Linux 6.14-rc1
[linux-stable.git] / mm / oom_kill.c
blob1cf121ad7085c740b0bc91eaacb48b037f9c1502
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/sched/debug.h>
29 #include <linux/swap.h>
30 #include <linux/syscalls.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/cred.h>
47 #include <linux/nmi.h>
49 #include <asm/tlb.h>
50 #include "internal.h"
51 #include "slab.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/oom.h>
56 static int sysctl_panic_on_oom;
57 static int sysctl_oom_kill_allocating_task;
58 static int sysctl_oom_dump_tasks = 1;
61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
63 * from different domains).
65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
66 * and mark_oom_victim
68 DEFINE_MUTEX(oom_lock);
69 /* Serializes oom_score_adj and oom_score_adj_min updates */
70 DEFINE_MUTEX(oom_adj_mutex);
72 static inline bool is_memcg_oom(struct oom_control *oc)
74 return oc->memcg != NULL;
77 #ifdef CONFIG_NUMA
78 /**
79 * oom_cpuset_eligible() - check task eligibility for kill
80 * @start: task struct of which task to consider
81 * @oc: pointer to struct oom_control
83 * Task eligibility is determined by whether or not a candidate task, @tsk,
84 * shares the same mempolicy nodes as current if it is bound by such a policy
85 * and whether or not it has the same set of allowed cpuset nodes.
87 * This function is assuming oom-killer context and 'current' has triggered
88 * the oom-killer.
90 static bool oom_cpuset_eligible(struct task_struct *start,
91 struct oom_control *oc)
93 struct task_struct *tsk;
94 bool ret = false;
95 const nodemask_t *mask = oc->nodemask;
97 rcu_read_lock();
98 for_each_thread(start, tsk) {
99 if (mask) {
101 * If this is a mempolicy constrained oom, tsk's
102 * cpuset is irrelevant. Only return true if its
103 * mempolicy intersects current, otherwise it may be
104 * needlessly killed.
106 ret = mempolicy_in_oom_domain(tsk, mask);
107 } else {
109 * This is not a mempolicy constrained oom, so only
110 * check the mems of tsk's cpuset.
112 ret = cpuset_mems_allowed_intersects(current, tsk);
114 if (ret)
115 break;
117 rcu_read_unlock();
119 return ret;
121 #else
122 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
124 return true;
126 #endif /* CONFIG_NUMA */
129 * The process p may have detached its own ->mm while exiting or through
130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
131 * pointer. Return p, or any of its subthreads with a valid ->mm, with
132 * task_lock() held.
134 struct task_struct *find_lock_task_mm(struct task_struct *p)
136 struct task_struct *t;
138 rcu_read_lock();
140 for_each_thread(p, t) {
141 task_lock(t);
142 if (likely(t->mm))
143 goto found;
144 task_unlock(t);
146 t = NULL;
147 found:
148 rcu_read_unlock();
150 return t;
154 * order == -1 means the oom kill is required by sysrq, otherwise only
155 * for display purposes.
157 static inline bool is_sysrq_oom(struct oom_control *oc)
159 return oc->order == -1;
162 /* return true if the task is not adequate as candidate victim task. */
163 static bool oom_unkillable_task(struct task_struct *p)
165 if (is_global_init(p))
166 return true;
167 if (p->flags & PF_KTHREAD)
168 return true;
169 return false;
173 * Check whether unreclaimable slab amount is greater than
174 * all user memory(LRU pages).
175 * dump_unreclaimable_slab() could help in the case that
176 * oom due to too much unreclaimable slab used by kernel.
178 static bool should_dump_unreclaim_slab(void)
180 unsigned long nr_lru;
182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 global_node_page_state(NR_INACTIVE_ANON) +
184 global_node_page_state(NR_ACTIVE_FILE) +
185 global_node_page_state(NR_INACTIVE_FILE) +
186 global_node_page_state(NR_ISOLATED_ANON) +
187 global_node_page_state(NR_ISOLATED_FILE) +
188 global_node_page_state(NR_UNEVICTABLE);
190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
198 * The heuristic for determining which task to kill is made to be as simple and
199 * predictable as possible. The goal is to return the highest value for the
200 * task consuming the most memory to avoid subsequent oom failures.
