1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
21 #include <linux/oom.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/sched/debug.h>
29 #include <linux/swap.h>
30 #include <linux/syscalls.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/cred.h>
47 #include <linux/nmi.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/oom.h>
56 static int sysctl_panic_on_oom
;
57 static int sysctl_oom_kill_allocating_task
;
58 static int sysctl_oom_dump_tasks
= 1;
61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
63 * from different domains).
65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
68 DEFINE_MUTEX(oom_lock
);
69 /* Serializes oom_score_adj and oom_score_adj_min updates */
70 DEFINE_MUTEX(oom_adj_mutex
);
72 static inline bool is_memcg_oom(struct oom_control
*oc
)
74 return oc
->memcg
!= NULL
;
79 * oom_cpuset_eligible() - check task eligibility for kill
80 * @start: task struct of which task to consider
81 * @oc: pointer to struct oom_control
83 * Task eligibility is determined by whether or not a candidate task, @tsk,
84 * shares the same mempolicy nodes as current if it is bound by such a policy
85 * and whether or not it has the same set of allowed cpuset nodes.
87 * This function is assuming oom-killer context and 'current' has triggered
90 static bool oom_cpuset_eligible(struct task_struct
*start
,
91 struct oom_control
*oc
)
93 struct task_struct
*tsk
;
95 const nodemask_t
*mask
= oc
->nodemask
;
98 for_each_thread(start
, tsk
) {
101 * If this is a mempolicy constrained oom, tsk's
102 * cpuset is irrelevant. Only return true if its
103 * mempolicy intersects current, otherwise it may be
106 ret
= mempolicy_in_oom_domain(tsk
, mask
);
109 * This is not a mempolicy constrained oom, so only
110 * check the mems of tsk's cpuset.
112 ret
= cpuset_mems_allowed_intersects(current
, tsk
);
122 static bool oom_cpuset_eligible(struct task_struct
*tsk
, struct oom_control
*oc
)
126 #endif /* CONFIG_NUMA */
129 * The process p may have detached its own ->mm while exiting or through
130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
131 * pointer. Return p, or any of its subthreads with a valid ->mm, with
134 struct task_struct
*find_lock_task_mm(struct task_struct
*p
)
136 struct task_struct
*t
;
140 for_each_thread(p
, t
) {
154 * order == -1 means the oom kill is required by sysrq, otherwise only
155 * for display purposes.
157 static inline bool is_sysrq_oom(struct oom_control
*oc
)
159 return oc
->order
== -1;
162 /* return true if the task is not adequate as candidate victim task. */
163 static bool oom_unkillable_task(struct task_struct
*p
)
165 if (is_global_init(p
))
167 if (p
->flags
& PF_KTHREAD
)
173 * Check whether unreclaimable slab amount is greater than
174 * all user memory(LRU pages).
175 * dump_unreclaimable_slab() could help in the case that
176 * oom due to too much unreclaimable slab used by kernel.
178 static bool should_dump_unreclaim_slab(void)
180 unsigned long nr_lru
;
182 nr_lru
= global_node_page_state(NR_ACTIVE_ANON
) +
183 global_node_page_state(NR_INACTIVE_ANON
) +
184 global_node_page_state(NR_ACTIVE_FILE
) +
185 global_node_page_state(NR_INACTIVE_FILE
) +
186 global_node_page_state(NR_ISOLATED_ANON
) +
187 global_node_page_state(NR_ISOLATED_FILE
) +
188 global_node_page_state(NR_UNEVICTABLE
);
190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B
) > nr_lru
);
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
198 * The heuristic for determining which task to kill is made to be as simple and
199 * predictable as possible. The goal is to return the highest value for the
200 * task consuming the most memory to avoid subsequent oom failures.
202 long oom_badness(struct task_struct
*p
, unsigned long totalpages
)
207 if (oom_unkillable_task(p
))
210 p
= find_lock_task_mm(p
);
215 * Do not even consider tasks which are explicitly marked oom
216 * unkillable or have been already oom reaped or the are in
217 * the middle of vfork
219 adj
= (long)p
->signal
->oom_score_adj
;
220 if (adj
== OOM_SCORE_ADJ_MIN
||
221 test_bit(MMF_OOM_SKIP
, &p
->mm
->flags
) ||
228 * The baseline for the badness score is the proportion of RAM that each
229 * task's rss, pagetable and swap space use.
