Linux 6.14-rc1
[linux-stable.git] / mm / slub.c
blob1f50129dcfb3cd1fc76ac9398fa7718cedb42385
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
49 #include "internal.h"
52 * Lock order:
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
59 * slab_mutex
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
65 * slab_lock
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
78 * Frozen slabs
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
86 * slab's freelist.
88 * CPU partial slabs
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
102 * list_lock
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
119 * cpu_slab->lock local lock
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
131 * lockless fastpaths
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
140 * irq, preemption, migration considerations
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH() (true)
193 #else
194 #define slub_get_cpu_ptr(var) \
195 ({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
199 #define slub_put_cpu_ptr(var) \
200 do { \
201 (void)(var); \
202 migrate_enable(); \
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH() (false)
205 #endif
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif /* CONFIG_SLUB_DEBUG */
221 #ifdef CONFIG_NUMA
222 static DEFINE_STATIC_KEY_FALSE(strict_numa);
223 #endif
225 /* Structure holding parameters for get_partial() call chain */
226 struct partial_context {
227 gfp_t flags;
228 unsigned int orig_size;
229 void *object;
232 static inline bool kmem_cache_debug(struct kmem_cache *s)
234 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
237 void *fixup_red_left(struct kmem_cache *s, void *p)
239 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
240 p += s->red_left_pad;
242 return p;
245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
247 #ifdef CONFIG_SLUB_CPU_PARTIAL
248 return !kmem_cache_debug(s);
249 #else
250 return false;
251 #endif
255 * Issues still to be resolved:
257 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
259 * - Variable sizing of the per node arrays
262 /* Enable to log cmpxchg failures */
263 #undef SLUB_DEBUG_CMPXCHG
265 #ifndef CONFIG_SLUB_TINY
267 * Minimum number of partial slabs. These will be left on the partial
268 * lists even if they are empty. kmem_cache_shrink may reclaim them.
270 #define MIN_PARTIAL 5
273 * Maximum number of desirable partial slabs.
274 * The existence of more partial slabs makes kmem_cache_shrink
275 * sort the partial list by the number of objects in use.
277 #define MAX_PARTIAL 10
278 #else
279 #define MIN_PARTIAL 0
280 #define MAX_PARTIAL 0
281 #endif
283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
284 SLAB_POISON | SLAB_STORE_USER)
287 * These debug flags cannot use CMPXCHG because there might be consistency
288 * issues when checking or reading debug information
290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
291 SLAB_TRACE)
295 * Debugging flags that require metadata to be stored in the slab. These get
296 * disabled when slab_debug=O is used and a cache's min order increases with
297 * metadata.
299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
301 #define OO_SHIFT 16
302 #define OO_MASK ((1 << OO_SHIFT) - 1)
303 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
305 /* Internal SLUB flags */
306 /* Poison object */
307 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
308 /* Use cmpxchg_double */
310 #ifdef system_has_freelist_aba
311 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
312 #else
313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
314 #endif
317 * Tracking user of a slab.
319 #define TRACK_ADDRS_COUNT 16
320 struct track {
321 unsigned long addr; /* Called from address */
322 #ifdef CONFIG_STACKDEPOT
323 depot_stack_handle_t handle;
324 #endif
325 int cpu; /* Was running on cpu */
326 int pid; /* Pid context */
327 unsigned long when; /* When did the operation occur */
330 enum track_item { TRACK_ALLOC, TRACK_FREE };
332 #ifdef SLAB_SUPPORTS_SYSFS
333 static int sysfs_slab_add(struct kmem_cache *);
334 static int sysfs_slab_alias(struct kmem_cache *, const char *);
335 #else
336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
338 { return 0; }
339 #endif
341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
342 static void debugfs_slab_add(struct kmem_cache *);
343 #else
344 static inline void debugfs_slab_add(struct kmem_cache *s) { }
345 #endif
347 enum stat_item {
348 ALLOC_FASTPATH, /* Allocation from cpu slab */
349 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
350 FREE_FASTPATH, /* Free to cpu slab */
351 FREE_SLOWPATH, /* Freeing not to cpu slab */
352 FREE_FROZEN, /* Freeing to frozen slab */
353 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
354 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
355 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
356 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
357 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
358 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
359 FREE_SLAB, /* Slab freed to the page allocator */
360 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
361 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
362 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
363 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
364 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
365 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
366 DEACTIVATE_BYPASS, /* Implicit deactivation */
367 ORDER_FALLBACK, /* Number of times fallback was necessary */
368 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
369 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
370 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
371 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
372 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
373 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
374 NR_SLUB_STAT_ITEMS
377 #ifndef CONFIG_SLUB_TINY
379 * When changing the layout, make sure freelist and tid are still compatible
380 * with this_cpu_cmpxchg_double() alignment requirements.
382 struct kmem_cache_cpu {
383 union {
384 struct {
385 void **freelist; /* Pointer to next available object */
386 unsigned long tid; /* Globally unique transaction id */
388 freelist_aba_t freelist_tid;
390 struct slab *slab; /* The slab from which we are allocating */
391 #ifdef CONFIG_SLUB_CPU_PARTIAL
392 struct slab *partial; /* Partially allocated slabs */
393 #endif
394 local_lock_t lock; /* Protects the fields above */
395 #ifdef CONFIG_SLUB_STATS
396 unsigned int stat[NR_SLUB_STAT_ITEMS];
397 #endif
399 #endif /* CONFIG_SLUB_TINY */
401 static inline void stat(const struct kmem_cache *s, enum stat_item si)
403 #ifdef CONFIG_SLUB_STATS
405 * The rmw is racy on a preemptible kernel but this is acceptable, so
406 * avoid this_cpu_add()'s irq-disable overhead.
408 raw_cpu_inc(s->cpu_slab->stat[si]);
409 #endif
412 static inline
413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
415 #ifdef CONFIG_SLUB_STATS
416 raw_cpu_add(s->cpu_slab->stat[si], v);
417 #endif
421 * The slab lists for all objects.
423 struct kmem_cache_node {
424 spinlock_t list_lock;
425 unsigned long nr_partial;
426 struct list_head partial;
427 #ifdef CONFIG_SLUB_DEBUG
428 atomic_long_t nr_slabs;
429 atomic_long_t total_objects;
430 struct list_head full;
431 #endif
434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
436 return s->node[node];
440 * Iterator over all nodes. The body will be executed for each node that has
441 * a kmem_cache_node structure allocated (which is true for all online nodes)
443 #define for_each_kmem_cache_node(__s, __node, __n) \
444 for (__node = 0; __node < nr_node_ids; __node++) \
445 if ((__n = get_node(__s, __node)))
448 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
449 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
450 * differ during memory hotplug/hotremove operations.
451 * Protected by slab_mutex.
453 static nodemask_t slab_nodes;
455 #ifndef CONFIG_SLUB_TINY
457 * Workqueue used for flush_cpu_slab().
459 static struct workqueue_struct *flushwq;
460 #endif
462 /********************************************************************
463 * Core slab cache functions
464 *******************************************************************/
467 * Returns freelist pointer (ptr). With hardening, this is obfuscated
468 * with an XOR of the address where the pointer is held and a per-cache
469 * random number.
471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
472 void *ptr, unsigned long ptr_addr)
474 unsigned long encoded;
476 #ifdef CONFIG_SLAB_FREELIST_HARDENED
477 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
478 #else
479 encoded = (unsigned long)ptr;
480 #endif
481 return (freeptr_t){.v = encoded};
484 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
485 freeptr_t ptr, unsigned long ptr_addr)
487 void *decoded;
489 #ifdef CONFIG_SLAB_FREELIST_HARDENED
490 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
491 #else
492 decoded = (void *)ptr.v;
493 #endif
494 return decoded;
497 static inline void *get_freepointer(struct kmem_cache *s, void *object)
499 unsigned long ptr_addr;
500 freeptr_t p;
502 object = kasan_reset_tag(object);
503 ptr_addr = (unsigned long)object + s->offset;
504 p = *(freeptr_t *)(ptr_addr);
505 return freelist_ptr_decode(s, p, ptr_addr);
508 #ifndef CONFIG_SLUB_TINY
509 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
511 prefetchw(object + s->offset);
513 #endif
516 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
517 * pointer value in the case the current thread loses the race for the next
518 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
519 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
520 * KMSAN will still check all arguments of cmpxchg because of imperfect
521 * handling of inline assembly.
522 * To work around this problem, we apply __no_kmsan_checks to ensure that
523 * get_freepointer_safe() returns initialized memory.
525 __no_kmsan_checks
526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
528 unsigned long freepointer_addr;
529 freeptr_t p;
531 if (!debug_pagealloc_enabled_static())
532 return get_freepointer(s, object);
534 object = kasan_reset_tag(object);
535 freepointer_addr = (unsigned long)object + s->offset;
536 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
537 return freelist_ptr_decode(s, p, freepointer_addr);
540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
542 unsigned long freeptr_addr = (unsigned long)object + s->offset;
544 #ifdef CONFIG_SLAB_FREELIST_HARDENED
545 BUG_ON(object == fp); /* naive detection of double free or corruption */
546 #endif
548 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
549 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
553 * See comment in calculate_sizes().
555 static inline bool freeptr_outside_object(struct kmem_cache *s)
557 return s->offset >= s->inuse;
561 * Return offset of the end of info block which is inuse + free pointer if
562 * not overlapping with object.