202 long oom_badness(struct task_struct *p, unsigned long totalpages)
204 long points;
205 long adj;
207 if (oom_unkillable_task(p))
208 return LONG_MIN;
210 p = find_lock_task_mm(p);
211 if (!p)
212 return LONG_MIN;
215 * Do not even consider tasks which are explicitly marked oom
216 * unkillable or have been already oom reaped or the are in
217 * the middle of vfork
219 adj = (long)p->signal->oom_score_adj;
220 if (adj == OOM_SCORE_ADJ_MIN ||
221 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
222 in_vfork(p)) {
223 task_unlock(p);
224 return LONG_MIN;
228 * The baseline for the badness score is the proportion of RAM that each
229 * task's rss, pagetable and swap space use.
231 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233 task_unlock(p);
235 /* Normalize to oom_score_adj units */
236 adj *= totalpages / 1000;
237 points += adj;
239 return points;
242 static const char * const oom_constraint_text[] = {
243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
250 * Determine the type of allocation constraint.
252 static enum oom_constraint constrained_alloc(struct oom_control *oc)
254 struct zone *zone;
255 struct zoneref *z;
256 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257 bool cpuset_limited = false;
258 int nid;
260 if (is_memcg_oom(oc)) {
261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 return CONSTRAINT_MEMCG;
265 /* Default to all available memory */
266 oc->totalpages = totalram_pages() + total_swap_pages;
268 if (!IS_ENABLED(CONFIG_NUMA))
269 return CONSTRAINT_NONE;
271 if (!oc->zonelist)
272 return CONSTRAINT_NONE;
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
278 if (oc->gfp_mask & __GFP_THISNODE)
279 return CONSTRAINT_NONE;
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
286 if (oc->nodemask &&
287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 oc->totalpages = total_swap_pages;
289 for_each_node_mask(nid, *oc->nodemask)
290 oc->totalpages += node_present_pages(nid);
291 return CONSTRAINT_MEMORY_POLICY;
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 highest_zoneidx, oc->nodemask)
297 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 cpuset_limited = true;
300 if (cpuset_limited) {
301 oc->totalpages = total_swap_pages;
302 for_each_node_mask(nid, cpuset_current_mems_allowed)
303 oc->totalpages += node_present_pages(nid);
304 return CONSTRAINT_CPUSET;
306 return CONSTRAINT_NONE;
309 static int oom_evaluate_task(struct task_struct *task, void *arg)
311 struct oom_control *oc = arg;
312 long points;
314 if (oom_unkillable_task(task))
315 goto next;
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 goto next;
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329 goto next;
330 goto abort;
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
337 if (oom_task_origin(task)) {
338 points = LONG_MAX;
339 goto select;
342 points = oom_badness(task, oc->totalpages);
343 if (points == LONG_MIN || points < oc->chosen_points)
344 goto next;
346 select:
347 if (oc->chosen)
348 put_task_struct(oc->chosen);
349 get_task_struct(task);
350 oc->chosen = task;
351 oc->chosen_points = points;
352 next:
353 return 0;
354 abort:
355 if (oc->chosen)
356 put_task_struct(oc->chosen);
357 oc->chosen = (void *)-1UL;
358 return 1;
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
365 static void select_bad_process(struct oom_control *oc)
367 oc->chosen_points = LONG_MIN;
369 if (is_memcg_oom(oc))
370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 else {
372 struct task_struct *p;
374 rcu_read_lock();
375 for_each_process(p)
376 if (oom_evaluate_task(p, oc))
377 break;
378 rcu_read_unlock();
382 static int dump_task(struct task_struct *p, void *arg)
384 struct oom_control *oc = arg;
385 struct task_struct *task;
387 if (oom_unkillable_task(p))
388 return 0;
390 /* p may not have freeable memory in nodemask */
391 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392 return 0;
394 task = find_lock_task_mm(p);
395 if (!task) {
397 * All of p's threads have already detached their mm's. There's
398 * no need to report them; they can't be oom killed anyway.
