finish_fault - finish page fault once we have prepared the page to fault
5154 * @vmf: structure describing the fault
5156 * This function handles all that is needed to finish a page fault once the
5157 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5158 * given page, adds reverse page mapping, handles memcg charges and LRU
5161 * The function expects the page to be locked and on success it consumes a
5162 * reference of a page being mapped (for the PTE which maps it).
5164 * Return: %0 on success, %VM_FAULT_ code in case of error.
5166 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
5168 struct vm_area_struct
*vma
= vmf
->vma
;
5170 struct folio
*folio
;
5172 bool is_cow
= (vmf
->flags
& FAULT_FLAG_WRITE
) &&
5173 !(vma
->vm_flags
& VM_SHARED
);
5175 unsigned long addr
= vmf
->address
;
5177 /* Did we COW the page? */
5179 page
= vmf
->cow_page
;
5184 * check even for read faults because we might have lost our CoWed
5187 if (!(vma
->vm_flags
& VM_SHARED
)) {
5188 ret
= check_stable_address_space(vma
->vm_mm
);
5193 if (pmd_none(*vmf
->pmd
)) {
5194 if (PageTransCompound(page
)) {
5195 ret
= do_set_pmd(vmf
, page
);
5196 if (ret
!= VM_FAULT_FALLBACK
)
5200 if (vmf
->prealloc_pte
)
5201 pmd_install(vma
->vm_mm
, vmf
->pmd
, &vmf
->prealloc_pte
);
5202 else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
)))
5203 return VM_FAULT_OOM
;
5206 folio
= page_folio(page
);
5207 nr_pages
= folio_nr_pages(folio
);
5210 * Using per-page fault to maintain the uffd semantics, and same
5211 * approach also applies to non-anonymous-shmem faults to avoid
5212 * inflating the RSS of the process.
5214 if (!vma_is_anon_shmem(vma
) || unlikely(userfaultfd_armed(vma
))) {
5216 } else if (nr_pages
> 1) {
5217 pgoff_t idx
= folio_page_idx(folio
, page
);
5218 /* The page offset of vmf->address within the VMA. */
5219 pgoff_t vma_off
= vmf
->pgoff
- vmf
->vma
->vm_pgoff
;
5220 /* The index of the entry in the pagetable for fault page. */
5221 pgoff_t pte_off
= pte_index(vmf
->address
);
5224 * Fallback to per-page fault in case the folio size in page
5225 * cache beyond the VMA limits and PMD pagetable limits.
5227 if (unlikely(vma_off
< idx
||
5228 vma_off
+ (nr_pages
- idx
) > vma_pages(vma
) ||
5230 pte_off
+ (nr_pages
- idx
) > PTRS_PER_PTE
)) {
5233 /* Now we can set mappings for the whole large folio. */
5234 addr
= vmf
->address
- idx
* PAGE_SIZE
;
5235 page
= &folio
->page
;
5239 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
5242 return VM_FAULT_NOPAGE
;
5244 /* Re-check under ptl */
5245 if (nr_pages
== 1 && unlikely(vmf_pte_changed(vmf
))) {
5246 update_mmu_tlb(vma
, addr
, vmf
->pte
);
5247 ret
= VM_FAULT_NOPAGE
;
5249 } else if (nr_pages
> 1 && !pte_range_none(vmf
->pte
, nr_pages
)) {
5250 update_mmu_tlb_range(vma
, addr
, vmf
->pte
, nr_pages
);
5251 ret
= VM_FAULT_NOPAGE
;
5255 folio_ref_add(folio
, nr_pages
- 1);
5256 set_pte_range(vmf
, folio
, page
, nr_pages
, addr
);
5257 type
= is_cow
? MM_ANONPAGES
: mm_counter_file(folio
);
5258 add_mm_counter(vma
->vm_mm
, type
, nr_pages
);
5262 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5266 static unsigned long fault_around_pages __read_mostly
=
5267 65536 >> PAGE_SHIFT
;
5269 #ifdef CONFIG_DEBUG_FS
5270 static int fault_around_bytes_get(void *data
, u64
*val
)
5272 *val
= fault_around_pages
<< PAGE_SHIFT
;
5277 * fault_around_bytes must be rounded down to the nearest page order as it's
5278 * what do_fault_around() expects to see.
5280 static int fault_around_bytes_set(void *data
, u64 val
)
5282 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
5286 * The minimum value is 1 page, however this results in no fault-around
5287 * at all. See should_fault_around().
5289 val
= max(val
, PAGE_SIZE
);
5290 fault_around_pages
= rounddown_pow_of_two(val
) >> PAGE_SHIFT
;
5294 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
5295 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
5297 static int __init
fault_around_debugfs(void)
5299 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
5300 &fault_around_bytes_fops
);
5303 late_initcall(fault_around_debugfs
);
5307 * do_fault_around() tries to map few pages around the fault address. The hope
5308 * is that the pages will be needed soon and this will lower the number of
5311 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5312 * not ready to be mapped: not up-to-date, locked, etc.
5314 * This function doesn't cross VMA or page table boundaries, in order to call
5315 * map_pages() and acquire a PTE lock only once.
5317 * fault_around_pages defines how many pages we'll try to map.
5318 * do_fault_around() expects it to be set to a power of two less than or equal
5321 * The virtual address of the area that we map is naturally aligned to
5322 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5323 * (and therefore to page order). This way it's easier to guarantee
5324 * that we don't cross page table boundaries.
