Linux 6.14-rc1
[linux-stable.git] / mm / percpu.c
blobac61e3fc5f151f98fac4f0448c2a90db235aaf4e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/percpu.c - percpu memory allocator
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
16 * c0 c1 c2
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
32 * <Static | [Reserved] | Dynamic>
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
39 * The allocator organizes chunks into lists according to free size and
40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41 * flag should be passed. All memcg-aware allocations are sharing one set
42 * of chunks and all unaccounted allocations and allocations performed
43 * by processes belonging to the root memory cgroup are using the second set.
45 * The allocator tries to allocate from the fullest chunk first. Each chunk
46 * is managed by a bitmap with metadata blocks. The allocation map is updated
47 * on every allocation and free to reflect the current state while the boundary
48 * map is only updated on allocation. Each metadata block contains
49 * information to help mitigate the need to iterate over large portions
50 * of the bitmap. The reverse mapping from page to chunk is stored in
51 * the page's index. Lastly, units are lazily backed and grow in unison.
53 * There is a unique conversion that goes on here between bytes and bits.
54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
55 * tracks the number of pages it is responsible for in nr_pages. Helper
56 * functions are used to convert from between the bytes, bits, and blocks.
57 * All hints are managed in bits unless explicitly stated.
59 * To use this allocator, arch code should do the following:
61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62 * regular address to percpu pointer and back if they need to be
63 * different from the default
65 * - use pcpu_setup_first_chunk() during percpu area initialization to
66 * setup the first chunk containing the kernel static percpu area
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/bitmap.h>
72 #include <linux/cpumask.h>
73 #include <linux/memblock.h>
74 #include <linux/err.h>
75 #include <linux/list.h>
76 #include <linux/log2.h>
77 #include <linux/mm.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/percpu.h>
81 #include <linux/pfn.h>
82 #include <linux/slab.h>
83 #include <linux/spinlock.h>
84 #include <linux/vmalloc.h>
85 #include <linux/workqueue.h>
86 #include <linux/kmemleak.h>
87 #include <linux/sched.h>
88 #include <linux/sched/mm.h>
89 #include <linux/memcontrol.h>
91 #include <asm/cacheflush.h>
92 #include <asm/sections.h>
93 #include <asm/tlbflush.h>
94 #include <asm/io.h>
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/percpu.h>
99 #include "percpu-internal.h"
102 * The slots are sorted by the size of the biggest continuous free area.
103 * 1-31 bytes share the same slot.
105 #define PCPU_SLOT_BASE_SHIFT 5
106 /* chunks in slots below this are subject to being sidelined on failed alloc */
107 #define PCPU_SLOT_FAIL_THRESHOLD 3
109 #define PCPU_EMPTY_POP_PAGES_LOW 2
110 #define PCPU_EMPTY_POP_PAGES_HIGH 4
112 #ifdef CONFIG_SMP
113 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
114 #ifndef __addr_to_pcpu_ptr
115 #define __addr_to_pcpu_ptr(addr) \
116 (void __percpu *)((unsigned long)(addr) - \
117 (unsigned long)pcpu_base_addr + \
118 (unsigned long)__per_cpu_start)
119 #endif
120 #ifndef __pcpu_ptr_to_addr
121 #define __pcpu_ptr_to_addr(ptr) \
122 (void __force *)((unsigned long)(ptr) + \
123 (unsigned long)pcpu_base_addr - \
124 (unsigned long)__per_cpu_start)
125 #endif
126 #else /* CONFIG_SMP */
127 /* on UP, it's always identity mapped */
128 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
129 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
130 #endif /* CONFIG_SMP */
132 static int pcpu_unit_pages __ro_after_init;
133 static int pcpu_unit_size __ro_after_init;
134 static int pcpu_nr_units __ro_after_init;
135 static int pcpu_atom_size __ro_after_init;
136 int pcpu_nr_slots __ro_after_init;
137 static int pcpu_free_slot __ro_after_init;
138 int pcpu_sidelined_slot __ro_after_init;
139 int pcpu_to_depopulate_slot __ro_after_init;
140 static size_t pcpu_chunk_struct_size __ro_after_init;
142 /* cpus with the lowest and highest unit addresses */
143 static unsigned int pcpu_low_unit_cpu __ro_after_init;
144 static unsigned int pcpu_high_unit_cpu __ro_after_init;
146 /* the address of the first chunk which starts with the kernel static area */
147 void *pcpu_base_addr __ro_after_init;
149 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
150 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
152 /* group information, used for vm allocation */
153 static int pcpu_nr_groups __ro_after_init;
154 static const unsigned long *pcpu_group_offsets __ro_after_init;
155 static const size_t *pcpu_group_sizes __ro_after_init;
158 * The first chunk which always exists. Note that unlike other
159 * chunks, this one can be allocated and mapped in several different
160 * ways and thus often doesn't live in the vmalloc area.
162 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
165 * Optional reserved chunk. This chunk reserves part of the first
166 * chunk and serves it for reserved allocations. When the reserved
167 * region doesn't exist, the following variable is NULL.
169 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
171 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
172 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
174 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
177 * The number of empty populated pages, protected by pcpu_lock.
178 * The reserved chunk doesn't contribute to the count.
180 int pcpu_nr_empty_pop_pages;
183 * The number of populated pages in use by the allocator, protected by
184 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
185 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
186 * and increments/decrements this count by 1).
188 static unsigned long pcpu_nr_populated;
191 * Balance work is used to populate or destroy chunks asynchronously. We
192 * try to keep the number of populated free pages between
193 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
194 * empty chunk.
196 static void pcpu_balance_workfn(struct work_struct *work);
197 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
198 static bool pcpu_async_enabled __read_mostly;
199 static bool pcpu_atomic_alloc_failed;
201 static void pcpu_schedule_balance_work(void)
203 if (pcpu_async_enabled)
204 schedule_work(&pcpu_balance_work);
208 * pcpu_addr_in_chunk - check if the address is served from this chunk
209 * @chunk: chunk of interest
210 * @addr: percpu address
212 * RETURNS:
213 * True if the address is served from this chunk.
215 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
217 void *start_addr, *end_addr;
219 if (!chunk)
220 return false;
222 start_addr = chunk->base_addr + chunk->start_offset;
223 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
224 chunk->end_offset;
226 return addr >= start_addr && addr < end_addr;
229 static int __pcpu_size_to_slot(int size)
231 int highbit = fls(size); /* size is in bytes */
232 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
235 static int pcpu_size_to_slot(int size)
237 if (size == pcpu_unit_size)
238 return pcpu_free_slot;
239 return __pcpu_size_to_slot(size);
242 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
244 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
246 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
247 chunk_md->contig_hint == 0)
248 return 0;
250 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
253 /* set the pointer to a chunk in a page struct */
254 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
256 page->private = (unsigned long)pcpu;
259 /* obtain pointer to a chunk from a page struct */
260 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
262 return (struct pcpu_chunk *)page->private;
265 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
267 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
270 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
272 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
275 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
276 unsigned int cpu, int page_idx)
278 return (unsigned long)chunk->base_addr +
279 pcpu_unit_page_offset(cpu, page_idx);
283 * The following are helper functions to help access bitmaps and convert
284 * between bitmap offsets to address offsets.
286 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
288 return chunk->alloc_map +
289 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
292 static unsigned long pcpu_off_to_block_index(int off)
294 return off / PCPU_BITMAP_BLOCK_BITS;
297 static unsigned long pcpu_off_to_block_off(int off)
299 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
302 static unsigned long pcpu_block_off_to_off(int index, int off)
304 return index * PCPU_BITMAP_BLOCK_BITS + off;
308 * pcpu_check_block_hint - check against the contig hint
309 * @block: block of interest
310 * @bits: size of allocation
311 * @align: alignment of area (max PAGE_SIZE)
313 * Check to see if the allocation can fit in the block's contig hint.
314 * Note, a chunk uses the same hints as a block so this can also check against
315 * the chunk's contig hint.
317 static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
318 size_t align)
320 int bit_off = ALIGN(block->contig_hint_start, align) -
321 block->contig_hint_start;
323 return bit_off + bits <= block->contig_hint;
327 * pcpu_next_hint - determine which hint to use
328 * @block: block of interest
329 * @alloc_bits: size of allocation
331 * This determines if we should scan based on the scan_hint or first_free.
332 * In general, we want to scan from first_free to fulfill allocations by
333 * first fit. However, if we know a scan_hint at position scan_hint_start
334 * cannot fulfill an allocation, we can begin scanning from there knowing
335 * the contig_hint will be our fallback.
337 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
340 * The three conditions below determine if we can skip past the
341 * scan_hint. First, does the scan hint exist. Second, is the
342 * contig_hint after the scan_hint (possibly not true iff
343 * contig_hint == scan_hint). Third, is the allocation request
344 * larger than the scan_hint.
346 if (block->scan_hint &&
347 block->contig_hint_start > block->scan_hint_start &&
348 alloc_bits > block->scan_hint)
349 return block->scan_hint_start + block->scan_hint;
351 return block->first_free;
355 * pcpu_next_md_free_region - finds the next hint free area
356 * @chunk: chunk of interest
357 * @bit_off: chunk offset
358 * @bits: size of free area
360 * Helper function for pcpu_for_each_md_free_region. It checks
361 * block->contig_hint and performs aggregation across blocks to find the
362 * next hint. It modifies bit_off and bits in-place to be consumed in the
363 * loop.
365 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
366 int *bits)
368 int i = pcpu_off_to_block_index(*bit_off);
369 int block_off = pcpu_off_to_block_off(*bit_off);
370 struct pcpu_block_md *block;
372 *bits = 0;
373 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
374 block++, i++) {
375 /* handles contig area across blocks */
376 if (*bits) {
377 *bits += block->left_free;
378 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
379 continue;
380 return;
384 * This checks three things. First is there a contig_hint to
385 * check. Second, have we checked this hint before by
386 * comparing the block_off. Third, is this the same as the
387 * right contig hint. In the last case, it spills over into
388 * the next block and should be handled by the contig area
389 * across blocks code.
391 *bits = block->contig_hint;
392 if (*bits && block->contig_hint_start >= block_off &&
393 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
394 *bit_off = pcpu_block_off_to_off(i,
395 block->contig_hint_start);
396 return;
398 /* reset to satisfy the second predicate above */
399 block_off = 0;
401 *bits = block->right_free;
402 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
407 * pcpu_next_fit_region - finds fit areas for a given allocation request
408 * @chunk: chunk of interest
409 * @alloc_bits: size of allocation
410 * @align: alignment of area (max PAGE_SIZE)
411 * @bit_off: chunk offset
412 * @bits: size of free area
414 * Finds the next free region that is viable for use with a given size and
415 * alignment. This only returns if there is a valid area to be used for this
416 * allocation. block->first_free is returned if the allocation request fits
417 * within the block to see if the request can be fulfilled prior to the contig
418 * hint.
420 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
421 int align, int *bit_off, int *bits)
423 int i = pcpu_off_to_block_index(*bit_off);
424 int block_off = pcpu_off_to_block_off(*bit_off);
425 struct pcpu_block_md *block;
427 *bits = 0;
428 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
429 block++, i++) {
430 /* handles contig area across blocks */
431 if (*bits) {
432 *bits += block->left_free;
433 if (*bits >= alloc_bits)
434 return;
435 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
436 continue;
439 /* check block->contig_hint */
440 *bits = ALIGN(block->contig_hint_start, align) -
441 block->contig_hint_start;
443 * This uses the block offset to determine if this has been
444 * checked in the prior iteration.