564 static inline unsigned int get_info_end(struct kmem_cache *s)
566 if (freeptr_outside_object(s))
567 return s->inuse + sizeof(void *);
568 else
569 return s->inuse;
572 /* Loop over all objects in a slab */
573 #define for_each_object(__p, __s, __addr, __objects) \
574 for (__p = fixup_red_left(__s, __addr); \
575 __p < (__addr) + (__objects) * (__s)->size; \
576 __p += (__s)->size)
578 static inline unsigned int order_objects(unsigned int order, unsigned int size)
580 return ((unsigned int)PAGE_SIZE << order) / size;
583 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
584 unsigned int size)
586 struct kmem_cache_order_objects x = {
587 (order << OO_SHIFT) + order_objects(order, size)
590 return x;
593 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
595 return x.x >> OO_SHIFT;
598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
600 return x.x & OO_MASK;
603 #ifdef CONFIG_SLUB_CPU_PARTIAL
604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
606 unsigned int nr_slabs;
608 s->cpu_partial = nr_objects;
611 * We take the number of objects but actually limit the number of
612 * slabs on the per cpu partial list, in order to limit excessive
613 * growth of the list. For simplicity we assume that the slabs will
614 * be half-full.
616 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
617 s->cpu_partial_slabs = nr_slabs;
620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
622 return s->cpu_partial_slabs;
624 #else
625 static inline void
626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
632 return 0;
634 #endif /* CONFIG_SLUB_CPU_PARTIAL */
637 * Per slab locking using the pagelock
639 static __always_inline void slab_lock(struct slab *slab)
641 bit_spin_lock(PG_locked, &slab->__page_flags);
644 static __always_inline void slab_unlock(struct slab *slab)
646 bit_spin_unlock(PG_locked, &slab->__page_flags);
649 static inline bool
650 __update_freelist_fast(struct slab *slab,
651 void *freelist_old, unsigned long counters_old,
652 void *freelist_new, unsigned long counters_new)
654 #ifdef system_has_freelist_aba
655 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
656 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
658 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
659 #else
660 return false;
661 #endif
664 static inline bool
665 __update_freelist_slow(struct slab *slab,
666 void *freelist_old, unsigned long counters_old,
667 void *freelist_new, unsigned long counters_new)
669 bool ret = false;
671 slab_lock(slab);
672 if (slab->freelist == freelist_old &&
673 slab->counters == counters_old) {
674 slab->freelist = freelist_new;
675 slab->counters = counters_new;
676 ret = true;
678 slab_unlock(slab);
680 return ret;
684 * Interrupts must be disabled (for the fallback code to work right), typically
685 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
686 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
687 * allocation/ free operation in hardirq context. Therefore nothing can
688 * interrupt the operation.
690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
691 void *freelist_old, unsigned long counters_old,
692 void *freelist_new, unsigned long counters_new,
693 const char *n)
695 bool ret;
697 if (USE_LOCKLESS_FAST_PATH())
698 lockdep_assert_irqs_disabled();
700 if (s->flags & __CMPXCHG_DOUBLE) {
701 ret = __update_freelist_fast(slab, freelist_old, counters_old,
702 freelist_new, counters_new);
703 } else {
704 ret = __update_freelist_slow(slab, freelist_old, counters_old,
705 freelist_new, counters_new);
707 if (likely(ret))
708 return true;
710 cpu_relax();
711 stat(s, CMPXCHG_DOUBLE_FAIL);
713 #ifdef SLUB_DEBUG_CMPXCHG
714 pr_info("%s %s: cmpxchg double redo ", n, s->name);
715 #endif
717 return false;
720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
721 void *freelist_old, unsigned long counters_old,
722 void *freelist_new, unsigned long counters_new,
723 const char *n)
725 bool ret;
727 if (s->flags & __CMPXCHG_DOUBLE) {
728 ret = __update_freelist_fast(slab, freelist_old, counters_old,
729 freelist_new, counters_new);
730 } else {
731 unsigned long flags;
733 local_irq_save(flags);
734 ret = __update_freelist_slow(slab, freelist_old, counters_old,
735 freelist_new, counters_new);
736 local_irq_restore(flags);
738 if (likely(ret))
739 return true;
741 cpu_relax();
742 stat(s, CMPXCHG_DOUBLE_FAIL);
744 #ifdef SLUB_DEBUG_CMPXCHG
745 pr_info("%s %s: cmpxchg double redo ", n, s->name);
746 #endif
748 return false;
752 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
753 * family will round up the real request size to these fixed ones, so
754 * there could be an extra area than what is requested. Save the original
755 * request size in the meta data area, for better debug and sanity check.
757 static inline void set_orig_size(struct kmem_cache *s,
758 void *object, unsigned int orig_size)
760 void *p = kasan_reset_tag(object);
762 if (!slub_debug_orig_size(s))
763 return;
765 p += get_info_end(s);
766 p += sizeof(struct track) * 2;
768 *(unsigned int *)p = orig_size;
771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
773 void *p = kasan_reset_tag(object);
775 if (is_kfence_address(object))
776 return kfence_ksize(object);
778 if (!slub_debug_orig_size(s))
779 return s->object_size;
781 p += get_info_end(s);
782 p += sizeof(struct track) * 2;
784 return *(unsigned int *)p;
787 #ifdef CONFIG_SLUB_DEBUG
788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
789 static DEFINE_SPINLOCK(object_map_lock);
791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
792 struct slab *slab)
794 void *addr = slab_address(slab);
795 void *p;
797 bitmap_zero(obj_map, slab->objects);
799 for (p = slab->freelist; p; p = get_freepointer(s, p))
800 set_bit(__obj_to_index(s, addr, p), obj_map);
803 #if IS_ENABLED(CONFIG_KUNIT)
804 static bool slab_add_kunit_errors(void)
806 struct kunit_resource *resource;
808 if (!kunit_get_current_test())
809 return false;
811 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
812 if (!resource)
813 return false;
815 (*(int *)resource->data)++;
816 kunit_put_resource(resource);
817 return true;
820 bool slab_in_kunit_test(void)
822 struct kunit_resource *resource;
824 if (!kunit_get_current_test())
825 return false;
827 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
828 if (!resource)
829 return false;
831 kunit_put_resource(resource);
832 return true;
834 #else
835 static inline bool slab_add_kunit_errors(void) { return false; }
836 #endif
838 static inline unsigned int size_from_object(struct kmem_cache *s)
840 if (s->flags & SLAB_RED_ZONE)
841 return s->size - s->red_left_pad;
843 return s->size;
846 static inline void *restore_red_left(struct kmem_cache *s, void *p)
848 if (s->flags & SLAB_RED_ZONE)
849 p -= s->red_left_pad;
851 return p;
855 * Debug settings:
857 #if defined(CONFIG_SLUB_DEBUG_ON)
858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
859 #else
860 static slab_flags_t slub_debug;
861 #endif
863 static char *slub_debug_string;
864 static int disable_higher_order_debug;
867 * slub is about to manipulate internal object metadata. This memory lies
868 * outside the range of the allocated object, so accessing it would normally
869 * be reported by kasan as a bounds error. metadata_access_enable() is used
870 * to tell kasan that these accesses are OK.