5326 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
5328 pgoff_t nr_pages
= READ_ONCE(fault_around_pages
);
5329 pgoff_t pte_off
= pte_index(vmf
->address
);
5330 /* The page offset of vmf->address within the VMA. */
5331 pgoff_t vma_off
= vmf
->pgoff
- vmf
->vma
->vm_pgoff
;
5332 pgoff_t from_pte
, to_pte
;
5335 /* The PTE offset of the start address, clamped to the VMA. */
5336 from_pte
= max(ALIGN_DOWN(pte_off
, nr_pages
),
5337 pte_off
- min(pte_off
, vma_off
));
5339 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5340 to_pte
= min3(from_pte
+ nr_pages
, (pgoff_t
)PTRS_PER_PTE
,
5341 pte_off
+ vma_pages(vmf
->vma
) - vma_off
) - 1;
5343 if (pmd_none(*vmf
->pmd
)) {
5344 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
5345 if (!vmf
->prealloc_pte
)
5346 return VM_FAULT_OOM
;
5350 ret
= vmf
->vma
->vm_ops
->map_pages(vmf
,
5351 vmf
->pgoff
+ from_pte
- pte_off
,
5352 vmf
->pgoff
+ to_pte
- pte_off
);
5358 /* Return true if we should do read fault-around, false otherwise */
5359 static inline bool should_fault_around(struct vm_fault
*vmf
)
5361 /* No ->map_pages? No way to fault around... */
5362 if (!vmf
->vma
->vm_ops
->map_pages
)
5365 if (uffd_disable_fault_around(vmf
->vma
))
5368 /* A single page implies no faulting 'around' at all. */
5369 return fault_around_pages
> 1;
5372 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
5375 struct folio
*folio
;
5378 * Let's call ->map_pages() first and use ->fault() as fallback
5379 * if page by the offset is not ready to be mapped (cold cache or
5382 if (should_fault_around(vmf
)) {
5383 ret
= do_fault_around(vmf
);
5388 ret
= vmf_can_call_fault(vmf
);
5392 ret
= __do_fault(vmf
);
5393 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5396 ret
|= finish_fault(vmf
);
5397 folio
= page_folio(vmf
->page
);
5398 folio_unlock(folio
);
5399 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5404 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
5406 struct vm_area_struct
*vma
= vmf
->vma
;
5407 struct folio
*folio
;
5410 ret
= vmf_can_call_fault(vmf
);
5412 ret
= vmf_anon_prepare(vmf
);
5416 folio
= folio_prealloc(vma
->vm_mm
, vma
, vmf
->address
, false);
5418 return VM_FAULT_OOM
;
5420 vmf
->cow_page
= &folio
->page
;
5422 ret
= __do_fault(vmf
);
5423 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5425 if (ret
& VM_FAULT_DONE_COW
)
5428 if (copy_mc_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
)) {
5429 ret
= VM_FAULT_HWPOISON
;
5432 __folio_mark_uptodate(folio
);
5434 ret
|= finish_fault(vmf
);
5436 unlock_page(vmf
->page
);
5437 put_page(vmf
->page
);
5438 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5446 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
5448 struct vm_area_struct
*vma
= vmf
->vma
;
5449 vm_fault_t ret
, tmp
;
5450 struct folio
*folio
;
5452 ret
= vmf_can_call_fault(vmf
);
5456 ret
= __do_fault(vmf
);
5457 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5460 folio
= page_folio(vmf
->page
);
5463 * Check if the backing address space wants to know that the page is
5464 * about to become writable
5466 if (vma
->vm_ops
->page_mkwrite
) {
5467 folio_unlock(folio
);
5468 tmp
= do_page_mkwrite(vmf
, folio
);
5469 if (unlikely(!tmp
||
5470 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
5476 ret
|= finish_fault(vmf
);
5477 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
5479 folio_unlock(folio
);
5484 ret
|= fault_dirty_shared_page(vmf
);
5489 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5490 * but allow concurrent faults).
5491 * The mmap_lock may have been released depending on flags and our
5492 * return value. See filemap_fault() and __folio_lock_or_retry().
5493 * If mmap_lock is released, vma may become invalid (for example
5494 * by other thread calling munmap()).
5496 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
5498 struct vm_area_struct
*vma
= vmf
->vma
;
5499 struct mm_struct
*vm_mm
= vma
->vm_mm
;
5503 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5505 if (!vma
->vm_ops
->fault
) {
5506 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
,
5507 vmf
->address
, &vmf
->ptl
);
5508 if (unlikely(!vmf
->pte
))
5509 ret
= VM_FAULT_SIGBUS
;
5512 * Make sure this is not a temporary clearing of pte
5513 * by holding ptl and checking again. A R/M/W update
5514 * of pte involves: take ptl, clearing the pte so that
5515 * we don't have concurrent modification by hardware
5516 * followed by an update.
5518 if (unlikely(pte_none(ptep_get(vmf
->pte
))))
5519 ret
= VM_FAULT_SIGBUS
;
5521 ret
= VM_FAULT_NOPAGE
;
5523 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5525 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
5526 ret
= do_read_fault(vmf
);
5527 else if (!(vma
->vm_flags
& VM_SHARED
))
5528 ret
= do_cow_fault(vmf
);
5530 ret
= do_shared_fault(vmf
);
5532 /* preallocated pagetable is unused: free it */
5533 if (vmf
->prealloc_pte
) {
5534 pte_free(vm_mm
, vmf
->prealloc_pte
);
5535 vmf
->prealloc_pte
= NULL
;
5540 int numa_migrate_check(struct folio
*folio
, struct vm_fault
*vmf
,
5541 unsigned long addr
, int *flags
,
5542 bool writable
, int *last_cpupid
)
5544 struct vm_area_struct
*vma
= vmf
->vma
;
5547 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5548 * much anyway since they can be in shared cache state. This misses
5549 * the case where a mapping is writable but the process never writes
5550 * to it but pte_write gets cleared during protection updates and
5551 * pte_dirty has unpredictable behaviour between PTE scan updates,
5552 * background writeback, dirty balancing and application behaviour.
5555 *flags
|= TNF_NO_GROUP
;
5558 * Flag if the folio is shared between multiple address spaces. This
5559 * is later used when determining whether to group tasks together
5561 if (folio_likely_mapped_shared(folio
) && (vma
->vm_flags
& VM_SHARED
))
5562 *flags
|= TNF_SHARED
;
5564 * For memory tiering mode, cpupid of slow memory page is used
5565 * to record page access time. So use default value.
5567 if (folio_use_access_time(folio
))
5568 *last_cpupid
= (-1 & LAST_CPUPID_MASK
);
5570 *last_cpupid
= folio_last_cpupid(folio
);
5572 /* Record the current PID acceesing VMA */
5573 vma_set_access_pid_bit(vma
);
5575 count_vm_numa_event(NUMA_HINT_FAULTS
);
5576 #ifdef CONFIG_NUMA_BALANCING
5577 count_memcg_folio_events(folio
, NUMA_HINT_FAULTS
, 1);
5579 if (folio_nid(folio
) == numa_node_id()) {
5580 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
5581 *flags
|= TNF_FAULT_LOCAL
;
5584 return mpol_misplaced(folio
, vmf
, addr
);
5587 static void numa_rebuild_single_mapping(struct vm_fault
*vmf
, struct vm_area_struct
*vma
,
5588 unsigned long fault_addr
, pte_t
*fault_pte
,
5593 old_pte
= ptep_modify_prot_start(vma
, fault_addr
, fault_pte
);
5594 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
5595 pte
= pte_mkyoung(pte
);
5597 pte
= pte_mkwrite(pte
, vma
);
5598 ptep_modify_prot_commit(vma
, fault_addr
, fault_pte
, old_pte
, pte
);
5599 update_mmu_cache_range(vmf
, vma
, fault_addr
, fault_pte
, 1);
5602 static void numa_rebuild_large_mapping(struct vm_fault
*vmf
, struct vm_area_struct
*vma
,
5603 struct folio
*folio
, pte_t fault_pte
,
5604 bool ignore_writable
, bool pte_write_upgrade
)
5606 int nr
= pte_pfn(fault_pte
) - folio_pfn(folio
);
5607 unsigned long start
, end
, addr
= vmf
->address
;
5608 unsigned long addr_start
= addr
- (nr
<< PAGE_SHIFT
);
5609 unsigned long pt_start
= ALIGN_DOWN(addr
, PMD_SIZE
);
5612 /* Stay within the VMA and within the page table. */
5613 start
= max3(addr_start
, pt_start
, vma
->vm_start
);
5614 end
= min3(addr_start
+ folio_size(folio
), pt_start
+ PMD_SIZE
,
5616 start_ptep
= vmf
->pte
- ((addr
- start
) >> PAGE_SHIFT
);
5618 /* Restore all PTEs' mapping of the large folio */
5619 for (addr
= start
; addr
!= end
; start_ptep
++, addr
+= PAGE_SIZE
) {
5620 pte_t ptent
= ptep_get(start_ptep
);
5621 bool writable
= false;
5623 if (!pte_present(ptent
) || !pte_protnone(ptent
))
5626 if (pfn_folio(pte_pfn(ptent
)) != folio
)
5629 if (!ignore_writable
) {
5630 ptent
= pte_modify(ptent
, vma
->vm_page_prot
);
5631 writable
= pte_write(ptent
);
5632 if (!writable
&& pte_write_upgrade
&&
5633 can_change_pte_writable(vma
, addr
, ptent
))
5637 numa_rebuild_single_mapping(vmf
, vma
, addr
, start_ptep
, writable
);
5641 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
5643 struct vm_area_struct
*vma
= vmf
->vma
;
5644 struct folio
*folio
= NULL
;
5645 int nid
= NUMA_NO_NODE
;
5646 bool writable
= false, ignore_writable
= false;
5647 bool pte_write_upgrade
= vma_wants_manual_pte_write_upgrade(vma
);
5651 int flags
= 0, nr_pages
;
5654 * The pte cannot be used safely until we verify, while holding the page
5655 * table lock, that its contents have not changed during fault handling.