446 if (block->contig_hint &&
447 block->contig_hint_start >= block_off &&
448 block->contig_hint >= *bits + alloc_bits) {
449 int start = pcpu_next_hint(block, alloc_bits);
451 *bits += alloc_bits + block->contig_hint_start -
452 start;
453 *bit_off = pcpu_block_off_to_off(i, start);
454 return;
456 /* reset to satisfy the second predicate above */
457 block_off = 0;
459 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
460 align);
461 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
462 *bit_off = pcpu_block_off_to_off(i, *bit_off);
463 if (*bits >= alloc_bits)
464 return;
467 /* no valid offsets were found - fail condition */
468 *bit_off = pcpu_chunk_map_bits(chunk);
472 * Metadata free area iterators. These perform aggregation of free areas
473 * based on the metadata blocks and return the offset @bit_off and size in
474 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
475 * a fit is found for the allocation request.
477 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
478 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
479 (bit_off) < pcpu_chunk_map_bits((chunk)); \
480 (bit_off) += (bits) + 1, \
481 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
483 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
484 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
485 &(bits)); \
486 (bit_off) < pcpu_chunk_map_bits((chunk)); \
487 (bit_off) += (bits), \
488 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
489 &(bits)))
492 * pcpu_mem_zalloc - allocate memory
493 * @size: bytes to allocate
494 * @gfp: allocation flags
496 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
497 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
498 * This is to facilitate passing through whitelisted flags. The
499 * returned memory is always zeroed.
501 * RETURNS:
502 * Pointer to the allocated area on success, NULL on failure.
504 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
506 if (WARN_ON_ONCE(!slab_is_available()))
507 return NULL;
509 if (size <= PAGE_SIZE)
510 return kzalloc(size, gfp);
511 else
512 return __vmalloc(size, gfp | __GFP_ZERO);
516 * pcpu_mem_free - free memory
517 * @ptr: memory to free
519 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
521 static void pcpu_mem_free(void *ptr)
523 kvfree(ptr);
526 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
527 bool move_front)
529 if (chunk != pcpu_reserved_chunk) {
530 if (move_front)
531 list_move(&chunk->list, &pcpu_chunk_lists[slot]);
532 else
533 list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
537 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
539 __pcpu_chunk_move(chunk, slot, true);
543 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
544 * @chunk: chunk of interest
545 * @oslot: the previous slot it was on
547 * This function is called after an allocation or free changed @chunk.
548 * New slot according to the changed state is determined and @chunk is
549 * moved to the slot. Note that the reserved chunk is never put on
550 * chunk slots.
552 * CONTEXT:
553 * pcpu_lock.
555 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
557 int nslot = pcpu_chunk_slot(chunk);
559 /* leave isolated chunks in-place */
560 if (chunk->isolated)
561 return;
563 if (oslot != nslot)
564 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
567 static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
569 lockdep_assert_held(&pcpu_lock);
571 if (!chunk->isolated) {
572 chunk->isolated = true;
573 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
575 list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
578 static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
580 lockdep_assert_held(&pcpu_lock);
582 if (chunk->isolated) {
583 chunk->isolated = false;
584 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
585 pcpu_chunk_relocate(chunk, -1);
590 * pcpu_update_empty_pages - update empty page counters
591 * @chunk: chunk of interest
592 * @nr: nr of empty pages
594 * This is used to keep track of the empty pages now based on the premise
595 * a md_block covers a page. The hint update functions recognize if a block
596 * is made full or broken to calculate deltas for keeping track of free pages.
598 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
600 chunk->nr_empty_pop_pages += nr;
601 if (chunk != pcpu_reserved_chunk && !chunk->isolated)
602 pcpu_nr_empty_pop_pages += nr;
606 * pcpu_region_overlap - determines if two regions overlap
607 * @a: start of first region, inclusive
608 * @b: end of first region, exclusive
609 * @x: start of second region, inclusive
610 * @y: end of second region, exclusive
612 * This is used to determine if the hint region [a, b) overlaps with the
613 * allocated region [x, y).
615 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
617 return (a < y) && (x < b);
621 * pcpu_block_update - updates a block given a free area
622 * @block: block of interest
623 * @start: start offset in block
624 * @end: end offset in block
626 * Updates a block given a known free area. The region [start, end) is
627 * expected to be the entirety of the free area within a block. Chooses
628 * the best starting offset if the contig hints are equal.
630 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
632 int contig = end - start;
634 block->first_free = min(block->first_free, start);
635 if (start == 0)
636 block->left_free = contig;
638 if (end == block->nr_bits)
639 block->right_free = contig;
641 if (contig > block->contig_hint) {
642 /* promote the old contig_hint to be the new scan_hint */
643 if (start > block->contig_hint_start) {
644 if (block->contig_hint > block->scan_hint) {
645 block->scan_hint_start =
646 block->contig_hint_start;
647 block->scan_hint = block->contig_hint;
648 } else if (start < block->scan_hint_start) {
650 * The old contig_hint == scan_hint. But, the
651 * new contig is larger so hold the invariant
652 * scan_hint_start < contig_hint_start.
654 block->scan_hint = 0;
656 } else {
657 block->scan_hint = 0;
659 block->contig_hint_start = start;
660 block->contig_hint = contig;
661 } else if (contig == block->contig_hint) {
662 if (block->contig_hint_start &&
663 (!start ||
664 __ffs(start) > __ffs(block->contig_hint_start))) {
665 /* start has a better alignment so use it */
666 block->contig_hint_start = start;
667 if (start < block->scan_hint_start &&
668 block->contig_hint > block->scan_hint)
669 block->scan_hint = 0;
670 } else if (start > block->scan_hint_start ||
671 block->contig_hint > block->scan_hint) {
673 * Knowing contig == contig_hint, update the scan_hint
674 * if it is farther than or larger than the current
675 * scan_hint.
677 block->scan_hint_start = start;
678 block->scan_hint = contig;
680 } else {
682 * The region is smaller than the contig_hint. So only update
683 * the scan_hint if it is larger than or equal and farther than
684 * the current scan_hint.
686 if ((start < block->contig_hint_start &&
687 (contig > block->scan_hint ||
688 (contig == block->scan_hint &&
689 start > block->scan_hint_start)))) {
690 block->scan_hint_start = start;
691 block->scan_hint = contig;
697 * pcpu_block_update_scan - update a block given a free area from a scan
698 * @chunk: chunk of interest
699 * @bit_off: chunk offset
700 * @bits: size of free area
702 * Finding the final allocation spot first goes through pcpu_find_block_fit()
703 * to find a block that can hold the allocation and then pcpu_alloc_area()
704 * where a scan is used. When allocations require specific alignments,
705 * we can inadvertently create holes which will not be seen in the alloc
706 * or free paths.
708 * This takes a given free area hole and updates a block as it may change the
709 * scan_hint. We need to scan backwards to ensure we don't miss free bits
710 * from alignment.
712 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
713 int bits)
715 int s_off = pcpu_off_to_block_off(bit_off);
716 int e_off = s_off + bits;
717 int s_index, l_bit;
718 struct pcpu_block_md *block;
720 if (e_off > PCPU_BITMAP_BLOCK_BITS)
721 return;
723 s_index = pcpu_off_to_block_index(bit_off);
724 block = chunk->md_blocks + s_index;
726 /* scan backwards in case of alignment skipping free bits */
727 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
728 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
730 pcpu_block_update(block, s_off, e_off);
734 * pcpu_chunk_refresh_hint - updates metadata about a chunk
735 * @chunk: chunk of interest
736 * @full_scan: if we should scan from the beginning
738 * Iterates over the metadata blocks to find the largest contig area.
739 * A full scan can be avoided on the allocation path as this is triggered
740 * if we broke the contig_hint. In doing so, the scan_hint will be before
741 * the contig_hint or after if the scan_hint == contig_hint. This cannot
742 * be prevented on freeing as we want to find the largest area possibly
743 * spanning blocks.
745 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
747 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
748 int bit_off, bits;
750 /* promote scan_hint to contig_hint */
751 if (!full_scan && chunk_md->scan_hint) {
752 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
753 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
754 chunk_md->contig_hint = chunk_md->scan_hint;
755 chunk_md->scan_hint = 0;
756 } else {
757 bit_off = chunk_md->first_free;
758 chunk_md->contig_hint = 0;
761 bits = 0;
762 pcpu_for_each_md_free_region(chunk, bit_off, bits)
763 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
767 * pcpu_block_refresh_hint
768 * @chunk: chunk of interest
769 * @index: index of the metadata block
771 * Scans over the block beginning at first_free and updates the block
772 * metadata accordingly.
774 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
776 struct pcpu_block_md *block = chunk->md_blocks + index;
777 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
778 unsigned int start, end; /* region start, region end */
780 /* promote scan_hint to contig_hint */
781 if (block->scan_hint) {
782 start = block->scan_hint_start + block->scan_hint;
783 block->contig_hint_start = block->scan_hint_start;
784 block->contig_hint = block->scan_hint;
785 block->scan_hint = 0;
786 } else {
787 start = block->first_free;
788 block->contig_hint = 0;
791 block->right_free = 0;
793 /* iterate over free areas and update the contig hints */
794 for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
795 pcpu_block_update(block, start, end);
799 * pcpu_block_update_hint_alloc - update hint on allocation path
800 * @chunk: chunk of interest
801 * @bit_off: chunk offset
802 * @bits: size of request
804 * Updates metadata for the allocation path. The metadata only has to be
805 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
806 * scans are required if the block's contig hint is broken.
808 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
809 int bits)
811 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
812 int nr_empty_pages = 0;
813 struct pcpu_block_md *s_block, *e_block, *block;
814 int s_index, e_index; /* block indexes of the freed allocation */
815 int s_off, e_off; /* block offsets of the freed allocation */
818 * Calculate per block offsets.
819 * The calculation uses an inclusive range, but the resulting offsets
820 * are [start, end). e_index always points to the last block in the
821 * range.
823 s_index = pcpu_off_to_block_index(bit_off);
824 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
825 s_off = pcpu_off_to_block_off(bit_off);
826 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
828 s_block = chunk->md_blocks + s_index;
829 e_block = chunk->md_blocks + e_index;
832 * Update s_block.
834 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
835 nr_empty_pages++;
838 * block->first_free must be updated if the allocation takes its place.
839 * If the allocation breaks the contig_hint, a scan is required to
840 * restore this hint.
842 if (s_off == s_block->first_free)
843 s_block->first_free = find_next_zero_bit(
844 pcpu_index_alloc_map(chunk, s_index),
845 PCPU_BITMAP_BLOCK_BITS,
846 s_off + bits);
848 if (pcpu_region_overlap(s_block->scan_hint_start,
849 s_block->scan_hint_start + s_block->scan_hint,
850 s_off,
851 s_off + bits))
852 s_block->scan_hint = 0;
854 if (pcpu_region_overlap(s_block->contig_hint_start,
855 s_block->contig_hint_start +
856 s_block->contig_hint,
857 s_off,
858 s_off + bits)) {
859 /* block contig hint is broken - scan to fix it */
860 if (!s_off)
861 s_block->left_free = 0;
862 pcpu_block_refresh_hint(chunk, s_index);
863 } else {
864 /* update left and right contig manually */
865 s_block->left_free = min(s_block->left_free, s_off);
866 if (s_index == e_index)
867 s_block->right_free = min_t(int, s_block->right_free,
868 PCPU_BITMAP_BLOCK_BITS - e_off);
869 else
870 s_block->right_free = 0;
874 * Update e_block.
876 if (s_index != e_index) {
877 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
878 nr_empty_pages++;
881 * When the allocation is across blocks, the end is along
882 * the left part of the e_block.