400 return 0;
403 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
404 task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
407 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
408 get_mm_counter(task->mm, MM_SWAPENTS),
409 task->signal->oom_score_adj, task->comm);
410 task_unlock(task);
412 return 0;
416 * dump_tasks - dump current memory state of all system tasks
417 * @oc: pointer to struct oom_control
419 * Dumps the current memory state of all eligible tasks. Tasks not in the same
420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 * are not shown.
422 * State information includes task's pid, uid, tgid, vm size, rss,
423 * pgtables_bytes, swapents, oom_score_adj value, and name.
425 static void dump_tasks(struct oom_control *oc)
427 pr_info("Tasks state (memory values in pages):\n");
428 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
430 if (is_memcg_oom(oc))
431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 else {
433 struct task_struct *p;
434 int i = 0;
436 rcu_read_lock();
437 for_each_process(p) {
438 /* Avoid potential softlockup warning */
439 if ((++i & 1023) == 0)
440 touch_softlockup_watchdog();
441 dump_task(p, oc);
443 rcu_read_unlock();
447 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
449 /* one line summary of the oom killer context. */
450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 oom_constraint_text[oc->constraint],
452 nodemask_pr_args(oc->nodemask));
453 cpuset_print_current_mems_allowed();
454 mem_cgroup_print_oom_context(oc->memcg, victim);
455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
456 from_kuid(&init_user_ns, task_uid(victim)));
459 static void dump_header(struct oom_control *oc)
461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
463 current->signal->oom_score_adj);
464 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
465 pr_warn("COMPACTION is disabled!!!\n");
467 dump_stack();
468 if (is_memcg_oom(oc))
469 mem_cgroup_print_oom_meminfo(oc->memcg);
470 else {
471 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
472 if (should_dump_unreclaim_slab())
473 dump_unreclaimable_slab();
475 if (sysctl_oom_dump_tasks)
476 dump_tasks(oc);
480 * Number of OOM victims in flight
482 static atomic_t oom_victims = ATOMIC_INIT(0);
483 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
485 static bool oom_killer_disabled __read_mostly;
488 * task->mm can be NULL if the task is the exited group leader. So to
489 * determine whether the task is using a particular mm, we examine all the
490 * task's threads: if one of those is using this mm then this task was also
491 * using it.
493 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
495 struct task_struct *t;
497 for_each_thread(p, t) {
498 struct mm_struct *t_mm = READ_ONCE(t->mm);
499 if (t_mm)
500 return t_mm == mm;
502 return false;
505 #ifdef CONFIG_MMU
507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508 * victim (if that is possible) to help the OOM killer to move on.
510 static struct task_struct *oom_reaper_th;
511 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
512 static struct task_struct *oom_reaper_list;
513 static DEFINE_SPINLOCK(oom_reaper_lock);
515 static bool __oom_reap_task_mm(struct mm_struct *mm)
517 struct vm_area_struct *vma;
518 bool ret = true;
519 VMA_ITERATOR(vmi, mm, 0);
522 * Tell all users of get_user/copy_from_user etc... that the content
523 * is no longer stable. No barriers really needed because unmapping
524 * should imply barriers already and the reader would hit a page fault
525 * if it stumbled over a reaped memory.
527 set_bit(MMF_UNSTABLE, &mm->flags);
529 for_each_vma(vmi, vma) {
530 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
531 continue;
534 * Only anonymous pages have a good chance to be dropped
535 * without additional steps which we cannot afford as we
536 * are OOM already.