5657 spin_lock(vmf
->ptl
);
5658 /* Read the live PTE from the page tables: */
5659 old_pte
= ptep_get(vmf
->pte
);
5661 if (unlikely(!pte_same(old_pte
, vmf
->orig_pte
))) {
5662 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5666 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
5669 * Detect now whether the PTE could be writable; this information
5670 * is only valid while holding the PT lock.
5672 writable
= pte_write(pte
);
5673 if (!writable
&& pte_write_upgrade
&&
5674 can_change_pte_writable(vma
, vmf
->address
, pte
))
5677 folio
= vm_normal_folio(vma
, vmf
->address
, pte
);
5678 if (!folio
|| folio_is_zone_device(folio
))
5681 nid
= folio_nid(folio
);
5682 nr_pages
= folio_nr_pages(folio
);
5684 target_nid
= numa_migrate_check(folio
, vmf
, vmf
->address
, &flags
,
5685 writable
, &last_cpupid
);
5686 if (target_nid
== NUMA_NO_NODE
)
5688 if (migrate_misplaced_folio_prepare(folio
, vma
, target_nid
)) {
5689 flags
|= TNF_MIGRATE_FAIL
;
5692 /* The folio is isolated and isolation code holds a folio reference. */
5693 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5695 ignore_writable
= true;
5697 /* Migrate to the requested node */
5698 if (!migrate_misplaced_folio(folio
, target_nid
)) {
5700 flags
|= TNF_MIGRATED
;
5701 task_numa_fault(last_cpupid
, nid
, nr_pages
, flags
);
5705 flags
|= TNF_MIGRATE_FAIL
;
5706 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
5707 vmf
->address
, &vmf
->ptl
);
5708 if (unlikely(!vmf
->pte
))
5710 if (unlikely(!pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
))) {
5711 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5716 * Make it present again, depending on how arch implements
5717 * non-accessible ptes, some can allow access by kernel mode.
5719 if (folio
&& folio_test_large(folio
))
5720 numa_rebuild_large_mapping(vmf
, vma
, folio
, pte
, ignore_writable
,
5723 numa_rebuild_single_mapping(vmf
, vma
, vmf
->address
, vmf
->pte
,
5725 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5727 if (nid
!= NUMA_NO_NODE
)
5728 task_numa_fault(last_cpupid
, nid
, nr_pages
, flags
);
5732 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
5734 struct vm_area_struct
*vma
= vmf
->vma
;
5736 if (vma_is_anonymous(vma
))
5737 return do_huge_pmd_anonymous_page(vmf
);
5739 * Currently we just emit PAGE_SIZE for our fault events, so don't allow
5740 * a huge fault if we have a pre content watch on this file. This would
5741 * be trivial to support, but there would need to be tests to ensure
5742 * this works properly and those don't exist currently.
5744 if (unlikely(FMODE_FSNOTIFY_HSM(vma
->vm_file
->f_mode
)))
5745 return VM_FAULT_FALLBACK
;
5746 if (vma
->vm_ops
->huge_fault
)
5747 return vma
->vm_ops
->huge_fault(vmf
, PMD_ORDER
);
5748 return VM_FAULT_FALLBACK
;
5751 /* `inline' is required to avoid gcc 4.1.2 build error */
5752 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
)
5754 struct vm_area_struct
*vma
= vmf
->vma
;
5755 const bool unshare
= vmf
->flags
& FAULT_FLAG_UNSHARE
;
5758 if (vma_is_anonymous(vma
)) {
5759 if (likely(!unshare
) &&
5760 userfaultfd_huge_pmd_wp(vma
, vmf
->orig_pmd
)) {
5761 if (userfaultfd_wp_async(vmf
->vma
))
5763 return handle_userfault(vmf
, VM_UFFD_WP
);
5765 return do_huge_pmd_wp_page(vmf
);
5768 if (vma
->vm_flags
& (VM_SHARED
| VM_MAYSHARE
)) {
5769 /* See comment in create_huge_pmd. */
5770 if (unlikely(FMODE_FSNOTIFY_HSM(vma
->vm_file
->f_mode
)))
5772 if (vma
->vm_ops
->huge_fault
) {
5773 ret
= vma
->vm_ops
->huge_fault(vmf
, PMD_ORDER
);
5774 if (!(ret
& VM_FAULT_FALLBACK
))
5780 /* COW or write-notify handled on pte level: split pmd. */
5781 __split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
5783 return VM_FAULT_FALLBACK
;
5786 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
5788 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5789 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5790 struct vm_area_struct
*vma
= vmf
->vma
;
5791 /* No support for anonymous transparent PUD pages yet */
5792 if (vma_is_anonymous(vma
))
5793 return VM_FAULT_FALLBACK
;
5794 /* See comment in create_huge_pmd. */
5795 if (unlikely(FMODE_FSNOTIFY_HSM(vma
->vm_file
->f_mode
)))
5796 return VM_FAULT_FALLBACK
;
5797 if (vma
->vm_ops
->huge_fault
)
5798 return vma
->vm_ops
->huge_fault(vmf
, PUD_ORDER
);
5799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5800 return VM_FAULT_FALLBACK
;
5803 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
5805 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5806 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5807 struct vm_area_struct
*vma
= vmf
->vma
;
5810 /* No support for anonymous transparent PUD pages yet */
5811 if (vma_is_anonymous(vma
))
5813 if (vma
->vm_flags
& (VM_SHARED
| VM_MAYSHARE
)) {
5814 /* See comment in create_huge_pmd. */
5815 if (unlikely(FMODE_FSNOTIFY_HSM(vma
->vm_file
->f_mode
)))
5817 if (vma
->vm_ops
->huge_fault
) {
5818 ret
= vma
->vm_ops
->huge_fault(vmf
, PUD_ORDER
);
5819 if (!(ret
& VM_FAULT_FALLBACK
))
5824 /* COW or write-notify not handled on PUD level: split pud.*/
5825 __split_huge_pud(vma
, vmf
->pud
, vmf
->address
);
5826 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5827 return VM_FAULT_FALLBACK
;
5831 * These routines also need to handle stuff like marking pages dirty
5832 * and/or accessed for architectures that don't do it in hardware (most
5833 * RISC architectures). The early dirtying is also good on the i386.