231 points
= get_mm_rss(p
->mm
) + get_mm_counter(p
->mm
, MM_SWAPENTS
) +
232 mm_pgtables_bytes(p
->mm
) / PAGE_SIZE
;
235 /* Normalize to oom_score_adj units */
236 adj
*= totalpages
/ 1000;
242 static const char * const oom_constraint_text
[] = {
243 [CONSTRAINT_NONE
] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET
] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY
] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG
] = "CONSTRAINT_MEMCG",
250 * Determine the type of allocation constraint.
252 static enum oom_constraint
constrained_alloc(struct oom_control
*oc
)
256 enum zone_type highest_zoneidx
= gfp_zone(oc
->gfp_mask
);
257 bool cpuset_limited
= false;
260 if (is_memcg_oom(oc
)) {
261 oc
->totalpages
= mem_cgroup_get_max(oc
->memcg
) ?: 1;
262 return CONSTRAINT_MEMCG
;
265 /* Default to all available memory */
266 oc
->totalpages
= totalram_pages() + total_swap_pages
;
268 if (!IS_ENABLED(CONFIG_NUMA
))
269 return CONSTRAINT_NONE
;
272 return CONSTRAINT_NONE
;
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
278 if (oc
->gfp_mask
& __GFP_THISNODE
)
279 return CONSTRAINT_NONE
;
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
287 !nodes_subset(node_states
[N_MEMORY
], *oc
->nodemask
)) {
288 oc
->totalpages
= total_swap_pages
;
289 for_each_node_mask(nid
, *oc
->nodemask
)
290 oc
->totalpages
+= node_present_pages(nid
);
291 return CONSTRAINT_MEMORY_POLICY
;
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone
, z
, oc
->zonelist
,
296 highest_zoneidx
, oc
->nodemask
)
297 if (!cpuset_zone_allowed(zone
, oc
->gfp_mask
))
298 cpuset_limited
= true;
300 if (cpuset_limited
) {
301 oc
->totalpages
= total_swap_pages
;
302 for_each_node_mask(nid
, cpuset_current_mems_allowed
)
303 oc
->totalpages
+= node_present_pages(nid
);
304 return CONSTRAINT_CPUSET
;
306 return CONSTRAINT_NONE
;
309 static int oom_evaluate_task(struct task_struct
*task
, void *arg
)
311 struct oom_control
*oc
= arg
;
314 if (oom_unkillable_task(task
))
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc
) && !oom_cpuset_eligible(task
, oc
))
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
327 if (!is_sysrq_oom(oc
) && tsk_is_oom_victim(task
)) {
328 if (test_bit(MMF_OOM_SKIP
, &task
->signal
->oom_mm
->flags
))
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
337 if (oom_task_origin(task
)) {
342 points
= oom_badness(task
, oc
->totalpages
);
343 if (points
== LONG_MIN
|| points
< oc
->chosen_points
)
348 put_task_struct(oc
->chosen
);
349 get_task_struct(task
);
351 oc
->chosen_points
= points
;
356 put_task_struct(oc
->chosen
);
357 oc
->chosen
= (void *)-1UL;
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
365 static void select_bad_process(struct oom_control
*oc
)
367 oc
->chosen_points
= LONG_MIN
;
369 if (is_memcg_oom(oc
))
370 mem_cgroup_scan_tasks(oc
->memcg
, oom_evaluate_task
, oc
);
372 struct task_struct
*p
;
376 if (oom_evaluate_task(p
, oc
))
382 static int dump_task(struct task_struct
*p
, void *arg
)
384 struct oom_control
*oc
= arg
;
385 struct task_struct
*task
;
387 if (oom_unkillable_task(p
))
390 /* p may not have freeable memory in nodemask */
391 if (!is_memcg_oom(oc
) && !oom_cpuset_eligible(p
, oc
))
394 task
= find_lock_task_mm(p
);
397 * All of p's threads have already detached their mm's. There's
398 * no need to report them; they can't be oom killed anyway.