538 * We do not even care about fs backed pages because all
539 * which are reclaimable have already been reclaimed and
540 * we do not want to block exit_mmap by keeping mm ref
541 * count elevated without a good reason.
543 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
544 struct mmu_notifier_range range;
545 struct mmu_gather tlb;
547 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
548 mm, vma->vm_start,
549 vma->vm_end);
550 tlb_gather_mmu(&tlb, mm);
551 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
552 tlb_finish_mmu(&tlb);
553 ret = false;
554 continue;
556 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
557 mmu_notifier_invalidate_range_end(&range);
558 tlb_finish_mmu(&tlb);
562 return ret;
566 * Reaps the address space of the give task.
568 * Returns true on success and false if none or part of the address space
569 * has been reclaimed and the caller should retry later.
571 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
573 bool ret = true;
575 if (!mmap_read_trylock(mm)) {
576 trace_skip_task_reaping(tsk->pid);
577 return false;
581 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
582 * work on the mm anymore. The check for MMF_OOM_SKIP must run
583 * under mmap_lock for reading because it serializes against the
584 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
586 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
587 trace_skip_task_reaping(tsk->pid);
588 goto out_unlock;
591 trace_start_task_reaping(tsk->pid);
593 /* failed to reap part of the address space. Try again later */
594 ret = __oom_reap_task_mm(mm);
595 if (!ret)
596 goto out_finish;
598 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
599 task_pid_nr(tsk), tsk->comm,
600 K(get_mm_counter(mm, MM_ANONPAGES)),
601 K(get_mm_counter(mm, MM_FILEPAGES)),
602 K(get_mm_counter(mm, MM_SHMEMPAGES)));
603 out_finish:
604 trace_finish_task_reaping(tsk->pid);
605 out_unlock:
606 mmap_read_unlock(mm);
608 return ret;
611 #define MAX_OOM_REAP_RETRIES 10
612 static void oom_reap_task(struct task_struct *tsk)
614 int attempts = 0;
615 struct mm_struct *mm = tsk->signal->oom_mm;
617 /* Retry the mmap_read_trylock(mm) a few times */
618 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
619 schedule_timeout_idle(HZ/10);
621 if (attempts <= MAX_OOM_REAP_RETRIES ||
622 test_bit(MMF_OOM_SKIP, &mm->flags))
623 goto done;
625 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
626 task_pid_nr(tsk), tsk->comm);
627 sched_show_task(tsk);
628 debug_show_all_locks();
630 done:
631 tsk->oom_reaper_list = NULL;
634 * Hide this mm from OOM killer because it has been either reaped or
635 * somebody can't call mmap_write_unlock(mm).
637 set_bit(MMF_OOM_SKIP, &mm->flags);
639 /* Drop a reference taken by queue_oom_reaper */
640 put_task_struct(tsk);
643 static int oom_reaper(void *unused)
645 set_freezable();
647 while (true) {
648 struct task_struct *tsk = NULL;
650 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
651 spin_lock_irq(&oom_reaper_lock);
652 if (oom_reaper_list != NULL) {
653 tsk = oom_reaper_list;
654 oom_reaper_list = tsk->oom_reaper_list;
656 spin_unlock_irq(&oom_reaper_lock);
658 if (tsk)
659 oom_reap_task(tsk);
662 return 0;
665 static void wake_oom_reaper(struct timer_list *timer)
667 struct task_struct *tsk = container_of(timer, struct task_struct,
668 oom_reaper_timer);
669 struct mm_struct *mm = tsk->signal->oom_mm;
670 unsigned long flags;
672 /* The victim managed to terminate on its own - see exit_mmap */
673 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
674 put_task_struct(tsk);
675 return;
678 spin_lock_irqsave(&oom_reaper_lock, flags);
679 tsk->oom_reaper_list = oom_reaper_list;
680 oom_reaper_list = tsk;
681 spin_unlock_irqrestore(&oom_reaper_lock, flags);
682 trace_wake_reaper(tsk->pid);
683 wake_up(&oom_reaper_wait);
687 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
688 * The timers timeout is arbitrary... the longer it is, the longer the worst
689 * case scenario for the OOM can take. If it is too small, the oom_reaper can
690 * get in the way and release resources needed by the process exit path.