5835 * There is also a hook called "update_mmu_cache()" that architectures
5836 * with external mmu caches can use to update those (ie the Sparc or
5837 * PowerPC hashed page tables that act as extended TLBs).
5839 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5840 * concurrent faults).
5842 * The mmap_lock may have been released depending on flags and our return value.
5843 * See filemap_fault() and __folio_lock_or_retry().
5845 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
5849 if (unlikely(pmd_none(*vmf
->pmd
))) {
5851 * Leave __pte_alloc() until later: because vm_ops->fault may
5852 * want to allocate huge page, and if we expose page table
5853 * for an instant, it will be difficult to retract from
5854 * concurrent faults and from rmap lookups.
5857 vmf
->flags
&= ~FAULT_FLAG_ORIG_PTE_VALID
;
5862 * A regular pmd is established and it can't morph into a huge
5863 * pmd by anon khugepaged, since that takes mmap_lock in write
5864 * mode; but shmem or file collapse to THP could still morph
5865 * it into a huge pmd: just retry later if so.
5867 * Use the maywrite version to indicate that vmf->pte may be
5868 * modified, but since we will use pte_same() to detect the
5869 * change of the !pte_none() entry, there is no need to recheck
5870 * the pmdval. Here we chooes to pass a dummy variable instead
5871 * of NULL, which helps new user think about why this place is
5874 vmf
->pte
= pte_offset_map_rw_nolock(vmf
->vma
->vm_mm
, vmf
->pmd
,
5875 vmf
->address
, &dummy_pmdval
,
5877 if (unlikely(!vmf
->pte
))
5879 vmf
->orig_pte
= ptep_get_lockless(vmf
->pte
);
5880 vmf
->flags
|= FAULT_FLAG_ORIG_PTE_VALID
;
5882 if (pte_none(vmf
->orig_pte
)) {
5883 pte_unmap(vmf
->pte
);
5889 return do_pte_missing(vmf
);
5891 if (!pte_present(vmf
->orig_pte
))
5892 return do_swap_page(vmf
);
5894 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
5895 return do_numa_page(vmf
);
5897 spin_lock(vmf
->ptl
);
5898 entry
= vmf
->orig_pte
;
5899 if (unlikely(!pte_same(ptep_get(vmf
->pte
), entry
))) {
5900 update_mmu_tlb(vmf
->vma
, vmf
->address
, vmf
->pte
);
5903 if (vmf
->flags
& (FAULT_FLAG_WRITE
|FAULT_FLAG_UNSHARE
)) {
5904 if (!pte_write(entry
))
5905 return do_wp_page(vmf
);
5906 else if (likely(vmf
->flags
& FAULT_FLAG_WRITE
))
5907 entry
= pte_mkdirty(entry
);
5909 entry
= pte_mkyoung(entry
);
5910 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
5911 vmf
->flags
& FAULT_FLAG_WRITE
)) {
5912 update_mmu_cache_range(vmf
, vmf
->vma
, vmf
->address
,
5915 /* Skip spurious TLB flush for retried page fault */
5916 if (vmf
->flags
& FAULT_FLAG_TRIED
)
5919 * This is needed only for protection faults but the arch code
5920 * is not yet telling us if this is a protection fault or not.
5921 * This still avoids useless tlb flushes for .text page faults
5924 if (vmf
->flags
& FAULT_FLAG_WRITE
)
5925 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
,
5929 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5934 * On entry, we hold either the VMA lock or the mmap_lock
5935 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5936 * the result, the mmap_lock is not held on exit. See filemap_fault()
5937 * and __folio_lock_or_retry().
5939 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
5940 unsigned long address
, unsigned int flags
)
5942 struct vm_fault vmf
= {
5944 .address
= address
& PAGE_MASK
,
5945 .real_address
= address
,
5947 .pgoff
= linear_page_index(vma
, address
),
5948 .gfp_mask
= __get_fault_gfp_mask(vma
),
5950 struct mm_struct
*mm
= vma
->vm_mm
;
5951 unsigned long vm_flags
= vma
->vm_flags
;
5956 pgd
= pgd_offset(mm
, address
);
5957 p4d
= p4d_alloc(mm
, pgd
, address
);
5959 return VM_FAULT_OOM
;
5961 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
5963 return VM_FAULT_OOM
;
5965 if (pud_none(*vmf
.pud
) &&
5966 thp_vma_allowable_order(vma
, vm_flags
,
5967 TVA_IN_PF
| TVA_ENFORCE_SYSFS
, PUD_ORDER
)) {
5968 ret
= create_huge_pud(&vmf
);
5969 if (!(ret
& VM_FAULT_FALLBACK
))
5972 pud_t orig_pud
= *vmf
.pud
;
5975 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
5978 * TODO once we support anonymous PUDs: NUMA case and
5979 * FAULT_FLAG_UNSHARE handling.
5981 if ((flags
& FAULT_FLAG_WRITE
) && !pud_write(orig_pud
)) {
5982 ret
= wp_huge_pud(&vmf
, orig_pud
);
5983 if (!(ret
& VM_FAULT_FALLBACK
))
5986 huge_pud_set_accessed(&vmf
, orig_pud
);
5992 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
5994 return VM_FAULT_OOM
;
5996 /* Huge pud page fault raced with pmd_alloc? */
5997 if (pud_trans_unstable(vmf
.pud
))
6000 if (pmd_none(*vmf
.pmd
) &&
6001 thp_vma_allowable_order(vma
, vm_flags
,
6002 TVA_IN_PF
| TVA_ENFORCE_SYSFS
, PMD_ORDER
)) {
6003 ret
= create_huge_pmd(&vmf
);
6004 if (!(ret
& VM_FAULT_FALLBACK
))
6007 vmf
.orig_pmd
= pmdp_get_lockless(vmf
.pmd
);
6009 if (unlikely(is_swap_pmd(vmf
.orig_pmd
))) {
6010 VM_BUG_ON(thp_migration_supported() &&
6011 !is_pmd_migration_entry(vmf
.orig_pmd
));
6012 if (is_pmd_migration_entry(vmf
.orig_pmd
))
6013 pmd_migration_entry_wait(mm
, vmf
.pmd
);
6016 if (pmd_trans_huge(vmf
.orig_pmd
) || pmd_devmap(vmf
.orig_pmd
)) {
6017 if (pmd_protnone(vmf
.orig_pmd
) && vma_is_accessible(vma
))
6018 return do_huge_pmd_numa_page(&vmf
);
6020 if ((flags
& (FAULT_FLAG_WRITE
|FAULT_FLAG_UNSHARE
)) &&
6021 !pmd_write(vmf
.orig_pmd
)) {
6022 ret
= wp_huge_pmd(&vmf
);
6023 if (!(ret
& VM_FAULT_FALLBACK
))
6026 huge_pmd_set_accessed(&vmf
);
6032 return handle_pte_fault(&vmf
);
6036 * mm_account_fault - Do page fault accounting
6037 * @mm: mm from which memcg should be extracted. It can be NULL.
