Linux 6.14-rc1
[linux-stable.git] / mm / mempolicy.c
blobbbaadbeeb2919066811e27656df0f64b29dc302c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support six policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * weighted interleave
23 * Allocate memory interleaved over a set of nodes based on
24 * a set of weights (per-node), with normal fallback if it
25 * fails. Otherwise operates the same as interleave.
26 * Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27 * on node 0 for every 1 page allocated on node 1.
29 * bind Only allocate memory on a specific set of nodes,
30 * no fallback.
31 * FIXME: memory is allocated starting with the first node
32 * to the last. It would be better if bind would truly restrict
33 * the allocation to memory nodes instead
35 * preferred Try a specific node first before normal fallback.
36 * As a special case NUMA_NO_NODE here means do the allocation
37 * on the local CPU. This is normally identical to default,
38 * but useful to set in a VMA when you have a non default
39 * process policy.
41 * preferred many Try a set of nodes first before normal fallback. This is
42 * similar to preferred without the special case.
44 * default Allocate on the local node first, or when on a VMA
45 * use the process policy. This is what Linux always did
46 * in a NUMA aware kernel and still does by, ahem, default.
48 * The process policy is applied for most non interrupt memory allocations
49 * in that process' context. Interrupts ignore the policies and always
50 * try to allocate on the local CPU. The VMA policy is only applied for memory
51 * allocations for a VMA in the VM.
53 * Currently there are a few corner cases in swapping where the policy
54 * is not applied, but the majority should be handled. When process policy
55 * is used it is not remembered over swap outs/swap ins.
57 * Only the highest zone in the zone hierarchy gets policied. Allocations
58 * requesting a lower zone just use default policy. This implies that
59 * on systems with highmem kernel lowmem allocation don't get policied.
60 * Same with GFP_DMA allocations.
62 * For shmem/tmpfs shared memory the policy is shared between
63 * all users and remembered even when nobody has memory mapped.
66 /* Notebook:
67 fix mmap readahead to honour policy and enable policy for any page cache
68 object
69 statistics for bigpages
70 global policy for page cache? currently it uses process policy. Requires
71 first item above.
72 handle mremap for shared memory (currently ignored for the policy)
73 grows down?
74 make bind policy root only? It can trigger oom much faster and the
75 kernel is not always grateful with that.
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
80 #include <linux/mempolicy.h>
81 #include <linux/pagewalk.h>
82 #include <linux/highmem.h>
83 #include <linux/hugetlb.h>
84 #include <linux/kernel.h>
85 #include <linux/sched.h>
86 #include <linux/sched/mm.h>
87 #include <linux/sched/numa_balancing.h>
88 #include <linux/sched/task.h>
89 #include <linux/nodemask.h>
90 #include <linux/cpuset.h>
91 #include <linux/slab.h>
92 #include <linux/string.h>
93 #include <linux/export.h>
94 #include <linux/nsproxy.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compat.h>
98 #include <linux/ptrace.h>
99 #include <linux/swap.h>
100 #include <linux/seq_file.h>
101 #include <linux/proc_fs.h>
102 #include <linux/migrate.h>
103 #include <linux/ksm.h>
104 #include <linux/rmap.h>
105 #include <linux/security.h>
106 #include <linux/syscalls.h>
107 #include <linux/ctype.h>
108 #include <linux/mm_inline.h>
109 #include <linux/mmu_notifier.h>
110 #include <linux/printk.h>
111 #include <linux/swapops.h>
113 #include <asm/tlbflush.h>
114 #include <asm/tlb.h>
115 #include <linux/uaccess.h>
117 #include "internal.h"
119 /* Internal flags */
120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
121 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
122 #define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */
124 static struct kmem_cache *policy_cache;
125 static struct kmem_cache *sn_cache;
127 /* Highest zone. An specific allocation for a zone below that is not
128 policied. */
129 enum zone_type policy_zone = 0;
132 * run-time system-wide default policy => local allocation
134 static struct mempolicy default_policy = {
135 .refcnt = ATOMIC_INIT(1), /* never free it */
136 .mode = MPOL_LOCAL,
139 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
142 * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143 * system-default value should be used. A NULL iw_table also denotes that
144 * system-default values should be used. Until the system-default table
145 * is implemented, the system-default is always 1.
147 * iw_table is RCU protected
149 static u8 __rcu *iw_table;
150 static DEFINE_MUTEX(iw_table_lock);
152 static u8 get_il_weight(int node)
154 u8 *table;
155 u8 weight;
157 rcu_read_lock();
158 table = rcu_dereference(iw_table);
159 /* if no iw_table, use system default */
160 weight = table ? table[node] : 1;
161 /* if value in iw_table is 0, use system default */
162 weight = weight ? weight : 1;
163 rcu_read_unlock();
164 return weight;
168 * numa_nearest_node - Find nearest node by state
169 * @node: Node id to start the search
170 * @state: State to filter the search
172 * Lookup the closest node by distance if @nid is not in state.
174 * Return: this @node if it is in state, otherwise the closest node by distance
176 int numa_nearest_node(int node, unsigned int state)
178 int min_dist = INT_MAX, dist, n, min_node;
180 if (state >= NR_NODE_STATES)
181 return -EINVAL;
183 if (node == NUMA_NO_NODE || node_state(node, state))
184 return node;
186 min_node = node;
187 for_each_node_state(n, state) {
188 dist = node_distance(node, n);
189 if (dist < min_dist) {
190 min_dist = dist;
191 min_node = n;
195 return min_node;
197 EXPORT_SYMBOL_GPL(numa_nearest_node);
199 struct mempolicy *get_task_policy(struct task_struct *p)
201 struct mempolicy *pol = p->mempolicy;
202 int node;
204 if (pol)
205 return pol;
207 node = numa_node_id();
208 if (node != NUMA_NO_NODE) {
209 pol = &preferred_node_policy[node];
210 /* preferred_node_policy is not initialised early in boot */
211 if (pol->mode)
212 return pol;
215 return &default_policy;
218 static const struct mempolicy_operations {
219 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221 } mpol_ops[MPOL_MAX];
223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
225 return pol->flags & MPOL_MODE_FLAGS;
228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229 const nodemask_t *rel)
231 nodemask_t tmp;
232 nodes_fold(tmp, *orig, nodes_weight(*rel));
233 nodes_onto(*ret, tmp, *rel);
236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
238 if (nodes_empty(*nodes))
239 return -EINVAL;
240 pol->nodes = *nodes;
241 return 0;
244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
246 if (nodes_empty(*nodes))
247 return -EINVAL;
249 nodes_clear(pol->nodes);
250 node_set(first_node(*nodes), pol->nodes);
251 return 0;
255 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256 * any, for the new policy. mpol_new() has already validated the nodes
257 * parameter with respect to the policy mode and flags.
259 * Must be called holding task's alloc_lock to protect task's mems_allowed
260 * and mempolicy. May also be called holding the mmap_lock for write.
262 static int mpol_set_nodemask(struct mempolicy *pol,
263 const nodemask_t *nodes, struct nodemask_scratch *nsc)
265 int ret;
268 * Default (pol==NULL) resp. local memory policies are not a
269 * subject of any remapping. They also do not need any special
270 * constructor.
272 if (!pol || pol->mode == MPOL_LOCAL)
273 return 0;
275 /* Check N_MEMORY */
276 nodes_and(nsc->mask1,
277 cpuset_current_mems_allowed, node_states[N_MEMORY]);
279 VM_BUG_ON(!nodes);
281 if (pol->flags & MPOL_F_RELATIVE_NODES)
282 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283 else
284 nodes_and(nsc->mask2, *nodes, nsc->mask1);
286 if (mpol_store_user_nodemask(pol))
287 pol->w.user_nodemask = *nodes;
288 else
289 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
291 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292 return ret;
296 * This function just creates a new policy, does some check and simple
297 * initialization. You must invoke mpol_set_nodemask() to set nodes.
299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300 nodemask_t *nodes)
302 struct mempolicy *policy;
304 if (mode == MPOL_DEFAULT) {
305 if (nodes && !nodes_empty(*nodes))
306 return ERR_PTR(-EINVAL);
307 return NULL;
309 VM_BUG_ON(!nodes);
312 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314 * All other modes require a valid pointer to a non-empty nodemask.
316 if (mode == MPOL_PREFERRED) {
317 if (nodes_empty(*nodes)) {
318 if (((flags & MPOL_F_STATIC_NODES) ||
319 (flags & MPOL_F_RELATIVE_NODES)))
320 return ERR_PTR(-EINVAL);
322 mode = MPOL_LOCAL;
324 } else if (mode == MPOL_LOCAL) {
325 if (!nodes_empty(*nodes) ||
326 (flags & MPOL_F_STATIC_NODES) ||
327 (flags & MPOL_F_RELATIVE_NODES))
328 return ERR_PTR(-EINVAL);
329 } else if (nodes_empty(*nodes))
330 return ERR_PTR(-EINVAL);
332 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333 if (!policy)
334 return ERR_PTR(-ENOMEM);
335 atomic_set(&policy->refcnt, 1);
336 policy->mode = mode;
337 policy->flags = flags;
338 policy->home_node = NUMA_NO_NODE;
340 return policy;
343 /* Slow path of a mpol destructor. */
344 void __mpol_put(struct mempolicy *pol)
346 if (!atomic_dec_and_test(&pol->refcnt))
347 return;
348 kmem_cache_free(policy_cache, pol);
351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
357 nodemask_t tmp;
359 if (pol->flags & MPOL_F_STATIC_NODES)
360 nodes_and(tmp, pol->w.user_nodemask, *nodes);
361 else if (pol->flags & MPOL_F_RELATIVE_NODES)
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 else {
364 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365 *nodes);
366 pol->w.cpuset_mems_allowed = *nodes;
369 if (nodes_empty(tmp))
370 tmp = *nodes;
372 pol->nodes = tmp;
375 static void mpol_rebind_preferred(struct mempolicy *pol,
376 const nodemask_t *nodes)
378 pol->w.cpuset_mems_allowed = *nodes;
382 * mpol_rebind_policy - Migrate a policy to a different set of nodes
384 * Per-vma policies are protected by mmap_lock. Allocations using per-task
385 * policies are protected by task->mems_allowed_seq to prevent a premature
386 * OOM/allocation failure due to parallel nodemask modification.
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
390 if (!pol || pol->mode == MPOL_LOCAL)
391 return;
392 if (!mpol_store_user_nodemask(pol) &&
393 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 return;
396 mpol_ops[pol->mode].rebind(pol, newmask);
400 * Wrapper for mpol_rebind_policy() that just requires task
401 * pointer, and updates task mempolicy.
403 * Called with task's alloc_lock held.
405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
407 mpol_rebind_policy(tsk->mempolicy, new);
411 * Rebind each vma in mm to new nodemask.
413 * Call holding a reference to mm. Takes mm->mmap_lock during call.
415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
417 struct vm_area_struct *vma;
418 VMA_ITERATOR(vmi, mm, 0);
420 mmap_write_lock(mm);
421 for_each_vma(vmi, vma) {
422 vma_start_write(vma);
423 mpol_rebind_policy(vma->vm_policy, new);
425 mmap_write_unlock(mm);
428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429 [MPOL_DEFAULT] = {
430 .rebind = mpol_rebind_default,
432 [MPOL_INTERLEAVE] = {
433 .create = mpol_new_nodemask,
434 .rebind = mpol_rebind_nodemask,
436 [MPOL_PREFERRED] = {
437 .create = mpol_new_preferred,
438 .rebind = mpol_rebind_preferred,
440 [MPOL_BIND] = {
441 .create = mpol_new_nodemask,
442 .rebind = mpol_rebind_nodemask,
444 [MPOL_LOCAL] = {
445 .rebind = mpol_rebind_default,
447 [MPOL_PREFERRED_MANY] = {
448 .create = mpol_new_nodemask,
449 .rebind = mpol_rebind_preferred,
451 [MPOL_WEIGHTED_INTERLEAVE] = {
452 .create = mpol_new_nodemask,
453 .rebind = mpol_rebind_nodemask,
457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458 unsigned long flags);
459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460 pgoff_t ilx, int *nid);
462 static bool strictly_unmovable(unsigned long flags)
465 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466 * if any misplaced page is found.