872 static inline void metadata_access_enable(void)
874 kasan_disable_current();
875 kmsan_disable_current();
878 static inline void metadata_access_disable(void)
880 kmsan_enable_current();
881 kasan_enable_current();
885 * Object debugging
888 /* Verify that a pointer has an address that is valid within a slab page */
889 static inline int check_valid_pointer(struct kmem_cache *s,
890 struct slab *slab, void *object)
892 void *base;
894 if (!object)
895 return 1;
897 base = slab_address(slab);
898 object = kasan_reset_tag(object);
899 object = restore_red_left(s, object);
900 if (object < base || object >= base + slab->objects * s->size ||
901 (object - base) % s->size) {
902 return 0;
905 return 1;
908 static void print_section(char *level, char *text, u8 *addr,
909 unsigned int length)
911 metadata_access_enable();
912 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
913 16, 1, kasan_reset_tag((void *)addr), length, 1);
914 metadata_access_disable();
917 static struct track *get_track(struct kmem_cache *s, void *object,
918 enum track_item alloc)
920 struct track *p;
922 p = object + get_info_end(s);
924 return kasan_reset_tag(p + alloc);
927 #ifdef CONFIG_STACKDEPOT
928 static noinline depot_stack_handle_t set_track_prepare(void)
930 depot_stack_handle_t handle;
931 unsigned long entries[TRACK_ADDRS_COUNT];
932 unsigned int nr_entries;
934 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
935 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
937 return handle;
939 #else
940 static inline depot_stack_handle_t set_track_prepare(void)
942 return 0;
944 #endif
946 static void set_track_update(struct kmem_cache *s, void *object,
947 enum track_item alloc, unsigned long addr,
948 depot_stack_handle_t handle)
950 struct track *p = get_track(s, object, alloc);
952 #ifdef CONFIG_STACKDEPOT
953 p->handle = handle;
954 #endif
955 p->addr = addr;
956 p->cpu = smp_processor_id();
957 p->pid = current->pid;
958 p->when = jiffies;
961 static __always_inline void set_track(struct kmem_cache *s, void *object,
962 enum track_item alloc, unsigned long addr)
964 depot_stack_handle_t handle = set_track_prepare();
966 set_track_update(s, object, alloc, addr, handle);
969 static void init_tracking(struct kmem_cache *s, void *object)
971 struct track *p;
973 if (!(s->flags & SLAB_STORE_USER))
974 return;
976 p = get_track(s, object, TRACK_ALLOC);
977 memset(p, 0, 2*sizeof(struct track));
980 static void print_track(const char *s, struct track *t, unsigned long pr_time)
982 depot_stack_handle_t handle __maybe_unused;
984 if (!t->addr)
985 return;
987 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
988 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
989 #ifdef CONFIG_STACKDEPOT
990 handle = READ_ONCE(t->handle);
991 if (handle)
992 stack_depot_print(handle);
993 else
994 pr_err("object allocation/free stack trace missing\n");
995 #endif
998 void print_tracking(struct kmem_cache *s, void *object)
1000 unsigned long pr_time = jiffies;
1001 if (!(s->flags & SLAB_STORE_USER))
1002 return;
1004 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1005 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1008 static void print_slab_info(const struct slab *slab)
1010 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1011 slab, slab->objects, slab->inuse, slab->freelist,
1012 &slab->__page_flags);
1015 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017 set_orig_size(s, (void *)object, s->object_size);
1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1022 struct va_format vaf;
1023 va_list args;
1025 va_start(args, fmt);
1026 vaf.fmt = fmt;
1027 vaf.va = &args;
1028 pr_err("=============================================================================\n");
1029 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1030 pr_err("-----------------------------------------------------------------------------\n\n");
1031 va_end(args);
1034 __printf(2, 3)
1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1037 struct va_format vaf;
1038 va_list args;
1040 if (slab_add_kunit_errors())
1041 return;
1043 va_start(args, fmt);
1044 vaf.fmt = fmt;
1045 vaf.va = &args;
1046 pr_err("FIX %s: %pV\n", s->name, &vaf);
1047 va_end(args);
1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1052 unsigned int off; /* Offset of last byte */
1053 u8 *addr = slab_address(slab);
1055 print_tracking(s, p);
1057 print_slab_info(slab);
1059 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1060 p, p - addr, get_freepointer(s, p));
1062 if (s->flags & SLAB_RED_ZONE)
1063 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1064 s->red_left_pad);
1065 else if (p > addr + 16)
1066 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1068 print_section(KERN_ERR, "Object ", p,
1069 min_t(unsigned int, s->object_size, PAGE_SIZE));
1070 if (s->flags & SLAB_RED_ZONE)
1071 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1072 s->inuse - s->object_size);
1074 off = get_info_end(s);
1076 if (s->flags & SLAB_STORE_USER)
1077 off += 2 * sizeof(struct track);
1079 if (slub_debug_orig_size(s))
1080 off += sizeof(unsigned int);
1082 off += kasan_metadata_size(s, false);
1084 if (off != size_from_object(s))
1085 /* Beginning of the filler is the free pointer */
1086 print_section(KERN_ERR, "Padding ", p + off,
1087 size_from_object(s) - off);
1089 dump_stack();
1092 static void object_err(struct kmem_cache *s, struct slab *slab,
1093 u8 *object, char *reason)
1095 if (slab_add_kunit_errors())
1096 return;
1098 slab_bug(s, "%s", reason);
1099 print_trailer(s, slab, object);
1100 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1104 void **freelist, void *nextfree)
1106 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1107 !check_valid_pointer(s, slab, nextfree) && freelist) {
1108 object_err(s, slab, *freelist, "Freechain corrupt");
1109 *freelist = NULL;
1110 slab_fix(s, "Isolate corrupted freechain");
1111 return true;
1114 return false;
1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1118 const char *fmt, ...)
1120 va_list args;
1121 char buf[100];
1123 if (slab_add_kunit_errors())
1124 return;
1126 va_start(args, fmt);
1127 vsnprintf(buf, sizeof(buf), fmt, args);
1128 va_end(args);
1129 slab_bug(s, "%s", buf);
1130 print_slab_info(slab);
1131 dump_stack();
1132 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1135 static void init_object(struct kmem_cache *s, void *object, u8 val)
1137 u8 *p = kasan_reset_tag(object);
1138 unsigned int poison_size = s->object_size;
1140 if (s->flags & SLAB_RED_ZONE) {
1142 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1143 * the shadow makes it possible to distinguish uninit-value
1144 * from use-after-free.
1146 memset_no_sanitize_memory(p - s->red_left_pad, val,
1147 s->red_left_pad);
1149 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1151 * Redzone the extra allocated space by kmalloc than
1152 * requested, and the poison size will be limited to
1153 * the original request size accordingly.
1155 poison_size = get_orig_size(s, object);
1159 if (s->flags & __OBJECT_POISON) {
1160 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1161 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1164 if (s->flags & SLAB_RED_ZONE)
1165 memset_no_sanitize_memory(p + poison_size, val,
1166 s->inuse - poison_size);
1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1170 void *from, void *to)
1172 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1173 memset(from, data, to - from);
1176 #ifdef CONFIG_KMSAN
1177 #define pad_check_attributes noinline __no_kmsan_checks
1178 #else
1179 #define pad_check_attributes
1180 #endif
1182 static pad_check_attributes int
1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1184 u8 *object, char *what,
1185 u8 *start, unsigned int value, unsigned int bytes)
1187 u8 *fault;
1188 u8 *end;
1189 u8 *addr = slab_address(slab);
1191 metadata_access_enable();
1192 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1193 metadata_access_disable();
1194 if (!fault)
1195 return 1;
1197 end = start + bytes;
1198 while (end > fault && end[-1] == value)
1199 end--;
1201 if (slab_add_kunit_errors())
1202 goto skip_bug_print;
1204 slab_bug(s, "%s overwritten", what);
1205 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1206 fault, end - 1, fault - addr,
1207 fault[0], value);
1209 skip_bug_print:
1210 restore_bytes(s, what, value, fault, end);
1211 return 0;
1215 * Object layout:
1217 * object address
1218 * Bytes of the object to be managed.
1219 * If the freepointer may overlay the object then the free
1220 * pointer is at the middle of the object.
1222 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1223 * 0xa5 (POISON_END)
1225 * object + s->object_size
1226 * Padding to reach word boundary. This is also used for Redzoning.
1227 * Padding is extended by another word if Redzoning is enabled and
1228 * object_size == inuse.
1230 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1231 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1233 * object + s->inuse
1234 * Meta data starts here.
1236 * A. Free pointer (if we cannot overwrite object on free)
1237 * B. Tracking data for SLAB_STORE_USER
1238 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1239 * D. Padding to reach required alignment boundary or at minimum
1240 * one word if debugging is on to be able to detect writes
1241 * before the word boundary.
1243 * Padding is done using 0x5a (POISON_INUSE)
1245 * object + s->size
1246 * Nothing is used beyond s->size.
1248 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1249 * ignored. And therefore no slab options that rely on these boundaries
1250 * may be used with merged slabcaches.
1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1255 unsigned long off = get_info_end(s); /* The end of info */
1257 if (s->flags & SLAB_STORE_USER) {
1258 /* We also have user information there */
1259 off += 2 * sizeof(struct track);
1261 if (s->flags & SLAB_KMALLOC)
1262 off += sizeof(unsigned int);
1265 off += kasan_metadata_size(s, false);
1267 if (size_from_object(s) == off)
1268 return 1;
1270 return check_bytes_and_report(s, slab, p, "Object padding",
1271 p + off, POISON_INUSE, size_from_object(s) - off);
1274 /* Check the pad bytes at the end of a slab page */
1275 static pad_check_attributes void
1276 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1278 u8 *start;
1279 u8 *fault;
1280 u8 *end;
1281 u8 *pad;
1282 int length;
1283 int remainder;
1285 if (!(s->flags & SLAB_POISON))
1286 return;
1288 start = slab_address(slab);
1289 length = slab_size(slab);
1290 end = start + length;
1291 remainder = length % s->size;
1292 if (!remainder)
1293 return;
1295 pad = end - remainder;
1296 metadata_access_enable();
1297 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1298 metadata_access_disable();
1299 if (!fault)
1300 return;
1301 while (end > fault && end[-1] == POISON_INUSE)
1302 end--;
1304 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1305 fault, end - 1, fault - start);
1306 print_section(KERN_ERR, "Padding ", pad, remainder);
1308 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1311 static int check_object(struct kmem_cache *s, struct slab *slab,
1312 void *object, u8 val)
1314 u8 *p = object;
1315 u8 *endobject = object + s->object_size;
1316 unsigned int orig_size, kasan_meta_size;
1317 int ret = 1;
1319 if (s->flags & SLAB_RED_ZONE) {
1320 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1321 object - s->red_left_pad, val, s->red_left_pad))
1322 ret = 0;
1324 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1325 endobject, val, s->inuse - s->object_size))
1326 ret = 0;
1328 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1329 orig_size = get_orig_size(s, object);
1331 if (s->object_size > orig_size &&
1332 !check_bytes_and_report(s, slab, object,
1333 "kmalloc Redzone", p + orig_size,
1334 val, s->object_size - orig_size)) {
1335 ret = 0;
1338 } else {
1339 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1340 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1341 endobject, POISON_INUSE,
1342 s->inuse - s->object_size))
1343 ret = 0;
1347 if (s->flags & SLAB_POISON) {
1348 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1350 * KASAN can save its free meta data inside of the
1351 * object at offset 0. Thus, skip checking the part of
1352 * the redzone that overlaps with the meta data.
1354 kasan_meta_size = kasan_metadata_size(s, true);
1355 if (kasan_meta_size < s->object_size - 1 &&
1356 !check_bytes_and_report(s, slab, p, "Poison",
1357 p + kasan_meta_size, POISON_FREE,
1358 s->object_size - kasan_meta_size - 1))
1359 ret = 0;
1360 if (kasan_meta_size < s->object_size &&
1361 !check_bytes_and_report(s, slab, p, "End Poison",
1362 p + s->object_size - 1, POISON_END, 1))
1363 ret = 0;
1366 * check_pad_bytes cleans up on its own.