884 e_block->first_free = find_next_zero_bit(
885 pcpu_index_alloc_map(chunk, e_index),
886 PCPU_BITMAP_BLOCK_BITS, e_off);
888 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
889 /* reset the block */
890 e_block++;
891 } else {
892 if (e_off > e_block->scan_hint_start)
893 e_block->scan_hint = 0;
895 e_block->left_free = 0;
896 if (e_off > e_block->contig_hint_start) {
897 /* contig hint is broken - scan to fix it */
898 pcpu_block_refresh_hint(chunk, e_index);
899 } else {
900 e_block->right_free =
901 min_t(int, e_block->right_free,
902 PCPU_BITMAP_BLOCK_BITS - e_off);
906 /* update in-between md_blocks */
907 nr_empty_pages += (e_index - s_index - 1);
908 for (block = s_block + 1; block < e_block; block++) {
909 block->scan_hint = 0;
910 block->contig_hint = 0;
911 block->left_free = 0;
912 block->right_free = 0;
917 * If the allocation is not atomic, some blocks may not be
918 * populated with pages, while we account it here. The number
919 * of pages will be added back with pcpu_chunk_populated()
920 * when populating pages.
922 if (nr_empty_pages)
923 pcpu_update_empty_pages(chunk, -nr_empty_pages);
925 if (pcpu_region_overlap(chunk_md->scan_hint_start,
926 chunk_md->scan_hint_start +
927 chunk_md->scan_hint,
928 bit_off,
929 bit_off + bits))
930 chunk_md->scan_hint = 0;
933 * The only time a full chunk scan is required is if the chunk
934 * contig hint is broken. Otherwise, it means a smaller space
935 * was used and therefore the chunk contig hint is still correct.
937 if (pcpu_region_overlap(chunk_md->contig_hint_start,
938 chunk_md->contig_hint_start +
939 chunk_md->contig_hint,
940 bit_off,
941 bit_off + bits))
942 pcpu_chunk_refresh_hint(chunk, false);
946 * pcpu_block_update_hint_free - updates the block hints on the free path
947 * @chunk: chunk of interest
948 * @bit_off: chunk offset
949 * @bits: size of request
951 * Updates metadata for the allocation path. This avoids a blind block
952 * refresh by making use of the block contig hints. If this fails, it scans
953 * forward and backward to determine the extent of the free area. This is
954 * capped at the boundary of blocks.
956 * A chunk update is triggered if a page becomes free, a block becomes free,
957 * or the free spans across blocks. This tradeoff is to minimize iterating
958 * over the block metadata to update chunk_md->contig_hint.
959 * chunk_md->contig_hint may be off by up to a page, but it will never be more
960 * than the available space. If the contig hint is contained in one block, it
961 * will be accurate.
963 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
964 int bits)
966 int nr_empty_pages = 0;
967 struct pcpu_block_md *s_block, *e_block, *block;
968 int s_index, e_index; /* block indexes of the freed allocation */
969 int s_off, e_off; /* block offsets of the freed allocation */
970 int start, end; /* start and end of the whole free area */
973 * Calculate per block offsets.
974 * The calculation uses an inclusive range, but the resulting offsets
975 * are [start, end). e_index always points to the last block in the
976 * range.
978 s_index = pcpu_off_to_block_index(bit_off);
979 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
980 s_off = pcpu_off_to_block_off(bit_off);
981 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
983 s_block = chunk->md_blocks + s_index;
984 e_block = chunk->md_blocks + e_index;
987 * Check if the freed area aligns with the block->contig_hint.
988 * If it does, then the scan to find the beginning/end of the
989 * larger free area can be avoided.
991 * start and end refer to beginning and end of the free area
992 * within each their respective blocks. This is not necessarily
993 * the entire free area as it may span blocks past the beginning
994 * or end of the block.
996 start = s_off;
997 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
998 start = s_block->contig_hint_start;
999 } else {
1001 * Scan backwards to find the extent of the free area.
1002 * find_last_bit returns the starting bit, so if the start bit
1003 * is returned, that means there was no last bit and the
1004 * remainder of the chunk is free.
1006 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1007 start);
1008 start = (start == l_bit) ? 0 : l_bit + 1;
1011 end = e_off;
1012 if (e_off == e_block->contig_hint_start)
1013 end = e_block->contig_hint_start + e_block->contig_hint;
1014 else
1015 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1016 PCPU_BITMAP_BLOCK_BITS, end);
1018 /* update s_block */
1019 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1020 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1021 nr_empty_pages++;
1022 pcpu_block_update(s_block, start, e_off);
1024 /* freeing in the same block */
1025 if (s_index != e_index) {
1026 /* update e_block */
1027 if (end == PCPU_BITMAP_BLOCK_BITS)
1028 nr_empty_pages++;
1029 pcpu_block_update(e_block, 0, end);
1031 /* reset md_blocks in the middle */
1032 nr_empty_pages += (e_index - s_index - 1);
1033 for (block = s_block + 1; block < e_block; block++) {
1034 block->first_free = 0;
1035 block->scan_hint = 0;
1036 block->contig_hint_start = 0;
1037 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1038 block->left_free = PCPU_BITMAP_BLOCK_BITS;
1039 block->right_free = PCPU_BITMAP_BLOCK_BITS;
1043 if (nr_empty_pages)
1044 pcpu_update_empty_pages(chunk, nr_empty_pages);
1047 * Refresh chunk metadata when the free makes a block free or spans
1048 * across blocks. The contig_hint may be off by up to a page, but if
1049 * the contig_hint is contained in a block, it will be accurate with
1050 * the else condition below.
1052 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1053 pcpu_chunk_refresh_hint(chunk, true);
1054 else
1055 pcpu_block_update(&chunk->chunk_md,
1056 pcpu_block_off_to_off(s_index, start),
1057 end);
1061 * pcpu_is_populated - determines if the region is populated
1062 * @chunk: chunk of interest
1063 * @bit_off: chunk offset
1064 * @bits: size of area
1065 * @next_off: return value for the next offset to start searching
1067 * For atomic allocations, check if the backing pages are populated.
1069 * RETURNS:
1070 * Bool if the backing pages are populated.
1071 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1073 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1074 int *next_off)
1076 unsigned int start, end;
1078 start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1079 end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1081 start = find_next_zero_bit(chunk->populated, end, start);
1082 if (start >= end)
1083 return true;
1085 end = find_next_bit(chunk->populated, end, start + 1);
1087 *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1088 return false;
1092 * pcpu_find_block_fit - finds the block index to start searching
1093 * @chunk: chunk of interest
1094 * @alloc_bits: size of request in allocation units
1095 * @align: alignment of area (max PAGE_SIZE bytes)
1096 * @pop_only: use populated regions only
1098 * Given a chunk and an allocation spec, find the offset to begin searching
1099 * for a free region. This iterates over the bitmap metadata blocks to
1100 * find an offset that will be guaranteed to fit the requirements. It is
1101 * not quite first fit as if the allocation does not fit in the contig hint
1102 * of a block or chunk, it is skipped. This errs on the side of caution
1103 * to prevent excess iteration. Poor alignment can cause the allocator to
1104 * skip over blocks and chunks that have valid free areas.
1106 * RETURNS:
1107 * The offset in the bitmap to begin searching.
1108 * -1 if no offset is found.
1110 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1111 size_t align, bool pop_only)
1113 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1114 int bit_off, bits, next_off;
1117 * This is an optimization to prevent scanning by assuming if the
1118 * allocation cannot fit in the global hint, there is memory pressure
1119 * and creating a new chunk would happen soon.
1121 if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
1122 return -1;
1124 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1125 bits = 0;
1126 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1127 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1128 &next_off))
1129 break;
1131 bit_off = next_off;
1132 bits = 0;
1135 if (bit_off == pcpu_chunk_map_bits(chunk))
1136 return -1;
1138 return bit_off;
1142 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1143 * @map: the address to base the search on
1144 * @size: the bitmap size in bits
1145 * @start: the bitnumber to start searching at
1146 * @nr: the number of zeroed bits we're looking for
1147 * @align_mask: alignment mask for zero area
1148 * @largest_off: offset of the largest area skipped
1149 * @largest_bits: size of the largest area skipped
1151 * The @align_mask should be one less than a power of 2.
1153 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1154 * the largest area that was skipped. This is imperfect, but in general is
1155 * good enough. The largest remembered region is the largest failed region
1156 * seen. This does not include anything we possibly skipped due to alignment.
1157 * pcpu_block_update_scan() does scan backwards to try and recover what was
1158 * lost to alignment. While this can cause scanning to miss earlier possible
1159 * free areas, smaller allocations will eventually fill those holes.
1161 static unsigned long pcpu_find_zero_area(unsigned long *map,
1162 unsigned long size,
1163 unsigned long start,
1164 unsigned long nr,
1165 unsigned long align_mask,
1166 unsigned long *largest_off,
1167 unsigned long *largest_bits)
1169 unsigned long index, end, i, area_off, area_bits;
1170 again:
1171 index = find_next_zero_bit(map, size, start);
1173 /* Align allocation */
1174 index = __ALIGN_MASK(index, align_mask);
1175 area_off = index;
1177 end = index + nr;
1178 if (end > size)
1179 return end;
1180 i = find_next_bit(map, end, index);
1181 if (i < end) {
1182 area_bits = i - area_off;
1183 /* remember largest unused area with best alignment */
1184 if (area_bits > *largest_bits ||
1185 (area_bits == *largest_bits && *largest_off &&
1186 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1187 *largest_off = area_off;
1188 *largest_bits = area_bits;
1191 start = i + 1;
1192 goto again;
1194 return index;
1198 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1199 * @chunk: chunk of interest
1200 * @alloc_bits: size of request in allocation units
1201 * @align: alignment of area (max PAGE_SIZE)
1202 * @start: bit_off to start searching
1204 * This function takes in a @start offset to begin searching to fit an
1205 * allocation of @alloc_bits with alignment @align. It needs to scan
1206 * the allocation map because if it fits within the block's contig hint,
1207 * @start will be block->first_free. This is an attempt to fill the
1208 * allocation prior to breaking the contig hint. The allocation and
1209 * boundary maps are updated accordingly if it confirms a valid
1210 * free area.
1212 * RETURNS:
1213 * Allocated addr offset in @chunk on success.
1214 * -1 if no matching area is found.
1216 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1217 size_t align, int start)
1219 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1220 size_t align_mask = (align) ? (align - 1) : 0;
1221 unsigned long area_off = 0, area_bits = 0;
1222 int bit_off, end, oslot;
1224 lockdep_assert_held(&pcpu_lock);
1226 oslot = pcpu_chunk_slot(chunk);
1229 * Search to find a fit.
1231 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1232 pcpu_chunk_map_bits(chunk));
1233 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1234 align_mask, &area_off, &area_bits);
1235 if (bit_off >= end)
1236 return -1;
1238 if (area_bits)
1239 pcpu_block_update_scan(chunk, area_off, area_bits);
1241 /* update alloc map */
1242 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1244 /* update boundary map */
1245 set_bit(bit_off, chunk->bound_map);
1246 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1247 set_bit(bit_off + alloc_bits, chunk->bound_map);
1249 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1251 /* update first free bit */
1252 if (bit_off == chunk_md->first_free)
1253 chunk_md->first_free = find_next_zero_bit(
1254 chunk->alloc_map,
1255 pcpu_chunk_map_bits(chunk),
1256 bit_off + alloc_bits);
1258 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1260 pcpu_chunk_relocate(chunk, oslot);
1262 return bit_off * PCPU_MIN_ALLOC_SIZE;
1266 * pcpu_free_area - frees the corresponding offset
1267 * @chunk: chunk of interest
1268 * @off: addr offset into chunk
1270 * This function determines the size of an allocation to free using
1271 * the boundary bitmap and clears the allocation map.
1273 * RETURNS:
1274 * Number of freed bytes.