403 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
404 task
->pid
, from_kuid(&init_user_ns
, task_uid(task
)),
405 task
->tgid
, task
->mm
->total_vm
, get_mm_rss(task
->mm
),
406 get_mm_counter(task
->mm
, MM_ANONPAGES
), get_mm_counter(task
->mm
, MM_FILEPAGES
),
407 get_mm_counter(task
->mm
, MM_SHMEMPAGES
), mm_pgtables_bytes(task
->mm
),
408 get_mm_counter(task
->mm
, MM_SWAPENTS
),
409 task
->signal
->oom_score_adj
, task
->comm
);
416 * dump_tasks - dump current memory state of all system tasks
417 * @oc: pointer to struct oom_control
419 * Dumps the current memory state of all eligible tasks. Tasks not in the same
420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
422 * State information includes task's pid, uid, tgid, vm size, rss,
423 * pgtables_bytes, swapents, oom_score_adj value, and name.
425 static void dump_tasks(struct oom_control
*oc
)
427 pr_info("Tasks state (memory values in pages):\n");
428 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
430 if (is_memcg_oom(oc
))
431 mem_cgroup_scan_tasks(oc
->memcg
, dump_task
, oc
);
433 struct task_struct
*p
;
437 for_each_process(p
) {
438 /* Avoid potential softlockup warning */
439 if ((++i
& 1023) == 0)
440 touch_softlockup_watchdog();
447 static void dump_oom_victim(struct oom_control
*oc
, struct task_struct
*victim
)
449 /* one line summary of the oom killer context. */
450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 oom_constraint_text
[oc
->constraint
],
452 nodemask_pr_args(oc
->nodemask
));
453 cpuset_print_current_mems_allowed();
454 mem_cgroup_print_oom_context(oc
->memcg
, victim
);
455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim
->comm
, victim
->pid
,
456 from_kuid(&init_user_ns
, task_uid(victim
)));
459 static void dump_header(struct oom_control
*oc
)
461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 current
->comm
, oc
->gfp_mask
, &oc
->gfp_mask
, oc
->order
,
463 current
->signal
->oom_score_adj
);
464 if (!IS_ENABLED(CONFIG_COMPACTION
) && oc
->order
)
465 pr_warn("COMPACTION is disabled!!!\n");
468 if (is_memcg_oom(oc
))
469 mem_cgroup_print_oom_meminfo(oc
->memcg
);
471 __show_mem(SHOW_MEM_FILTER_NODES
, oc
->nodemask
, gfp_zone(oc
->gfp_mask
));
472 if (should_dump_unreclaim_slab())
473 dump_unreclaimable_slab();
475 if (sysctl_oom_dump_tasks
)
480 * Number of OOM victims in flight
482 static atomic_t oom_victims
= ATOMIC_INIT(0);
483 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait
);
485 static bool oom_killer_disabled __read_mostly
;
488 * task->mm can be NULL if the task is the exited group leader. So to
489 * determine whether the task is using a particular mm, we examine all the
490 * task's threads: if one of those is using this mm then this task was also
493 bool process_shares_mm(struct task_struct
*p
, struct mm_struct
*mm
)
495 struct task_struct
*t
;
497 for_each_thread(p
, t
) {
498 struct mm_struct
*t_mm
= READ_ONCE(t
->mm
);
507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508 * victim (if that is possible) to help the OOM killer to move on.
510 static struct task_struct
*oom_reaper_th
;
511 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait
);
512 static struct task_struct
*oom_reaper_list
;
513 static DEFINE_SPINLOCK(oom_reaper_lock
);
515 static bool __oom_reap_task_mm(struct mm_struct
*mm
)
517 struct vm_area_struct
*vma
;
519 VMA_ITERATOR(vmi
, mm
, 0);
522 * Tell all users of get_user/copy_from_user etc... that the content
523 * is no longer stable. No barriers really needed because unmapping
524 * should imply barriers already and the reader would hit a page fault
525 * if it stumbled over a reaped memory.