468 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469 MPOL_MF_STRICT;
472 struct migration_mpol { /* for alloc_migration_target_by_mpol() */
473 struct mempolicy *pol;
474 pgoff_t ilx;
477 struct queue_pages {
478 struct list_head *pagelist;
479 unsigned long flags;
480 nodemask_t *nmask;
481 unsigned long start;
482 unsigned long end;
483 struct vm_area_struct *first;
484 struct folio *large; /* note last large folio encountered */
485 long nr_failed; /* could not be isolated at this time */
489 * Check if the folio's nid is in qp->nmask.
491 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492 * in the invert of qp->nmask.
494 static inline bool queue_folio_required(struct folio *folio,
495 struct queue_pages *qp)
497 int nid = folio_nid(folio);
498 unsigned long flags = qp->flags;
500 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
505 struct folio *folio;
506 struct queue_pages *qp = walk->private;
508 if (unlikely(is_pmd_migration_entry(*pmd))) {
509 qp->nr_failed++;
510 return;
512 folio = pmd_folio(*pmd);
513 if (is_huge_zero_folio(folio)) {
514 walk->action = ACTION_CONTINUE;
515 return;
517 if (!queue_folio_required(folio, qp))
518 return;
519 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520 !vma_migratable(walk->vma) ||
521 !migrate_folio_add(folio, qp->pagelist, qp->flags))
522 qp->nr_failed++;
526 * Scan through folios, checking if they satisfy the required conditions,
527 * moving them from LRU to local pagelist for migration if they do (or not).
529 * queue_folios_pte_range() has two possible return values:
530 * 0 - continue walking to scan for more, even if an existing folio on the
531 * wrong node could not be isolated and queued for migration.
532 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533 * and an existing folio was on a node that does not follow the policy.
535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536 unsigned long end, struct mm_walk *walk)
538 struct vm_area_struct *vma = walk->vma;
539 struct folio *folio;
540 struct queue_pages *qp = walk->private;
541 unsigned long flags = qp->flags;
542 pte_t *pte, *mapped_pte;
543 pte_t ptent;
544 spinlock_t *ptl;
546 ptl = pmd_trans_huge_lock(pmd, vma);
547 if (ptl) {
548 queue_folios_pmd(pmd, walk);
549 spin_unlock(ptl);
550 goto out;
553 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554 if (!pte) {
555 walk->action = ACTION_AGAIN;
556 return 0;
558 for (; addr != end; pte++, addr += PAGE_SIZE) {
559 ptent = ptep_get(pte);
560 if (pte_none(ptent))
561 continue;
562 if (!pte_present(ptent)) {
563 if (is_migration_entry(pte_to_swp_entry(ptent)))
564 qp->nr_failed++;
565 continue;
567 folio = vm_normal_folio(vma, addr, ptent);
568 if (!folio || folio_is_zone_device(folio))
569 continue;
571 * vm_normal_folio() filters out zero pages, but there might
572 * still be reserved folios to skip, perhaps in a VDSO.
574 if (folio_test_reserved(folio))
575 continue;
576 if (!queue_folio_required(folio, qp))
577 continue;
578 if (folio_test_large(folio)) {
580 * A large folio can only be isolated from LRU once,
581 * but may be mapped by many PTEs (and Copy-On-Write may
582 * intersperse PTEs of other, order 0, folios). This is
583 * a common case, so don't mistake it for failure (but
584 * there can be other cases of multi-mapped pages which
585 * this quick check does not help to filter out - and a
586 * search of the pagelist might grow to be prohibitive).
588 * migrate_pages(&pagelist) returns nr_failed folios, so
589 * check "large" now so that queue_pages_range() returns
590 * a comparable nr_failed folios. This does imply that
591 * if folio could not be isolated for some racy reason
592 * at its first PTE, later PTEs will not give it another
593 * chance of isolation; but keeps the accounting simple.
595 if (folio == qp->large)
596 continue;
597 qp->large = folio;
599 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 !vma_migratable(vma) ||
601 !migrate_folio_add(folio, qp->pagelist, flags)) {
602 qp->nr_failed++;
603 if (strictly_unmovable(flags))
604 break;
607 pte_unmap_unlock(mapped_pte, ptl);
608 cond_resched();
609 out:
610 if (qp->nr_failed && strictly_unmovable(flags))
611 return -EIO;
612 return 0;
615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616 unsigned long addr, unsigned long end,
617 struct mm_walk *walk)
619 #ifdef CONFIG_HUGETLB_PAGE
620 struct queue_pages *qp = walk->private;
621 unsigned long flags = qp->flags;
622 struct folio *folio;
623 spinlock_t *ptl;
624 pte_t entry;
626 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627 entry = huge_ptep_get(walk->mm, addr, pte);
628 if (!pte_present(entry)) {
629 if (unlikely(is_hugetlb_entry_migration(entry)))
630 qp->nr_failed++;
631 goto unlock;
633 folio = pfn_folio(pte_pfn(entry));
634 if (!queue_folio_required(folio, qp))
635 goto unlock;
636 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637 !vma_migratable(walk->vma)) {
638 qp->nr_failed++;
639 goto unlock;
642 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643 * Choosing not to migrate a shared folio is not counted as a failure.
645 * See folio_likely_mapped_shared() on possible imprecision when we
646 * cannot easily detect if a folio is shared.
648 if ((flags & MPOL_MF_MOVE_ALL) ||
649 (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
650 if (!folio_isolate_hugetlb(folio, qp->pagelist))
651 qp->nr_failed++;
652 unlock:
653 spin_unlock(ptl);
654 if (qp->nr_failed && strictly_unmovable(flags))
655 return -EIO;
656 #endif
657 return 0;
660 #ifdef CONFIG_NUMA_BALANCING
662 * This is used to mark a range of virtual addresses to be inaccessible.
663 * These are later cleared by a NUMA hinting fault. Depending on these
664 * faults, pages may be migrated for better NUMA placement.
666 * This is assuming that NUMA faults are handled using PROT_NONE. If
667 * an architecture makes a different choice, it will need further
668 * changes to the core.
670 unsigned long change_prot_numa(struct vm_area_struct *vma,
671 unsigned long addr, unsigned long end)
673 struct mmu_gather tlb;
674 long nr_updated;
676 tlb_gather_mmu(&tlb, vma->vm_mm);
678 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
679 if (nr_updated > 0) {
680 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
681 count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated);
684 tlb_finish_mmu(&tlb);
686 return nr_updated;
688 #endif /* CONFIG_NUMA_BALANCING */
690 static int queue_pages_test_walk(unsigned long start, unsigned long end,
691 struct mm_walk *walk)
693 struct vm_area_struct *next, *vma = walk->vma;
694 struct queue_pages *qp = walk->private;
695 unsigned long flags = qp->flags;
697 /* range check first */
698 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
700 if (!qp->first) {
701 qp->first = vma;
702 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
703 (qp->start < vma->vm_start))
704 /* hole at head side of range */
705 return -EFAULT;
707 next = find_vma(vma->vm_mm, vma->vm_end);
708 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
709 ((vma->vm_end < qp->end) &&
710 (!next || vma->vm_end < next->vm_start)))
711 /* hole at middle or tail of range */
712 return -EFAULT;
715 * Need check MPOL_MF_STRICT to return -EIO if possible
716 * regardless of vma_migratable
718 if (!vma_migratable(vma) &&
719 !(flags & MPOL_MF_STRICT))
720 return 1;
723 * Check page nodes, and queue pages to move, in the current vma.
724 * But if no moving, and no strict checking, the scan can be skipped.
726 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
727 return 0;
728 return 1;
731 static const struct mm_walk_ops queue_pages_walk_ops = {
732 .hugetlb_entry = queue_folios_hugetlb,
733 .pmd_entry = queue_folios_pte_range,
734 .test_walk = queue_pages_test_walk,
735 .walk_lock = PGWALK_RDLOCK,
738 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
739 .hugetlb_entry = queue_folios_hugetlb,
740 .pmd_entry = queue_folios_pte_range,
741 .test_walk = queue_pages_test_walk,
742 .walk_lock = PGWALK_WRLOCK,
746 * Walk through page tables and collect pages to be migrated.
748 * If pages found in a given range are not on the required set of @nodes,
749 * and migration is allowed, they are isolated and queued to @pagelist.
751 * queue_pages_range() may return:
752 * 0 - all pages already on the right node, or successfully queued for moving
753 * (or neither strict checking nor moving requested: only range checking).
754 * >0 - this number of misplaced folios could not be queued for moving
755 * (a hugetlbfs page or a transparent huge page being counted as 1).
756 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
757 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
759 static long
760 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
761 nodemask_t *nodes, unsigned long flags,
762 struct list_head *pagelist)
764 int err;
765 struct queue_pages qp = {
766 .pagelist = pagelist,
767 .flags = flags,
768 .nmask = nodes,
769 .start = start,
770 .end = end,
771 .first = NULL,
773 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
774 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
776 err = walk_page_range(mm, start, end, ops, &qp);
778 if (!qp.first)
779 /* whole range in hole */
780 err = -EFAULT;
782 return err ? : qp.nr_failed;
786 * Apply policy to a single VMA
787 * This must be called with the mmap_lock held for writing.
789 static int vma_replace_policy(struct vm_area_struct *vma,
790 struct mempolicy *pol)
792 int err;
793 struct mempolicy *old;
794 struct mempolicy *new;
796 vma_assert_write_locked(vma);
798 new = mpol_dup(pol);
799 if (IS_ERR(new))
800 return PTR_ERR(new);
802 if (vma->vm_ops && vma->vm_ops->set_policy) {
803 err = vma->vm_ops->set_policy(vma, new);
804 if (err)
805 goto err_out;
808 old = vma->vm_policy;
809 vma->vm_policy = new; /* protected by mmap_lock */
810 mpol_put(old);
812 return 0;
813 err_out:
814 mpol_put(new);
815 return err;
818 /* Split or merge the VMA (if required) and apply the new policy */
819 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
820 struct vm_area_struct **prev, unsigned long start,
821 unsigned long end, struct mempolicy *new_pol)
823 unsigned long vmstart, vmend;
825 vmend = min(end, vma->vm_end);
826 if (start > vma->vm_start) {
827 *prev = vma;
828 vmstart = start;
829 } else {
830 vmstart = vma->vm_start;
833 if (mpol_equal(vma->vm_policy, new_pol)) {
834 *prev = vma;
835 return 0;
838 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
839 if (IS_ERR(vma))
840 return PTR_ERR(vma);
842 *prev = vma;
843 return vma_replace_policy(vma, new_pol);
846 /* Set the process memory policy */
847 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
848 nodemask_t *nodes)
850 struct mempolicy *new, *old;
851 NODEMASK_SCRATCH(scratch);
852 int ret;
854 if (!scratch)
855 return -ENOMEM;
857 new = mpol_new(mode, flags, nodes);
858 if (IS_ERR(new)) {
859 ret = PTR_ERR(new);
860 goto out;
863 task_lock(current);
864 ret = mpol_set_nodemask(new, nodes, scratch);
865 if (ret) {
866 task_unlock(current);
867 mpol_put(new);
868 goto out;
871 old = current->mempolicy;
872 current->mempolicy = new;
873 if (new && (new->mode == MPOL_INTERLEAVE ||
874 new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
875 current->il_prev = MAX_NUMNODES-1;
876 current->il_weight = 0;
878 task_unlock(current);
879 mpol_put(old);
880 ret = 0;
881 out:
882 NODEMASK_SCRATCH_FREE(scratch);
883 return ret;
887 * Return nodemask for policy for get_mempolicy() query
889 * Called with task's alloc_lock held
891 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
893 nodes_clear(*nodes);
894 if (pol == &default_policy)
895 return;
897 switch (pol->mode) {
898 case MPOL_BIND:
899 case MPOL_INTERLEAVE:
900 case MPOL_PREFERRED:
901 case MPOL_PREFERRED_MANY:
902 case MPOL_WEIGHTED_INTERLEAVE:
903 *nodes = pol->nodes;
904 break;
905 case MPOL_LOCAL:
906 /* return empty node mask for local allocation */
907 break;
908 default:
909 BUG();
913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
915 struct page *p = NULL;
916 int ret;
918 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
919 if (ret > 0) {
920 ret = page_to_nid(p);
921 put_page(p);
923 return ret;
926 /* Retrieve NUMA policy */
927 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
928 unsigned long addr, unsigned long flags)
930 int err;
931 struct mm_struct *mm = current->mm;
932 struct vm_area_struct *vma = NULL;
933 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
935 if (flags &
936 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
937 return -EINVAL;
939 if (flags & MPOL_F_MEMS_ALLOWED) {
940 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
941 return -EINVAL;
942 *policy = 0; /* just so it's initialized */
943 task_lock(current);
944 *nmask = cpuset_current_mems_allowed;
945 task_unlock(current);
946 return 0;
949 if (flags & MPOL_F_ADDR) {
950 pgoff_t ilx; /* ignored here */
952 * Do NOT fall back to task policy if the
953 * vma/shared policy at addr is NULL. We
954 * want to return MPOL_DEFAULT in this case.