1276 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1278 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1279 int bit_off, bits, end, oslot, freed;
1281 lockdep_assert_held(&pcpu_lock);
1282 pcpu_stats_area_dealloc(chunk);
1284 oslot = pcpu_chunk_slot(chunk);
1286 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1288 /* find end index */
1289 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1290 bit_off + 1);
1291 bits = end - bit_off;
1292 bitmap_clear(chunk->alloc_map, bit_off, bits);
1294 freed = bits * PCPU_MIN_ALLOC_SIZE;
1296 /* update metadata */
1297 chunk->free_bytes += freed;
1299 /* update first free bit */
1300 chunk_md->first_free = min(chunk_md->first_free, bit_off);
1302 pcpu_block_update_hint_free(chunk, bit_off, bits);
1304 pcpu_chunk_relocate(chunk, oslot);
1306 return freed;
1309 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1311 block->scan_hint = 0;
1312 block->contig_hint = nr_bits;
1313 block->left_free = nr_bits;
1314 block->right_free = nr_bits;
1315 block->first_free = 0;
1316 block->nr_bits = nr_bits;
1319 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1321 struct pcpu_block_md *md_block;
1323 /* init the chunk's block */
1324 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1326 for (md_block = chunk->md_blocks;
1327 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1328 md_block++)
1329 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1333 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1334 * @tmp_addr: the start of the region served
1335 * @map_size: size of the region served
1337 * This is responsible for creating the chunks that serve the first chunk. The
1338 * base_addr is page aligned down of @tmp_addr while the region end is page
1339 * aligned up. Offsets are kept track of to determine the region served. All
1340 * this is done to appease the bitmap allocator in avoiding partial blocks.
1342 * RETURNS:
1343 * Chunk serving the region at @tmp_addr of @map_size.
1345 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1346 int map_size)
1348 struct pcpu_chunk *chunk;
1349 unsigned long aligned_addr;
1350 int start_offset, offset_bits, region_size, region_bits;
1351 size_t alloc_size;
1353 /* region calculations */
1354 aligned_addr = tmp_addr & PAGE_MASK;
1356 start_offset = tmp_addr - aligned_addr;
1357 region_size = ALIGN(start_offset + map_size, PAGE_SIZE);
1359 /* allocate chunk */
1360 alloc_size = struct_size(chunk, populated,
1361 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1362 chunk = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
1364 INIT_LIST_HEAD(&chunk->list);
1366 chunk->base_addr = (void *)aligned_addr;
1367 chunk->start_offset = start_offset;
1368 chunk->end_offset = region_size - chunk->start_offset - map_size;
1370 chunk->nr_pages = region_size >> PAGE_SHIFT;
1371 region_bits = pcpu_chunk_map_bits(chunk);
1373 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1374 chunk->alloc_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
1376 alloc_size =
1377 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1378 chunk->bound_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
1380 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1381 chunk->md_blocks = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
1382 #ifdef NEED_PCPUOBJ_EXT
1383 /* first chunk is free to use */
1384 chunk->obj_exts = NULL;
1385 #endif
1386 pcpu_init_md_blocks(chunk);
1388 /* manage populated page bitmap */
1389 chunk->immutable = true;
1390 bitmap_fill(chunk->populated, chunk->nr_pages);
1391 chunk->nr_populated = chunk->nr_pages;
1392 chunk->nr_empty_pop_pages = chunk->nr_pages;
1394 chunk->free_bytes = map_size;
1396 if (chunk->start_offset) {
1397 /* hide the beginning of the bitmap */
1398 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1399 bitmap_set(chunk->alloc_map, 0, offset_bits);
1400 set_bit(0, chunk->bound_map);
1401 set_bit(offset_bits, chunk->bound_map);
1403 chunk->chunk_md.first_free = offset_bits;
1405 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1408 if (chunk->end_offset) {
1409 /* hide the end of the bitmap */
1410 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1411 bitmap_set(chunk->alloc_map,
1412 pcpu_chunk_map_bits(chunk) - offset_bits,
1413 offset_bits);
1414 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1415 chunk->bound_map);
1416 set_bit(region_bits, chunk->bound_map);
1418 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1419 - offset_bits, offset_bits);
1422 return chunk;
1425 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1427 struct pcpu_chunk *chunk;
1428 int region_bits;
1430 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1431 if (!chunk)
1432 return NULL;
1434 INIT_LIST_HEAD(&chunk->list);
1435 chunk->nr_pages = pcpu_unit_pages;
1436 region_bits = pcpu_chunk_map_bits(chunk);
1438 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1439 sizeof(chunk->alloc_map[0]), gfp);
1440 if (!chunk->alloc_map)
1441 goto alloc_map_fail;
1443 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1444 sizeof(chunk->bound_map[0]), gfp);
1445 if (!chunk->bound_map)
1446 goto bound_map_fail;
1448 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1449 sizeof(chunk->md_blocks[0]), gfp);
1450 if (!chunk->md_blocks)
1451 goto md_blocks_fail;
1453 #ifdef NEED_PCPUOBJ_EXT
1454 if (need_pcpuobj_ext()) {
1455 chunk->obj_exts =
1456 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1457 sizeof(struct pcpuobj_ext), gfp);
1458 if (!chunk->obj_exts)
1459 goto objcg_fail;
1461 #endif
1463 pcpu_init_md_blocks(chunk);
1465 /* init metadata */
1466 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1468 return chunk;
1470 #ifdef NEED_PCPUOBJ_EXT
1471 objcg_fail:
1472 pcpu_mem_free(chunk->md_blocks);
1473 #endif
1474 md_blocks_fail:
1475 pcpu_mem_free(chunk->bound_map);
1476 bound_map_fail:
1477 pcpu_mem_free(chunk->alloc_map);
1478 alloc_map_fail:
1479 pcpu_mem_free(chunk);
1481 return NULL;
1484 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1486 if (!chunk)
1487 return;
1488 #ifdef NEED_PCPUOBJ_EXT
1489 pcpu_mem_free(chunk->obj_exts);
1490 #endif
1491 pcpu_mem_free(chunk->md_blocks);
1492 pcpu_mem_free(chunk->bound_map);
1493 pcpu_mem_free(chunk->alloc_map);
1494 pcpu_mem_free(chunk);
1498 * pcpu_chunk_populated - post-population bookkeeping
1499 * @chunk: pcpu_chunk which got populated
1500 * @page_start: the start page
1501 * @page_end: the end page
1503 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1504 * the bookkeeping information accordingly. Must be called after each
1505 * successful population.
1507 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1508 int page_end)
1510 int nr = page_end - page_start;
1512 lockdep_assert_held(&pcpu_lock);
1514 bitmap_set(chunk->populated, page_start, nr);
1515 chunk->nr_populated += nr;
1516 pcpu_nr_populated += nr;
1518 pcpu_update_empty_pages(chunk, nr);
1522 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1523 * @chunk: pcpu_chunk which got depopulated
1524 * @page_start: the start page
1525 * @page_end: the end page
1527 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1528 * Update the bookkeeping information accordingly. Must be called after
1529 * each successful depopulation.
1531 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1532 int page_start, int page_end)
1534 int nr = page_end - page_start;
1536 lockdep_assert_held(&pcpu_lock);
1538 bitmap_clear(chunk->populated, page_start, nr);
1539 chunk->nr_populated -= nr;
1540 pcpu_nr_populated -= nr;
1542 pcpu_update_empty_pages(chunk, -nr);
1546 * Chunk management implementation.
1548 * To allow different implementations, chunk alloc/free and
1549 * [de]population are implemented in a separate file which is pulled
1550 * into this file and compiled together. The following functions
1551 * should be implemented.
1553 * pcpu_populate_chunk - populate the specified range of a chunk
1554 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1555 * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk
1556 * pcpu_create_chunk - create a new chunk
1557 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1558 * pcpu_addr_to_page - translate address to physical address
1559 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1561 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1562 int page_start, int page_end, gfp_t gfp);
1563 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1564 int page_start, int page_end);
1565 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1566 int page_start, int page_end);
1567 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1568 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1569 static struct page *pcpu_addr_to_page(void *addr);
1570 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1572 #ifdef CONFIG_NEED_PER_CPU_KM
1573 #include "percpu-km.c"
1574 #else
1575 #include "percpu-vm.c"
1576 #endif
1579 * pcpu_chunk_addr_search - determine chunk containing specified address
1580 * @addr: address for which the chunk needs to be determined.
1582 * This is an internal function that handles all but static allocations.
1583 * Static percpu address values should never be passed into the allocator.
1585 * RETURNS:
1586 * The address of the found chunk.
1588 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1590 /* is it in the dynamic region (first chunk)? */
1591 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1592 return pcpu_first_chunk;
1594 /* is it in the reserved region? */
1595 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1596 return pcpu_reserved_chunk;
1599 * The address is relative to unit0 which might be unused and
1600 * thus unmapped. Offset the address to the unit space of the
1601 * current processor before looking it up in the vmalloc
1602 * space. Note that any possible cpu id can be used here, so
1603 * there's no need to worry about preemption or cpu hotplug.
1605 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1606 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1609 #ifdef CONFIG_MEMCG
1610 static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1611 struct obj_cgroup **objcgp)
1613 struct obj_cgroup *objcg;
1615 if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT))
1616 return true;
1618 objcg = current_obj_cgroup();
1619 if (!objcg)
1620 return true;
1622 if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size)))
1623 return false;
1625 *objcgp = objcg;
1626 return true;
1629 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1630 struct pcpu_chunk *chunk, int off,
1631 size_t size)
1633 if (!objcg)
1634 return;
1636 if (likely(chunk && chunk->obj_exts)) {
1637 obj_cgroup_get(objcg);
1638 chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = objcg;
1640 rcu_read_lock();
1641 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1642 pcpu_obj_full_size(size));
1643 rcu_read_unlock();
1644 } else {
1645 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1649 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1651 struct obj_cgroup *objcg;
1653 if (unlikely(!chunk->obj_exts))
1654 return;
1656 objcg = chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup;
1657 if (!objcg)
1658 return;
1659 chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = NULL;
1661 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1663 rcu_read_lock();
1664 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1665 -pcpu_obj_full_size(size));
1666 rcu_read_unlock();
1668 obj_cgroup_put(objcg);
1671 #else /* CONFIG_MEMCG */
1672 static bool
1673 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1675 return true;
1678 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1679 struct pcpu_chunk *chunk, int off,
1680 size_t size)
1684 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1687 #endif /* CONFIG_MEMCG */
1689 #ifdef CONFIG_MEM_ALLOC_PROFILING
1690 static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off,
1691 size_t size)
1693 if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts)) {
1694 alloc_tag_add(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag,
1695 current->alloc_tag, size);
1699 static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1701 if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts))
1702 alloc_tag_sub(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag, size);
1704 #else
1705 static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off,
1706 size_t size)
1710 static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1713 #endif
1716 * pcpu_alloc - the percpu allocator
1717 * @size: size of area to allocate in bytes
1718 * @align: alignment of area (max PAGE_SIZE)
1719 * @reserved: allocate from the reserved chunk if available
1720 * @gfp: allocation flags
1722 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1723 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1724 * then no warning will be triggered on invalid or failed allocation
1725 * requests.
1727 * RETURNS:
1728 * Percpu pointer to the allocated area on success, NULL on failure.
1730 void __percpu *pcpu_alloc_noprof(size_t size, size_t align, bool reserved,
1731 gfp_t gfp)
1733 gfp_t pcpu_gfp;
1734 bool is_atomic;
1735 bool do_warn;
1736 struct obj_cgroup *objcg = NULL;
1737 static int warn_limit = 10;
1738 struct pcpu_chunk *chunk, *next;
1739 const char *err;
1740 int slot, off, cpu, ret;
1741 unsigned long flags;
1742 void __percpu *ptr;
1743 size_t bits, bit_align;
1745 gfp = current_gfp_context(gfp);
1746 /* whitelisted flags that can be passed to the backing allocators */
1747 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1748 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1749 do_warn = !(gfp & __GFP_NOWARN);
1752 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1753 * therefore alignment must be a minimum of that many bytes.