6038 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6039 * of perf event counters, but we'll still do the per-task accounting to
6040 * the task who triggered this page fault.
6041 * @address: the faulted address.
6042 * @flags: the fault flags.
6043 * @ret: the fault retcode.
6045 * This will take care of most of the page fault accounting. Meanwhile, it
6046 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6047 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6048 * still be in per-arch page fault handlers at the entry of page fault.
6050 static inline void mm_account_fault(struct mm_struct
*mm
, struct pt_regs
*regs
,
6051 unsigned long address
, unsigned int flags
,
6056 /* Incomplete faults will be accounted upon completion. */
6057 if (ret
& VM_FAULT_RETRY
)
6061 * To preserve the behavior of older kernels, PGFAULT counters record
6062 * both successful and failed faults, as opposed to perf counters,
6063 * which ignore failed cases.
6065 count_vm_event(PGFAULT
);
6066 count_memcg_event_mm(mm
, PGFAULT
);
6069 * Do not account for unsuccessful faults (e.g. when the address wasn't
6070 * valid). That includes arch_vma_access_permitted() failing before
6071 * reaching here. So this is not a "this many hardware page faults"
6072 * counter. We should use the hw profiling for that.
6074 if (ret
& VM_FAULT_ERROR
)
6078 * We define the fault as a major fault when the final successful fault
6079 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6080 * handle it immediately previously).
6082 major
= (ret
& VM_FAULT_MAJOR
) || (flags
& FAULT_FLAG_TRIED
);
6090 * If the fault is done for GUP, regs will be NULL. We only do the
6091 * accounting for the per thread fault counters who triggered the
6092 * fault, and we skip the perf event updates.
6098 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
6100 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
6103 #ifdef CONFIG_LRU_GEN
6104 static void lru_gen_enter_fault(struct vm_area_struct
*vma
)
6106 /* the LRU algorithm only applies to accesses with recency */
6107 current
->in_lru_fault
= vma_has_recency(vma
);
6110 static void lru_gen_exit_fault(void)
6112 current
->in_lru_fault
= false;
6115 static void lru_gen_enter_fault(struct vm_area_struct
*vma
)
6119 static void lru_gen_exit_fault(void)
6122 #endif /* CONFIG_LRU_GEN */
6124 static vm_fault_t
sanitize_fault_flags(struct vm_area_struct
*vma
,
6125 unsigned int *flags
)
6127 if (unlikely(*flags
& FAULT_FLAG_UNSHARE
)) {
6128 if (WARN_ON_ONCE(*flags
& FAULT_FLAG_WRITE
))
6129 return VM_FAULT_SIGSEGV
;
6131 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6132 * just treat it like an ordinary read-fault otherwise.
6134 if (!is_cow_mapping(vma
->vm_flags
))
6135 *flags
&= ~FAULT_FLAG_UNSHARE
;
6136 } else if (*flags
& FAULT_FLAG_WRITE
) {
6137 /* Write faults on read-only mappings are impossible ... */
6138 if (WARN_ON_ONCE(!(vma
->vm_flags
& VM_MAYWRITE
)))
6139 return VM_FAULT_SIGSEGV
;
6140 /* ... and FOLL_FORCE only applies to COW mappings. */
6141 if (WARN_ON_ONCE(!(vma
->vm_flags
& VM_WRITE
) &&
6142 !is_cow_mapping(vma
->vm_flags
)))
6143 return VM_FAULT_SIGSEGV
;
6145 #ifdef CONFIG_PER_VMA_LOCK
6147 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6148 * the assumption that lock is dropped on VM_FAULT_RETRY.
6150 if (WARN_ON_ONCE((*flags
&
6151 (FAULT_FLAG_VMA_LOCK
| FAULT_FLAG_RETRY_NOWAIT
)) ==
6152 (FAULT_FLAG_VMA_LOCK
| FAULT_FLAG_RETRY_NOWAIT
)))
6153 return VM_FAULT_SIGSEGV
;
6160 * By the time we get here, we already hold either the VMA lock or the
6161 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6163 * The mmap_lock may have been released depending on flags and our
6164 * return value. See filemap_fault() and __folio_lock_or_retry().
6166 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
6167 unsigned int flags
, struct pt_regs
*regs
)
6169 /* If the fault handler drops the mmap_lock, vma may be freed */
6170 struct mm_struct
*mm
= vma
->vm_mm
;
6174 __set_current_state(TASK_RUNNING
);
6176 ret
= sanitize_fault_flags(vma
, &flags
);
6180 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
6181 flags
& FAULT_FLAG_INSTRUCTION
,
6182 flags
& FAULT_FLAG_REMOTE
)) {
6183 ret
= VM_FAULT_SIGSEGV
;
6187 is_droppable
= !!(vma
->vm_flags
& VM_DROPPABLE
);
6190 * Enable the memcg OOM handling for faults triggered in user
6191 * space. Kernel faults are handled more gracefully.
6193 if (flags
& FAULT_FLAG_USER
)
6194 mem_cgroup_enter_user_fault();
6196 lru_gen_enter_fault(vma
);
6198 if (unlikely(is_vm_hugetlb_page(vma
)))
6199 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
6201 ret
= __handle_mm_fault(vma
, address
, flags
);
6204 * Warning: It is no longer safe to dereference vma-> after this point,
6205 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6206 * vma might be destroyed from underneath us.
6209 lru_gen_exit_fault();
6211 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6213 ret
&= ~VM_FAULT_OOM
;
6215 if (flags
& FAULT_FLAG_USER
) {
6216 mem_cgroup_exit_user_fault();
6218 * The task may have entered a memcg OOM situation but
6219 * if the allocation error was handled gracefully (no
6220 * VM_FAULT_OOM), there is no need to kill anything.
6221 * Just clean up the OOM state peacefully.
6223 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
6224 mem_cgroup_oom_synchronize(false);
6227 mm_account_fault(mm
, regs
, address
, flags
, ret
);
6231 EXPORT_SYMBOL_GPL(handle_mm_fault
);
6233 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6234 #include <linux/extable.h>
6236 static inline bool get_mmap_lock_carefully(struct mm_struct
*mm
, struct pt_regs
*regs
)
6238 if (likely(mmap_read_trylock(mm
)))
6241 if (regs
&& !user_mode(regs
)) {
6242 unsigned long ip
= exception_ip(regs
);
6243 if (!search_exception_tables(ip
))
6247 return !mmap_read_lock_killable(mm
);
6250 static inline bool mmap_upgrade_trylock(struct mm_struct
*mm
)
6253 * We don't have this operation yet.
6255 * It should be easy enough to do: it's basically a
6256 * atomic_long_try_cmpxchg_acquire()
6257 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6258 * it also needs the proper lockdep magic etc.
6263 static inline bool upgrade_mmap_lock_carefully(struct mm_struct
*mm
, struct pt_regs
*regs
)
6265 mmap_read_unlock(mm
);
6266 if (regs
&& !user_mode(regs
)) {
6267 unsigned long ip
= exception_ip(regs
);
6268 if (!search_exception_tables(ip
))
6271 return !mmap_write_lock_killable(mm
);
6275 * Helper for page fault handling.