956 mmap_read_lock(mm);
957 vma = vma_lookup(mm, addr);
958 if (!vma) {
959 mmap_read_unlock(mm);
960 return -EFAULT;
962 pol = __get_vma_policy(vma, addr, &ilx);
963 } else if (addr)
964 return -EINVAL;
966 if (!pol)
967 pol = &default_policy; /* indicates default behavior */
969 if (flags & MPOL_F_NODE) {
970 if (flags & MPOL_F_ADDR) {
972 * Take a refcount on the mpol, because we are about to
973 * drop the mmap_lock, after which only "pol" remains
974 * valid, "vma" is stale.
976 pol_refcount = pol;
977 vma = NULL;
978 mpol_get(pol);
979 mmap_read_unlock(mm);
980 err = lookup_node(mm, addr);
981 if (err < 0)
982 goto out;
983 *policy = err;
984 } else if (pol == current->mempolicy &&
985 pol->mode == MPOL_INTERLEAVE) {
986 *policy = next_node_in(current->il_prev, pol->nodes);
987 } else if (pol == current->mempolicy &&
988 pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
989 if (current->il_weight)
990 *policy = current->il_prev;
991 else
992 *policy = next_node_in(current->il_prev,
993 pol->nodes);
994 } else {
995 err = -EINVAL;
996 goto out;
998 } else {
999 *policy = pol == &default_policy ? MPOL_DEFAULT :
1000 pol->mode;
1002 * Internal mempolicy flags must be masked off before exposing
1003 * the policy to userspace.
1005 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1008 err = 0;
1009 if (nmask) {
1010 if (mpol_store_user_nodemask(pol)) {
1011 *nmask = pol->w.user_nodemask;
1012 } else {
1013 task_lock(current);
1014 get_policy_nodemask(pol, nmask);
1015 task_unlock(current);
1019 out:
1020 mpol_cond_put(pol);
1021 if (vma)
1022 mmap_read_unlock(mm);
1023 if (pol_refcount)
1024 mpol_put(pol_refcount);
1025 return err;
1028 #ifdef CONFIG_MIGRATION
1029 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1030 unsigned long flags)
1033 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1034 * Choosing not to migrate a shared folio is not counted as a failure.
1036 * See folio_likely_mapped_shared() on possible imprecision when we
1037 * cannot easily detect if a folio is shared.
1039 if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1040 if (folio_isolate_lru(folio)) {
1041 list_add_tail(&folio->lru, foliolist);
1042 node_stat_mod_folio(folio,
1043 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1044 folio_nr_pages(folio));
1045 } else {
1047 * Non-movable folio may reach here. And, there may be
1048 * temporary off LRU folios or non-LRU movable folios.
1049 * Treat them as unmovable folios since they can't be
1050 * isolated, so they can't be moved at the moment.
1052 return false;
1055 return true;
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1062 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1063 int flags)
1065 nodemask_t nmask;
1066 struct vm_area_struct *vma;
1067 LIST_HEAD(pagelist);
1068 long nr_failed;
1069 long err = 0;
1070 struct migration_target_control mtc = {
1071 .nid = dest,
1072 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1073 .reason = MR_SYSCALL,
1076 nodes_clear(nmask);
1077 node_set(source, nmask);
1079 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1081 mmap_read_lock(mm);
1082 vma = find_vma(mm, 0);
1083 if (unlikely(!vma)) {
1084 mmap_read_unlock(mm);
1085 return 0;
1089 * This does not migrate the range, but isolates all pages that
1090 * need migration. Between passing in the full user address
1091 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1092 * but passes back the count of pages which could not be isolated.
1094 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1095 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1096 mmap_read_unlock(mm);
1098 if (!list_empty(&pagelist)) {
1099 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1100 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1101 if (err)
1102 putback_movable_pages(&pagelist);
1105 if (err >= 0)
1106 err += nr_failed;
1107 return err;
1111 * Move pages between the two nodesets so as to preserve the physical
1112 * layout as much as possible.
1114 * Returns the number of page that could not be moved.
1116 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1117 const nodemask_t *to, int flags)
1119 long nr_failed = 0;
1120 long err = 0;
1121 nodemask_t tmp;
1123 lru_cache_disable();
1126 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1127 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1128 * bit in 'tmp', and return that <source, dest> pair for migration.
1129 * The pair of nodemasks 'to' and 'from' define the map.
1131 * If no pair of bits is found that way, fallback to picking some
1132 * pair of 'source' and 'dest' bits that are not the same. If the
1133 * 'source' and 'dest' bits are the same, this represents a node
1134 * that will be migrating to itself, so no pages need move.
1136 * If no bits are left in 'tmp', or if all remaining bits left
1137 * in 'tmp' correspond to the same bit in 'to', return false
1138 * (nothing left to migrate).
1140 * This lets us pick a pair of nodes to migrate between, such that
1141 * if possible the dest node is not already occupied by some other
1142 * source node, minimizing the risk of overloading the memory on a
1143 * node that would happen if we migrated incoming memory to a node
1144 * before migrating outgoing memory source that same node.
1146 * A single scan of tmp is sufficient. As we go, we remember the
1147 * most recent <s, d> pair that moved (s != d). If we find a pair
1148 * that not only moved, but what's better, moved to an empty slot
1149 * (d is not set in tmp), then we break out then, with that pair.
1150 * Otherwise when we finish scanning from_tmp, we at least have the
1151 * most recent <s, d> pair that moved. If we get all the way through
1152 * the scan of tmp without finding any node that moved, much less
1153 * moved to an empty node, then there is nothing left worth migrating.
1156 tmp = *from;
1157 while (!nodes_empty(tmp)) {
1158 int s, d;
1159 int source = NUMA_NO_NODE;
1160 int dest = 0;
1162 for_each_node_mask(s, tmp) {
1165 * do_migrate_pages() tries to maintain the relative
1166 * node relationship of the pages established between
1167 * threads and memory areas.
1169 * However if the number of source nodes is not equal to
1170 * the number of destination nodes we can not preserve
1171 * this node relative relationship. In that case, skip
1172 * copying memory from a node that is in the destination
1173 * mask.
1175 * Example: [2,3,4] -> [3,4,5] moves everything.
1176 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1179 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1180 (node_isset(s, *to)))
1181 continue;
1183 d = node_remap(s, *from, *to);
1184 if (s == d)
1185 continue;
1187 source = s; /* Node moved. Memorize */
1188 dest = d;
1190 /* dest not in remaining from nodes? */
1191 if (!node_isset(dest, tmp))
1192 break;
1194 if (source == NUMA_NO_NODE)
1195 break;
1197 node_clear(source, tmp);
1198 err = migrate_to_node(mm, source, dest, flags);
1199 if (err > 0)
1200 nr_failed += err;
1201 if (err < 0)
1202 break;
1205 lru_cache_enable();
1206 if (err < 0)
1207 return err;
1208 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1212 * Allocate a new folio for page migration, according to NUMA mempolicy.
1214 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1215 unsigned long private)
1217 struct migration_mpol *mmpol = (struct migration_mpol *)private;
1218 struct mempolicy *pol = mmpol->pol;
1219 pgoff_t ilx = mmpol->ilx;
1220 unsigned int order;
1221 int nid = numa_node_id();
1222 gfp_t gfp;
1224 order = folio_order(src);
1225 ilx += src->index >> order;
1227 if (folio_test_hugetlb(src)) {
1228 nodemask_t *nodemask;
1229 struct hstate *h;
1231 h = folio_hstate(src);
1232 gfp = htlb_alloc_mask(h);
1233 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1234 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1235 htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1238 if (folio_test_large(src))
1239 gfp = GFP_TRANSHUGE;
1240 else
1241 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1243 return folio_alloc_mpol(gfp, order, pol, ilx, nid);
1245 #else
1247 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1248 unsigned long flags)
1250 return false;
1253 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1254 const nodemask_t *to, int flags)
1256 return -ENOSYS;
1259 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1260 unsigned long private)
1262 return NULL;
1264 #endif
1266 static long do_mbind(unsigned long start, unsigned long len,
1267 unsigned short mode, unsigned short mode_flags,
1268 nodemask_t *nmask, unsigned long flags)
1270 struct mm_struct *mm = current->mm;
1271 struct vm_area_struct *vma, *prev;
1272 struct vma_iterator vmi;
1273 struct migration_mpol mmpol;
1274 struct mempolicy *new;
1275 unsigned long end;
1276 long err;
1277 long nr_failed;
1278 LIST_HEAD(pagelist);
1280 if (flags & ~(unsigned long)MPOL_MF_VALID)
1281 return -EINVAL;
1282 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1283 return -EPERM;
1285 if (start & ~PAGE_MASK)
1286 return -EINVAL;
1288 if (mode == MPOL_DEFAULT)
1289 flags &= ~MPOL_MF_STRICT;
1291 len = PAGE_ALIGN(len);
1292 end = start + len;
1294 if (end < start)
1295 return -EINVAL;
1296 if (end == start)
1297 return 0;
1299 new = mpol_new(mode, mode_flags, nmask);
1300 if (IS_ERR(new))
1301 return PTR_ERR(new);
1304 * If we are using the default policy then operation
1305 * on discontinuous address spaces is okay after all
1307 if (!new)
1308 flags |= MPOL_MF_DISCONTIG_OK;
1310 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1311 lru_cache_disable();
1313 NODEMASK_SCRATCH(scratch);
1314 if (scratch) {
1315 mmap_write_lock(mm);
1316 err = mpol_set_nodemask(new, nmask, scratch);
1317 if (err)
1318 mmap_write_unlock(mm);
1319 } else
1320 err = -ENOMEM;
1321 NODEMASK_SCRATCH_FREE(scratch);
1323 if (err)
1324 goto mpol_out;
1327 * Lock the VMAs before scanning for pages to migrate,
1328 * to ensure we don't miss a concurrently inserted page.
1330 nr_failed = queue_pages_range(mm, start, end, nmask,
1331 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1333 if (nr_failed < 0) {
1334 err = nr_failed;
1335 nr_failed = 0;
1336 } else {
1337 vma_iter_init(&vmi, mm, start);
1338 prev = vma_prev(&vmi);
1339 for_each_vma_range(vmi, vma, end) {
1340 err = mbind_range(&vmi, vma, &prev, start, end, new);
1341 if (err)
1342 break;
1346 if (!err && !list_empty(&pagelist)) {
1347 /* Convert MPOL_DEFAULT's NULL to task or default policy */
1348 if (!new) {
1349 new = get_task_policy(current);
1350 mpol_get(new);
1352 mmpol.pol = new;
1353 mmpol.ilx = 0;
1356 * In the interleaved case, attempt to allocate on exactly the
1357 * targeted nodes, for the first VMA to be migrated; for later
1358 * VMAs, the nodes will still be interleaved from the targeted
1359 * nodemask, but one by one may be selected differently.