1368 if (!check_pad_bytes(s, slab, p))
1369 ret = 0;
1373 * Cannot check freepointer while object is allocated if
1374 * object and freepointer overlap.
1376 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1377 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1378 object_err(s, slab, p, "Freepointer corrupt");
1380 * No choice but to zap it and thus lose the remainder
1381 * of the free objects in this slab. May cause
1382 * another error because the object count is now wrong.
1384 set_freepointer(s, p, NULL);
1385 ret = 0;
1388 if (!ret && !slab_in_kunit_test()) {
1389 print_trailer(s, slab, object);
1390 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1393 return ret;
1396 static int check_slab(struct kmem_cache *s, struct slab *slab)
1398 int maxobj;
1400 if (!folio_test_slab(slab_folio(slab))) {
1401 slab_err(s, slab, "Not a valid slab page");
1402 return 0;
1405 maxobj = order_objects(slab_order(slab), s->size);
1406 if (slab->objects > maxobj) {
1407 slab_err(s, slab, "objects %u > max %u",
1408 slab->objects, maxobj);
1409 return 0;
1411 if (slab->inuse > slab->objects) {
1412 slab_err(s, slab, "inuse %u > max %u",
1413 slab->inuse, slab->objects);
1414 return 0;
1416 if (slab->frozen) {
1417 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1418 return 0;
1421 /* Slab_pad_check fixes things up after itself */
1422 slab_pad_check(s, slab);
1423 return 1;
1427 * Determine if a certain object in a slab is on the freelist. Must hold the
1428 * slab lock to guarantee that the chains are in a consistent state.
1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1432 int nr = 0;
1433 void *fp;
1434 void *object = NULL;
1435 int max_objects;
1437 fp = slab->freelist;
1438 while (fp && nr <= slab->objects) {
1439 if (fp == search)
1440 return 1;
1441 if (!check_valid_pointer(s, slab, fp)) {
1442 if (object) {
1443 object_err(s, slab, object,
1444 "Freechain corrupt");
1445 set_freepointer(s, object, NULL);
1446 } else {
1447 slab_err(s, slab, "Freepointer corrupt");
1448 slab->freelist = NULL;
1449 slab->inuse = slab->objects;
1450 slab_fix(s, "Freelist cleared");
1451 return 0;
1453 break;
1455 object = fp;
1456 fp = get_freepointer(s, object);
1457 nr++;
1460 max_objects = order_objects(slab_order(slab), s->size);
1461 if (max_objects > MAX_OBJS_PER_PAGE)
1462 max_objects = MAX_OBJS_PER_PAGE;
1464 if (slab->objects != max_objects) {
1465 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1466 slab->objects, max_objects);
1467 slab->objects = max_objects;
1468 slab_fix(s, "Number of objects adjusted");
1470 if (slab->inuse != slab->objects - nr) {
1471 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1472 slab->inuse, slab->objects - nr);
1473 slab->inuse = slab->objects - nr;
1474 slab_fix(s, "Object count adjusted");
1476 return search == NULL;
1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1480 int alloc)
1482 if (s->flags & SLAB_TRACE) {
1483 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1484 s->name,
1485 alloc ? "alloc" : "free",
1486 object, slab->inuse,
1487 slab->freelist);
1489 if (!alloc)
1490 print_section(KERN_INFO, "Object ", (void *)object,
1491 s->object_size);
1493 dump_stack();
1498 * Tracking of fully allocated slabs for debugging purposes.
1500 static void add_full(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct slab *slab)
1503 if (!(s->flags & SLAB_STORE_USER))
1504 return;
1506 lockdep_assert_held(&n->list_lock);
1507 list_add(&slab->slab_list, &n->full);
1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1512 if (!(s->flags & SLAB_STORE_USER))
1513 return;
1515 lockdep_assert_held(&n->list_lock);
1516 list_del(&slab->slab_list);
1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1521 return atomic_long_read(&n->nr_slabs);
1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1526 struct kmem_cache_node *n = get_node(s, node);
1528 atomic_long_inc(&n->nr_slabs);
1529 atomic_long_add(objects, &n->total_objects);
1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1533 struct kmem_cache_node *n = get_node(s, node);
1535 atomic_long_dec(&n->nr_slabs);
1536 atomic_long_sub(objects, &n->total_objects);
1539 /* Object debug checks for alloc/free paths */
1540 static void setup_object_debug(struct kmem_cache *s, void *object)
1542 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1543 return;
1545 init_object(s, object, SLUB_RED_INACTIVE);
1546 init_tracking(s, object);
1549 static
1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1552 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1553 return;
1555 metadata_access_enable();
1556 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1557 metadata_access_disable();
1560 static inline int alloc_consistency_checks(struct kmem_cache *s,
1561 struct slab *slab, void *object)
1563 if (!check_slab(s, slab))
1564 return 0;
1566 if (!check_valid_pointer(s, slab, object)) {
1567 object_err(s, slab, object, "Freelist Pointer check fails");
1568 return 0;
1571 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1572 return 0;
1574 return 1;
1577 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1578 struct slab *slab, void *object, int orig_size)
1580 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1581 if (!alloc_consistency_checks(s, slab, object))
1582 goto bad;
1585 /* Success. Perform special debug activities for allocs */
1586 trace(s, slab, object, 1);
1587 set_orig_size(s, object, orig_size);
1588 init_object(s, object, SLUB_RED_ACTIVE);
1589 return true;
1591 bad:
1592 if (folio_test_slab(slab_folio(slab))) {
1594 * If this is a slab page then lets do the best we can
1595 * to avoid issues in the future. Marking all objects
1596 * as used avoids touching the remaining objects.
1598 slab_fix(s, "Marking all objects used");
1599 slab->inuse = slab->objects;
1600 slab->freelist = NULL;
1601 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1603 return false;
1606 static inline int free_consistency_checks(struct kmem_cache *s,
1607 struct slab *slab, void *object, unsigned long addr)
1609 if (!check_valid_pointer(s, slab, object)) {
1610 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1611 return 0;
1614 if (on_freelist(s, slab, object)) {
1615 object_err(s, slab, object, "Object already free");
1616 return 0;
1619 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1620 return 0;
1622 if (unlikely(s != slab->slab_cache)) {
1623 if (!folio_test_slab(slab_folio(slab))) {
1624 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1625 object);
1626 } else if (!slab->slab_cache) {
1627 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1628 object);
1629 dump_stack();
1630 } else
1631 object_err(s, slab, object,
1632 "page slab pointer corrupt.");
1633 return 0;
1635 return 1;
1639 * Parse a block of slab_debug options. Blocks are delimited by ';'
1641 * @str: start of block
1642 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1643 * @slabs: return start of list of slabs, or NULL when there's no list
1644 * @init: assume this is initial parsing and not per-kmem-create parsing
1646 * returns the start of next block if there's any, or NULL
1648 static char *
1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1651 bool higher_order_disable = false;
1653 /* Skip any completely empty blocks */
1654 while (*str && *str == ';')
1655 str++;
1657 if (*str == ',') {
1659 * No options but restriction on slabs. This means full
1660 * debugging for slabs matching a pattern.
1662 *flags = DEBUG_DEFAULT_FLAGS;
1663 goto check_slabs;
1665 *flags = 0;
1667 /* Determine which debug features should be switched on */
1668 for (; *str && *str != ',' && *str != ';'; str++) {
1669 switch (tolower(*str)) {
1670 case '-':
1671 *flags = 0;
1672 break;
1673 case 'f':
1674 *flags |= SLAB_CONSISTENCY_CHECKS;
1675 break;
1676 case 'z':
1677 *flags |= SLAB_RED_ZONE;
1678 break;
1679 case 'p':
1680 *flags |= SLAB_POISON;
1681 break;
1682 case 'u':
1683 *flags |= SLAB_STORE_USER;
1684 break;
1685 case 't':
1686 *flags |= SLAB_TRACE;
1687 break;
1688 case 'a':
1689 *flags |= SLAB_FAILSLAB;
1690 break;
1691 case 'o':
1693 * Avoid enabling debugging on caches if its minimum
1694 * order would increase as a result.
1696 higher_order_disable = true;
1697 break;
1698 default:
1699 if (init)
1700 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1703 check_slabs:
1704 if (*str == ',')
1705 *slabs = ++str;
1706 else
1707 *slabs = NULL;
1709 /* Skip over the slab list */
1710 while (*str && *str != ';')
1711 str++;
1713 /* Skip any completely empty blocks */
1714 while (*str && *str == ';')
1715 str++;
1717 if (init && higher_order_disable)
1718 disable_higher_order_debug = 1;
1720 if (*str)
1721 return str;
1722 else
1723 return NULL;
1726 static int __init setup_slub_debug(char *str)
1728 slab_flags_t flags;
1729 slab_flags_t global_flags;
1730 char *saved_str;
1731 char *slab_list;
1732 bool global_slub_debug_changed = false;
1733 bool slab_list_specified = false;
1735 global_flags = DEBUG_DEFAULT_FLAGS;
1736 if (*str++ != '=' || !*str)
1738 * No options specified. Switch on full debugging.
1740 goto out;
1742 saved_str = str;
1743 while (str) {
1744 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1746 if (!slab_list) {
1747 global_flags = flags;
1748 global_slub_debug_changed = true;
1749 } else {
1750 slab_list_specified = true;
1751 if (flags & SLAB_STORE_USER)
1752 stack_depot_request_early_init();
1757 * For backwards compatibility, a single list of flags with list of
1758 * slabs means debugging is only changed for those slabs, so the global
1759 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1760 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1761 * long as there is no option specifying flags without a slab list.