527 set_bit(MMF_UNSTABLE
, &mm
->flags
);
529 for_each_vma(vmi
, vma
) {
530 if (vma
->vm_flags
& (VM_HUGETLB
|VM_PFNMAP
))
534 * Only anonymous pages have a good chance to be dropped
535 * without additional steps which we cannot afford as we
538 * We do not even care about fs backed pages because all
539 * which are reclaimable have already been reclaimed and
540 * we do not want to block exit_mmap by keeping mm ref
541 * count elevated without a good reason.
543 if (vma_is_anonymous(vma
) || !(vma
->vm_flags
& VM_SHARED
)) {
544 struct mmu_notifier_range range
;
545 struct mmu_gather tlb
;
547 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0,
550 tlb_gather_mmu(&tlb
, mm
);
551 if (mmu_notifier_invalidate_range_start_nonblock(&range
)) {
552 tlb_finish_mmu(&tlb
);
556 unmap_page_range(&tlb
, vma
, range
.start
, range
.end
, NULL
);
557 mmu_notifier_invalidate_range_end(&range
);
558 tlb_finish_mmu(&tlb
);
566 * Reaps the address space of the give task.
568 * Returns true on success and false if none or part of the address space
569 * has been reclaimed and the caller should retry later.
571 static bool oom_reap_task_mm(struct task_struct
*tsk
, struct mm_struct
*mm
)
575 if (!mmap_read_trylock(mm
)) {
576 trace_skip_task_reaping(tsk
->pid
);
581 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
582 * work on the mm anymore. The check for MMF_OOM_SKIP must run
583 * under mmap_lock for reading because it serializes against the
584 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
586 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
)) {
587 trace_skip_task_reaping(tsk
->pid
);
591 trace_start_task_reaping(tsk
->pid
);
593 /* failed to reap part of the address space. Try again later */
594 ret
= __oom_reap_task_mm(mm
);
598 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
599 task_pid_nr(tsk
), tsk
->comm
,
600 K(get_mm_counter(mm
, MM_ANONPAGES
)),
601 K(get_mm_counter(mm
, MM_FILEPAGES
)),
602 K(get_mm_counter(mm
, MM_SHMEMPAGES
)));
604 trace_finish_task_reaping(tsk
->pid
);
606 mmap_read_unlock(mm
);
611 #define MAX_OOM_REAP_RETRIES 10
612 static void oom_reap_task(struct task_struct
*tsk
)
615 struct mm_struct
*mm
= tsk
->signal
->oom_mm
;
617 /* Retry the mmap_read_trylock(mm) a few times */
618 while (attempts
++ < MAX_OOM_REAP_RETRIES
&& !oom_reap_task_mm(tsk
, mm
))
619 schedule_timeout_idle(HZ
/10);
621 if (attempts
<= MAX_OOM_REAP_RETRIES
||
622 test_bit(MMF_OOM_SKIP
, &mm
->flags
))
625 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
626 task_pid_nr(tsk
), tsk
->comm
);
627 sched_show_task(tsk
);
628 debug_show_all_locks();
631 tsk
->oom_reaper_list
= NULL
;
634 * Hide this mm from OOM killer because it has been either reaped or
635 * somebody can't call mmap_write_unlock(mm).
637 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
639 /* Drop a reference taken by queue_oom_reaper */
640 put_task_struct(tsk
);
643 static int oom_reaper(void *unused
)
648 struct task_struct
*tsk
= NULL
;
650 wait_event_freezable(oom_reaper_wait
, oom_reaper_list
!= NULL
);
651 spin_lock_irq(&oom_reaper_lock
);
652 if (oom_reaper_list
!= NULL
) {
653 tsk
= oom_reaper_list
;
654 oom_reaper_list
= tsk
->oom_reaper_list
;
656 spin_unlock_irq(&oom_reaper_lock
);
665 static void wake_oom_reaper(struct timer_list
*timer
)
667 struct task_struct
*tsk
= container_of(timer
, struct task_struct
,
669 struct mm_struct
*mm
= tsk
->signal
->oom_mm
;
672 /* The victim managed to terminate on its own - see exit_mmap */
673 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
)) {
674 put_task_struct(tsk
);
678 spin_lock_irqsave(&oom_reaper_lock
, flags
);
679 tsk
->oom_reaper_list
= oom_reaper_list
;
680 oom_reaper_list
= tsk
;
681 spin_unlock_irqrestore(&oom_reaper_lock
, flags
);
682 trace_wake_reaper(tsk
->pid
);
683 wake_up(&oom_reaper_wait
);
687 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
688 * The timers timeout is arbitrary... the longer it is, the longer the worst
689 * case scenario for the OOM can take. If it is too small, the oom_reaper can
690 * get in the way and release resources needed by the process exit path.