1361 if (new->mode == MPOL_INTERLEAVE ||
1362 new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1363 struct folio *folio;
1364 unsigned int order;
1365 unsigned long addr = -EFAULT;
1367 list_for_each_entry(folio, &pagelist, lru) {
1368 if (!folio_test_ksm(folio))
1369 break;
1371 if (!list_entry_is_head(folio, &pagelist, lru)) {
1372 vma_iter_init(&vmi, mm, start);
1373 for_each_vma_range(vmi, vma, end) {
1374 addr = page_address_in_vma(folio,
1375 folio_page(folio, 0), vma);
1376 if (addr != -EFAULT)
1377 break;
1380 if (addr != -EFAULT) {
1381 order = folio_order(folio);
1382 /* We already know the pol, but not the ilx */
1383 mpol_cond_put(get_vma_policy(vma, addr, order,
1384 &mmpol.ilx));
1385 /* Set base from which to increment by index */
1386 mmpol.ilx -= folio->index >> order;
1391 mmap_write_unlock(mm);
1393 if (!err && !list_empty(&pagelist)) {
1394 nr_failed |= migrate_pages(&pagelist,
1395 alloc_migration_target_by_mpol, NULL,
1396 (unsigned long)&mmpol, MIGRATE_SYNC,
1397 MR_MEMPOLICY_MBIND, NULL);
1400 if (nr_failed && (flags & MPOL_MF_STRICT))
1401 err = -EIO;
1402 if (!list_empty(&pagelist))
1403 putback_movable_pages(&pagelist);
1404 mpol_out:
1405 mpol_put(new);
1406 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1407 lru_cache_enable();
1408 return err;
1412 * User space interface with variable sized bitmaps for nodelists.
1414 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1415 unsigned long maxnode)
1417 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1418 int ret;
1420 if (in_compat_syscall())
1421 ret = compat_get_bitmap(mask,
1422 (const compat_ulong_t __user *)nmask,
1423 maxnode);
1424 else
1425 ret = copy_from_user(mask, nmask,
1426 nlongs * sizeof(unsigned long));
1428 if (ret)
1429 return -EFAULT;
1431 if (maxnode % BITS_PER_LONG)
1432 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1434 return 0;
1437 /* Copy a node mask from user space. */
1438 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1439 unsigned long maxnode)
1441 --maxnode;
1442 nodes_clear(*nodes);
1443 if (maxnode == 0 || !nmask)
1444 return 0;
1445 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1446 return -EINVAL;
1449 * When the user specified more nodes than supported just check
1450 * if the non supported part is all zero, one word at a time,
1451 * starting at the end.
1453 while (maxnode > MAX_NUMNODES) {
1454 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1455 unsigned long t;
1457 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1458 return -EFAULT;
1460 if (maxnode - bits >= MAX_NUMNODES) {
1461 maxnode -= bits;
1462 } else {
1463 maxnode = MAX_NUMNODES;
1464 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1466 if (t)
1467 return -EINVAL;
1470 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1473 /* Copy a kernel node mask to user space */
1474 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1475 nodemask_t *nodes)
1477 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1478 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1479 bool compat = in_compat_syscall();
1481 if (compat)
1482 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1484 if (copy > nbytes) {
1485 if (copy > PAGE_SIZE)
1486 return -EINVAL;
1487 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1488 return -EFAULT;
1489 copy = nbytes;
1490 maxnode = nr_node_ids;
1493 if (compat)
1494 return compat_put_bitmap((compat_ulong_t __user *)mask,
1495 nodes_addr(*nodes), maxnode);
1497 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1500 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1501 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1503 *flags = *mode & MPOL_MODE_FLAGS;
1504 *mode &= ~MPOL_MODE_FLAGS;
1506 if ((unsigned int)(*mode) >= MPOL_MAX)
1507 return -EINVAL;
1508 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1509 return -EINVAL;
1510 if (*flags & MPOL_F_NUMA_BALANCING) {
1511 if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1512 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1513 else
1514 return -EINVAL;
1516 return 0;
1519 static long kernel_mbind(unsigned long start, unsigned long len,
1520 unsigned long mode, const unsigned long __user *nmask,
1521 unsigned long maxnode, unsigned int flags)
1523 unsigned short mode_flags;
1524 nodemask_t nodes;
1525 int lmode = mode;
1526 int err;
1528 start = untagged_addr(start);
1529 err = sanitize_mpol_flags(&lmode, &mode_flags);
1530 if (err)
1531 return err;
1533 err = get_nodes(&nodes, nmask, maxnode);
1534 if (err)
1535 return err;
1537 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1540 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1541 unsigned long, home_node, unsigned long, flags)
1543 struct mm_struct *mm = current->mm;
1544 struct vm_area_struct *vma, *prev;
1545 struct mempolicy *new, *old;
1546 unsigned long end;
1547 int err = -ENOENT;
1548 VMA_ITERATOR(vmi, mm, start);
1550 start = untagged_addr(start);
1551 if (start & ~PAGE_MASK)
1552 return -EINVAL;
1554 * flags is used for future extension if any.
1556 if (flags != 0)
1557 return -EINVAL;
1560 * Check home_node is online to avoid accessing uninitialized
1561 * NODE_DATA.
1563 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1564 return -EINVAL;
1566 len = PAGE_ALIGN(len);
1567 end = start + len;
1569 if (end < start)
1570 return -EINVAL;
1571 if (end == start)
1572 return 0;
1573 mmap_write_lock(mm);
1574 prev = vma_prev(&vmi);
1575 for_each_vma_range(vmi, vma, end) {
1577 * If any vma in the range got policy other than MPOL_BIND
1578 * or MPOL_PREFERRED_MANY we return error. We don't reset
1579 * the home node for vmas we already updated before.
1581 old = vma_policy(vma);
1582 if (!old) {
1583 prev = vma;
1584 continue;
1586 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1587 err = -EOPNOTSUPP;
1588 break;
1590 new = mpol_dup(old);
1591 if (IS_ERR(new)) {
1592 err = PTR_ERR(new);
1593 break;
1596 vma_start_write(vma);
1597 new->home_node = home_node;
1598 err = mbind_range(&vmi, vma, &prev, start, end, new);
1599 mpol_put(new);
1600 if (err)
1601 break;
1603 mmap_write_unlock(mm);
1604 return err;
1607 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1608 unsigned long, mode, const unsigned long __user *, nmask,
1609 unsigned long, maxnode, unsigned int, flags)
1611 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1614 /* Set the process memory policy */
1615 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1616 unsigned long maxnode)
1618 unsigned short mode_flags;
1619 nodemask_t nodes;
1620 int lmode = mode;
1621 int err;
1623 err = sanitize_mpol_flags(&lmode, &mode_flags);
1624 if (err)
1625 return err;
1627 err = get_nodes(&nodes, nmask, maxnode);
1628 if (err)
1629 return err;
1631 return do_set_mempolicy(lmode, mode_flags, &nodes);
1634 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1635 unsigned long, maxnode)
1637 return kernel_set_mempolicy(mode, nmask, maxnode);
1640 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1641 const unsigned long __user *old_nodes,
1642 const unsigned long __user *new_nodes)
1644 struct mm_struct *mm = NULL;
1645 struct task_struct *task;
1646 nodemask_t task_nodes;
1647 int err;
1648 nodemask_t *old;
1649 nodemask_t *new;
1650 NODEMASK_SCRATCH(scratch);
1652 if (!scratch)
1653 return -ENOMEM;
1655 old = &scratch->mask1;
1656 new = &scratch->mask2;
1658 err = get_nodes(old, old_nodes, maxnode);
1659 if (err)
1660 goto out;
1662 err = get_nodes(new, new_nodes, maxnode);
1663 if (err)
1664 goto out;
1666 /* Find the mm_struct */
1667 rcu_read_lock();
1668 task = pid ? find_task_by_vpid(pid) : current;
1669 if (!task) {
1670 rcu_read_unlock();
1671 err = -ESRCH;
1672 goto out;
1674 get_task_struct(task);
1676 err = -EINVAL;
1679 * Check if this process has the right to modify the specified process.
1680 * Use the regular "ptrace_may_access()" checks.
1682 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1683 rcu_read_unlock();
1684 err = -EPERM;
1685 goto out_put;
1687 rcu_read_unlock();
1689 task_nodes = cpuset_mems_allowed(task);
1690 /* Is the user allowed to access the target nodes? */
1691 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1692 err = -EPERM;
1693 goto out_put;
1696 task_nodes = cpuset_mems_allowed(current);
1697 nodes_and(*new, *new, task_nodes);
1698 if (nodes_empty(*new))
1699 goto out_put;
1701 err = security_task_movememory(task);
1702 if (err)
1703 goto out_put;
1705 mm = get_task_mm(task);
1706 put_task_struct(task);
1708 if (!mm) {
1709 err = -EINVAL;
1710 goto out;
1713 err = do_migrate_pages(mm, old, new,
1714 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1716 mmput(mm);
1717 out:
1718 NODEMASK_SCRATCH_FREE(scratch);
1720 return err;
1722 out_put:
1723 put_task_struct(task);
1724 goto out;
1727 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1728 const unsigned long __user *, old_nodes,
1729 const unsigned long __user *, new_nodes)
1731 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1734 /* Retrieve NUMA policy */
1735 static int kernel_get_mempolicy(int __user *policy,
1736 unsigned long __user *nmask,
1737 unsigned long maxnode,
1738 unsigned long addr,
1739 unsigned long flags)
1741 int err;
1742 int pval;
1743 nodemask_t nodes;
1745 if (nmask != NULL && maxnode < nr_node_ids)
1746 return -EINVAL;
1748 addr = untagged_addr(addr);
1750 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1752 if (err)
1753 return err;
1755 if (policy && put_user(pval, policy))
1756 return -EFAULT;
1758 if (nmask)
1759 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1761 return err;
1764 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1765 unsigned long __user *, nmask, unsigned long, maxnode,
1766 unsigned long, addr, unsigned long, flags)
1768 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1771 bool vma_migratable(struct vm_area_struct *vma)
1773 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1774 return false;
1777 * DAX device mappings require predictable access latency, so avoid
1778 * incurring periodic faults.
1780 if (vma_is_dax(vma))
1781 return false;
1783 if (is_vm_hugetlb_page(vma) &&
1784 !hugepage_migration_supported(hstate_vma(vma)))
1785 return false;
1788 * Migration allocates pages in the highest zone. If we cannot
1789 * do so then migration (at least from node to node) is not
1790 * possible.
1792 if (vma->vm_file &&
1793 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1794 < policy_zone)
1795 return false;
1796 return true;
1799 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1800 unsigned long addr, pgoff_t *ilx)
1802 *ilx = 0;
1803 return (vma->vm_ops && vma->vm_ops->get_policy) ?
1804 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1808 * get_vma_policy(@vma, @addr, @order, @ilx)
1809 * @vma: virtual memory area whose policy is sought
1810 * @addr: address in @vma for shared policy lookup
1811 * @order: 0, or appropriate huge_page_order for interleaving
1812 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1813 * MPOL_WEIGHTED_INTERLEAVE
1815 * Returns effective policy for a VMA at specified address.
1816 * Falls back to current->mempolicy or system default policy, as necessary.
1817 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1818 * count--added by the get_policy() vm_op, as appropriate--to protect against
1819 * freeing by another task. It is the caller's responsibility to free the
1820 * extra reference for shared policies.
1822 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1823 unsigned long addr, int order, pgoff_t *ilx)
1825 struct mempolicy *pol;
1827 pol = __get_vma_policy(vma, addr, ilx);
1828 if (!pol)
1829 pol = get_task_policy(current);
1830 if (pol->mode == MPOL_INTERLEAVE ||
1831 pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1832 *ilx += vma->vm_pgoff >> order;
1833 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1835 return pol;
1838 bool vma_policy_mof(struct vm_area_struct *vma)
1840 struct mempolicy *pol;
1842 if (vma->vm_ops && vma->vm_ops->get_policy) {
1843 bool ret = false;
1844 pgoff_t ilx; /* ignored here */
1846 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1847 if (pol && (pol->flags & MPOL_F_MOF))
1848 ret = true;
1849 mpol_cond_put(pol);
1851 return ret;
1854 pol = vma->vm_policy;
1855 if (!pol)
1856 pol = get_task_policy(current);
1858 return pol->flags & MPOL_F_MOF;
1861 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1863 enum zone_type dynamic_policy_zone = policy_zone;
1865 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1868 * if policy->nodes has movable memory only,
1869 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1871 * policy->nodes is intersect with node_states[N_MEMORY].