1754 * An allocation may have internal fragmentation from rounding up
1755 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1757 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1758 align = PCPU_MIN_ALLOC_SIZE;
1760 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1761 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1762 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1764 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1765 !is_power_of_2(align))) {
1766 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1767 size, align);
1768 return NULL;
1771 if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
1772 return NULL;
1774 if (!is_atomic) {
1776 * pcpu_balance_workfn() allocates memory under this mutex,
1777 * and it may wait for memory reclaim. Allow current task
1778 * to become OOM victim, in case of memory pressure.
1780 if (gfp & __GFP_NOFAIL) {
1781 mutex_lock(&pcpu_alloc_mutex);
1782 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1783 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1784 return NULL;
1788 spin_lock_irqsave(&pcpu_lock, flags);
1790 /* serve reserved allocations from the reserved chunk if available */
1791 if (reserved && pcpu_reserved_chunk) {
1792 chunk = pcpu_reserved_chunk;
1794 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1795 if (off < 0) {
1796 err = "alloc from reserved chunk failed";
1797 goto fail_unlock;
1800 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1801 if (off >= 0)
1802 goto area_found;
1804 err = "alloc from reserved chunk failed";
1805 goto fail_unlock;
1808 restart:
1809 /* search through normal chunks */
1810 for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1811 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1812 list) {
1813 off = pcpu_find_block_fit(chunk, bits, bit_align,
1814 is_atomic);
1815 if (off < 0) {
1816 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1817 pcpu_chunk_move(chunk, 0);
1818 continue;
1821 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1822 if (off >= 0) {
1823 pcpu_reintegrate_chunk(chunk);
1824 goto area_found;
1829 spin_unlock_irqrestore(&pcpu_lock, flags);
1831 if (is_atomic) {
1832 err = "atomic alloc failed, no space left";
1833 goto fail;
1836 /* No space left. Create a new chunk. */
1837 if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1838 chunk = pcpu_create_chunk(pcpu_gfp);
1839 if (!chunk) {
1840 err = "failed to allocate new chunk";
1841 goto fail;
1844 spin_lock_irqsave(&pcpu_lock, flags);
1845 pcpu_chunk_relocate(chunk, -1);
1846 } else {
1847 spin_lock_irqsave(&pcpu_lock, flags);
1850 goto restart;
1852 area_found:
1853 pcpu_stats_area_alloc(chunk, size);
1855 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1856 pcpu_schedule_balance_work();
1858 spin_unlock_irqrestore(&pcpu_lock, flags);
1860 /* populate if not all pages are already there */
1861 if (!is_atomic) {
1862 unsigned int page_end, rs, re;
1864 rs = PFN_DOWN(off);
1865 page_end = PFN_UP(off + size);
1867 for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
1868 WARN_ON(chunk->immutable);
1870 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1872 spin_lock_irqsave(&pcpu_lock, flags);
1873 if (ret) {
1874 pcpu_free_area(chunk, off);
1875 err = "failed to populate";
1876 goto fail_unlock;
1878 pcpu_chunk_populated(chunk, rs, re);
1879 spin_unlock_irqrestore(&pcpu_lock, flags);
1882 mutex_unlock(&pcpu_alloc_mutex);
1885 /* clear the areas and return address relative to base address */
1886 for_each_possible_cpu(cpu)
1887 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1889 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1890 kmemleak_alloc_percpu(ptr, size, gfp);
1892 trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
1893 chunk->base_addr, off, ptr,
1894 pcpu_obj_full_size(size), gfp);
1896 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1898 pcpu_alloc_tag_alloc_hook(chunk, off, size);
1900 return ptr;
1902 fail_unlock:
1903 spin_unlock_irqrestore(&pcpu_lock, flags);
1904 fail:
1905 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1907 if (do_warn && warn_limit) {
1908 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1909 size, align, is_atomic, err);
1910 if (!is_atomic)
1911 dump_stack();
1912 if (!--warn_limit)
1913 pr_info("limit reached, disable warning\n");
1916 if (is_atomic) {
1917 /* see the flag handling in pcpu_balance_workfn() */
1918 pcpu_atomic_alloc_failed = true;
1919 pcpu_schedule_balance_work();
1920 } else {
1921 mutex_unlock(&pcpu_alloc_mutex);
1924 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1926 return NULL;
1928 EXPORT_SYMBOL_GPL(pcpu_alloc_noprof);
1931 * pcpu_balance_free - manage the amount of free chunks
1932 * @empty_only: free chunks only if there are no populated pages
1934 * If empty_only is %false, reclaim all fully free chunks regardless of the
1935 * number of populated pages. Otherwise, only reclaim chunks that have no
1936 * populated pages.
1938 * CONTEXT:
1939 * pcpu_lock (can be dropped temporarily)
1941 static void pcpu_balance_free(bool empty_only)
1943 LIST_HEAD(to_free);
1944 struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1945 struct pcpu_chunk *chunk, *next;
1947 lockdep_assert_held(&pcpu_lock);
1950 * There's no reason to keep around multiple unused chunks and VM
1951 * areas can be scarce. Destroy all free chunks except for one.
1953 list_for_each_entry_safe(chunk, next, free_head, list) {
1954 WARN_ON(chunk->immutable);
1956 /* spare the first one */
1957 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1958 continue;
1960 if (!empty_only || chunk->nr_empty_pop_pages == 0)
1961 list_move(&chunk->list, &to_free);
1964 if (list_empty(&to_free))
1965 return;
1967 spin_unlock_irq(&pcpu_lock);
1968 list_for_each_entry_safe(chunk, next, &to_free, list) {
1969 unsigned int rs, re;
1971 for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
1972 pcpu_depopulate_chunk(chunk, rs, re);
1973 spin_lock_irq(&pcpu_lock);
1974 pcpu_chunk_depopulated(chunk, rs, re);
1975 spin_unlock_irq(&pcpu_lock);
1977 pcpu_destroy_chunk(chunk);
1978 cond_resched();
1980 spin_lock_irq(&pcpu_lock);
1984 * pcpu_balance_populated - manage the amount of populated pages
1986 * Maintain a certain amount of populated pages to satisfy atomic allocations.
1987 * It is possible that this is called when physical memory is scarce causing
1988 * OOM killer to be triggered. We should avoid doing so until an actual
1989 * allocation causes the failure as it is possible that requests can be
1990 * serviced from already backed regions.
1992 * CONTEXT:
1993 * pcpu_lock (can be dropped temporarily)
1995 static void pcpu_balance_populated(void)
1997 /* gfp flags passed to underlying allocators */
1998 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1999 struct pcpu_chunk *chunk;
2000 int slot, nr_to_pop, ret;
2002 lockdep_assert_held(&pcpu_lock);
2005 * Ensure there are certain number of free populated pages for
2006 * atomic allocs. Fill up from the most packed so that atomic
2007 * allocs don't increase fragmentation. If atomic allocation
2008 * failed previously, always populate the maximum amount. This
2009 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2010 * failing indefinitely; however, large atomic allocs are not
2011 * something we support properly and can be highly unreliable and
2012 * inefficient.
2014 retry_pop:
2015 if (pcpu_atomic_alloc_failed) {
2016 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2017 /* best effort anyway, don't worry about synchronization */
2018 pcpu_atomic_alloc_failed = false;
2019 } else {
2020 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2021 pcpu_nr_empty_pop_pages,
2022 0, PCPU_EMPTY_POP_PAGES_HIGH);
2025 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2026 unsigned int nr_unpop = 0, rs, re;
2028 if (!nr_to_pop)
2029 break;
2031 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
2032 nr_unpop = chunk->nr_pages - chunk->nr_populated;
2033 if (nr_unpop)
2034 break;
2037 if (!nr_unpop)
2038 continue;
2040 /* @chunk can't go away while pcpu_alloc_mutex is held */
2041 for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2042 int nr = min_t(int, re - rs, nr_to_pop);
2044 spin_unlock_irq(&pcpu_lock);
2045 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2046 cond_resched();
2047 spin_lock_irq(&pcpu_lock);
2048 if (!ret) {
2049 nr_to_pop -= nr;
2050 pcpu_chunk_populated(chunk, rs, rs + nr);
2051 } else {
2052 nr_to_pop = 0;
2055 if (!nr_to_pop)
2056 break;
2060 if (nr_to_pop) {
2061 /* ran out of chunks to populate, create a new one and retry */
2062 spin_unlock_irq(&pcpu_lock);
2063 chunk = pcpu_create_chunk(gfp);
2064 cond_resched();
2065 spin_lock_irq(&pcpu_lock);
2066 if (chunk) {
2067 pcpu_chunk_relocate(chunk, -1);
2068 goto retry_pop;
2074 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2076 * Scan over chunks in the depopulate list and try to release unused populated
2077 * pages back to the system. Depopulated chunks are sidelined to prevent
2078 * repopulating these pages unless required. Fully free chunks are reintegrated
2079 * and freed accordingly (1 is kept around). If we drop below the empty
2080 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2081 * Each chunk is scanned in the reverse order to keep populated pages close to
2082 * the beginning of the chunk.
2084 * CONTEXT:
2085 * pcpu_lock (can be dropped temporarily)
2088 static void pcpu_reclaim_populated(void)
2090 struct pcpu_chunk *chunk;
2091 struct pcpu_block_md *block;
2092 int freed_page_start, freed_page_end;
2093 int i, end;
2094 bool reintegrate;
2096 lockdep_assert_held(&pcpu_lock);
2099 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2100 * longer discoverable to allocations whom may populate pages. The only
2101 * other accessor is the free path which only returns area back to the
2102 * allocator not touching the populated bitmap.
2104 while ((chunk = list_first_entry_or_null(
2105 &pcpu_chunk_lists[pcpu_to_depopulate_slot],
2106 struct pcpu_chunk, list))) {
2107 WARN_ON(chunk->immutable);
2110 * Scan chunk's pages in the reverse order to keep populated
2111 * pages close to the beginning of the chunk.
2113 freed_page_start = chunk->nr_pages;
2114 freed_page_end = 0;
2115 reintegrate = false;
2116 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2117 /* no more work to do */
2118 if (chunk->nr_empty_pop_pages == 0)
2119 break;
2121 /* reintegrate chunk to prevent atomic alloc failures */
2122 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2123 reintegrate = true;
2124 break;
2128 * If the page is empty and populated, start or
2129 * extend the (i, end) range. If i == 0, decrease
2130 * i and perform the depopulation to cover the last
2131 * (first) page in the chunk.
2133 block = chunk->md_blocks + i;
2134 if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2135 test_bit(i, chunk->populated)) {
2136 if (end == -1)
2137 end = i;
2138 if (i > 0)
2139 continue;
2140 i--;
2143 /* depopulate if there is an active range */
2144 if (end == -1)
2145 continue;
2147 spin_unlock_irq(&pcpu_lock);
2148 pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2149 cond_resched();
2150 spin_lock_irq(&pcpu_lock);
2152 pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2153 freed_page_start = min(freed_page_start, i + 1);
2154 freed_page_end = max(freed_page_end, end + 1);
2156 /* reset the range and continue */
2157 end = -1;
2160 /* batch tlb flush per chunk to amortize cost */
2161 if (freed_page_start < freed_page_end) {
2162 spin_unlock_irq(&pcpu_lock);
2163 pcpu_post_unmap_tlb_flush(chunk,
2164 freed_page_start,
2165 freed_page_end);
2166 cond_resched();
2167 spin_lock_irq(&pcpu_lock);
2170 if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2171 pcpu_reintegrate_chunk(chunk);
2172 else
2173 list_move_tail(&chunk->list,
2174 &pcpu_chunk_lists[pcpu_sidelined_slot]);
2179 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2180 * @work: unused
2182 * For each chunk type, manage the number of fully free chunks and the number of
2183 * populated pages. An important thing to consider is when pages are freed and
2184 * how they contribute to the global counts.