6277 * This is kind of equivalent to "mmap_read_lock()" followed
6278 * by "find_extend_vma()", except it's a lot more careful about
6279 * the locking (and will drop the lock on failure).
6281 * For example, if we have a kernel bug that causes a page
6282 * fault, we don't want to just use mmap_read_lock() to get
6283 * the mm lock, because that would deadlock if the bug were
6284 * to happen while we're holding the mm lock for writing.
6286 * So this checks the exception tables on kernel faults in
6287 * order to only do this all for instructions that are actually
6288 * expected to fault.
6290 * We can also actually take the mm lock for writing if we
6291 * need to extend the vma, which helps the VM layer a lot.
6293 struct vm_area_struct
*lock_mm_and_find_vma(struct mm_struct
*mm
,
6294 unsigned long addr
, struct pt_regs
*regs
)
6296 struct vm_area_struct
*vma
;
6298 if (!get_mmap_lock_carefully(mm
, regs
))
6301 vma
= find_vma(mm
, addr
);
6302 if (likely(vma
&& (vma
->vm_start
<= addr
)))
6306 * Well, dang. We might still be successful, but only
6307 * if we can extend a vma to do so.
6309 if (!vma
|| !(vma
->vm_flags
& VM_GROWSDOWN
)) {
6310 mmap_read_unlock(mm
);
6315 * We can try to upgrade the mmap lock atomically,
6316 * in which case we can continue to use the vma
6317 * we already looked up.
6319 * Otherwise we'll have to drop the mmap lock and
6320 * re-take it, and also look up the vma again,
6323 if (!mmap_upgrade_trylock(mm
)) {
6324 if (!upgrade_mmap_lock_carefully(mm
, regs
))
6327 vma
= find_vma(mm
, addr
);
6330 if (vma
->vm_start
<= addr
)
6332 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
6336 if (expand_stack_locked(vma
, addr
))
6340 mmap_write_downgrade(mm
);
6344 mmap_write_unlock(mm
);
6349 #ifdef CONFIG_PER_VMA_LOCK
6351 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6352 * stable and not isolated. If the VMA is not found or is being modified the
6353 * function returns NULL.
6355 struct vm_area_struct
*lock_vma_under_rcu(struct mm_struct
*mm
,
6356 unsigned long address
)
6358 MA_STATE(mas
, &mm
->mm_mt
, address
, address
);
6359 struct vm_area_struct
*vma
;
6363 vma
= mas_walk(&mas
);
6367 if (!vma_start_read(vma
))
6370 /* Check if the VMA got isolated after we found it */
6371 if (vma
->detached
) {
6373 count_vm_vma_lock_event(VMA_LOCK_MISS
);
6374 /* The area was replaced with another one */
6378 * At this point, we have a stable reference to a VMA: The VMA is
6379 * locked and we know it hasn't already been isolated.
6380 * From here on, we can access the VMA without worrying about which
6381 * fields are accessible for RCU readers.
6384 /* Check since vm_start/vm_end might change before we lock the VMA */
6385 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
6386 goto inval_end_read
;
6395 count_vm_vma_lock_event(VMA_LOCK_ABORT
);
6398 #endif /* CONFIG_PER_VMA_LOCK */
6400 #ifndef __PAGETABLE_P4D_FOLDED
6402 * Allocate p4d page table.
6403 * We've already handled the fast-path in-line.
6405 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
6407 p4d_t
*new = p4d_alloc_one(mm
, address
);
6411 spin_lock(&mm
->page_table_lock
);
6412 if (pgd_present(*pgd
)) { /* Another has populated it */
6415 smp_wmb(); /* See comment in pmd_install() */
6416 pgd_populate(mm
, pgd
, new);
6418 spin_unlock(&mm
->page_table_lock
);
6421 #endif /* __PAGETABLE_P4D_FOLDED */
6423 #ifndef __PAGETABLE_PUD_FOLDED
6425 * Allocate page upper directory.
6426 * We've already handled the fast-path in-line.
6428 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
6430 pud_t
*new = pud_alloc_one(mm
, address
);
6434 spin_lock(&mm
->page_table_lock
);
6435 if (!p4d_present(*p4d
)) {
6437 smp_wmb(); /* See comment in pmd_install() */
6438 p4d_populate(mm
, p4d
, new);
6439 } else /* Another has populated it */
6441 spin_unlock(&mm
->page_table_lock
);
6444 #endif /* __PAGETABLE_PUD_FOLDED */
6446 #ifndef __PAGETABLE_PMD_FOLDED
6448 * Allocate page middle directory.
6449 * We've already handled the fast-path in-line.
6451 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
6454 pmd_t
*new = pmd_alloc_one(mm
, address
);
6458 ptl
= pud_lock(mm
, pud
);
6459 if (!pud_present(*pud
)) {
6461 smp_wmb(); /* See comment in pmd_install() */
6462 pud_populate(mm
, pud
, new);
6463 } else { /* Another has populated it */
6469 #endif /* __PAGETABLE_PMD_FOLDED */
6471 static inline void pfnmap_args_setup(struct follow_pfnmap_args
*args
,
6472 spinlock_t
*lock
, pte_t
*ptep
,
6473 pgprot_t pgprot
, unsigned long pfn_base
,
6474 unsigned long addr_mask
, bool writable
,
6479 args
->pfn
= pfn_base
+ ((args
->address
& ~addr_mask
) >> PAGE_SHIFT
);
6480 args
->pgprot
= pgprot
;
6481 args
->writable
= writable
;
6482 args
->special
= special
;
6485 static inline void pfnmap_lockdep_assert(struct vm_area_struct
*vma
)
6487 #ifdef CONFIG_LOCKDEP
6488 struct file
*file
= vma
->vm_file
;
6489 struct address_space
*mapping
= file
? file
->f_mapping
: NULL
;
6492 lockdep_assert(lockdep_is_held(&mapping
->i_mmap_rwsem
) ||
6493 lockdep_is_held(&vma
->vm_mm
->mmap_lock
));
6495 lockdep_assert(lockdep_is_held(&vma
->vm_mm
->mmap_lock
));
6500 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6501 * @args: Pointer to struct @follow_pfnmap_args
6503 * The caller needs to setup args->vma and args->address to point to the
6504 * virtual address as the target of such lookup. On a successful return,
6505 * the results will be put into other output fields.
6507 * After the caller finished using the fields, the caller must invoke
6508 * another follow_pfnmap_end() to proper releases the locks and resources
6509 * of such look up request.
6511 * During the start() and end() calls, the results in @args will be valid
6512 * as proper locks will be held. After the end() is called, all the fields
6513 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6514 * use of such information after end() may require proper synchronizations
6515 * by the caller with page table updates, otherwise it can create a
6518 * If the PTE maps a refcounted page, callers are responsible to protect
6519 * against invalidation with MMU notifiers; otherwise access to the PFN at
6520 * a later point in time can trigger use-after-free.
6522 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6523 * should be taken for read, and the mmap semaphore cannot be released
6524 * before the end() is invoked.
6526 * This function must not be used to modify PTE content.
6528 * Return: zero on success, negative otherwise.