1872 * so if the following test fails, it implies
1873 * policy->nodes has movable memory only.
1875 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1876 dynamic_policy_zone = ZONE_MOVABLE;
1878 return zone >= dynamic_policy_zone;
1881 static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1883 unsigned int node;
1884 unsigned int cpuset_mems_cookie;
1886 retry:
1887 /* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1888 cpuset_mems_cookie = read_mems_allowed_begin();
1889 node = current->il_prev;
1890 if (!current->il_weight || !node_isset(node, policy->nodes)) {
1891 node = next_node_in(node, policy->nodes);
1892 if (read_mems_allowed_retry(cpuset_mems_cookie))
1893 goto retry;
1894 if (node == MAX_NUMNODES)
1895 return node;
1896 current->il_prev = node;
1897 current->il_weight = get_il_weight(node);
1899 current->il_weight--;
1900 return node;
1903 /* Do dynamic interleaving for a process */
1904 static unsigned int interleave_nodes(struct mempolicy *policy)
1906 unsigned int nid;
1907 unsigned int cpuset_mems_cookie;
1909 /* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1910 do {
1911 cpuset_mems_cookie = read_mems_allowed_begin();
1912 nid = next_node_in(current->il_prev, policy->nodes);
1913 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1915 if (nid < MAX_NUMNODES)
1916 current->il_prev = nid;
1917 return nid;
1921 * Depending on the memory policy provide a node from which to allocate the
1922 * next slab entry.
1924 unsigned int mempolicy_slab_node(void)
1926 struct mempolicy *policy;
1927 int node = numa_mem_id();
1929 if (!in_task())
1930 return node;
1932 policy = current->mempolicy;
1933 if (!policy)
1934 return node;
1936 switch (policy->mode) {
1937 case MPOL_PREFERRED:
1938 return first_node(policy->nodes);
1940 case MPOL_INTERLEAVE:
1941 return interleave_nodes(policy);
1943 case MPOL_WEIGHTED_INTERLEAVE:
1944 return weighted_interleave_nodes(policy);
1946 case MPOL_BIND:
1947 case MPOL_PREFERRED_MANY:
1949 struct zoneref *z;
1952 * Follow bind policy behavior and start allocation at the
1953 * first node.
1955 struct zonelist *zonelist;
1956 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1957 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1958 z = first_zones_zonelist(zonelist, highest_zoneidx,
1959 &policy->nodes);
1960 return zonelist_zone(z) ? zonelist_node_idx(z) : node;
1962 case MPOL_LOCAL:
1963 return node;
1965 default:
1966 BUG();
1970 static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1971 nodemask_t *mask)
1974 * barrier stabilizes the nodemask locally so that it can be iterated
1975 * over safely without concern for changes. Allocators validate node
1976 * selection does not violate mems_allowed, so this is safe.
1978 barrier();
1979 memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1980 barrier();
1981 return nodes_weight(*mask);
1984 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1986 nodemask_t nodemask;
1987 unsigned int target, nr_nodes;
1988 u8 *table;
1989 unsigned int weight_total = 0;
1990 u8 weight;
1991 int nid;
1993 nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1994 if (!nr_nodes)
1995 return numa_node_id();
1997 rcu_read_lock();
1998 table = rcu_dereference(iw_table);
1999 /* calculate the total weight */
2000 for_each_node_mask(nid, nodemask) {
2001 /* detect system default usage */
2002 weight = table ? table[nid] : 1;
2003 weight = weight ? weight : 1;
2004 weight_total += weight;
2007 /* Calculate the node offset based on totals */
2008 target = ilx % weight_total;
2009 nid = first_node(nodemask);
2010 while (target) {
2011 /* detect system default usage */
2012 weight = table ? table[nid] : 1;
2013 weight = weight ? weight : 1;
2014 if (target < weight)
2015 break;
2016 target -= weight;
2017 nid = next_node_in(nid, nodemask);
2019 rcu_read_unlock();
2020 return nid;
2024 * Do static interleaving for interleave index @ilx. Returns the ilx'th
2025 * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2026 * exceeds the number of present nodes.
2028 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2030 nodemask_t nodemask;
2031 unsigned int target, nnodes;
2032 int i;
2033 int nid;
2035 nnodes = read_once_policy_nodemask(pol, &nodemask);
2036 if (!nnodes)
2037 return numa_node_id();
2038 target = ilx % nnodes;
2039 nid = first_node(nodemask);
2040 for (i = 0; i < target; i++)
2041 nid = next_node(nid, nodemask);
2042 return nid;
2046 * Return a nodemask representing a mempolicy for filtering nodes for
2047 * page allocation, together with preferred node id (or the input node id).
2049 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2050 pgoff_t ilx, int *nid)
2052 nodemask_t *nodemask = NULL;
2054 switch (pol->mode) {
2055 case MPOL_PREFERRED:
2056 /* Override input node id */
2057 *nid = first_node(pol->nodes);
2058 break;
2059 case MPOL_PREFERRED_MANY:
2060 nodemask = &pol->nodes;
2061 if (pol->home_node != NUMA_NO_NODE)
2062 *nid = pol->home_node;
2063 break;
2064 case MPOL_BIND:
2065 /* Restrict to nodemask (but not on lower zones) */
2066 if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2067 cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2068 nodemask = &pol->nodes;
2069 if (pol->home_node != NUMA_NO_NODE)
2070 *nid = pol->home_node;
2072 * __GFP_THISNODE shouldn't even be used with the bind policy
2073 * because we might easily break the expectation to stay on the
2074 * requested node and not break the policy.
2076 WARN_ON_ONCE(gfp & __GFP_THISNODE);
2077 break;
2078 case MPOL_INTERLEAVE:
2079 /* Override input node id */
2080 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
2081 interleave_nodes(pol) : interleave_nid(pol, ilx);
2082 break;
2083 case MPOL_WEIGHTED_INTERLEAVE:
2084 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
2085 weighted_interleave_nodes(pol) :
2086 weighted_interleave_nid(pol, ilx);
2087 break;
2090 return nodemask;
2093 #ifdef CONFIG_HUGETLBFS
2095 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2096 * @vma: virtual memory area whose policy is sought
2097 * @addr: address in @vma for shared policy lookup and interleave policy
2098 * @gfp_flags: for requested zone
2099 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2100 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2102 * Returns a nid suitable for a huge page allocation and a pointer
2103 * to the struct mempolicy for conditional unref after allocation.
2104 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2105 * to the mempolicy's @nodemask for filtering the zonelist.
2107 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2108 struct mempolicy **mpol, nodemask_t **nodemask)
2110 pgoff_t ilx;
2111 int nid;
2113 nid = numa_node_id();
2114 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2115 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2116 return nid;
2120 * init_nodemask_of_mempolicy
2122 * If the current task's mempolicy is "default" [NULL], return 'false'
2123 * to indicate default policy. Otherwise, extract the policy nodemask
2124 * for 'bind' or 'interleave' policy into the argument nodemask, or
2125 * initialize the argument nodemask to contain the single node for
2126 * 'preferred' or 'local' policy and return 'true' to indicate presence
2127 * of non-default mempolicy.
2129 * We don't bother with reference counting the mempolicy [mpol_get/put]
2130 * because the current task is examining it's own mempolicy and a task's
2131 * mempolicy is only ever changed by the task itself.
2133 * N.B., it is the caller's responsibility to free a returned nodemask.
2135 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2137 struct mempolicy *mempolicy;
2139 if (!(mask && current->mempolicy))
2140 return false;
2142 task_lock(current);
2143 mempolicy = current->mempolicy;
2144 switch (mempolicy->mode) {
2145 case MPOL_PREFERRED:
2146 case MPOL_PREFERRED_MANY:
2147 case MPOL_BIND:
2148 case MPOL_INTERLEAVE:
2149 case MPOL_WEIGHTED_INTERLEAVE:
2150 *mask = mempolicy->nodes;
2151 break;
2153 case MPOL_LOCAL:
2154 init_nodemask_of_node(mask, numa_node_id());
2155 break;
2157 default:
2158 BUG();
2160 task_unlock(current);
2162 return true;
2164 #endif
2167 * mempolicy_in_oom_domain
2169 * If tsk's mempolicy is "bind", check for intersection between mask and
2170 * the policy nodemask. Otherwise, return true for all other policies
2171 * including "interleave", as a tsk with "interleave" policy may have
2172 * memory allocated from all nodes in system.
2174 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2176 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2177 const nodemask_t *mask)
2179 struct mempolicy *mempolicy;
2180 bool ret = true;
2182 if (!mask)
2183 return ret;
2185 task_lock(tsk);
2186 mempolicy = tsk->mempolicy;
2187 if (mempolicy && mempolicy->mode == MPOL_BIND)
2188 ret = nodes_intersects(mempolicy->nodes, *mask);
2189 task_unlock(tsk);
2191 return ret;
2194 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2195 int nid, nodemask_t *nodemask)
2197 struct page *page;
2198 gfp_t preferred_gfp;
2201 * This is a two pass approach. The first pass will only try the
2202 * preferred nodes but skip the direct reclaim and allow the
2203 * allocation to fail, while the second pass will try all the
2204 * nodes in system.
2206 preferred_gfp = gfp | __GFP_NOWARN;
2207 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2208 page = __alloc_frozen_pages_noprof(preferred_gfp, order, nid, nodemask);
2209 if (!page)
2210 page = __alloc_frozen_pages_noprof(gfp, order, nid, NULL);
2212 return page;
2216 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2217 * @gfp: GFP flags.
2218 * @order: Order of the page allocation.
2219 * @pol: Pointer to the NUMA mempolicy.
2220 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2221 * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2223 * Return: The page on success or NULL if allocation fails.
2225 static struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
2226 struct mempolicy *pol, pgoff_t ilx, int nid)
2228 nodemask_t *nodemask;
2229 struct page *page;
2231 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2233 if (pol->mode == MPOL_PREFERRED_MANY)
2234 return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2236 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2237 /* filter "hugepage" allocation, unless from alloc_pages() */
2238 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2240 * For hugepage allocation and non-interleave policy which
2241 * allows the current node (or other explicitly preferred
2242 * node) we only try to allocate from the current/preferred
2243 * node and don't fall back to other nodes, as the cost of
2244 * remote accesses would likely offset THP benefits.
2246 * If the policy is interleave or does not allow the current
2247 * node in its nodemask, we allocate the standard way.
2249 if (pol->mode != MPOL_INTERLEAVE &&
2250 pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2251 (!nodemask || node_isset(nid, *nodemask))) {
2253 * First, try to allocate THP only on local node, but
2254 * don't reclaim unnecessarily, just compact.
2256 page = __alloc_frozen_pages_noprof(
2257 gfp | __GFP_THISNODE | __GFP_NORETRY, order,
2258 nid, NULL);
2259 if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2260 return page;
2262 * If hugepage allocations are configured to always
2263 * synchronous compact or the vma has been madvised
2264 * to prefer hugepage backing, retry allowing remote
2265 * memory with both reclaim and compact as well.
2270 page = __alloc_frozen_pages_noprof(gfp, order, nid, nodemask);
2272 if (unlikely(pol->mode == MPOL_INTERLEAVE ||
2273 pol->mode == MPOL_WEIGHTED_INTERLEAVE) && page) {
2274 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2275 if (static_branch_likely(&vm_numa_stat_key) &&
2276 page_to_nid(page) == nid) {
2277 preempt_disable();
2278 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2279 preempt_enable();
2283 return page;
2286 struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
2287 struct mempolicy *pol, pgoff_t ilx, int nid)
2289 struct page *page = alloc_pages_mpol(gfp | __GFP_COMP, order, pol,
2290 ilx, nid);
2291 if (!page)
2292 return NULL;
2294 set_page_refcounted(page);
2295 return page_rmappable_folio(page);
2299 * vma_alloc_folio - Allocate a folio for a VMA.