691 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
692 * before the exit path is able to wake the futex waiters.
694 #define OOM_REAPER_DELAY (2*HZ)
695 static void queue_oom_reaper(struct task_struct
*tsk
)
697 /* mm is already queued? */
698 if (test_and_set_bit(MMF_OOM_REAP_QUEUED
, &tsk
->signal
->oom_mm
->flags
))
701 get_task_struct(tsk
);
702 timer_setup(&tsk
->oom_reaper_timer
, wake_oom_reaper
, 0);
703 tsk
->oom_reaper_timer
.expires
= jiffies
+ OOM_REAPER_DELAY
;
704 add_timer(&tsk
->oom_reaper_timer
);
708 static const struct ctl_table vm_oom_kill_table
[] = {
710 .procname
= "panic_on_oom",
711 .data
= &sysctl_panic_on_oom
,
712 .maxlen
= sizeof(sysctl_panic_on_oom
),
714 .proc_handler
= proc_dointvec_minmax
,
715 .extra1
= SYSCTL_ZERO
,
716 .extra2
= SYSCTL_TWO
,
719 .procname
= "oom_kill_allocating_task",
720 .data
= &sysctl_oom_kill_allocating_task
,
721 .maxlen
= sizeof(sysctl_oom_kill_allocating_task
),
723 .proc_handler
= proc_dointvec
,
726 .procname
= "oom_dump_tasks",
727 .data
= &sysctl_oom_dump_tasks
,
728 .maxlen
= sizeof(sysctl_oom_dump_tasks
),
730 .proc_handler
= proc_dointvec
,
735 static int __init
oom_init(void)
737 oom_reaper_th
= kthread_run(oom_reaper
, NULL
, "oom_reaper");
739 register_sysctl_init("vm", vm_oom_kill_table
);
743 subsys_initcall(oom_init
)
745 static inline void queue_oom_reaper(struct task_struct
*tsk
)
748 #endif /* CONFIG_MMU */
751 * mark_oom_victim - mark the given task as OOM victim
754 * Has to be called with oom_lock held and never after
755 * oom has been disabled already.
757 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
758 * under task_lock or operate on the current).
760 static void mark_oom_victim(struct task_struct
*tsk
)
762 const struct cred
*cred
;
763 struct mm_struct
*mm
= tsk
->mm
;
765 WARN_ON(oom_killer_disabled
);
766 /* OOM killer might race with memcg OOM */
767 if (test_and_set_tsk_thread_flag(tsk
, TIF_MEMDIE
))
770 /* oom_mm is bound to the signal struct life time. */
771 if (!cmpxchg(&tsk
->signal
->oom_mm
, NULL
, mm
))
772 mmgrab(tsk
->signal
->oom_mm
);
775 * Make sure that the task is woken up from uninterruptible sleep
776 * if it is frozen because OOM killer wouldn't be able to free
777 * any memory and livelock. freezing_slow_path will tell the freezer
778 * that TIF_MEMDIE tasks should be ignored.
781 atomic_inc(&oom_victims
);
782 cred
= get_task_cred(tsk
);
783 trace_mark_victim(tsk
, cred
->uid
.val
);
788 * exit_oom_victim - note the exit of an OOM victim
790 void exit_oom_victim(void)
792 clear_thread_flag(TIF_MEMDIE
);
794 if (!atomic_dec_return(&oom_victims
))
795 wake_up_all(&oom_victims_wait
);
799 * oom_killer_enable - enable OOM killer
801 void oom_killer_enable(void)
803 oom_killer_disabled
= false;
804 pr_info("OOM killer enabled.\n");
808 * oom_killer_disable - disable OOM killer
809 * @timeout: maximum timeout to wait for oom victims in jiffies
811 * Forces all page allocations to fail rather than trigger OOM killer.