1763 if (slab_list_specified) {
1764 if (!global_slub_debug_changed)
1765 global_flags = slub_debug;
1766 slub_debug_string = saved_str;
1768 out:
1769 slub_debug = global_flags;
1770 if (slub_debug & SLAB_STORE_USER)
1771 stack_depot_request_early_init();
1772 if (slub_debug != 0 || slub_debug_string)
1773 static_branch_enable(&slub_debug_enabled);
1774 else
1775 static_branch_disable(&slub_debug_enabled);
1776 if ((static_branch_unlikely(&init_on_alloc) ||
1777 static_branch_unlikely(&init_on_free)) &&
1778 (slub_debug & SLAB_POISON))
1779 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1780 return 1;
1783 __setup("slab_debug", setup_slub_debug);
1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1787 * kmem_cache_flags - apply debugging options to the cache
1788 * @flags: flags to set
1789 * @name: name of the cache
1791 * Debug option(s) are applied to @flags. In addition to the debug
1792 * option(s), if a slab name (or multiple) is specified i.e.
1793 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1794 * then only the select slabs will receive the debug option(s).
1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1798 char *iter;
1799 size_t len;
1800 char *next_block;
1801 slab_flags_t block_flags;
1802 slab_flags_t slub_debug_local = slub_debug;
1804 if (flags & SLAB_NO_USER_FLAGS)
1805 return flags;
1808 * If the slab cache is for debugging (e.g. kmemleak) then
1809 * don't store user (stack trace) information by default,
1810 * but let the user enable it via the command line below.
1812 if (flags & SLAB_NOLEAKTRACE)
1813 slub_debug_local &= ~SLAB_STORE_USER;
1815 len = strlen(name);
1816 next_block = slub_debug_string;
1817 /* Go through all blocks of debug options, see if any matches our slab's name */
1818 while (next_block) {
1819 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1820 if (!iter)
1821 continue;
1822 /* Found a block that has a slab list, search it */
1823 while (*iter) {
1824 char *end, *glob;
1825 size_t cmplen;
1827 end = strchrnul(iter, ',');
1828 if (next_block && next_block < end)
1829 end = next_block - 1;
1831 glob = strnchr(iter, end - iter, '*');
1832 if (glob)
1833 cmplen = glob - iter;
1834 else
1835 cmplen = max_t(size_t, len, (end - iter));
1837 if (!strncmp(name, iter, cmplen)) {
1838 flags |= block_flags;
1839 return flags;
1842 if (!*end || *end == ';')
1843 break;
1844 iter = end + 1;
1848 return flags | slub_debug_local;
1850 #else /* !CONFIG_SLUB_DEBUG */
1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1852 static inline
1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1855 static inline bool alloc_debug_processing(struct kmem_cache *s,
1856 struct slab *slab, void *object, int orig_size) { return true; }
1858 static inline bool free_debug_processing(struct kmem_cache *s,
1859 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1860 unsigned long addr, depot_stack_handle_t handle) { return true; }
1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1863 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1864 void *object, u8 val) { return 1; }
1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1866 static inline void set_track(struct kmem_cache *s, void *object,
1867 enum track_item alloc, unsigned long addr) {}
1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1869 struct slab *slab) {}
1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1871 struct slab *slab) {}
1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1874 return flags;
1876 #define slub_debug 0
1878 #define disable_higher_order_debug 0
1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1881 { return 0; }
1882 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1883 int objects) {}
1884 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1885 int objects) {}
1886 #ifndef CONFIG_SLUB_TINY
1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1888 void **freelist, void *nextfree)
1890 return false;
1892 #endif
1893 #endif /* CONFIG_SLUB_DEBUG */
1895 #ifdef CONFIG_SLAB_OBJ_EXT
1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1901 struct slabobj_ext *slab_exts;
1902 struct slab *obj_exts_slab;
1904 obj_exts_slab = virt_to_slab(obj_exts);
1905 slab_exts = slab_obj_exts(obj_exts_slab);
1906 if (slab_exts) {
1907 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1908 obj_exts_slab, obj_exts);
1909 /* codetag should be NULL */
1910 WARN_ON(slab_exts[offs].ref.ct);
1911 set_codetag_empty(&slab_exts[offs].ref);
1915 static inline void mark_failed_objexts_alloc(struct slab *slab)
1917 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1921 struct slabobj_ext *vec, unsigned int objects)
1924 * If vector previously failed to allocate then we have live
1925 * objects with no tag reference. Mark all references in this
1926 * vector as empty to avoid warnings later on.
1928 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1929 unsigned int i;
1931 for (i = 0; i < objects; i++)
1932 set_codetag_empty(&vec[i].ref);
1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1941 struct slabobj_ext *vec, unsigned int objects) {}
1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1946 * The allocated objcg pointers array is not accounted directly.
1947 * Moreover, it should not come from DMA buffer and is not readily
1948 * reclaimable. So those GFP bits should be masked off.
1950 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1951 __GFP_ACCOUNT | __GFP_NOFAIL)
1953 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1954 gfp_t gfp, bool new_slab)
1956 unsigned int objects = objs_per_slab(s, slab);
1957 unsigned long new_exts;
1958 unsigned long old_exts;
1959 struct slabobj_ext *vec;
1961 gfp &= ~OBJCGS_CLEAR_MASK;
1962 /* Prevent recursive extension vector allocation */
1963 gfp |= __GFP_NO_OBJ_EXT;
1964 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1965 slab_nid(slab));
1966 if (!vec) {
1967 /* Mark vectors which failed to allocate */
1968 if (new_slab)
1969 mark_failed_objexts_alloc(slab);
1971 return -ENOMEM;
1974 new_exts = (unsigned long)vec;
1975 #ifdef CONFIG_MEMCG
1976 new_exts |= MEMCG_DATA_OBJEXTS;
1977 #endif
1978 old_exts = READ_ONCE(slab->obj_exts);
1979 handle_failed_objexts_alloc(old_exts, vec, objects);
1980 if (new_slab) {
1982 * If the slab is brand new and nobody can yet access its
1983 * obj_exts, no synchronization is required and obj_exts can
1984 * be simply assigned.
1986 slab->obj_exts = new_exts;
1987 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1988 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1990 * If the slab is already in use, somebody can allocate and
1991 * assign slabobj_exts in parallel. In this case the existing
1992 * objcg vector should be reused.
1994 mark_objexts_empty(vec);
1995 kfree(vec);
1996 return 0;
1999 kmemleak_not_leak(vec);
2000 return 0;
2003 static inline void free_slab_obj_exts(struct slab *slab)
2005 struct slabobj_ext *obj_exts;
2007 obj_exts = slab_obj_exts(slab);
2008 if (!obj_exts)
2009 return;
2012 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2013 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2014 * warning if slab has extensions but the extension of an object is
2015 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2016 * the extension for obj_exts is expected to be NULL.
2018 mark_objexts_empty(obj_exts);
2019 kfree(obj_exts);
2020 slab->obj_exts = 0;
2023 static inline bool need_slab_obj_ext(void)
2025 if (mem_alloc_profiling_enabled())
2026 return true;
2029 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2030 * inside memcg_slab_post_alloc_hook. No other users for now.
2032 return false;
2035 #else /* CONFIG_SLAB_OBJ_EXT */
2037 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2038 gfp_t gfp, bool new_slab)
2040 return 0;
2043 static inline void free_slab_obj_exts(struct slab *slab)
2047 static inline bool need_slab_obj_ext(void)
2049 return false;
2052 #endif /* CONFIG_SLAB_OBJ_EXT */
2054 #ifdef CONFIG_MEM_ALLOC_PROFILING
2056 static inline struct slabobj_ext *
2057 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2059 struct slab *slab;
2061 if (!p)
2062 return NULL;
2064 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2065 return NULL;
2067 if (flags & __GFP_NO_OBJ_EXT)
2068 return NULL;
2070 slab = virt_to_slab(p);
2071 if (!slab_obj_exts(slab) &&
2072 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2073 "%s, %s: Failed to create slab extension vector!\n",
2074 __func__, s->name))
2075 return NULL;
2077 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2080 static inline void
2081 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2083 if (need_slab_obj_ext()) {
2084 struct slabobj_ext *obj_exts;
2086 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2088 * Currently obj_exts is used only for allocation profiling.
2089 * If other users appear then mem_alloc_profiling_enabled()
2090 * check should be added before alloc_tag_add().
2092 if (likely(obj_exts))
2093 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2097 static inline void
2098 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2099 int objects)
2101 struct slabobj_ext *obj_exts;
2102 int i;
2104 if (!mem_alloc_profiling_enabled())
2105 return;
2107 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2108 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2109 return;
2111 obj_exts = slab_obj_exts(slab);
2112 if (!obj_exts)
2113 return;
2115 for (i = 0; i < objects; i++) {
2116 unsigned int off = obj_to_index(s, slab, p[i]);
2118 alloc_tag_sub(&obj_exts[off].ref, s->size);
2122 #else /* CONFIG_MEM_ALLOC_PROFILING */
2124 static inline void
2125 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2129 static inline void
2130 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2131 int objects)
2135 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2138 #ifdef CONFIG_MEMCG
2140 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2142 static __fastpath_inline
2143 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2144 gfp_t flags, size_t size, void **p)
2146 if (likely(!memcg_kmem_online()))
2147 return true;
2149 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2150 return true;
2152 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2153 return true;
2155 if (likely(size == 1)) {
2156 memcg_alloc_abort_single(s, *p);
2157 *p = NULL;
2158 } else {
2159 kmem_cache_free_bulk(s, size, p);
2162 return false;
2165 static __fastpath_inline
2166 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2167 int objects)
2169 struct slabobj_ext *obj_exts;
2171 if (!memcg_kmem_online())
2172 return;
2174 obj_exts = slab_obj_exts(slab);
2175 if (likely(!obj_exts))
2176 return;
2178 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2181 static __fastpath_inline
2182 bool memcg_slab_post_charge(void *p, gfp_t flags)
2184 struct slabobj_ext *slab_exts;
2185 struct kmem_cache *s;
2186 struct folio *folio;
2187 struct slab *slab;
2188 unsigned long off;
2190 folio = virt_to_folio(p);
2191 if (!folio_test_slab(folio)) {
2192 int size;
2194 if (folio_memcg_kmem(folio))
2195 return true;
2197 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2198 folio_order(folio)))
2199 return false;
2202 * This folio has already been accounted in the global stats but
2203 * not in the memcg stats. So, subtract from the global and use
2204 * the interface which adds to both global and memcg stats.