2300 * @gfp: GFP flags.
2301 * @order: Order of the folio.
2302 * @vma: Pointer to VMA.
2303 * @addr: Virtual address of the allocation. Must be inside @vma.
2305 * Allocate a folio for a specific address in @vma, using the appropriate
2306 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the
2307 * VMA to prevent it from going away. Should be used for all allocations
2308 * for folios that will be mapped into user space, excepting hugetlbfs, and
2309 * excepting where direct use of folio_alloc_mpol() is more appropriate.
2311 * Return: The folio on success or NULL if allocation fails.
2313 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2314 unsigned long addr)
2316 struct mempolicy *pol;
2317 pgoff_t ilx;
2318 struct folio *folio;
2320 if (vma->vm_flags & VM_DROPPABLE)
2321 gfp |= __GFP_NOWARN;
2323 pol = get_vma_policy(vma, addr, order, &ilx);
2324 folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
2325 mpol_cond_put(pol);
2326 return folio;
2328 EXPORT_SYMBOL(vma_alloc_folio_noprof);
2330 struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned order)
2332 struct mempolicy *pol = &default_policy;
2335 * No reference counting needed for current->mempolicy
2336 * nor system default_policy
2338 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2339 pol = get_task_policy(current);
2341 return alloc_pages_mpol(gfp, order, pol, NO_INTERLEAVE_INDEX,
2342 numa_node_id());
2346 * alloc_pages - Allocate pages.
2347 * @gfp: GFP flags.
2348 * @order: Power of two of number of pages to allocate.
2350 * Allocate 1 << @order contiguous pages. The physical address of the
2351 * first page is naturally aligned (eg an order-3 allocation will be aligned
2352 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2353 * process is honoured when in process context.
2355 * Context: Can be called from any context, providing the appropriate GFP
2356 * flags are used.
2357 * Return: The page on success or NULL if allocation fails.
2359 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2361 struct page *page = alloc_frozen_pages_noprof(gfp, order);
2363 if (page)
2364 set_page_refcounted(page);
2365 return page;
2367 EXPORT_SYMBOL(alloc_pages_noprof);
2369 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2371 return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2373 EXPORT_SYMBOL(folio_alloc_noprof);
2375 static unsigned long alloc_pages_bulk_interleave(gfp_t gfp,
2376 struct mempolicy *pol, unsigned long nr_pages,
2377 struct page **page_array)
2379 int nodes;
2380 unsigned long nr_pages_per_node;
2381 int delta;
2382 int i;
2383 unsigned long nr_allocated;
2384 unsigned long total_allocated = 0;
2386 nodes = nodes_weight(pol->nodes);
2387 nr_pages_per_node = nr_pages / nodes;
2388 delta = nr_pages - nodes * nr_pages_per_node;
2390 for (i = 0; i < nodes; i++) {
2391 if (delta) {
2392 nr_allocated = alloc_pages_bulk_noprof(gfp,
2393 interleave_nodes(pol), NULL,
2394 nr_pages_per_node + 1,
2395 page_array);
2396 delta--;
2397 } else {
2398 nr_allocated = alloc_pages_bulk_noprof(gfp,
2399 interleave_nodes(pol), NULL,
2400 nr_pages_per_node, page_array);
2403 page_array += nr_allocated;
2404 total_allocated += nr_allocated;
2407 return total_allocated;
2410 static unsigned long alloc_pages_bulk_weighted_interleave(gfp_t gfp,
2411 struct mempolicy *pol, unsigned long nr_pages,
2412 struct page **page_array)
2414 struct task_struct *me = current;
2415 unsigned int cpuset_mems_cookie;
2416 unsigned long total_allocated = 0;
2417 unsigned long nr_allocated = 0;
2418 unsigned long rounds;
2419 unsigned long node_pages, delta;
2420 u8 *table, *weights, weight;
2421 unsigned int weight_total = 0;
2422 unsigned long rem_pages = nr_pages;
2423 nodemask_t nodes;
2424 int nnodes, node;
2425 int resume_node = MAX_NUMNODES - 1;
2426 u8 resume_weight = 0;
2427 int prev_node;
2428 int i;
2430 if (!nr_pages)
2431 return 0;
2433 /* read the nodes onto the stack, retry if done during rebind */
2434 do {
2435 cpuset_mems_cookie = read_mems_allowed_begin();
2436 nnodes = read_once_policy_nodemask(pol, &nodes);
2437 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2439 /* if the nodemask has become invalid, we cannot do anything */
2440 if (!nnodes)
2441 return 0;
2443 /* Continue allocating from most recent node and adjust the nr_pages */
2444 node = me->il_prev;
2445 weight = me->il_weight;
2446 if (weight && node_isset(node, nodes)) {
2447 node_pages = min(rem_pages, weight);
2448 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2449 page_array);
2450 page_array += nr_allocated;
2451 total_allocated += nr_allocated;
2452 /* if that's all the pages, no need to interleave */
2453 if (rem_pages <= weight) {
2454 me->il_weight -= rem_pages;
2455 return total_allocated;
2457 /* Otherwise we adjust remaining pages, continue from there */
2458 rem_pages -= weight;
2460 /* clear active weight in case of an allocation failure */
2461 me->il_weight = 0;
2462 prev_node = node;
2464 /* create a local copy of node weights to operate on outside rcu */
2465 weights = kzalloc(nr_node_ids, GFP_KERNEL);
2466 if (!weights)
2467 return total_allocated;
2469 rcu_read_lock();
2470 table = rcu_dereference(iw_table);
2471 if (table)
2472 memcpy(weights, table, nr_node_ids);
2473 rcu_read_unlock();
2475 /* calculate total, detect system default usage */
2476 for_each_node_mask(node, nodes) {
2477 if (!weights[node])
2478 weights[node] = 1;
2479 weight_total += weights[node];
2483 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2484 * Track which node weighted interleave should resume from.
2486 * if (rounds > 0) and (delta == 0), resume_node will always be
2487 * the node following prev_node and its weight.
2489 rounds = rem_pages / weight_total;
2490 delta = rem_pages % weight_total;
2491 resume_node = next_node_in(prev_node, nodes);
2492 resume_weight = weights[resume_node];
2493 for (i = 0; i < nnodes; i++) {
2494 node = next_node_in(prev_node, nodes);
2495 weight = weights[node];
2496 node_pages = weight * rounds;
2497 /* If a delta exists, add this node's portion of the delta */
2498 if (delta > weight) {
2499 node_pages += weight;
2500 delta -= weight;
2501 } else if (delta) {
2502 /* when delta is depleted, resume from that node */
2503 node_pages += delta;
2504 resume_node = node;
2505 resume_weight = weight - delta;
2506 delta = 0;
2508 /* node_pages can be 0 if an allocation fails and rounds == 0 */
2509 if (!node_pages)
2510 break;
2511 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2512 page_array);
2513 page_array += nr_allocated;
2514 total_allocated += nr_allocated;
2515 if (total_allocated == nr_pages)
2516 break;
2517 prev_node = node;
2519 me->il_prev = resume_node;
2520 me->il_weight = resume_weight;
2521 kfree(weights);
2522 return total_allocated;
2525 static unsigned long alloc_pages_bulk_preferred_many(gfp_t gfp, int nid,
2526 struct mempolicy *pol, unsigned long nr_pages,
2527 struct page **page_array)
2529 gfp_t preferred_gfp;
2530 unsigned long nr_allocated = 0;
2532 preferred_gfp = gfp | __GFP_NOWARN;
2533 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2535 nr_allocated = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2536 nr_pages, page_array);
2538 if (nr_allocated < nr_pages)
2539 nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2540 nr_pages - nr_allocated,
2541 page_array + nr_allocated);
2542 return nr_allocated;
2545 /* alloc pages bulk and mempolicy should be considered at the
2546 * same time in some situation such as vmalloc.
2548 * It can accelerate memory allocation especially interleaving
2549 * allocate memory.
2551 unsigned long alloc_pages_bulk_mempolicy_noprof(gfp_t gfp,
2552 unsigned long nr_pages, struct page **page_array)
2554 struct mempolicy *pol = &default_policy;
2555 nodemask_t *nodemask;
2556 int nid;
2558 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2559 pol = get_task_policy(current);
2561 if (pol->mode == MPOL_INTERLEAVE)
2562 return alloc_pages_bulk_interleave(gfp, pol,
2563 nr_pages, page_array);
2565 if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2566 return alloc_pages_bulk_weighted_interleave(
2567 gfp, pol, nr_pages, page_array);
2569 if (pol->mode == MPOL_PREFERRED_MANY)
2570 return alloc_pages_bulk_preferred_many(gfp,
2571 numa_node_id(), pol, nr_pages, page_array);
2573 nid = numa_node_id();
2574 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2575 return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2576 nr_pages, page_array);
2579 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2581 struct mempolicy *pol = mpol_dup(src->vm_policy);
2583 if (IS_ERR(pol))
2584 return PTR_ERR(pol);
2585 dst->vm_policy = pol;
2586 return 0;
2590 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2591 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2592 * with the mems_allowed returned by cpuset_mems_allowed(). This
2593 * keeps mempolicies cpuset relative after its cpuset moves. See
2594 * further kernel/cpuset.c update_nodemask().
2596 * current's mempolicy may be rebinded by the other task(the task that changes
2597 * cpuset's mems), so we needn't do rebind work for current task.
2600 /* Slow path of a mempolicy duplicate */
2601 struct mempolicy *__mpol_dup(struct mempolicy *old)
2603 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2605 if (!new)
2606 return ERR_PTR(-ENOMEM);
2608 /* task's mempolicy is protected by alloc_lock */
2609 if (old == current->mempolicy) {
2610 task_lock(current);
2611 *new = *old;
2612 task_unlock(current);
2613 } else
2614 *new = *old;
2616 if (current_cpuset_is_being_rebound()) {
2617 nodemask_t mems = cpuset_mems_allowed(current);
2618 mpol_rebind_policy(new, &mems);
2620 atomic_set(&new->refcnt, 1);
2621 return new;
2624 /* Slow path of a mempolicy comparison */
2625 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2627 if (!a || !b)
2628 return false;
2629 if (a->mode != b->mode)
2630 return false;
2631 if (a->flags != b->flags)
2632 return false;
2633 if (a->home_node != b->home_node)
2634 return false;
2635 if (mpol_store_user_nodemask(a))
2636 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2637 return false;
2639 switch (a->mode) {
2640 case MPOL_BIND:
2641 case MPOL_INTERLEAVE:
2642 case MPOL_PREFERRED:
2643 case MPOL_PREFERRED_MANY:
2644 case MPOL_WEIGHTED_INTERLEAVE:
2645 return !!nodes_equal(a->nodes, b->nodes);
2646 case MPOL_LOCAL:
2647 return true;
2648 default:
2649 BUG();
2650 return false;
2655 * Shared memory backing store policy support.
2657 * Remember policies even when nobody has shared memory mapped.
2658 * The policies are kept in Red-Black tree linked from the inode.
2659 * They are protected by the sp->lock rwlock, which should be held
2660 * for any accesses to the tree.
2664 * lookup first element intersecting start-end. Caller holds sp->lock for
2665 * reading or for writing
2667 static struct sp_node *sp_lookup(struct shared_policy *sp,
2668 pgoff_t start, pgoff_t end)
2670 struct rb_node *n = sp->root.rb_node;
2672 while (n) {
2673 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2675 if (start >= p->end)
2676 n = n->rb_right;
2677 else if (end <= p->start)
2678 n = n->rb_left;
2679 else
2680 break;
2682 if (!n)
2683 return NULL;
2684 for (;;) {
2685 struct sp_node *w = NULL;
2686 struct rb_node *prev = rb_prev(n);
2687 if (!prev)
2688 break;
2689 w = rb_entry(prev, struct sp_node, nd);
2690 if (w->end <= start)
2691 break;
2692 n = prev;
2694 return rb_entry(n, struct sp_node, nd);
2698 * Insert a new shared policy into the list. Caller holds sp->lock for
2699 * writing.