812 * Will block and wait until all OOM victims are killed or the given
815 * The function cannot be called when there are runnable user tasks because
816 * the userspace would see unexpected allocation failures as a result. Any
817 * new usage of this function should be consulted with MM people.
819 * Returns true if successful and false if the OOM killer cannot be
822 bool oom_killer_disable(signed long timeout
)
827 * Make sure to not race with an ongoing OOM killer. Check that the
828 * current is not killed (possibly due to sharing the victim's memory).
830 if (mutex_lock_killable(&oom_lock
))
832 oom_killer_disabled
= true;
833 mutex_unlock(&oom_lock
);
835 ret
= wait_event_interruptible_timeout(oom_victims_wait
,
836 !atomic_read(&oom_victims
), timeout
);
841 pr_info("OOM killer disabled.\n");
846 static inline bool __task_will_free_mem(struct task_struct
*task
)
848 struct signal_struct
*sig
= task
->signal
;
851 * A coredumping process may sleep for an extended period in
852 * coredump_task_exit(), so the oom killer cannot assume that
853 * the process will promptly exit and release memory.
858 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
861 if (thread_group_empty(task
) && (task
->flags
& PF_EXITING
))
868 * Checks whether the given task is dying or exiting and likely to
869 * release its address space. This means that all threads and processes
870 * sharing the same mm have to be killed or exiting.
871 * Caller has to make sure that task->mm is stable (hold task_lock or
872 * it operates on the current).
874 static bool task_will_free_mem(struct task_struct
*task
)
876 struct mm_struct
*mm
= task
->mm
;
877 struct task_struct
*p
;
881 * Skip tasks without mm because it might have passed its exit_mm and
882 * exit_oom_victim. oom_reaper could have rescued that but do not rely
883 * on that for now. We can consider find_lock_task_mm in future.
888 if (!__task_will_free_mem(task
))
892 * This task has already been drained by the oom reaper so there are
893 * only small chances it will free some more
895 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
))
898 if (atomic_read(&mm
->mm_users
) <= 1)
902 * Make sure that all tasks which share the mm with the given tasks
903 * are dying as well to make sure that a) nobody pins its mm and
904 * b) the task is also reapable by the oom reaper.
907 for_each_process(p
) {
908 if (!process_shares_mm(p
, mm
))
910 if (same_thread_group(task
, p
))
912 ret
= __task_will_free_mem(p
);
921 static void __oom_kill_process(struct task_struct
*victim
, const char *message
)
923 struct task_struct
*p
;
924 struct mm_struct
*mm
;
925 bool can_oom_reap
= true;
927 p
= find_lock_task_mm(victim
);
929 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
930 message
, task_pid_nr(victim
), victim
->comm
);
931 put_task_struct(victim
);
933 } else if (victim
!= p
) {
935 put_task_struct(victim
);
939 /* Get a reference to safely compare mm after task_unlock(victim) */
943 /* Raise event before sending signal: task reaper must see this */
944 count_vm_event(OOM_KILL
);
945 memcg_memory_event_mm(mm
, MEMCG_OOM_KILL
);
948 * We should send SIGKILL before granting access to memory reserves
949 * in order to prevent the OOM victim from depleting the memory
950 * reserves from the user space under its control.
952 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, victim
, PIDTYPE_TGID
);
953 mark_oom_victim(victim
);
954 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
955 message
, task_pid_nr(victim
), victim
->comm
, K(mm
->total_vm
),
956 K(get_mm_counter(mm
, MM_ANONPAGES
)),
957 K(get_mm_counter(mm
, MM_FILEPAGES
)),
958 K(get_mm_counter(mm
, MM_SHMEMPAGES
)),
959 from_kuid(&init_user_ns
, task_uid(victim
)),
960 mm_pgtables_bytes(mm
) >> 10, victim
->signal
->oom_score_adj
);
964 * Kill all user processes sharing victim->mm in other thread groups, if
965 * any. They don't get access to memory reserves, though, to avoid
966 * depletion of all memory. This prevents mm->mmap_lock livelock when an
967 * oom killed thread cannot exit because it requires the semaphore and
968 * its contended by another thread trying to allocate memory itself.