691 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
692 * before the exit path is able to wake the futex waiters.
694 #define OOM_REAPER_DELAY (2*HZ)
695 static void queue_oom_reaper(struct task_struct *tsk)
697 /* mm is already queued? */
698 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
699 return;
701 get_task_struct(tsk);
702 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
703 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
704 add_timer(&tsk->oom_reaper_timer);
707 #ifdef CONFIG_SYSCTL
708 static const struct ctl_table vm_oom_kill_table[] = {
710 .procname = "panic_on_oom",
711 .data = &sysctl_panic_on_oom,
712 .maxlen = sizeof(sysctl_panic_on_oom),
713 .mode = 0644,
714 .proc_handler = proc_dointvec_minmax,
715 .extra1 = SYSCTL_ZERO,
716 .extra2 = SYSCTL_TWO,
719 .procname = "oom_kill_allocating_task",
720 .data = &sysctl_oom_kill_allocating_task,
721 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
722 .mode = 0644,
723 .proc_handler = proc_dointvec,
726 .procname = "oom_dump_tasks",
727 .data = &sysctl_oom_dump_tasks,
728 .maxlen = sizeof(sysctl_oom_dump_tasks),
729 .mode = 0644,
730 .proc_handler = proc_dointvec,
733 #endif
735 static int __init oom_init(void)
737 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
738 #ifdef CONFIG_SYSCTL
739 register_sysctl_init("vm", vm_oom_kill_table);
740 #endif
741 return 0;
743 subsys_initcall(oom_init)
744 #else
745 static inline void queue_oom_reaper(struct task_struct *tsk)
748 #endif /* CONFIG_MMU */
751 * mark_oom_victim - mark the given task as OOM victim
752 * @tsk: task to mark
754 * Has to be called with oom_lock held and never after
755 * oom has been disabled already.
757 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
758 * under task_lock or operate on the current).
760 static void mark_oom_victim(struct task_struct *tsk)
762 const struct cred *cred;
763 struct mm_struct *mm = tsk->mm;
765 WARN_ON(oom_killer_disabled);
766 /* OOM killer might race with memcg OOM */
767 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
768 return;
770 /* oom_mm is bound to the signal struct life time. */
771 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
772 mmgrab(tsk->signal->oom_mm);
775 * Make sure that the task is woken up from uninterruptible sleep
776 * if it is frozen because OOM killer wouldn't be able to free
777 * any memory and livelock. freezing_slow_path will tell the freezer
778 * that TIF_MEMDIE tasks should be ignored.
780 __thaw_task(tsk);
781 atomic_inc(&oom_victims);
782 cred = get_task_cred(tsk);
783 trace_mark_victim(tsk, cred->uid.val);
784 put_cred(cred);
788 * exit_oom_victim - note the exit of an OOM victim
790 void exit_oom_victim(void)
792 clear_thread_flag(TIF_MEMDIE);
794 if (!atomic_dec_return(&oom_victims))
795 wake_up_all(&oom_victims_wait);
799 * oom_killer_enable - enable OOM killer
801 void oom_killer_enable(void)
803 oom_killer_disabled = false;
804 pr_info("OOM killer enabled.\n");
808 * oom_killer_disable - disable OOM killer
809 * @timeout: maximum timeout to wait for oom victims in jiffies
811 * Forces all page allocations to fail rather than trigger OOM killer.
812 * Will block and wait until all OOM victims are killed or the given
813 * timeout expires.
815 * The function cannot be called when there are runnable user tasks because
816 * the userspace would see unexpected allocation failures as a result. Any
817 * new usage of this function should be consulted with MM people.
819 * Returns true if successful and false if the OOM killer cannot be
820 * disabled.