2186 static void pcpu_balance_workfn(struct work_struct *work)
2189 * pcpu_balance_free() is called twice because the first time we may
2190 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2191 * to grow other chunks. This then gives pcpu_reclaim_populated() time
2192 * to move fully free chunks to the active list to be freed if
2193 * appropriate.
2195 mutex_lock(&pcpu_alloc_mutex);
2196 spin_lock_irq(&pcpu_lock);
2198 pcpu_balance_free(false);
2199 pcpu_reclaim_populated();
2200 pcpu_balance_populated();
2201 pcpu_balance_free(true);
2203 spin_unlock_irq(&pcpu_lock);
2204 mutex_unlock(&pcpu_alloc_mutex);
2208 * free_percpu - free percpu area
2209 * @ptr: pointer to area to free
2211 * Free percpu area @ptr.
2213 * CONTEXT:
2214 * Can be called from atomic context.
2216 void free_percpu(void __percpu *ptr)
2218 void *addr;
2219 struct pcpu_chunk *chunk;
2220 unsigned long flags;
2221 int size, off;
2222 bool need_balance = false;
2224 if (!ptr)
2225 return;
2227 kmemleak_free_percpu(ptr);
2229 addr = __pcpu_ptr_to_addr(ptr);
2230 chunk = pcpu_chunk_addr_search(addr);
2231 off = addr - chunk->base_addr;
2233 spin_lock_irqsave(&pcpu_lock, flags);
2234 size = pcpu_free_area(chunk, off);
2236 pcpu_alloc_tag_free_hook(chunk, off, size);
2238 pcpu_memcg_free_hook(chunk, off, size);
2241 * If there are more than one fully free chunks, wake up grim reaper.
2242 * If the chunk is isolated, it may be in the process of being
2243 * reclaimed. Let reclaim manage cleaning up of that chunk.
2245 if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2246 struct pcpu_chunk *pos;
2248 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2249 if (pos != chunk) {
2250 need_balance = true;
2251 break;
2253 } else if (pcpu_should_reclaim_chunk(chunk)) {
2254 pcpu_isolate_chunk(chunk);
2255 need_balance = true;
2258 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2260 spin_unlock_irqrestore(&pcpu_lock, flags);
2262 if (need_balance)
2263 pcpu_schedule_balance_work();
2265 EXPORT_SYMBOL_GPL(free_percpu);
2267 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2269 #ifdef CONFIG_SMP
2270 const size_t static_size = __per_cpu_end - __per_cpu_start;
2271 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2272 unsigned int cpu;
2274 for_each_possible_cpu(cpu) {
2275 void *start = per_cpu_ptr(base, cpu);
2276 void *va = (void *)addr;
2278 if (va >= start && va < start + static_size) {
2279 if (can_addr) {
2280 *can_addr = (unsigned long) (va - start);
2281 *can_addr += (unsigned long)
2282 per_cpu_ptr(base, get_boot_cpu_id());
2284 return true;
2287 #endif
2288 /* on UP, can't distinguish from other static vars, always false */
2289 return false;
2293 * is_kernel_percpu_address - test whether address is from static percpu area
2294 * @addr: address to test
2296 * Test whether @addr belongs to in-kernel static percpu area. Module
2297 * static percpu areas are not considered. For those, use
2298 * is_module_percpu_address().
2300 * RETURNS:
2301 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2303 bool is_kernel_percpu_address(unsigned long addr)
2305 return __is_kernel_percpu_address(addr, NULL);
2309 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2310 * @addr: the address to be converted to physical address
2312 * Given @addr which is dereferenceable address obtained via one of
2313 * percpu access macros, this function translates it into its physical
2314 * address. The caller is responsible for ensuring @addr stays valid
2315 * until this function finishes.
2317 * percpu allocator has special setup for the first chunk, which currently
2318 * supports either embedding in linear address space or vmalloc mapping,
2319 * and, from the second one, the backing allocator (currently either vm or
2320 * km) provides translation.
2322 * The addr can be translated simply without checking if it falls into the
2323 * first chunk. But the current code reflects better how percpu allocator
2324 * actually works, and the verification can discover both bugs in percpu
2325 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2326 * code.
2328 * RETURNS:
2329 * The physical address for @addr.
2331 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2333 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2334 bool in_first_chunk = false;
2335 unsigned long first_low, first_high;
2336 unsigned int cpu;
2339 * The following test on unit_low/high isn't strictly
2340 * necessary but will speed up lookups of addresses which
2341 * aren't in the first chunk.
2343 * The address check is against full chunk sizes. pcpu_base_addr
2344 * points to the beginning of the first chunk including the
2345 * static region. Assumes good intent as the first chunk may
2346 * not be full (ie. < pcpu_unit_pages in size).
2348 first_low = (unsigned long)pcpu_base_addr +
2349 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2350 first_high = (unsigned long)pcpu_base_addr +
2351 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2352 if ((unsigned long)addr >= first_low &&
2353 (unsigned long)addr < first_high) {
2354 for_each_possible_cpu(cpu) {
2355 void *start = per_cpu_ptr(base, cpu);
2357 if (addr >= start && addr < start + pcpu_unit_size) {
2358 in_first_chunk = true;
2359 break;
2364 if (in_first_chunk) {
2365 if (!is_vmalloc_addr(addr))
2366 return __pa(addr);
2367 else
2368 return page_to_phys(vmalloc_to_page(addr)) +
2369 offset_in_page(addr);
2370 } else
2371 return page_to_phys(pcpu_addr_to_page(addr)) +
2372 offset_in_page(addr);
2376 * pcpu_alloc_alloc_info - allocate percpu allocation info
2377 * @nr_groups: the number of groups
2378 * @nr_units: the number of units
2380 * Allocate ai which is large enough for @nr_groups groups containing
2381 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2382 * cpu_map array which is long enough for @nr_units and filled with
2383 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2384 * pointer of other groups.
2386 * RETURNS:
2387 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2388 * failure.
2390 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2391 int nr_units)
2393 struct pcpu_alloc_info *ai;
2394 size_t base_size, ai_size;
2395 void *ptr;
2396 int unit;
2398 base_size = ALIGN(struct_size(ai, groups, nr_groups),
2399 __alignof__(ai->groups[0].cpu_map[0]));
2400 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2402 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2403 if (!ptr)
2404 return NULL;
2405 ai = ptr;
2406 ptr += base_size;
2408 ai->groups[0].cpu_map = ptr;
2410 for (unit = 0; unit < nr_units; unit++)
2411 ai->groups[0].cpu_map[unit] = NR_CPUS;
2413 ai->nr_groups = nr_groups;
2414 ai->__ai_size = PFN_ALIGN(ai_size);
2416 return ai;
2420 * pcpu_free_alloc_info - free percpu allocation info
2421 * @ai: pcpu_alloc_info to free
2423 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2425 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2427 memblock_free(ai, ai->__ai_size);
2431 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2432 * @lvl: loglevel
2433 * @ai: allocation info to dump
2435 * Print out information about @ai using loglevel @lvl.
2437 static void pcpu_dump_alloc_info(const char *lvl,
2438 const struct pcpu_alloc_info *ai)
2440 int group_width = 1, cpu_width = 1, width;
2441 char empty_str[] = "--------";
2442 int alloc = 0, alloc_end = 0;
2443 int group, v;
2444 int upa, apl; /* units per alloc, allocs per line */
2446 v = ai->nr_groups;
2447 while (v /= 10)
2448 group_width++;
2450 v = num_possible_cpus();
2451 while (v /= 10)
2452 cpu_width++;
2453 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2455 upa = ai->alloc_size / ai->unit_size;
2456 width = upa * (cpu_width + 1) + group_width + 3;
2457 apl = rounddown_pow_of_two(max(60 / width, 1));
2459 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2460 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2461 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2463 for (group = 0; group < ai->nr_groups; group++) {
2464 const struct pcpu_group_info *gi = &ai->groups[group];
2465 int unit = 0, unit_end = 0;
2467 BUG_ON(gi->nr_units % upa);
2468 for (alloc_end += gi->nr_units / upa;
2469 alloc < alloc_end; alloc++) {
2470 if (!(alloc % apl)) {
2471 pr_cont("\n");
2472 printk("%spcpu-alloc: ", lvl);
2474 pr_cont("[%0*d] ", group_width, group);
2476 for (unit_end += upa; unit < unit_end; unit++)
2477 if (gi->cpu_map[unit] != NR_CPUS)
2478 pr_cont("%0*d ",
2479 cpu_width, gi->cpu_map[unit]);
2480 else
2481 pr_cont("%s ", empty_str);
2484 pr_cont("\n");
2488 * pcpu_setup_first_chunk - initialize the first percpu chunk
2489 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2490 * @base_addr: mapped address
2492 * Initialize the first percpu chunk which contains the kernel static
2493 * percpu area. This function is to be called from arch percpu area
2494 * setup path.
2496 * @ai contains all information necessary to initialize the first
2497 * chunk and prime the dynamic percpu allocator.
2499 * @ai->static_size is the size of static percpu area.
2501 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2502 * reserve after the static area in the first chunk. This reserves
2503 * the first chunk such that it's available only through reserved
2504 * percpu allocation. This is primarily used to serve module percpu
2505 * static areas on architectures where the addressing model has
2506 * limited offset range for symbol relocations to guarantee module
2507 * percpu symbols fall inside the relocatable range.
2509 * @ai->dyn_size determines the number of bytes available for dynamic
2510 * allocation in the first chunk. The area between @ai->static_size +
2511 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2513 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2514 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2515 * @ai->dyn_size.
2517 * @ai->atom_size is the allocation atom size and used as alignment
2518 * for vm areas.
2520 * @ai->alloc_size is the allocation size and always multiple of
2521 * @ai->atom_size. This is larger than @ai->atom_size if
2522 * @ai->unit_size is larger than @ai->atom_size.
2524 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2525 * percpu areas. Units which should be colocated are put into the
2526 * same group. Dynamic VM areas will be allocated according to these
2527 * groupings. If @ai->nr_groups is zero, a single group containing
2528 * all units is assumed.
2530 * The caller should have mapped the first chunk at @base_addr and
2531 * copied static data to each unit.
2533 * The first chunk will always contain a static and a dynamic region.
2534 * However, the static region is not managed by any chunk. If the first
2535 * chunk also contains a reserved region, it is served by two chunks -
2536 * one for the reserved region and one for the dynamic region. They
2537 * share the same vm, but use offset regions in the area allocation map.
2538 * The chunk serving the dynamic region is circulated in the chunk slots
2539 * and available for dynamic allocation like any other chunk.