969 * That thread will now get access to memory reserves since it has a
970 * pending fatal signal.
973 for_each_process(p
) {
974 if (!process_shares_mm(p
, mm
))
976 if (same_thread_group(p
, victim
))
978 if (is_global_init(p
)) {
979 can_oom_reap
= false;
980 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
981 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
982 task_pid_nr(victim
), victim
->comm
,
983 task_pid_nr(p
), p
->comm
);
987 * No kthread_use_mm() user needs to read from the userspace so
988 * we are ok to reap it.
990 if (unlikely(p
->flags
& PF_KTHREAD
))
992 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, p
, PIDTYPE_TGID
);
997 queue_oom_reaper(victim
);
1000 put_task_struct(victim
);
1004 * Kill provided task unless it's secured by setting
1005 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1007 static int oom_kill_memcg_member(struct task_struct
*task
, void *message
)
1009 if (task
->signal
->oom_score_adj
!= OOM_SCORE_ADJ_MIN
&&
1010 !is_global_init(task
)) {
1011 get_task_struct(task
);
1012 __oom_kill_process(task
, message
);
1017 static void oom_kill_process(struct oom_control
*oc
, const char *message
)
1019 struct task_struct
*victim
= oc
->chosen
;
1020 struct mem_cgroup
*oom_group
;
1021 static DEFINE_RATELIMIT_STATE(oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1022 DEFAULT_RATELIMIT_BURST
);
1025 * If the task is already exiting, don't alarm the sysadmin or kill
1026 * its children or threads, just give it access to memory reserves
1027 * so it can die quickly
1030 if (task_will_free_mem(victim
)) {
1031 mark_oom_victim(victim
);
1032 queue_oom_reaper(victim
);
1033 task_unlock(victim
);
1034 put_task_struct(victim
);
1037 task_unlock(victim
);
1039 if (__ratelimit(&oom_rs
)) {
1041 dump_oom_victim(oc
, victim
);
1045 * Do we need to kill the entire memory cgroup?
1046 * Or even one of the ancestor memory cgroups?
1047 * Check this out before killing the victim task.
1049 oom_group
= mem_cgroup_get_oom_group(victim
, oc
->memcg
);
1051 __oom_kill_process(victim
, message
);
1054 * If necessary, kill all tasks in the selected memory cgroup.
1057 memcg_memory_event(oom_group
, MEMCG_OOM_GROUP_KILL
);
1058 mem_cgroup_print_oom_group(oom_group
);
1059 mem_cgroup_scan_tasks(oom_group
, oom_kill_memcg_member
,
1061 mem_cgroup_put(oom_group
);
1066 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1068 static void check_panic_on_oom(struct oom_control
*oc
)
1070 if (likely(!sysctl_panic_on_oom
))
1072 if (sysctl_panic_on_oom
!= 2) {
1074 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1075 * does not panic for cpuset, mempolicy, or memcg allocation
1078 if (oc
->constraint
!= CONSTRAINT_NONE
)
1081 /* Do not panic for oom kills triggered by sysrq */
1082 if (is_sysrq_oom(oc
))
1085 panic("Out of memory: %s panic_on_oom is enabled\n",
1086 sysctl_panic_on_oom
== 2 ? "compulsory" : "system-wide");
1089 static BLOCKING_NOTIFIER_HEAD(oom_notify_list
);
1091 int register_oom_notifier(struct notifier_block
*nb
)
1093 return blocking_notifier_chain_register(&oom_notify_list
, nb
);
1095 EXPORT_SYMBOL_GPL(register_oom_notifier
);
1097 int unregister_oom_notifier(struct notifier_block
*nb
)
1099 return blocking_notifier_chain_unregister(&oom_notify_list
, nb
);
1101 EXPORT_SYMBOL_GPL(unregister_oom_notifier
);
1104 * out_of_memory - kill the "best" process when we run out of memory
1105 * @oc: pointer to struct oom_control
1107 * If we run out of memory, we have the choice between either
1108 * killing a random task (bad), letting the system crash (worse)
1109 * OR try to be smart about which process to kill. Note that we
1110 * don't have to be perfect here, we just have to be good.