6530 int follow_pfnmap_start(struct follow_pfnmap_args
*args
)
6532 struct vm_area_struct
*vma
= args
->vma
;
6533 unsigned long address
= args
->address
;
6534 struct mm_struct
*mm
= vma
->vm_mm
;
6542 pfnmap_lockdep_assert(vma
);
6544 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
6547 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
6550 pgdp
= pgd_offset(mm
, address
);
6551 if (pgd_none(*pgdp
) || unlikely(pgd_bad(*pgdp
)))
6554 p4dp
= p4d_offset(pgdp
, address
);
6555 p4d
= READ_ONCE(*p4dp
);
6556 if (p4d_none(p4d
) || unlikely(p4d_bad(p4d
)))
6559 pudp
= pud_offset(p4dp
, address
);
6560 pud
= READ_ONCE(*pudp
);
6563 if (pud_leaf(pud
)) {
6564 lock
= pud_lock(mm
, pudp
);
6565 if (!unlikely(pud_leaf(pud
))) {
6569 pfnmap_args_setup(args
, lock
, NULL
, pud_pgprot(pud
),
6570 pud_pfn(pud
), PUD_MASK
, pud_write(pud
),
6575 pmdp
= pmd_offset(pudp
, address
);
6576 pmd
= pmdp_get_lockless(pmdp
);
6577 if (pmd_leaf(pmd
)) {
6578 lock
= pmd_lock(mm
, pmdp
);
6579 if (!unlikely(pmd_leaf(pmd
))) {
6583 pfnmap_args_setup(args
, lock
, NULL
, pmd_pgprot(pmd
),
6584 pmd_pfn(pmd
), PMD_MASK
, pmd_write(pmd
),
6589 ptep
= pte_offset_map_lock(mm
, pmdp
, address
, &lock
);
6592 pte
= ptep_get(ptep
);
6593 if (!pte_present(pte
))
6595 pfnmap_args_setup(args
, lock
, ptep
, pte_pgprot(pte
),
6596 pte_pfn(pte
), PAGE_MASK
, pte_write(pte
),
6600 pte_unmap_unlock(ptep
, lock
);
6604 EXPORT_SYMBOL_GPL(follow_pfnmap_start
);
6607 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6608 * @args: Pointer to struct @follow_pfnmap_args
6610 * Must be used in pair of follow_pfnmap_start(). See the start() function
6611 * above for more information.
6613 void follow_pfnmap_end(struct follow_pfnmap_args
*args
)
6616 spin_unlock(args
->lock
);
6618 pte_unmap(args
->ptep
);
6620 EXPORT_SYMBOL_GPL(follow_pfnmap_end
);
6622 #ifdef CONFIG_HAVE_IOREMAP_PROT
6624 * generic_access_phys - generic implementation for iomem mmap access
6625 * @vma: the vma to access
6626 * @addr: userspace address, not relative offset within @vma
6627 * @buf: buffer to read/write
6628 * @len: length of transfer
6629 * @write: set to FOLL_WRITE when writing, otherwise reading
6631 * This is a generic implementation for &vm_operations_struct.access for an
6632 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6635 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
6636 void *buf
, int len
, int write
)
6638 resource_size_t phys_addr
;
6639 unsigned long prot
= 0;
6640 void __iomem
*maddr
;
6641 int offset
= offset_in_page(addr
);
6644 struct follow_pfnmap_args args
= { .vma
= vma
, .address
= addr
};
6647 if (follow_pfnmap_start(&args
))
6649 prot
= pgprot_val(args
.pgprot
);
6650 phys_addr
= (resource_size_t
)args
.pfn
<< PAGE_SHIFT
;
6651 writable
= args
.writable
;
6652 follow_pfnmap_end(&args
);
6654 if ((write
& FOLL_WRITE
) && !writable
)
6657 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
6661 if (follow_pfnmap_start(&args
))
6664 if ((prot
!= pgprot_val(args
.pgprot
)) ||
6665 (phys_addr
!= (args
.pfn
<< PAGE_SHIFT
)) ||
6666 (writable
!= args
.writable
)) {
6667 follow_pfnmap_end(&args
);
6673 memcpy_toio(maddr
+ offset
, buf
, len
);
6675 memcpy_fromio(buf
, maddr
+ offset
, len
);
6677 follow_pfnmap_end(&args
);
6683 EXPORT_SYMBOL_GPL(generic_access_phys
);
6687 * Access another process' address space as given in mm.
6689 static int __access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
6690 void *buf
, int len
, unsigned int gup_flags
)
6692 void *old_buf
= buf
;
6693 int write
= gup_flags
& FOLL_WRITE
;
6695 if (mmap_read_lock_killable(mm
))
6698 /* Untag the address before looking up the VMA */
6699 addr
= untagged_addr_remote(mm
, addr
);
6701 /* Avoid triggering the temporary warning in __get_user_pages */
6702 if (!vma_lookup(mm
, addr
) && !expand_stack(mm
, addr
))
6705 /* ignore errors, just check how much was successfully transferred */
6709 struct vm_area_struct
*vma
= NULL
;
6710 struct page
*page
= get_user_page_vma_remote(mm
, addr
,
6714 /* We might need to expand the stack to access it */
6715 vma
= vma_lookup(mm
, addr
);
6717 vma
= expand_stack(mm
, addr
);
6719 /* mmap_lock was dropped on failure */
6721 return buf
- old_buf
;
6723 /* Try again if stack expansion worked */
6728 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6729 * we can access using slightly different code.
6732 #ifdef CONFIG_HAVE_IOREMAP_PROT
6733 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
6734 bytes
= vma
->vm_ops
->access(vma
, addr
, buf
,
6741 offset
= addr
& (PAGE_SIZE
-1);
6742 if (bytes
> PAGE_SIZE
-offset
)
6743 bytes
= PAGE_SIZE
-offset
;
6745 maddr
= kmap_local_page(page
);
6747 copy_to_user_page(vma
, page
, addr
,
6748 maddr
+ offset
, buf
, bytes
);
6749 set_page_dirty_lock(page
);
6751 copy_from_user_page(vma
, page
, addr
,
6752 buf
, maddr
+ offset
, bytes
);
6754 unmap_and_put_page(page
, maddr
);
6760 mmap_read_unlock(mm
);
6762 return buf
- old_buf
;
6766 * access_remote_vm - access another process' address space
6767 * @mm: the mm_struct of the target address space
6768 * @addr: start address to access
6769 * @buf: source or destination buffer
6770 * @len: number of bytes to transfer
6771 * @gup_flags: flags modifying lookup behaviour
6773 * The caller must hold a reference on @mm.
6775 * Return: number of bytes copied from source to destination.
6777 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
6778 void *buf
, int len
, unsigned int gup_flags
)
6780 return __access_remote_vm(mm
, addr
, buf
, len
, gup_flags
);
6784 * Access another process' address space.
6785 * Source/target buffer must be kernel space,
6786 * Do not walk the page table directly, use get_user_pages
6788 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
6789 void *buf
, int len
, unsigned int gup_flags
)
6791 struct mm_struct
*mm
;
6794 mm
= get_task_mm(tsk
);
6798 ret
= __access_remote_vm(mm
, addr
, buf
, len
, gup_flags
);
6804 EXPORT_SYMBOL_GPL(access_process_vm
);
6807 * Print the name of a VMA.