2701 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2703 struct rb_node **p = &sp->root.rb_node;
2704 struct rb_node *parent = NULL;
2705 struct sp_node *nd;
2707 while (*p) {
2708 parent = *p;
2709 nd = rb_entry(parent, struct sp_node, nd);
2710 if (new->start < nd->start)
2711 p = &(*p)->rb_left;
2712 else if (new->end > nd->end)
2713 p = &(*p)->rb_right;
2714 else
2715 BUG();
2717 rb_link_node(&new->nd, parent, p);
2718 rb_insert_color(&new->nd, &sp->root);
2721 /* Find shared policy intersecting idx */
2722 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2723 pgoff_t idx)
2725 struct mempolicy *pol = NULL;
2726 struct sp_node *sn;
2728 if (!sp->root.rb_node)
2729 return NULL;
2730 read_lock(&sp->lock);
2731 sn = sp_lookup(sp, idx, idx+1);
2732 if (sn) {
2733 mpol_get(sn->policy);
2734 pol = sn->policy;
2736 read_unlock(&sp->lock);
2737 return pol;
2740 static void sp_free(struct sp_node *n)
2742 mpol_put(n->policy);
2743 kmem_cache_free(sn_cache, n);
2747 * mpol_misplaced - check whether current folio node is valid in policy
2749 * @folio: folio to be checked
2750 * @vmf: structure describing the fault
2751 * @addr: virtual address in @vma for shared policy lookup and interleave policy
2753 * Lookup current policy node id for vma,addr and "compare to" folio's
2754 * node id. Policy determination "mimics" alloc_page_vma().
2755 * Called from fault path where we know the vma and faulting address.
2757 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2758 * policy, or a suitable node ID to allocate a replacement folio from.
2760 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2761 unsigned long addr)
2763 struct mempolicy *pol;
2764 pgoff_t ilx;
2765 struct zoneref *z;
2766 int curnid = folio_nid(folio);
2767 struct vm_area_struct *vma = vmf->vma;
2768 int thiscpu = raw_smp_processor_id();
2769 int thisnid = numa_node_id();
2770 int polnid = NUMA_NO_NODE;
2771 int ret = NUMA_NO_NODE;
2774 * Make sure ptl is held so that we don't preempt and we
2775 * have a stable smp processor id
2777 lockdep_assert_held(vmf->ptl);
2778 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2779 if (!(pol->flags & MPOL_F_MOF))
2780 goto out;
2782 switch (pol->mode) {
2783 case MPOL_INTERLEAVE:
2784 polnid = interleave_nid(pol, ilx);
2785 break;
2787 case MPOL_WEIGHTED_INTERLEAVE:
2788 polnid = weighted_interleave_nid(pol, ilx);
2789 break;
2791 case MPOL_PREFERRED:
2792 if (node_isset(curnid, pol->nodes))
2793 goto out;
2794 polnid = first_node(pol->nodes);
2795 break;
2797 case MPOL_LOCAL:
2798 polnid = numa_node_id();
2799 break;
2801 case MPOL_BIND:
2802 case MPOL_PREFERRED_MANY:
2804 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2805 * policy nodemask we don't allow numa migration to nodes
2806 * outside policy nodemask for now. This is done so that if we
2807 * want demotion to slow memory to happen, before allocating
2808 * from some DRAM node say 'x', we will end up using a
2809 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2810 * we should not promote to node 'x' from slow memory node.
2812 if (pol->flags & MPOL_F_MORON) {
2814 * Optimize placement among multiple nodes
2815 * via NUMA balancing
2817 if (node_isset(thisnid, pol->nodes))
2818 break;
2819 goto out;
2823 * use current page if in policy nodemask,
2824 * else select nearest allowed node, if any.
2825 * If no allowed nodes, use current [!misplaced].
2827 if (node_isset(curnid, pol->nodes))
2828 goto out;
2829 z = first_zones_zonelist(
2830 node_zonelist(thisnid, GFP_HIGHUSER),
2831 gfp_zone(GFP_HIGHUSER),
2832 &pol->nodes);
2833 polnid = zonelist_node_idx(z);
2834 break;
2836 default:
2837 BUG();
2840 /* Migrate the folio towards the node whose CPU is referencing it */
2841 if (pol->flags & MPOL_F_MORON) {
2842 polnid = thisnid;
2844 if (!should_numa_migrate_memory(current, folio, curnid,
2845 thiscpu))
2846 goto out;
2849 if (curnid != polnid)
2850 ret = polnid;
2851 out:
2852 mpol_cond_put(pol);
2854 return ret;
2858 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2859 * dropped after task->mempolicy is set to NULL so that any allocation done as
2860 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2861 * policy.
2863 void mpol_put_task_policy(struct task_struct *task)
2865 struct mempolicy *pol;
2867 task_lock(task);
2868 pol = task->mempolicy;
2869 task->mempolicy = NULL;
2870 task_unlock(task);
2871 mpol_put(pol);
2874 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2876 rb_erase(&n->nd, &sp->root);
2877 sp_free(n);
2880 static void sp_node_init(struct sp_node *node, unsigned long start,
2881 unsigned long end, struct mempolicy *pol)
2883 node->start = start;
2884 node->end = end;
2885 node->policy = pol;
2888 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2889 struct mempolicy *pol)
2891 struct sp_node *n;
2892 struct mempolicy *newpol;
2894 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2895 if (!n)
2896 return NULL;
2898 newpol = mpol_dup(pol);
2899 if (IS_ERR(newpol)) {
2900 kmem_cache_free(sn_cache, n);
2901 return NULL;
2903 newpol->flags |= MPOL_F_SHARED;
2904 sp_node_init(n, start, end, newpol);
2906 return n;
2909 /* Replace a policy range. */
2910 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2911 pgoff_t end, struct sp_node *new)
2913 struct sp_node *n;
2914 struct sp_node *n_new = NULL;
2915 struct mempolicy *mpol_new = NULL;
2916 int ret = 0;
2918 restart:
2919 write_lock(&sp->lock);
2920 n = sp_lookup(sp, start, end);
2921 /* Take care of old policies in the same range. */
2922 while (n && n->start < end) {
2923 struct rb_node *next = rb_next(&n->nd);
2924 if (n->start >= start) {
2925 if (n->end <= end)
2926 sp_delete(sp, n);
2927 else
2928 n->start = end;
2929 } else {
2930 /* Old policy spanning whole new range. */
2931 if (n->end > end) {
2932 if (!n_new)
2933 goto alloc_new;
2935 *mpol_new = *n->policy;
2936 atomic_set(&mpol_new->refcnt, 1);
2937 sp_node_init(n_new, end, n->end, mpol_new);
2938 n->end = start;
2939 sp_insert(sp, n_new);
2940 n_new = NULL;
2941 mpol_new = NULL;
2942 break;
2943 } else
2944 n->end = start;
2946 if (!next)
2947 break;
2948 n = rb_entry(next, struct sp_node, nd);
2950 if (new)
2951 sp_insert(sp, new);
2952 write_unlock(&sp->lock);
2953 ret = 0;
2955 err_out:
2956 if (mpol_new)
2957 mpol_put(mpol_new);
2958 if (n_new)
2959 kmem_cache_free(sn_cache, n_new);
2961 return ret;
2963 alloc_new:
2964 write_unlock(&sp->lock);
2965 ret = -ENOMEM;
2966 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2967 if (!n_new)
2968 goto err_out;
2969 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2970 if (!mpol_new)
2971 goto err_out;
2972 atomic_set(&mpol_new->refcnt, 1);
2973 goto restart;
2977 * mpol_shared_policy_init - initialize shared policy for inode
2978 * @sp: pointer to inode shared policy
2979 * @mpol: struct mempolicy to install
2981 * Install non-NULL @mpol in inode's shared policy rb-tree.
2982 * On entry, the current task has a reference on a non-NULL @mpol.
2983 * This must be released on exit.
2984 * This is called at get_inode() calls and we can use GFP_KERNEL.
2986 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2988 int ret;
2990 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2991 rwlock_init(&sp->lock);
2993 if (mpol) {
2994 struct sp_node *sn;
2995 struct mempolicy *npol;
2996 NODEMASK_SCRATCH(scratch);
2998 if (!scratch)
2999 goto put_mpol;
3001 /* contextualize the tmpfs mount point mempolicy to this file */
3002 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
3003 if (IS_ERR(npol))
3004 goto free_scratch; /* no valid nodemask intersection */
3006 task_lock(current);
3007 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
3008 task_unlock(current);
3009 if (ret)
3010 goto put_npol;
3012 /* alloc node covering entire file; adds ref to file's npol */
3013 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
3014 if (sn)
3015 sp_insert(sp, sn);
3016 put_npol:
3017 mpol_put(npol); /* drop initial ref on file's npol */
3018 free_scratch:
3019 NODEMASK_SCRATCH_FREE(scratch);
3020 put_mpol:
3021 mpol_put(mpol); /* drop our incoming ref on sb mpol */
3025 int mpol_set_shared_policy(struct shared_policy *sp,
3026 struct vm_area_struct *vma, struct mempolicy *pol)
3028 int err;
3029 struct sp_node *new = NULL;
3030 unsigned long sz = vma_pages(vma);
3032 if (pol) {
3033 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3034 if (!new)
3035 return -ENOMEM;
3037 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3038 if (err && new)
3039 sp_free(new);
3040 return err;
3043 /* Free a backing policy store on inode delete. */
3044 void mpol_free_shared_policy(struct shared_policy *sp)
3046 struct sp_node *n;
3047 struct rb_node *next;
3049 if (!sp->root.rb_node)
3050 return;
3051 write_lock(&sp->lock);
3052 next = rb_first(&sp->root);
3053 while (next) {
3054 n = rb_entry(next, struct sp_node, nd);
3055 next = rb_next(&n->nd);
3056 sp_delete(sp, n);
3058 write_unlock(&sp->lock);
3061 #ifdef CONFIG_NUMA_BALANCING
3062 static int __initdata numabalancing_override;
3064 static void __init check_numabalancing_enable(void)
3066 bool numabalancing_default = false;
3068 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3069 numabalancing_default = true;
3071 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3072 if (numabalancing_override)
3073 set_numabalancing_state(numabalancing_override == 1);
3075 if (num_online_nodes() > 1 && !numabalancing_override) {
3076 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3077 numabalancing_default ? "Enabling" : "Disabling");
3078 set_numabalancing_state(numabalancing_default);
3082 static int __init setup_numabalancing(char *str)
3084 int ret = 0;
3085 if (!str)
3086 goto out;
3088 if (!strcmp(str, "enable")) {
3089 numabalancing_override = 1;
3090 ret = 1;
3091 } else if (!strcmp(str, "disable")) {
3092 numabalancing_override = -1;
3093 ret = 1;
3095 out:
3096 if (!ret)
3097 pr_warn("Unable to parse numa_balancing=\n");
3099 return ret;
3101 __setup("numa_balancing=", setup_numabalancing);
3102 #else
3103 static inline void __init check_numabalancing_enable(void)
3106 #endif /* CONFIG_NUMA_BALANCING */
3108 void __init numa_policy_init(void)
3110 nodemask_t interleave_nodes;
3111 unsigned long largest = 0;
3112 int nid, prefer = 0;
3114 policy_cache = kmem_cache_create("numa_policy",
3115 sizeof(struct mempolicy),
3116 0, SLAB_PANIC, NULL);
3118 sn_cache = kmem_cache_create("shared_policy_node",
3119 sizeof(struct sp_node),
3120 0, SLAB_PANIC, NULL);
3122 for_each_node(nid) {
3123 preferred_node_policy[nid] = (struct mempolicy) {
3124 .refcnt = ATOMIC_INIT(1),
3125 .mode = MPOL_PREFERRED,
3126 .flags = MPOL_F_MOF | MPOL_F_MORON,
3127 .nodes = nodemask_of_node(nid),
3132 * Set interleaving policy for system init. Interleaving is only
3133 * enabled across suitably sized nodes (default is >= 16MB), or
3134 * fall back to the largest node if they're all smaller.