1112 bool out_of_memory(struct oom_control
*oc
)
1114 unsigned long freed
= 0;
1116 if (oom_killer_disabled
)
1119 if (!is_memcg_oom(oc
)) {
1120 blocking_notifier_call_chain(&oom_notify_list
, 0, &freed
);
1121 if (freed
> 0 && !is_sysrq_oom(oc
))
1122 /* Got some memory back in the last second. */
1127 * If current has a pending SIGKILL or is exiting, then automatically
1128 * select it. The goal is to allow it to allocate so that it may
1129 * quickly exit and free its memory.
1131 if (task_will_free_mem(current
)) {
1132 mark_oom_victim(current
);
1133 queue_oom_reaper(current
);
1138 * The OOM killer does not compensate for IO-less reclaim.
1139 * But mem_cgroup_oom() has to invoke the OOM killer even
1140 * if it is a GFP_NOFS allocation.
1142 if (!(oc
->gfp_mask
& __GFP_FS
) && !is_memcg_oom(oc
))
1146 * Check if there were limitations on the allocation (only relevant for
1147 * NUMA and memcg) that may require different handling.
1149 oc
->constraint
= constrained_alloc(oc
);
1150 if (oc
->constraint
!= CONSTRAINT_MEMORY_POLICY
)
1151 oc
->nodemask
= NULL
;
1152 check_panic_on_oom(oc
);
1154 if (!is_memcg_oom(oc
) && sysctl_oom_kill_allocating_task
&&
1155 current
->mm
&& !oom_unkillable_task(current
) &&
1156 oom_cpuset_eligible(current
, oc
) &&
1157 current
->signal
->oom_score_adj
!= OOM_SCORE_ADJ_MIN
) {
1158 get_task_struct(current
);
1159 oc
->chosen
= current
;
1160 oom_kill_process(oc
, "Out of memory (oom_kill_allocating_task)");
1164 select_bad_process(oc
);
1165 /* Found nothing?!?! */
1168 pr_warn("Out of memory and no killable processes...\n");
1170 * If we got here due to an actual allocation at the
1171 * system level, we cannot survive this and will enter
1172 * an endless loop in the allocator. Bail out now.
1174 if (!is_sysrq_oom(oc
) && !is_memcg_oom(oc
))
1175 panic("System is deadlocked on memory\n");
1177 if (oc
->chosen
&& oc
->chosen
!= (void *)-1UL)
1178 oom_kill_process(oc
, !is_memcg_oom(oc
) ? "Out of memory" :
1179 "Memory cgroup out of memory");
1180 return !!oc
->chosen
;
1184 * The pagefault handler calls here because some allocation has failed. We have
1185 * to take care of the memcg OOM here because this is the only safe context without
1186 * any locks held but let the oom killer triggered from the allocation context care
1187 * about the global OOM.
1189 void pagefault_out_of_memory(void)
1191 static DEFINE_RATELIMIT_STATE(pfoom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1192 DEFAULT_RATELIMIT_BURST
);
1194 if (mem_cgroup_oom_synchronize(true))
1197 if (fatal_signal_pending(current
))
1200 if (__ratelimit(&pfoom_rs
))
1201 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1204 SYSCALL_DEFINE2(process_mrelease
, int, pidfd
, unsigned int, flags
)
1207 struct mm_struct
*mm
= NULL
;
1208 struct task_struct
*task
;
1209 struct task_struct
*p
;
1210 unsigned int f_flags
;
1217 task
= pidfd_get_task(pidfd
, &f_flags
);
1219 return PTR_ERR(task
);
1222 * Make sure to choose a thread which still has a reference to mm
1223 * during the group exit
1225 p
= find_lock_task_mm(task
);
1234 if (task_will_free_mem(p
))
1237 /* Error only if the work has not been done already */
1238 if (!test_bit(MMF_OOM_SKIP
, &mm
->flags
))
1246 if (mmap_read_lock_killable(mm
)) {
1251 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1252 * possible change in exit_mmap is seen
1254 if (!test_bit(MMF_OOM_SKIP
, &mm
->flags
) && !__oom_reap_task_mm(mm
))
1256 mmap_read_unlock(mm
);
1261 put_task_struct(task
);
1265 #endif /* CONFIG_MMU */