6809 void print_vma_addr(char *prefix
, unsigned long ip
)
6811 struct mm_struct
*mm
= current
->mm
;
6812 struct vm_area_struct
*vma
;
6815 * we might be running from an atomic context so we cannot sleep
6817 if (!mmap_read_trylock(mm
))
6820 vma
= vma_lookup(mm
, ip
);
6821 if (vma
&& vma
->vm_file
) {
6822 struct file
*f
= vma
->vm_file
;
6823 ip
-= vma
->vm_start
;
6824 ip
+= vma
->vm_pgoff
<< PAGE_SHIFT
;
6825 printk("%s%pD[%lx,%lx+%lx]", prefix
, f
, ip
,
6827 vma
->vm_end
- vma
->vm_start
);
6829 mmap_read_unlock(mm
);
6832 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6833 void __might_fault(const char *file
, int line
)
6835 if (pagefault_disabled())
6837 __might_sleep(file
, line
);
6838 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6840 might_lock_read(¤t
->mm
->mmap_lock
);
6843 EXPORT_SYMBOL(__might_fault
);
6846 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6848 * Process all subpages of the specified huge page with the specified
6849 * operation. The target subpage will be processed last to keep its
6852 static inline int process_huge_page(
6853 unsigned long addr_hint
, unsigned int nr_pages
,
6854 int (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
6857 int i
, n
, base
, l
, ret
;
6858 unsigned long addr
= addr_hint
&
6859 ~(((unsigned long)nr_pages
<< PAGE_SHIFT
) - 1);
6861 /* Process target subpage last to keep its cache lines hot */
6863 n
= (addr_hint
- addr
) / PAGE_SIZE
;
6864 if (2 * n
<= nr_pages
) {
6865 /* If target subpage in first half of huge page */
6868 /* Process subpages at the end of huge page */
6869 for (i
= nr_pages
- 1; i
>= 2 * n
; i
--) {
6871 ret
= process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
6876 /* If target subpage in second half of huge page */
6877 base
= nr_pages
- 2 * (nr_pages
- n
);
6879 /* Process subpages at the begin of huge page */
6880 for (i
= 0; i
< base
; i
++) {
6882 ret
= process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
6888 * Process remaining subpages in left-right-left-right pattern
6889 * towards the target subpage
6891 for (i
= 0; i
< l
; i
++) {
6892 int left_idx
= base
+ i
;
6893 int right_idx
= base
+ 2 * l
- 1 - i
;
6896 ret
= process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
6900 ret
= process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
6907 static void clear_gigantic_page(struct folio
*folio
, unsigned long addr_hint
,
6908 unsigned int nr_pages
)
6910 unsigned long addr
= ALIGN_DOWN(addr_hint
, folio_size(folio
));
6914 for (i
= 0; i
< nr_pages
; i
++) {
6916 clear_user_highpage(folio_page(folio
, i
), addr
+ i
* PAGE_SIZE
);
6920 static int clear_subpage(unsigned long addr
, int idx
, void *arg
)
6922 struct folio
*folio
= arg
;
6924 clear_user_highpage(folio_page(folio
, idx
), addr
);
6929 * folio_zero_user - Zero a folio which will be mapped to userspace.
6930 * @folio: The folio to zero.
6931 * @addr_hint: The address will be accessed or the base address if uncelar.
6933 void folio_zero_user(struct folio
*folio
, unsigned long addr_hint
)
6935 unsigned int nr_pages
= folio_nr_pages(folio
);
6937 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
))
6938 clear_gigantic_page(folio
, addr_hint
, nr_pages
);
6940 process_huge_page(addr_hint
, nr_pages
, clear_subpage
, folio
);
6943 static int copy_user_gigantic_page(struct folio
*dst
, struct folio
*src
,
6944 unsigned long addr_hint
,
6945 struct vm_area_struct
*vma
,
6946 unsigned int nr_pages
)
6948 unsigned long addr
= ALIGN_DOWN(addr_hint
, folio_size(dst
));
6949 struct page
*dst_page
;
6950 struct page
*src_page
;
6953 for (i
= 0; i
< nr_pages
; i
++) {
6954 dst_page
= folio_page(dst
, i
);
6955 src_page
= folio_page(src
, i
);
6958 if (copy_mc_user_highpage(dst_page
, src_page
,
6959 addr
+ i
*PAGE_SIZE
, vma
))
6965 struct copy_subpage_arg
{
6968 struct vm_area_struct
*vma
;
6971 static int copy_subpage(unsigned long addr
, int idx
, void *arg
)
6973 struct copy_subpage_arg
*copy_arg
= arg
;
6974 struct page
*dst
= folio_page(copy_arg
->dst
, idx
);
6975 struct page
*src
= folio_page(copy_arg
->src
, idx
);
6977 if (copy_mc_user_highpage(dst
, src
, addr
, copy_arg
->vma
))
6982 int copy_user_large_folio(struct folio
*dst
, struct folio
*src
,
6983 unsigned long addr_hint
, struct vm_area_struct
*vma
)
6985 unsigned int nr_pages
= folio_nr_pages(dst
);
6986 struct copy_subpage_arg arg
= {
6992 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
))
6993 return copy_user_gigantic_page(dst
, src
, addr_hint
, vma
, nr_pages
);
6995 return process_huge_page(addr_hint
, nr_pages
, copy_subpage
, &arg
);
6998 long copy_folio_from_user(struct folio
*dst_folio
,
6999 const void __user
*usr_src
,
7000 bool allow_pagefault
)
7003 unsigned long i
, rc
= 0;
7004 unsigned int nr_pages
= folio_nr_pages(dst_folio
);
7005 unsigned long ret_val
= nr_pages
* PAGE_SIZE
;
7006 struct page
*subpage
;
7008 for (i
= 0; i
< nr_pages
; i
++) {
7009 subpage
= folio_page(dst_folio
, i
);
7010 kaddr
= kmap_local_page(subpage
);
7011 if (!allow_pagefault
)
7012 pagefault_disable();
7013 rc
= copy_from_user(kaddr
, usr_src
+ i
* PAGE_SIZE
, PAGE_SIZE
);
7014 if (!allow_pagefault
)
7016 kunmap_local(kaddr
);
7018 ret_val
-= (PAGE_SIZE
- rc
);
7022 flush_dcache_page(subpage
);
7028 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7030 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7032 static struct kmem_cache
*page_ptl_cachep
;
7034 void __init
ptlock_cache_init(void)
7036 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
7040 bool ptlock_alloc(struct ptdesc
*ptdesc
)
7044 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
7051 void ptlock_free(struct ptdesc
*ptdesc
)
7054 kmem_cache_free(page_ptl_cachep
, ptdesc
->ptl
);
7058 void vma_pgtable_walk_begin(struct vm_area_struct
*vma
)
7060 if (is_vm_hugetlb_page(vma
))
7061 hugetlb_vma_lock_read(vma
);
7064 void vma_pgtable_walk_end(struct vm_area_struct
*vma
)
7066 if (is_vm_hugetlb_page(vma
))
7067 hugetlb_vma_unlock_read(vma
);