2206 size = folio_size(folio);
2207 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2208 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2209 return true;
2212 slab = folio_slab(folio);
2213 s = slab->slab_cache;
2216 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2217 * of slab_obj_exts being allocated from the same slab and thus the slab
2218 * becoming effectively unfreeable.
2220 if (is_kmalloc_normal(s))
2221 return true;
2223 /* Ignore already charged objects. */
2224 slab_exts = slab_obj_exts(slab);
2225 if (slab_exts) {
2226 off = obj_to_index(s, slab, p);
2227 if (unlikely(slab_exts[off].objcg))
2228 return true;
2231 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2234 #else /* CONFIG_MEMCG */
2235 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2236 struct list_lru *lru,
2237 gfp_t flags, size_t size,
2238 void **p)
2240 return true;
2243 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2244 void **p, int objects)
2248 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2250 return true;
2252 #endif /* CONFIG_MEMCG */
2254 #ifdef CONFIG_SLUB_RCU_DEBUG
2255 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2257 struct rcu_delayed_free {
2258 struct rcu_head head;
2259 void *object;
2261 #endif
2264 * Hooks for other subsystems that check memory allocations. In a typical
2265 * production configuration these hooks all should produce no code at all.
2267 * Returns true if freeing of the object can proceed, false if its reuse
2268 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2269 * to KFENCE.
2271 static __always_inline
2272 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2273 bool after_rcu_delay)
2275 /* Are the object contents still accessible? */
2276 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2278 kmemleak_free_recursive(x, s->flags);
2279 kmsan_slab_free(s, x);
2281 debug_check_no_locks_freed(x, s->object_size);
2283 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2284 debug_check_no_obj_freed(x, s->object_size);
2286 /* Use KCSAN to help debug racy use-after-free. */
2287 if (!still_accessible)
2288 __kcsan_check_access(x, s->object_size,
2289 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2291 if (kfence_free(x))
2292 return false;
2295 * Give KASAN a chance to notice an invalid free operation before we
2296 * modify the object.
2298 if (kasan_slab_pre_free(s, x))
2299 return false;
2301 #ifdef CONFIG_SLUB_RCU_DEBUG
2302 if (still_accessible) {
2303 struct rcu_delayed_free *delayed_free;
2305 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2306 if (delayed_free) {
2308 * Let KASAN track our call stack as a "related work
2309 * creation", just like if the object had been freed
2310 * normally via kfree_rcu().
2311 * We have to do this manually because the rcu_head is
2312 * not located inside the object.
2314 kasan_record_aux_stack(x);
2316 delayed_free->object = x;
2317 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2318 return false;
2321 #endif /* CONFIG_SLUB_RCU_DEBUG */
2324 * As memory initialization might be integrated into KASAN,
2325 * kasan_slab_free and initialization memset's must be
2326 * kept together to avoid discrepancies in behavior.
2328 * The initialization memset's clear the object and the metadata,
2329 * but don't touch the SLAB redzone.
2331 * The object's freepointer is also avoided if stored outside the
2332 * object.
2334 if (unlikely(init)) {
2335 int rsize;
2336 unsigned int inuse, orig_size;
2338 inuse = get_info_end(s);
2339 orig_size = get_orig_size(s, x);
2340 if (!kasan_has_integrated_init())
2341 memset(kasan_reset_tag(x), 0, orig_size);
2342 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2343 memset((char *)kasan_reset_tag(x) + inuse, 0,
2344 s->size - inuse - rsize);
2346 * Restore orig_size, otherwize kmalloc redzone overwritten
2347 * would be reported
2349 set_orig_size(s, x, orig_size);
2352 /* KASAN might put x into memory quarantine, delaying its reuse. */
2353 return !kasan_slab_free(s, x, init, still_accessible);
2356 static __fastpath_inline
2357 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2358 int *cnt)
2361 void *object;
2362 void *next = *head;
2363 void *old_tail = *tail;
2364 bool init;
2366 if (is_kfence_address(next)) {
2367 slab_free_hook(s, next, false, false);
2368 return false;
2371 /* Head and tail of the reconstructed freelist */
2372 *head = NULL;
2373 *tail = NULL;
2375 init = slab_want_init_on_free(s);
2377 do {
2378 object = next;
2379 next = get_freepointer(s, object);
2381 /* If object's reuse doesn't have to be delayed */
2382 if (likely(slab_free_hook(s, object, init, false))) {
2383 /* Move object to the new freelist */
2384 set_freepointer(s, object, *head);
2385 *head = object;
2386 if (!*tail)
2387 *tail = object;
2388 } else {
2390 * Adjust the reconstructed freelist depth
2391 * accordingly if object's reuse is delayed.
2393 --(*cnt);
2395 } while (object != old_tail);
2397 return *head != NULL;
2400 static void *setup_object(struct kmem_cache *s, void *object)
2402 setup_object_debug(s, object);
2403 object = kasan_init_slab_obj(s, object);
2404 if (unlikely(s->ctor)) {
2405 kasan_unpoison_new_object(s, object);
2406 s->ctor(object);
2407 kasan_poison_new_object(s, object);
2409 return object;
2413 * Slab allocation and freeing
2415 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2416 struct kmem_cache_order_objects oo)
2418 struct folio *folio;
2419 struct slab *slab;
2420 unsigned int order = oo_order(oo);
2422 if (node == NUMA_NO_NODE)
2423 folio = (struct folio *)alloc_frozen_pages(flags, order);
2424 else
2425 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2427 if (!folio)
2428 return NULL;
2430 slab = folio_slab(folio);
2431 __folio_set_slab(folio);
2432 if (folio_is_pfmemalloc(folio))
2433 slab_set_pfmemalloc(slab);
2435 return slab;
2438 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2439 /* Pre-initialize the random sequence cache */
2440 static int init_cache_random_seq(struct kmem_cache *s)
2442 unsigned int count = oo_objects(s->oo);
2443 int err;
2445 /* Bailout if already initialised */
2446 if (s->random_seq)
2447 return 0;
2449 err = cache_random_seq_create(s, count, GFP_KERNEL);
2450 if (err) {
2451 pr_err("SLUB: Unable to initialize free list for %s\n",
2452 s->name);
2453 return err;
2456 /* Transform to an offset on the set of pages */
2457 if (s->random_seq) {
2458 unsigned int i;
2460 for (i = 0; i < count; i++)
2461 s->random_seq[i] *= s->size;
2463 return 0;
2466 /* Initialize each random sequence freelist per cache */
2467 static void __init init_freelist_randomization(void)
2469 struct kmem_cache *s;
2471 mutex_lock(&slab_mutex);
2473 list_for_each_entry(s, &slab_caches, list)
2474 init_cache_random_seq(s);
2476 mutex_unlock(&slab_mutex);
2479 /* Get the next entry on the pre-computed freelist randomized */
2480 static void *next_freelist_entry(struct kmem_cache *s,
2481 unsigned long *pos, void *start,
2482 unsigned long page_limit,
2483 unsigned long freelist_count)
2485 unsigned int idx;
2488 * If the target page allocation failed, the number of objects on the
2489 * page might be smaller than the usual size defined by the cache.
2491 do {
2492 idx = s->random_seq[*pos];
2493 *pos += 1;
2494 if (*pos >= freelist_count)
2495 *pos = 0;
2496 } while (unlikely(idx >= page_limit));
2498 return (char *)start + idx;
2501 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2502 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2504 void *start;
2505 void *cur;
2506 void *next;
2507 unsigned long idx, pos, page_limit, freelist_count;
2509 if (slab->objects < 2 || !s->random_seq)
2510 return false;
2512 freelist_count = oo_objects(s->oo);
2513 pos = get_random_u32_below(freelist_count);
2515 page_limit = slab->objects * s->size;
2516 start = fixup_red_left(s, slab_address(slab));
2518 /* First entry is used as the base of the freelist */
2519 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2520 cur = setup_object(s, cur);
2521 slab->freelist = cur;
2523 for (idx = 1; idx < slab->objects; idx++) {
2524 next = next_freelist_entry(s, &pos, start, page_limit,
2525 freelist_count);
2526 next = setup_object(s, next);
2527 set_freepointer(s, cur, next);
2528 cur = next;
2530 set_freepointer(s, cur, NULL);
2532 return true;
2534 #else
2535 static inline int init_cache_random_seq(struct kmem_cache *s)
2537 return 0;
2539 static inline void init_freelist_randomization(void) { }
2540 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2542 return false;
2544 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2546 static __always_inline void account_slab(struct slab *slab, int order,
2547 struct kmem_cache *s, gfp_t gfp)
2549 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2550 alloc_slab_obj_exts(slab, s, gfp, true);
2552 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2553 PAGE_SIZE << order);
2556 static __always_inline void unaccount_slab(struct slab *slab, int order,
2557 struct kmem_cache *s)
2559 if (memcg_kmem_online() || need_slab_obj_ext())
2560 free_slab_obj_exts(slab);
2562 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2563 -(PAGE_SIZE << order));
2566 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2568 struct slab *slab;
2569 struct kmem_cache_order_objects oo = s->oo;
2570 gfp_t alloc_gfp;
2571 void *start, *p, *next;
2572 int idx;
2573 bool shuffle;
2575 flags &= gfp_allowed_mask;
2577 flags |= s->allocflags;
2580 * Let the initial higher-order allocation fail under memory pressure
2581 * so we fall-back to the minimum order allocation.