2541 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2542 void *base_addr)
2544 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2545 size_t static_size, dyn_size;
2546 unsigned long *group_offsets;
2547 size_t *group_sizes;
2548 unsigned long *unit_off;
2549 unsigned int cpu;
2550 int *unit_map;
2551 int group, unit, i;
2552 unsigned long tmp_addr;
2553 size_t alloc_size;
2555 #define PCPU_SETUP_BUG_ON(cond) do { \
2556 if (unlikely(cond)) { \
2557 pr_emerg("failed to initialize, %s\n", #cond); \
2558 pr_emerg("cpu_possible_mask=%*pb\n", \
2559 cpumask_pr_args(cpu_possible_mask)); \
2560 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2561 BUG(); \
2563 } while (0)
2565 /* sanity checks */
2566 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2567 #ifdef CONFIG_SMP
2568 PCPU_SETUP_BUG_ON(!ai->static_size);
2569 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2570 #endif
2571 PCPU_SETUP_BUG_ON(!base_addr);
2572 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2573 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2574 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2575 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2576 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2577 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2578 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2579 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2580 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2581 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2583 /* process group information and build config tables accordingly */
2584 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2585 group_offsets = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
2587 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2588 group_sizes = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
2590 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2591 unit_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
2593 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2594 unit_off = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
2596 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2597 unit_map[cpu] = UINT_MAX;
2599 pcpu_low_unit_cpu = NR_CPUS;
2600 pcpu_high_unit_cpu = NR_CPUS;
2602 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2603 const struct pcpu_group_info *gi = &ai->groups[group];
2605 group_offsets[group] = gi->base_offset;
2606 group_sizes[group] = gi->nr_units * ai->unit_size;
2608 for (i = 0; i < gi->nr_units; i++) {
2609 cpu = gi->cpu_map[i];
2610 if (cpu == NR_CPUS)
2611 continue;
2613 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2614 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2615 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2617 unit_map[cpu] = unit + i;
2618 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2620 /* determine low/high unit_cpu */
2621 if (pcpu_low_unit_cpu == NR_CPUS ||
2622 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2623 pcpu_low_unit_cpu = cpu;
2624 if (pcpu_high_unit_cpu == NR_CPUS ||
2625 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2626 pcpu_high_unit_cpu = cpu;
2629 pcpu_nr_units = unit;
2631 for_each_possible_cpu(cpu)
2632 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2634 /* we're done parsing the input, undefine BUG macro and dump config */
2635 #undef PCPU_SETUP_BUG_ON
2636 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2638 pcpu_nr_groups = ai->nr_groups;
2639 pcpu_group_offsets = group_offsets;
2640 pcpu_group_sizes = group_sizes;
2641 pcpu_unit_map = unit_map;
2642 pcpu_unit_offsets = unit_off;
2644 /* determine basic parameters */
2645 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2646 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2647 pcpu_atom_size = ai->atom_size;
2648 pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated,
2649 BITS_TO_LONGS(pcpu_unit_pages));
2651 pcpu_stats_save_ai(ai);
2654 * Allocate chunk slots. The slots after the active slots are:
2655 * sidelined_slot - isolated, depopulated chunks
2656 * free_slot - fully free chunks
2657 * to_depopulate_slot - isolated, chunks to depopulate
2659 pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2660 pcpu_free_slot = pcpu_sidelined_slot + 1;
2661 pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2662 pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2663 pcpu_chunk_lists = memblock_alloc_or_panic(pcpu_nr_slots *
2664 sizeof(pcpu_chunk_lists[0]),
2665 SMP_CACHE_BYTES);
2667 for (i = 0; i < pcpu_nr_slots; i++)
2668 INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2671 * The end of the static region needs to be aligned with the
2672 * minimum allocation size as this offsets the reserved and
2673 * dynamic region. The first chunk ends page aligned by
2674 * expanding the dynamic region, therefore the dynamic region
2675 * can be shrunk to compensate while still staying above the
2676 * configured sizes.
2678 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2679 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2682 * Initialize first chunk:
2683 * This chunk is broken up into 3 parts:
2684 * < static | [reserved] | dynamic >
2685 * - static - there is no backing chunk because these allocations can
2686 * never be freed.
2687 * - reserved (pcpu_reserved_chunk) - exists primarily to serve
2688 * allocations from module load.
2689 * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first
2690 * chunk.
2692 tmp_addr = (unsigned long)base_addr + static_size;
2693 if (ai->reserved_size)
2694 pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr,
2695 ai->reserved_size);
2696 tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size;
2697 pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size);
2699 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2700 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2702 /* include all regions of the first chunk */
2703 pcpu_nr_populated += PFN_DOWN(size_sum);
2705 pcpu_stats_chunk_alloc();
2706 trace_percpu_create_chunk(base_addr);
2708 /* we're done */
2709 pcpu_base_addr = base_addr;
2712 #ifdef CONFIG_SMP
2714 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2715 [PCPU_FC_AUTO] = "auto",
2716 [PCPU_FC_EMBED] = "embed",
2717 [PCPU_FC_PAGE] = "page",
2720 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2722 static int __init percpu_alloc_setup(char *str)
2724 if (!str)
2725 return -EINVAL;
2727 if (0)
2728 /* nada */;
2729 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2730 else if (!strcmp(str, "embed"))
2731 pcpu_chosen_fc = PCPU_FC_EMBED;
2732 #endif
2733 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2734 else if (!strcmp(str, "page"))
2735 pcpu_chosen_fc = PCPU_FC_PAGE;
2736 #endif
2737 else
2738 pr_warn("unknown allocator %s specified\n", str);
2740 return 0;
2742 early_param("percpu_alloc", percpu_alloc_setup);
2745 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2746 * Build it if needed by the arch config or the generic setup is going
2747 * to be used.
2749 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2750 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2751 #define BUILD_EMBED_FIRST_CHUNK
2752 #endif
2754 /* build pcpu_page_first_chunk() iff needed by the arch config */
2755 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2756 #define BUILD_PAGE_FIRST_CHUNK
2757 #endif
2759 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2760 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2762 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2763 * @reserved_size: the size of reserved percpu area in bytes
2764 * @dyn_size: minimum free size for dynamic allocation in bytes
2765 * @atom_size: allocation atom size
2766 * @cpu_distance_fn: callback to determine distance between cpus, optional
2768 * This function determines grouping of units, their mappings to cpus
2769 * and other parameters considering needed percpu size, allocation
2770 * atom size and distances between CPUs.
2772 * Groups are always multiples of atom size and CPUs which are of
2773 * LOCAL_DISTANCE both ways are grouped together and share space for
2774 * units in the same group. The returned configuration is guaranteed
2775 * to have CPUs on different nodes on different groups and >=75% usage
2776 * of allocated virtual address space.
2778 * RETURNS:
2779 * On success, pointer to the new allocation_info is returned. On
2780 * failure, ERR_PTR value is returned.
2782 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2783 size_t reserved_size, size_t dyn_size,
2784 size_t atom_size,
2785 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2787 static int group_map[NR_CPUS] __initdata;
2788 static int group_cnt[NR_CPUS] __initdata;
2789 static struct cpumask mask __initdata;
2790 const size_t static_size = __per_cpu_end - __per_cpu_start;
2791 int nr_groups = 1, nr_units = 0;
2792 size_t size_sum, min_unit_size, alloc_size;
2793 int upa, max_upa, best_upa; /* units_per_alloc */
2794 int last_allocs, group, unit;
2795 unsigned int cpu, tcpu;
2796 struct pcpu_alloc_info *ai;
2797 unsigned int *cpu_map;
2799 /* this function may be called multiple times */
2800 memset(group_map, 0, sizeof(group_map));
2801 memset(group_cnt, 0, sizeof(group_cnt));
2802 cpumask_clear(&mask);
2804 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2805 size_sum = PFN_ALIGN(static_size + reserved_size +
2806 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2807 dyn_size = size_sum - static_size - reserved_size;
2810 * Determine min_unit_size, alloc_size and max_upa such that
2811 * alloc_size is multiple of atom_size and is the smallest
2812 * which can accommodate 4k aligned segments which are equal to
2813 * or larger than min_unit_size.
2815 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2817 /* determine the maximum # of units that can fit in an allocation */
2818 alloc_size = roundup(min_unit_size, atom_size);
2819 upa = alloc_size / min_unit_size;
2820 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2821 upa--;
2822 max_upa = upa;
2824 cpumask_copy(&mask, cpu_possible_mask);
2826 /* group cpus according to their proximity */
2827 for (group = 0; !cpumask_empty(&mask); group++) {
2828 /* pop the group's first cpu */
2829 cpu = cpumask_first(&mask);
2830 group_map[cpu] = group;
2831 group_cnt[group]++;
2832 cpumask_clear_cpu(cpu, &mask);
2834 for_each_cpu(tcpu, &mask) {
2835 if (!cpu_distance_fn ||
2836 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2837 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2838 group_map[tcpu] = group;
2839 group_cnt[group]++;
2840 cpumask_clear_cpu(tcpu, &mask);
2844 nr_groups = group;
2847 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2848 * Expand the unit_size until we use >= 75% of the units allocated.
2849 * Related to atom_size, which could be much larger than the unit_size.
2851 last_allocs = INT_MAX;
2852 best_upa = 0;
2853 for (upa = max_upa; upa; upa--) {
2854 int allocs = 0, wasted = 0;
2856 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2857 continue;
2859 for (group = 0; group < nr_groups; group++) {
2860 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2861 allocs += this_allocs;
2862 wasted += this_allocs * upa - group_cnt[group];
2866 * Don't accept if wastage is over 1/3. The
2867 * greater-than comparison ensures upa==1 always
2868 * passes the following check.
2870 if (wasted > num_possible_cpus() / 3)
2871 continue;
2873 /* and then don't consume more memory */
2874 if (allocs > last_allocs)
2875 break;
2876 last_allocs = allocs;
2877 best_upa = upa;
2879 BUG_ON(!best_upa);
2880 upa = best_upa;
2882 /* allocate and fill alloc_info */
2883 for (group = 0; group < nr_groups; group++)
2884 nr_units += roundup(group_cnt[group], upa);
2886 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2887 if (!ai)
2888 return ERR_PTR(-ENOMEM);
2889 cpu_map = ai->groups[0].cpu_map;
2891 for (group = 0; group < nr_groups; group++) {
2892 ai->groups[group].cpu_map = cpu_map;
2893 cpu_map += roundup(group_cnt[group], upa);
2896 ai->static_size = static_size;
2897 ai->reserved_size = reserved_size;
2898 ai->dyn_size = dyn_size;
2899 ai->unit_size = alloc_size / upa;
2900 ai->atom_size = atom_size;
2901 ai->alloc_size = alloc_size;
2903 for (group = 0, unit = 0; group < nr_groups; group++) {
2904 struct pcpu_group_info *gi = &ai->groups[group];
2907 * Initialize base_offset as if all groups are located
2908 * back-to-back. The caller should update this to
2909 * reflect actual allocation.
2911 gi->base_offset = unit * ai->unit_size;
2913 for_each_possible_cpu(cpu)
2914 if (group_map[cpu] == group)
2915 gi->cpu_map[gi->nr_units++] = cpu;
2916 gi->nr_units = roundup(gi->nr_units, upa);
2917 unit += gi->nr_units;
2919 BUG_ON(unit != nr_units);
2921 return ai;
2924 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
2925 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
2927 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
2928 #ifdef CONFIG_NUMA
2929 int node = NUMA_NO_NODE;
2930 void *ptr;
2932 if (cpu_to_nd_fn)
2933 node = cpu_to_nd_fn(cpu);
2935 if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
2936 ptr = memblock_alloc_from(size, align, goal);
2937 pr_info("cpu %d has no node %d or node-local memory\n",
2938 cpu, node);
2939 pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
2940 cpu, size, (u64)__pa(ptr));
2941 } else {
2942 ptr = memblock_alloc_try_nid(size, align, goal,
2943 MEMBLOCK_ALLOC_ACCESSIBLE,
2944 node);
2946 pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
2947 cpu, size, node, (u64)__pa(ptr));
2949 return ptr;
2950 #else
2951 return memblock_alloc_from(size, align, goal);
2952 #endif
2955 static void __init pcpu_fc_free(void *ptr, size_t size)
2957 memblock_free(ptr, size);
2959 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2961 #if defined(BUILD_EMBED_FIRST_CHUNK)
2963 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2964 * @reserved_size: the size of reserved percpu area in bytes
2965 * @dyn_size: minimum free size for dynamic allocation in bytes
2966 * @atom_size: allocation atom size
2967 * @cpu_distance_fn: callback to determine distance between cpus, optional
2968 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
2970 * This is a helper to ease setting up embedded first percpu chunk and
2971 * can be called where pcpu_setup_first_chunk() is expected.
2973 * If this function is used to setup the first chunk, it is allocated
2974 * by calling pcpu_fc_alloc and used as-is without being mapped into
2975 * vmalloc area. Allocations are always whole multiples of @atom_size
2976 * aligned to @atom_size.