3136 nodes_clear(interleave_nodes);
3137 for_each_node_state(nid, N_MEMORY) {
3138 unsigned long total_pages = node_present_pages(nid);
3140 /* Preserve the largest node */
3141 if (largest < total_pages) {
3142 largest = total_pages;
3143 prefer = nid;
3146 /* Interleave this node? */
3147 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3148 node_set(nid, interleave_nodes);
3151 /* All too small, use the largest */
3152 if (unlikely(nodes_empty(interleave_nodes)))
3153 node_set(prefer, interleave_nodes);
3155 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3156 pr_err("%s: interleaving failed\n", __func__);
3158 check_numabalancing_enable();
3161 /* Reset policy of current process to default */
3162 void numa_default_policy(void)
3164 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3168 * Parse and format mempolicy from/to strings
3170 static const char * const policy_modes[] =
3172 [MPOL_DEFAULT] = "default",
3173 [MPOL_PREFERRED] = "prefer",
3174 [MPOL_BIND] = "bind",
3175 [MPOL_INTERLEAVE] = "interleave",
3176 [MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3177 [MPOL_LOCAL] = "local",
3178 [MPOL_PREFERRED_MANY] = "prefer (many)",
3181 #ifdef CONFIG_TMPFS
3183 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3184 * @str: string containing mempolicy to parse
3185 * @mpol: pointer to struct mempolicy pointer, returned on success.
3187 * Format of input:
3188 * <mode>[=<flags>][:<nodelist>]
3190 * Return: %0 on success, else %1
3192 int mpol_parse_str(char *str, struct mempolicy **mpol)
3194 struct mempolicy *new = NULL;
3195 unsigned short mode_flags;
3196 nodemask_t nodes;
3197 char *nodelist = strchr(str, ':');
3198 char *flags = strchr(str, '=');
3199 int err = 1, mode;
3201 if (flags)
3202 *flags++ = '\0'; /* terminate mode string */
3204 if (nodelist) {
3205 /* NUL-terminate mode or flags string */
3206 *nodelist++ = '\0';
3207 if (nodelist_parse(nodelist, nodes))
3208 goto out;
3209 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3210 goto out;
3211 } else
3212 nodes_clear(nodes);
3214 mode = match_string(policy_modes, MPOL_MAX, str);
3215 if (mode < 0)
3216 goto out;
3218 switch (mode) {
3219 case MPOL_PREFERRED:
3221 * Insist on a nodelist of one node only, although later
3222 * we use first_node(nodes) to grab a single node, so here
3223 * nodelist (or nodes) cannot be empty.
3225 if (nodelist) {
3226 char *rest = nodelist;
3227 while (isdigit(*rest))
3228 rest++;
3229 if (*rest)
3230 goto out;
3231 if (nodes_empty(nodes))
3232 goto out;
3234 break;
3235 case MPOL_INTERLEAVE:
3236 case MPOL_WEIGHTED_INTERLEAVE:
3238 * Default to online nodes with memory if no nodelist
3240 if (!nodelist)
3241 nodes = node_states[N_MEMORY];
3242 break;
3243 case MPOL_LOCAL:
3245 * Don't allow a nodelist; mpol_new() checks flags
3247 if (nodelist)
3248 goto out;
3249 break;
3250 case MPOL_DEFAULT:
3252 * Insist on a empty nodelist
3254 if (!nodelist)
3255 err = 0;
3256 goto out;
3257 case MPOL_PREFERRED_MANY:
3258 case MPOL_BIND:
3260 * Insist on a nodelist
3262 if (!nodelist)
3263 goto out;
3266 mode_flags = 0;
3267 if (flags) {
3269 * Currently, we only support two mutually exclusive
3270 * mode flags.
3272 if (!strcmp(flags, "static"))
3273 mode_flags |= MPOL_F_STATIC_NODES;
3274 else if (!strcmp(flags, "relative"))
3275 mode_flags |= MPOL_F_RELATIVE_NODES;
3276 else
3277 goto out;
3280 new = mpol_new(mode, mode_flags, &nodes);
3281 if (IS_ERR(new))
3282 goto out;
3285 * Save nodes for mpol_to_str() to show the tmpfs mount options
3286 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3288 if (mode != MPOL_PREFERRED) {
3289 new->nodes = nodes;
3290 } else if (nodelist) {
3291 nodes_clear(new->nodes);
3292 node_set(first_node(nodes), new->nodes);
3293 } else {
3294 new->mode = MPOL_LOCAL;
3298 * Save nodes for contextualization: this will be used to "clone"
3299 * the mempolicy in a specific context [cpuset] at a later time.
3301 new->w.user_nodemask = nodes;
3303 err = 0;
3305 out:
3306 /* Restore string for error message */
3307 if (nodelist)
3308 *--nodelist = ':';
3309 if (flags)
3310 *--flags = '=';
3311 if (!err)
3312 *mpol = new;
3313 return err;
3315 #endif /* CONFIG_TMPFS */
3318 * mpol_to_str - format a mempolicy structure for printing
3319 * @buffer: to contain formatted mempolicy string
3320 * @maxlen: length of @buffer
3321 * @pol: pointer to mempolicy to be formatted
3323 * Convert @pol into a string. If @buffer is too short, truncate the string.
3324 * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3325 * interleave", plus the longest flag flags, "relative|balancing", and to
3326 * display at least a few node ids.
3328 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3330 char *p = buffer;
3331 nodemask_t nodes = NODE_MASK_NONE;
3332 unsigned short mode = MPOL_DEFAULT;
3333 unsigned short flags = 0;
3335 if (pol &&
3336 pol != &default_policy &&
3337 !(pol >= &preferred_node_policy[0] &&
3338 pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3339 mode = pol->mode;
3340 flags = pol->flags;
3343 switch (mode) {
3344 case MPOL_DEFAULT:
3345 case MPOL_LOCAL:
3346 break;
3347 case MPOL_PREFERRED:
3348 case MPOL_PREFERRED_MANY:
3349 case MPOL_BIND:
3350 case MPOL_INTERLEAVE:
3351 case MPOL_WEIGHTED_INTERLEAVE:
3352 nodes = pol->nodes;
3353 break;
3354 default:
3355 WARN_ON_ONCE(1);
3356 snprintf(p, maxlen, "unknown");
3357 return;
3360 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3362 if (flags & MPOL_MODE_FLAGS) {
3363 p += snprintf(p, buffer + maxlen - p, "=");
3366 * Static and relative are mutually exclusive.
3368 if (flags & MPOL_F_STATIC_NODES)
3369 p += snprintf(p, buffer + maxlen - p, "static");
3370 else if (flags & MPOL_F_RELATIVE_NODES)
3371 p += snprintf(p, buffer + maxlen - p, "relative");
3373 if (flags & MPOL_F_NUMA_BALANCING) {
3374 if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3375 p += snprintf(p, buffer + maxlen - p, "|");
3376 p += snprintf(p, buffer + maxlen - p, "balancing");
3380 if (!nodes_empty(nodes))
3381 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3382 nodemask_pr_args(&nodes));
3385 #ifdef CONFIG_SYSFS
3386 struct iw_node_attr {
3387 struct kobj_attribute kobj_attr;
3388 int nid;
3391 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3392 char *buf)
3394 struct iw_node_attr *node_attr;
3395 u8 weight;
3397 node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3398 weight = get_il_weight(node_attr->nid);
3399 return sysfs_emit(buf, "%d\n", weight);
3402 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3403 const char *buf, size_t count)
3405 struct iw_node_attr *node_attr;
3406 u8 *new;
3407 u8 *old;
3408 u8 weight = 0;
3410 node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3411 if (count == 0 || sysfs_streq(buf, ""))
3412 weight = 0;
3413 else if (kstrtou8(buf, 0, &weight))
3414 return -EINVAL;
3416 new = kzalloc(nr_node_ids, GFP_KERNEL);
3417 if (!new)
3418 return -ENOMEM;
3420 mutex_lock(&iw_table_lock);
3421 old = rcu_dereference_protected(iw_table,
3422 lockdep_is_held(&iw_table_lock));
3423 if (old)
3424 memcpy(new, old, nr_node_ids);
3425 new[node_attr->nid] = weight;
3426 rcu_assign_pointer(iw_table, new);
3427 mutex_unlock(&iw_table_lock);
3428 synchronize_rcu();
3429 kfree(old);
3430 return count;
3433 static struct iw_node_attr **node_attrs;
3435 static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3436 struct kobject *parent)
3438 if (!node_attr)
3439 return;
3440 sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3441 kfree(node_attr->kobj_attr.attr.name);
3442 kfree(node_attr);
3445 static void sysfs_wi_release(struct kobject *wi_kobj)
3447 int i;
3449 for (i = 0; i < nr_node_ids; i++)
3450 sysfs_wi_node_release(node_attrs[i], wi_kobj);
3451 kobject_put(wi_kobj);
3454 static const struct kobj_type wi_ktype = {
3455 .sysfs_ops = &kobj_sysfs_ops,
3456 .release = sysfs_wi_release,
3459 static int add_weight_node(int nid, struct kobject *wi_kobj)
3461 struct iw_node_attr *node_attr;
3462 char *name;
3464 node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3465 if (!node_attr)
3466 return -ENOMEM;
3468 name = kasprintf(GFP_KERNEL, "node%d", nid);
3469 if (!name) {
3470 kfree(node_attr);
3471 return -ENOMEM;
3474 sysfs_attr_init(&node_attr->kobj_attr.attr);
3475 node_attr->kobj_attr.attr.name = name;
3476 node_attr->kobj_attr.attr.mode = 0644;
3477 node_attr->kobj_attr.show = node_show;
3478 node_attr->kobj_attr.store = node_store;
3479 node_attr->nid = nid;
3481 if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3482 kfree(node_attr->kobj_attr.attr.name);
3483 kfree(node_attr);
3484 pr_err("failed to add attribute to weighted_interleave\n");
3485 return -ENOMEM;
3488 node_attrs[nid] = node_attr;
3489 return 0;
3492 static int add_weighted_interleave_group(struct kobject *root_kobj)
3494 struct kobject *wi_kobj;
3495 int nid, err;
3497 wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3498 if (!wi_kobj)
3499 return -ENOMEM;
3501 err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3502 "weighted_interleave");
3503 if (err) {
3504 kfree(wi_kobj);
3505 return err;
3508 for_each_node_state(nid, N_POSSIBLE) {
3509 err = add_weight_node(nid, wi_kobj);
3510 if (err) {
3511 pr_err("failed to add sysfs [node%d]\n", nid);
3512 break;
3515 if (err)
3516 kobject_put(wi_kobj);
3517 return 0;
3520 static void mempolicy_kobj_release(struct kobject *kobj)
3522 u8 *old;
3524 mutex_lock(&iw_table_lock);
3525 old = rcu_dereference_protected(iw_table,
3526 lockdep_is_held(&iw_table_lock));
3527 rcu_assign_pointer(iw_table, NULL);
3528 mutex_unlock(&iw_table_lock);
3529 synchronize_rcu();
3530 kfree(old);
3531 kfree(node_attrs);
3532 kfree(kobj);
3535 static const struct kobj_type mempolicy_ktype = {
3536 .release = mempolicy_kobj_release
3539 static int __init mempolicy_sysfs_init(void)
3541 int err;
3542 static struct kobject *mempolicy_kobj;
3544 mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3545 if (!mempolicy_kobj) {
3546 err = -ENOMEM;
3547 goto err_out;
3550 node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3551 GFP_KERNEL);
3552 if (!node_attrs) {
3553 err = -ENOMEM;
3554 goto mempol_out;
3557 err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3558 "mempolicy");
3559 if (err)
3560 goto node_out;
3562 err = add_weighted_interleave_group(mempolicy_kobj);
3563 if (err) {
3564 pr_err("mempolicy sysfs structure failed to initialize\n");
3565 kobject_put(mempolicy_kobj);
3566 return err;
3569 return err;
3570 node_out:
3571 kfree(node_attrs);
3572 mempol_out:
3573 kfree(mempolicy_kobj);
3574 err_out:
3575 pr_err("failed to add mempolicy kobject to the system\n");
3576 return err;
3579 late_initcall(mempolicy_sysfs_init);
3580 #endif /* CONFIG_SYSFS */