2583 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2584 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2585 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2587 slab = alloc_slab_page(alloc_gfp, node, oo);
2588 if (unlikely(!slab)) {
2589 oo = s->min;
2590 alloc_gfp = flags;
2592 * Allocation may have failed due to fragmentation.
2593 * Try a lower order alloc if possible
2595 slab = alloc_slab_page(alloc_gfp, node, oo);
2596 if (unlikely(!slab))
2597 return NULL;
2598 stat(s, ORDER_FALLBACK);
2601 slab->objects = oo_objects(oo);
2602 slab->inuse = 0;
2603 slab->frozen = 0;
2605 account_slab(slab, oo_order(oo), s, flags);
2607 slab->slab_cache = s;
2609 kasan_poison_slab(slab);
2611 start = slab_address(slab);
2613 setup_slab_debug(s, slab, start);
2615 shuffle = shuffle_freelist(s, slab);
2617 if (!shuffle) {
2618 start = fixup_red_left(s, start);
2619 start = setup_object(s, start);
2620 slab->freelist = start;
2621 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2622 next = p + s->size;
2623 next = setup_object(s, next);
2624 set_freepointer(s, p, next);
2625 p = next;
2627 set_freepointer(s, p, NULL);
2630 return slab;
2633 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2635 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2636 flags = kmalloc_fix_flags(flags);
2638 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2640 return allocate_slab(s,
2641 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2644 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2646 struct folio *folio = slab_folio(slab);
2647 int order = folio_order(folio);
2648 int pages = 1 << order;
2650 __slab_clear_pfmemalloc(slab);
2651 folio->mapping = NULL;
2652 __folio_clear_slab(folio);
2653 mm_account_reclaimed_pages(pages);
2654 unaccount_slab(slab, order, s);
2655 free_frozen_pages(&folio->page, order);
2658 static void rcu_free_slab(struct rcu_head *h)
2660 struct slab *slab = container_of(h, struct slab, rcu_head);
2662 __free_slab(slab->slab_cache, slab);
2665 static void free_slab(struct kmem_cache *s, struct slab *slab)
2667 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2668 void *p;
2670 slab_pad_check(s, slab);
2671 for_each_object(p, s, slab_address(slab), slab->objects)
2672 check_object(s, slab, p, SLUB_RED_INACTIVE);
2675 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2676 call_rcu(&slab->rcu_head, rcu_free_slab);
2677 else
2678 __free_slab(s, slab);
2681 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2683 dec_slabs_node(s, slab_nid(slab), slab->objects);
2684 free_slab(s, slab);
2688 * SLUB reuses PG_workingset bit to keep track of whether it's on
2689 * the per-node partial list.
2691 static inline bool slab_test_node_partial(const struct slab *slab)
2693 return folio_test_workingset(slab_folio(slab));
2696 static inline void slab_set_node_partial(struct slab *slab)
2698 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2701 static inline void slab_clear_node_partial(struct slab *slab)
2703 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2707 * Management of partially allocated slabs.
2709 static inline void
2710 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2712 n->nr_partial++;
2713 if (tail == DEACTIVATE_TO_TAIL)
2714 list_add_tail(&slab->slab_list, &n->partial);
2715 else
2716 list_add(&slab->slab_list, &n->partial);
2717 slab_set_node_partial(slab);
2720 static inline void add_partial(struct kmem_cache_node *n,
2721 struct slab *slab, int tail)
2723 lockdep_assert_held(&n->list_lock);
2724 __add_partial(n, slab, tail);
2727 static inline void remove_partial(struct kmem_cache_node *n,
2728 struct slab *slab)
2730 lockdep_assert_held(&n->list_lock);
2731 list_del(&slab->slab_list);
2732 slab_clear_node_partial(slab);
2733 n->nr_partial--;
2737 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2738 * slab from the n->partial list. Remove only a single object from the slab, do
2739 * the alloc_debug_processing() checks and leave the slab on the list, or move
2740 * it to full list if it was the last free object.
2742 static void *alloc_single_from_partial(struct kmem_cache *s,
2743 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2745 void *object;
2747 lockdep_assert_held(&n->list_lock);
2749 object = slab->freelist;
2750 slab->freelist = get_freepointer(s, object);
2751 slab->inuse++;
2753 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2754 if (folio_test_slab(slab_folio(slab)))
2755 remove_partial(n, slab);
2756 return NULL;
2759 if (slab->inuse == slab->objects) {
2760 remove_partial(n, slab);
2761 add_full(s, n, slab);
2764 return object;
2768 * Called only for kmem_cache_debug() caches to allocate from a freshly
2769 * allocated slab. Allocate a single object instead of whole freelist
2770 * and put the slab to the partial (or full) list.
2772 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2773 struct slab *slab, int orig_size)
2775 int nid = slab_nid(slab);
2776 struct kmem_cache_node *n = get_node(s, nid);
2777 unsigned long flags;
2778 void *object;
2781 object = slab->freelist;
2782 slab->freelist = get_freepointer(s, object);
2783 slab->inuse = 1;
2785 if (!alloc_debug_processing(s, slab, object, orig_size))
2787 * It's not really expected that this would fail on a
2788 * freshly allocated slab, but a concurrent memory
2789 * corruption in theory could cause that.
2791 return NULL;
2793 spin_lock_irqsave(&n->list_lock, flags);
2795 if (slab->inuse == slab->objects)
2796 add_full(s, n, slab);
2797 else
2798 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2800 inc_slabs_node(s, nid, slab->objects);
2801 spin_unlock_irqrestore(&n->list_lock, flags);
2803 return object;
2806 #ifdef CONFIG_SLUB_CPU_PARTIAL
2807 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2808 #else
2809 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2810 int drain) { }
2811 #endif
2812 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2815 * Try to allocate a partial slab from a specific node.
2817 static struct slab *get_partial_node(struct kmem_cache *s,
2818 struct kmem_cache_node *n,
2819 struct partial_context *pc)
2821 struct slab *slab, *slab2, *partial = NULL;
2822 unsigned long flags;
2823 unsigned int partial_slabs = 0;
2826 * Racy check. If we mistakenly see no partial slabs then we
2827 * just allocate an empty slab. If we mistakenly try to get a
2828 * partial slab and there is none available then get_partial()
2829 * will return NULL.
2831 if (!n || !n->nr_partial)
2832 return NULL;
2834 spin_lock_irqsave(&n->list_lock, flags);
2835 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2836 if (!pfmemalloc_match(slab, pc->flags))
2837 continue;
2839 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2840 void *object = alloc_single_from_partial(s, n, slab,
2841 pc->orig_size);
2842 if (object) {
2843 partial = slab;
2844 pc->object = object;
2845 break;
2847 continue;
2850 remove_partial(n, slab);
2852 if (!partial) {
2853 partial = slab;
2854 stat(s, ALLOC_FROM_PARTIAL);
2856 if ((slub_get_cpu_partial(s) == 0)) {
2857 break;
2859 } else {
2860 put_cpu_partial(s, slab, 0);
2861 stat(s, CPU_PARTIAL_NODE);
2863 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2864 break;
2868 spin_unlock_irqrestore(&n->list_lock, flags);
2869 return partial;
2873 * Get a slab from somewhere. Search in increasing NUMA distances.
2875 static struct slab *get_any_partial(struct kmem_cache *s,
2876 struct partial_context *pc)
2878 #ifdef CONFIG_NUMA
2879 struct zonelist *zonelist;
2880 struct zoneref *z;
2881 struct zone *zone;
2882 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2883 struct slab *slab;
2884 unsigned int cpuset_mems_cookie;
2887 * The defrag ratio allows a configuration of the tradeoffs between
2888 * inter node defragmentation and node local allocations. A lower
2889 * defrag_ratio increases the tendency to do local allocations
2890 * instead of attempting to obtain partial slabs from other nodes.
2892 * If the defrag_ratio is set to 0 then kmalloc() always
2893 * returns node local objects. If the ratio is higher then kmalloc()
2894 * may return off node objects because partial slabs are obtained
2895 * from other nodes and filled up.
2897 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2898 * (which makes defrag_ratio = 1000) then every (well almost)
2899 * allocation will first attempt to defrag slab caches on other nodes.
2900 * This means scanning over all nodes to look for partial slabs which
2901 * may be expensive if we do it every time we are trying to find a slab
2902 * with available objects.
2904 if (!s->remote_node_defrag_ratio ||
2905 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2906 return NULL;
2908 do {
2909 cpuset_mems_cookie = read_mems_allowed_begin();
2910 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2911 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2912 struct kmem_cache_node *n;
2914 n = get_node(s, zone_to_nid(zone));
2916 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2917 n->nr_partial > s->min_partial) {
2918 slab = get_partial_node(s, n, pc);
2919 if (slab) {
2921 * Don't check read_mems_allowed_retry()
2922 * here - if mems_allowed was updated in
2923 * parallel, that was a harmless race
2924 * between allocation and the cpuset
2925 * update
2927 return slab;
2931 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2932 #endif /* CONFIG_NUMA */
2933 return NULL;
2937 * Get a partial slab, lock it and return it.