822 bool oom_killer_disable(signed long timeout)
824 signed long ret;
827 * Make sure to not race with an ongoing OOM killer. Check that the
828 * current is not killed (possibly due to sharing the victim's memory).
830 if (mutex_lock_killable(&oom_lock))
831 return false;
832 oom_killer_disabled = true;
833 mutex_unlock(&oom_lock);
835 ret = wait_event_interruptible_timeout(oom_victims_wait,
836 !atomic_read(&oom_victims), timeout);
837 if (ret <= 0) {
838 oom_killer_enable();
839 return false;
841 pr_info("OOM killer disabled.\n");
843 return true;
846 static inline bool __task_will_free_mem(struct task_struct *task)
848 struct signal_struct *sig = task->signal;
851 * A coredumping process may sleep for an extended period in
852 * coredump_task_exit(), so the oom killer cannot assume that
853 * the process will promptly exit and release memory.
855 if (sig->core_state)
856 return false;
858 if (sig->flags & SIGNAL_GROUP_EXIT)
859 return true;
861 if (thread_group_empty(task) && (task->flags & PF_EXITING))
862 return true;
864 return false;
868 * Checks whether the given task is dying or exiting and likely to
869 * release its address space. This means that all threads and processes
870 * sharing the same mm have to be killed or exiting.
871 * Caller has to make sure that task->mm is stable (hold task_lock or
872 * it operates on the current).
874 static bool task_will_free_mem(struct task_struct *task)
876 struct mm_struct *mm = task->mm;
877 struct task_struct *p;
878 bool ret = true;
881 * Skip tasks without mm because it might have passed its exit_mm and
882 * exit_oom_victim. oom_reaper could have rescued that but do not rely
883 * on that for now. We can consider find_lock_task_mm in future.
885 if (!mm)
886 return false;
888 if (!__task_will_free_mem(task))
889 return false;
892 * This task has already been drained by the oom reaper so there are
893 * only small chances it will free some more
895 if (test_bit(MMF_OOM_SKIP, &mm->flags))
896 return false;
898 if (atomic_read(&mm->mm_users) <= 1)
899 return true;
902 * Make sure that all tasks which share the mm with the given tasks
903 * are dying as well to make sure that a) nobody pins its mm and
904 * b) the task is also reapable by the oom reaper.
906 rcu_read_lock();
907 for_each_process(p) {
908 if (!process_shares_mm(p, mm))
909 continue;
910 if (same_thread_group(task, p))
911 continue;
912 ret = __task_will_free_mem(p);
913 if (!ret)
914 break;
916 rcu_read_unlock();
918 return ret;
921 static void __oom_kill_process(struct task_struct *victim, const char *message)
923 struct task_struct *p;
924 struct mm_struct *mm;
925 bool can_oom_reap = true;
927 p = find_lock_task_mm(victim);
928 if (!p) {
929 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
930 message, task_pid_nr(victim), victim->comm);
931 put_task_struct(victim);
932 return;
933 } else if (victim != p) {
934 get_task_struct(p);
935 put_task_struct(victim);
936 victim = p;
939 /* Get a reference to safely compare mm after task_unlock(victim) */
940 mm = victim->mm;
941 mmgrab(mm);
943 /* Raise event before sending signal: task reaper must see this */
944 count_vm_event(OOM_KILL);
945 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
948 * We should send SIGKILL before granting access to memory reserves
949 * in order to prevent the OOM victim from depleting the memory
950 * reserves from the user space under its control.
952 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
953 mark_oom_victim(victim);
954 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
955 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
956 K(get_mm_counter(mm, MM_ANONPAGES)),
957 K(get_mm_counter(mm, MM_FILEPAGES)),
958 K(get_mm_counter(mm, MM_SHMEMPAGES)),
959 from_kuid(&init_user_ns, task_uid(victim)),
960 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
961 task_unlock(victim);
964 * Kill all user processes sharing victim->mm in other thread groups, if
965 * any. They don't get access to memory reserves, though, to avoid
966 * depletion of all memory. This prevents mm->mmap_lock livelock when an
967 * oom killed thread cannot exit because it requires the semaphore and
968 * its contended by another thread trying to allocate memory itself.