2978 * This enables the first chunk to piggy back on the linear physical
2979 * mapping which often uses larger page size. Please note that this
2980 * can result in very sparse cpu->unit mapping on NUMA machines thus
2981 * requiring large vmalloc address space. Don't use this allocator if
2982 * vmalloc space is not orders of magnitude larger than distances
2983 * between node memory addresses (ie. 32bit NUMA machines).
2985 * @dyn_size specifies the minimum dynamic area size.
2987 * If the needed size is smaller than the minimum or specified unit
2988 * size, the leftover is returned using pcpu_fc_free.
2990 * RETURNS:
2991 * 0 on success, -errno on failure.
2993 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2994 size_t atom_size,
2995 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2996 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
2998 void *base = (void *)ULONG_MAX;
2999 void **areas = NULL;
3000 struct pcpu_alloc_info *ai;
3001 size_t size_sum, areas_size;
3002 unsigned long max_distance;
3003 int group, i, highest_group, rc = 0;
3005 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3006 cpu_distance_fn);
3007 if (IS_ERR(ai))
3008 return PTR_ERR(ai);
3010 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3011 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3013 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3014 if (!areas) {
3015 rc = -ENOMEM;
3016 goto out_free;
3019 /* allocate, copy and determine base address & max_distance */
3020 highest_group = 0;
3021 for (group = 0; group < ai->nr_groups; group++) {
3022 struct pcpu_group_info *gi = &ai->groups[group];
3023 unsigned int cpu = NR_CPUS;
3024 void *ptr;
3026 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3027 cpu = gi->cpu_map[i];
3028 BUG_ON(cpu == NR_CPUS);
3030 /* allocate space for the whole group */
3031 ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
3032 if (!ptr) {
3033 rc = -ENOMEM;
3034 goto out_free_areas;
3036 /* kmemleak tracks the percpu allocations separately */
3037 kmemleak_ignore_phys(__pa(ptr));
3038 areas[group] = ptr;
3040 base = min(ptr, base);
3041 if (ptr > areas[highest_group])
3042 highest_group = group;
3044 max_distance = areas[highest_group] - base;
3045 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3047 /* warn if maximum distance is further than 75% of vmalloc space */
3048 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3049 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3050 max_distance, VMALLOC_TOTAL);
3051 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3052 /* and fail if we have fallback */
3053 rc = -EINVAL;
3054 goto out_free_areas;
3055 #endif
3059 * Copy data and free unused parts. This should happen after all
3060 * allocations are complete; otherwise, we may end up with
3061 * overlapping groups.
3063 for (group = 0; group < ai->nr_groups; group++) {
3064 struct pcpu_group_info *gi = &ai->groups[group];
3065 void *ptr = areas[group];
3067 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3068 if (gi->cpu_map[i] == NR_CPUS) {
3069 /* unused unit, free whole */
3070 pcpu_fc_free(ptr, ai->unit_size);
3071 continue;
3073 /* copy and return the unused part */
3074 memcpy(ptr, __per_cpu_load, ai->static_size);
3075 pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
3079 /* base address is now known, determine group base offsets */
3080 for (group = 0; group < ai->nr_groups; group++) {
3081 ai->groups[group].base_offset = areas[group] - base;
3084 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3085 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3086 ai->dyn_size, ai->unit_size);
3088 pcpu_setup_first_chunk(ai, base);
3089 goto out_free;
3091 out_free_areas:
3092 for (group = 0; group < ai->nr_groups; group++)
3093 if (areas[group])
3094 pcpu_fc_free(areas[group],
3095 ai->groups[group].nr_units * ai->unit_size);
3096 out_free:
3097 pcpu_free_alloc_info(ai);
3098 if (areas)
3099 memblock_free(areas, areas_size);
3100 return rc;
3102 #endif /* BUILD_EMBED_FIRST_CHUNK */
3104 #ifdef BUILD_PAGE_FIRST_CHUNK
3105 #include <asm/pgalloc.h>
3107 #ifndef P4D_TABLE_SIZE
3108 #define P4D_TABLE_SIZE PAGE_SIZE
3109 #endif
3111 #ifndef PUD_TABLE_SIZE
3112 #define PUD_TABLE_SIZE PAGE_SIZE
3113 #endif
3115 #ifndef PMD_TABLE_SIZE
3116 #define PMD_TABLE_SIZE PAGE_SIZE
3117 #endif
3119 #ifndef PTE_TABLE_SIZE
3120 #define PTE_TABLE_SIZE PAGE_SIZE
3121 #endif
3122 void __init __weak pcpu_populate_pte(unsigned long addr)
3124 pgd_t *pgd = pgd_offset_k(addr);
3125 p4d_t *p4d;
3126 pud_t *pud;
3127 pmd_t *pmd;
3129 if (pgd_none(*pgd)) {
3130 p4d = memblock_alloc_or_panic(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
3131 pgd_populate(&init_mm, pgd, p4d);
3134 p4d = p4d_offset(pgd, addr);
3135 if (p4d_none(*p4d)) {
3136 pud = memblock_alloc_or_panic(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
3137 p4d_populate(&init_mm, p4d, pud);
3140 pud = pud_offset(p4d, addr);
3141 if (pud_none(*pud)) {
3142 pmd = memblock_alloc_or_panic(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
3143 pud_populate(&init_mm, pud, pmd);
3146 pmd = pmd_offset(pud, addr);
3147 if (!pmd_present(*pmd)) {
3148 pte_t *new;
3150 new = memblock_alloc_or_panic(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
3151 pmd_populate_kernel(&init_mm, pmd, new);
3154 return;
3158 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3159 * @reserved_size: the size of reserved percpu area in bytes
3160 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3162 * This is a helper to ease setting up page-remapped first percpu
3163 * chunk and can be called where pcpu_setup_first_chunk() is expected.
3165 * This is the basic allocator. Static percpu area is allocated
3166 * page-by-page into vmalloc area.
3168 * RETURNS:
3169 * 0 on success, -errno on failure.
3171 int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3173 static struct vm_struct vm;
3174 struct pcpu_alloc_info *ai;
3175 char psize_str[16];
3176 int unit_pages;
3177 size_t pages_size;
3178 struct page **pages;
3179 int unit, i, j, rc = 0;
3180 int upa;
3181 int nr_g0_units;
3183 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3185 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3186 if (IS_ERR(ai))
3187 return PTR_ERR(ai);
3188 BUG_ON(ai->nr_groups != 1);
3189 upa = ai->alloc_size/ai->unit_size;
3190 nr_g0_units = roundup(num_possible_cpus(), upa);
3191 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3192 pcpu_free_alloc_info(ai);
3193 return -EINVAL;
3196 unit_pages = ai->unit_size >> PAGE_SHIFT;
3198 /* unaligned allocations can't be freed, round up to page size */
3199 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3200 sizeof(pages[0]));
3201 pages = memblock_alloc_or_panic(pages_size, SMP_CACHE_BYTES);
3203 /* allocate pages */
3204 j = 0;
3205 for (unit = 0; unit < num_possible_cpus(); unit++) {
3206 unsigned int cpu = ai->groups[0].cpu_map[unit];
3207 for (i = 0; i < unit_pages; i++) {
3208 void *ptr;
3210 ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
3211 if (!ptr) {
3212 pr_warn("failed to allocate %s page for cpu%u\n",
3213 psize_str, cpu);
3214 goto enomem;
3216 /* kmemleak tracks the percpu allocations separately */
3217 kmemleak_ignore_phys(__pa(ptr));
3218 pages[j++] = virt_to_page(ptr);
3222 /* allocate vm area, map the pages and copy static data */
3223 vm.flags = VM_ALLOC;
3224 vm.size = num_possible_cpus() * ai->unit_size;
3225 vm_area_register_early(&vm, PAGE_SIZE);
3227 for (unit = 0; unit < num_possible_cpus(); unit++) {
3228 unsigned long unit_addr =
3229 (unsigned long)vm.addr + unit * ai->unit_size;
3231 for (i = 0; i < unit_pages; i++)
3232 pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
3234 /* pte already populated, the following shouldn't fail */
3235 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3236 unit_pages);
3237 if (rc < 0)
3238 panic("failed to map percpu area, err=%d\n", rc);
3240 flush_cache_vmap_early(unit_addr, unit_addr + ai->unit_size);
3242 /* copy static data */
3243 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3246 /* we're ready, commit */
3247 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3248 unit_pages, psize_str, ai->static_size,
3249 ai->reserved_size, ai->dyn_size);
3251 pcpu_setup_first_chunk(ai, vm.addr);
3252 goto out_free_ar;
3254 enomem:
3255 while (--j >= 0)
3256 pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
3257 rc = -ENOMEM;
3258 out_free_ar:
3259 memblock_free(pages, pages_size);
3260 pcpu_free_alloc_info(ai);
3261 return rc;
3263 #endif /* BUILD_PAGE_FIRST_CHUNK */
3265 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
3267 * Generic SMP percpu area setup.
3269 * The embedding helper is used because its behavior closely resembles
3270 * the original non-dynamic generic percpu area setup. This is
3271 * important because many archs have addressing restrictions and might
3272 * fail if the percpu area is located far away from the previous
3273 * location. As an added bonus, in non-NUMA cases, embedding is
3274 * generally a good idea TLB-wise because percpu area can piggy back
3275 * on the physical linear memory mapping which uses large page
3276 * mappings on applicable archs.
3278 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3279 EXPORT_SYMBOL(__per_cpu_offset);
3281 void __init setup_per_cpu_areas(void)
3283 unsigned long delta;
3284 unsigned int cpu;
3285 int rc;
3288 * Always reserve area for module percpu variables. That's
3289 * what the legacy allocator did.
3291 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
3292 PAGE_SIZE, NULL, NULL);
3293 if (rc < 0)
3294 panic("Failed to initialize percpu areas.");
3296 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3297 for_each_possible_cpu(cpu)
3298 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3300 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3302 #else /* CONFIG_SMP */
3305 * UP percpu area setup.
3307 * UP always uses km-based percpu allocator with identity mapping.
3308 * Static percpu variables are indistinguishable from the usual static
3309 * variables and don't require any special preparation.
3311 void __init setup_per_cpu_areas(void)
3313 const size_t unit_size =
3314 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3315 PERCPU_DYNAMIC_RESERVE));
3316 struct pcpu_alloc_info *ai;
3317 void *fc;
3319 ai = pcpu_alloc_alloc_info(1, 1);
3320 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3321 if (!ai || !fc)
3322 panic("Failed to allocate memory for percpu areas.");
3323 /* kmemleak tracks the percpu allocations separately */
3324 kmemleak_ignore_phys(__pa(fc));
3326 ai->dyn_size = unit_size;
3327 ai->unit_size = unit_size;
3328 ai->atom_size = unit_size;
3329 ai->alloc_size = unit_size;
3330 ai->groups[0].nr_units = 1;
3331 ai->groups[0].cpu_map[0] = 0;
3333 pcpu_setup_first_chunk(ai, fc);
3334 pcpu_free_alloc_info(ai);
3337 #endif /* CONFIG_SMP */
3340 * pcpu_nr_pages - calculate total number of populated backing pages
3342 * This reflects the number of pages populated to back chunks. Metadata is
3343 * excluded in the number exposed in meminfo as the number of backing pages
3344 * scales with the number of cpus and can quickly outweigh the memory used for
3345 * metadata. It also keeps this calculation nice and simple.
3347 * RETURNS:
3348 * Total number of populated backing pages in use by the allocator.
3350 unsigned long pcpu_nr_pages(void)
3352 return pcpu_nr_populated * pcpu_nr_units;
3356 * Percpu allocator is initialized early during boot when neither slab or
3357 * workqueue is available. Plug async management until everything is up
3358 * and running.
3360 static int __init percpu_enable_async(void)
3362 pcpu_async_enabled = true;
3363 return 0;
3365 subsys_initcall(percpu_enable_async);