969 * That thread will now get access to memory reserves since it has a
970 * pending fatal signal.
972 rcu_read_lock();
973 for_each_process(p) {
974 if (!process_shares_mm(p, mm))
975 continue;
976 if (same_thread_group(p, victim))
977 continue;
978 if (is_global_init(p)) {
979 can_oom_reap = false;
980 set_bit(MMF_OOM_SKIP, &mm->flags);
981 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
982 task_pid_nr(victim), victim->comm,
983 task_pid_nr(p), p->comm);
984 continue;
987 * No kthread_use_mm() user needs to read from the userspace so
988 * we are ok to reap it.
990 if (unlikely(p->flags & PF_KTHREAD))
991 continue;
992 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
994 rcu_read_unlock();
996 if (can_oom_reap)
997 queue_oom_reaper(victim);
999 mmdrop(mm);
1000 put_task_struct(victim);
1004 * Kill provided task unless it's secured by setting
1005 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1007 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1009 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1010 !is_global_init(task)) {
1011 get_task_struct(task);
1012 __oom_kill_process(task, message);
1014 return 0;
1017 static void oom_kill_process(struct oom_control *oc, const char *message)
1019 struct task_struct *victim = oc->chosen;
1020 struct mem_cgroup *oom_group;
1021 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1022 DEFAULT_RATELIMIT_BURST);
1025 * If the task is already exiting, don't alarm the sysadmin or kill
1026 * its children or threads, just give it access to memory reserves
1027 * so it can die quickly
1029 task_lock(victim);
1030 if (task_will_free_mem(victim)) {
1031 mark_oom_victim(victim);
1032 queue_oom_reaper(victim);
1033 task_unlock(victim);
1034 put_task_struct(victim);
1035 return;
1037 task_unlock(victim);
1039 if (__ratelimit(&oom_rs)) {
1040 dump_header(oc);
1041 dump_oom_victim(oc, victim);
1045 * Do we need to kill the entire memory cgroup?
1046 * Or even one of the ancestor memory cgroups?
1047 * Check this out before killing the victim task.
1049 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1051 __oom_kill_process(victim, message);
1054 * If necessary, kill all tasks in the selected memory cgroup.
1056 if (oom_group) {
1057 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1058 mem_cgroup_print_oom_group(oom_group);
1059 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1060 (void *)message);
1061 mem_cgroup_put(oom_group);
1066 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1068 static void check_panic_on_oom(struct oom_control *oc)
1070 if (likely(!sysctl_panic_on_oom))
1071 return;
1072 if (sysctl_panic_on_oom != 2) {
1074 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1075 * does not panic for cpuset, mempolicy, or memcg allocation
1076 * failures.
1078 if (oc->constraint != CONSTRAINT_NONE)
1079 return;
1081 /* Do not panic for oom kills triggered by sysrq */
1082 if (is_sysrq_oom(oc))
1083 return;
1084 dump_header(oc);
1085 panic("Out of memory: %s panic_on_oom is enabled\n",
1086 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1089 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1091 int register_oom_notifier(struct notifier_block *nb)
1093 return blocking_notifier_chain_register(&oom_notify_list, nb);
1095 EXPORT_SYMBOL_GPL(register_oom_notifier);
1097 int unregister_oom_notifier(struct notifier_block *nb)
1099 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1101 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1104 * out_of_memory - kill the "best" process when we run out of memory
1105 * @oc: pointer to struct oom_control
1107 * If we run out of memory, we have the choice between either
1108 * killing a random task (bad), letting the system crash (worse)
1109 * OR try to be smart about which process to kill. Note that we
1110 * don't have to be perfect here, we just have to be good.
1112 bool out_of_memory(struct oom_control *oc)
1114 unsigned long freed = 0;
1116 if (oom_killer_disabled)
1117 return false;
1119 if (!is_memcg_oom(oc)) {
1120 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1121 if (freed > 0 && !is_sysrq_oom(oc))
1122 /* Got some memory back in the last second. */
1123 return true;
1127 * If current has a pending SIGKILL or is exiting, then automatically
1128 * select it. The goal is to allow it to allocate so that it may
1129 * quickly exit and free its memory.
1131 if (task_will_free_mem(current)) {
1132 mark_oom_victim(current);
1133 queue_oom_reaper(current);
1134 return true;
1138 * The OOM killer does not compensate for IO-less reclaim.
1139 * But mem_cgroup_oom() has to invoke the OOM killer even
1140 * if it is a GFP_NOFS allocation.
1142 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1143 return true;
1146 * Check if there were limitations on the allocation (only relevant for
1147 * NUMA and memcg) that may require different handling.
1149 oc->constraint = constrained_alloc(oc);
1150 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1151 oc->nodemask = NULL;
1152 check_panic_on_oom(oc);
1154 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1155 current->mm && !oom_unkillable_task(current) &&
1156 oom_cpuset_eligible(current, oc) &&
1157 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1158 get_task_struct(current);
1159 oc->chosen = current;
1160 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1161 return true;
1164 select_bad_process(oc);
1165 /* Found nothing?!?! */
1166 if (!oc->chosen) {
1167 dump_header(oc);
1168 pr_warn("Out of memory and no killable processes...\n");
1170 * If we got here due to an actual allocation at the
1171 * system level, we cannot survive this and will enter
1172 * an endless loop in the allocator. Bail out now.
1174 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1175 panic("System is deadlocked on memory\n");
1177 if (oc->chosen && oc->chosen != (void *)-1UL)
1178 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1179 "Memory cgroup out of memory");
1180 return !!oc->chosen;
1184 * The pagefault handler calls here because some allocation has failed. We have
1185 * to take care of the memcg OOM here because this is the only safe context without
1186 * any locks held but let the oom killer triggered from the allocation context care
1187 * about the global OOM.
1189 void pagefault_out_of_memory(void)
1191 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1192 DEFAULT_RATELIMIT_BURST);
1194 if (mem_cgroup_oom_synchronize(true))
1195 return;
1197 if (fatal_signal_pending(current))
1198 return;
1200 if (__ratelimit(&pfoom_rs))
1201 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1204 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1206 #ifdef CONFIG_MMU
1207 struct mm_struct *mm = NULL;
1208 struct task_struct *task;
1209 struct task_struct *p;
1210 unsigned int f_flags;
1211 bool reap = false;
1212 long ret = 0;
1214 if (flags)
1215 return -EINVAL;
1217 task = pidfd_get_task(pidfd, &f_flags);
1218 if (IS_ERR(task))
1219 return PTR_ERR(task);
1222 * Make sure to choose a thread which still has a reference to mm
1223 * during the group exit
1225 p = find_lock_task_mm(task);
1226 if (!p) {
1227 ret = -ESRCH;
1228 goto put_task;
1231 mm = p->mm;
1232 mmgrab(mm);
1234 if (task_will_free_mem(p))
1235 reap = true;
1236 else {
1237 /* Error only if the work has not been done already */
1238 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1239 ret = -EINVAL;
1241 task_unlock(p);
1243 if (!reap)
1244 goto drop_mm;
1246 if (mmap_read_lock_killable(mm)) {
1247 ret = -EINTR;
1248 goto drop_mm;
1251 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1252 * possible change in exit_mmap is seen
1254 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1255 ret = -EAGAIN;
1256 mmap_read_unlock(mm);
1258 drop_mm:
1259 mmdrop(mm);
1260 put_task:
1261 put_task_struct(task);
1262 return ret;
1263 #else
1264 return -ENOSYS;
1265 #endif /* CONFIG_MMU */