2939 static struct slab *get_partial(struct kmem_cache *s, int node,
2940 struct partial_context *pc)
2942 struct slab *slab;
2943 int searchnode = node;
2945 if (node == NUMA_NO_NODE)
2946 searchnode = numa_mem_id();
2948 slab = get_partial_node(s, get_node(s, searchnode), pc);
2949 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2950 return slab;
2952 return get_any_partial(s, pc);
2955 #ifndef CONFIG_SLUB_TINY
2957 #ifdef CONFIG_PREEMPTION
2959 * Calculate the next globally unique transaction for disambiguation
2960 * during cmpxchg. The transactions start with the cpu number and are then
2961 * incremented by CONFIG_NR_CPUS.
2963 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2964 #else
2966 * No preemption supported therefore also no need to check for
2967 * different cpus.
2969 #define TID_STEP 1
2970 #endif /* CONFIG_PREEMPTION */
2972 static inline unsigned long next_tid(unsigned long tid)
2974 return tid + TID_STEP;
2977 #ifdef SLUB_DEBUG_CMPXCHG
2978 static inline unsigned int tid_to_cpu(unsigned long tid)
2980 return tid % TID_STEP;
2983 static inline unsigned long tid_to_event(unsigned long tid)
2985 return tid / TID_STEP;
2987 #endif
2989 static inline unsigned int init_tid(int cpu)
2991 return cpu;
2994 static inline void note_cmpxchg_failure(const char *n,
2995 const struct kmem_cache *s, unsigned long tid)
2997 #ifdef SLUB_DEBUG_CMPXCHG
2998 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3000 pr_info("%s %s: cmpxchg redo ", n, s->name);
3002 #ifdef CONFIG_PREEMPTION
3003 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3004 pr_warn("due to cpu change %d -> %d\n",
3005 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3006 else
3007 #endif
3008 if (tid_to_event(tid) != tid_to_event(actual_tid))
3009 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3010 tid_to_event(tid), tid_to_event(actual_tid));
3011 else
3012 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3013 actual_tid, tid, next_tid(tid));
3014 #endif
3015 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3018 static void init_kmem_cache_cpus(struct kmem_cache *s)
3020 int cpu;
3021 struct kmem_cache_cpu *c;
3023 for_each_possible_cpu(cpu) {
3024 c = per_cpu_ptr(s->cpu_slab, cpu);
3025 local_lock_init(&c->lock);
3026 c->tid = init_tid(cpu);
3031 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3032 * unfreezes the slabs and puts it on the proper list.
3033 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3034 * by the caller.
3036 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3037 void *freelist)
3039 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3040 int free_delta = 0;
3041 void *nextfree, *freelist_iter, *freelist_tail;
3042 int tail = DEACTIVATE_TO_HEAD;
3043 unsigned long flags = 0;
3044 struct slab new;
3045 struct slab old;
3047 if (READ_ONCE(slab->freelist)) {
3048 stat(s, DEACTIVATE_REMOTE_FREES);
3049 tail = DEACTIVATE_TO_TAIL;
3053 * Stage one: Count the objects on cpu's freelist as free_delta and
3054 * remember the last object in freelist_tail for later splicing.
3056 freelist_tail = NULL;
3057 freelist_iter = freelist;
3058 while (freelist_iter) {
3059 nextfree = get_freepointer(s, freelist_iter);
3062 * If 'nextfree' is invalid, it is possible that the object at
3063 * 'freelist_iter' is already corrupted. So isolate all objects
3064 * starting at 'freelist_iter' by skipping them.
3066 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3067 break;
3069 freelist_tail = freelist_iter;
3070 free_delta++;
3072 freelist_iter = nextfree;
3076 * Stage two: Unfreeze the slab while splicing the per-cpu
3077 * freelist to the head of slab's freelist.
3079 do {
3080 old.freelist = READ_ONCE(slab->freelist);
3081 old.counters = READ_ONCE(slab->counters);
3082 VM_BUG_ON(!old.frozen);
3084 /* Determine target state of the slab */
3085 new.counters = old.counters;
3086 new.frozen = 0;
3087 if (freelist_tail) {
3088 new.inuse -= free_delta;
3089 set_freepointer(s, freelist_tail, old.freelist);
3090 new.freelist = freelist;
3091 } else {
3092 new.freelist = old.freelist;
3094 } while (!slab_update_freelist(s, slab,
3095 old.freelist, old.counters,
3096 new.freelist, new.counters,
3097 "unfreezing slab"));
3100 * Stage three: Manipulate the slab list based on the updated state.
3102 if (!new.inuse && n->nr_partial >= s->min_partial) {
3103 stat(s, DEACTIVATE_EMPTY);
3104 discard_slab(s, slab);
3105 stat(s, FREE_SLAB);
3106 } else if (new.freelist) {
3107 spin_lock_irqsave(&n->list_lock, flags);
3108 add_partial(n, slab, tail);
3109 spin_unlock_irqrestore(&n->list_lock, flags);
3110 stat(s, tail);
3111 } else {
3112 stat(s, DEACTIVATE_FULL);
3116 #ifdef CONFIG_SLUB_CPU_PARTIAL
3117 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3119 struct kmem_cache_node *n = NULL, *n2 = NULL;
3120 struct slab *slab, *slab_to_discard = NULL;
3121 unsigned long flags = 0;
3123 while (partial_slab) {
3124 slab = partial_slab;
3125 partial_slab = slab->next;
3127 n2 = get_node(s, slab_nid(slab));
3128 if (n != n2) {
3129 if (n)
3130 spin_unlock_irqrestore(&n->list_lock, flags);
3132 n = n2;
3133 spin_lock_irqsave(&n->list_lock, flags);
3136 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3137 slab->next = slab_to_discard;
3138 slab_to_discard = slab;
3139 } else {
3140 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3141 stat(s, FREE_ADD_PARTIAL);
3145 if (n)
3146 spin_unlock_irqrestore(&n->list_lock, flags);
3148 while (slab_to_discard) {
3149 slab = slab_to_discard;
3150 slab_to_discard = slab_to_discard->next;
3152 stat(s, DEACTIVATE_EMPTY);
3153 discard_slab(s, slab);
3154 stat(s, FREE_SLAB);
3159 * Put all the cpu partial slabs to the node partial list.
3161 static void put_partials(struct kmem_cache *s)
3163 struct slab *partial_slab;
3164 unsigned long flags;
3166 local_lock_irqsave(&s->cpu_slab->lock, flags);
3167 partial_slab = this_cpu_read(s->cpu_slab->partial);
3168 this_cpu_write(s->cpu_slab->partial, NULL);
3169 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3171 if (partial_slab)
3172 __put_partials(s, partial_slab);
3175 static void put_partials_cpu(struct kmem_cache *s,
3176 struct kmem_cache_cpu *c)
3178 struct slab *partial_slab;
3180 partial_slab = slub_percpu_partial(c);
3181 c->partial = NULL;
3183 if (partial_slab)
3184 __put_partials(s, partial_slab);
3188 * Put a slab into a partial slab slot if available.
3190 * If we did not find a slot then simply move all the partials to the
3191 * per node partial list.
3193 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3195 struct slab *oldslab;
3196 struct slab *slab_to_put = NULL;
3197 unsigned long flags;
3198 int slabs = 0;
3200 local_lock_irqsave(&s->cpu_slab->lock, flags);
3202 oldslab = this_cpu_read(s->cpu_slab->partial);
3204 if (oldslab) {
3205 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3207 * Partial array is full. Move the existing set to the
3208 * per node partial list. Postpone the actual unfreezing
3209 * outside of the critical section.
3211 slab_to_put = oldslab;
3212 oldslab = NULL;
3213 } else {
3214 slabs = oldslab->slabs;
3218 slabs++;
3220 slab->slabs = slabs;
3221 slab->next = oldslab;
3223 this_cpu_write(s->cpu_slab->partial, slab);
3225 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3227 if (slab_to_put) {
3228 __put_partials(s, slab_to_put);
3229 stat(s, CPU_PARTIAL_DRAIN);
3233 #else /* CONFIG_SLUB_CPU_PARTIAL */
3235 static inline void put_partials(struct kmem_cache *s) { }
3236 static inline void put_partials_cpu(struct kmem_cache *s,
3237 struct kmem_cache_cpu *c) { }
3239 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3241 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3243 unsigned long flags;
3244 struct slab *slab;
3245 void *freelist;
3247 local_lock_irqsave(&s->cpu_slab->lock, flags);
3249 slab = c->slab;
3250 freelist = c->freelist;
3252 c->slab = NULL;
3253 c->freelist = NULL;
3254 c->tid = next_tid(c->tid);
3256 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3258 if (slab) {
3259 deactivate_slab(s, slab, freelist);
3260 stat(s, CPUSLAB_FLUSH);
3264 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3266 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3267 void *freelist = c->freelist;
3268 struct slab *slab = c->slab;
3270 c->slab = NULL;
3271 c->freelist = NULL;
3272 c->tid = next_tid(c->tid);
3274 if (slab) {
3275 deactivate_slab(s, slab, freelist);
3276 stat(s, CPUSLAB_FLUSH);
3279 put_partials_cpu(s, c);
3282 struct slub_flush_work {
3283 struct work_struct work;
3284 struct kmem_cache *s;
3285 bool skip;
3289 * Flush cpu slab.
3291 * Called from CPU work handler with migration disabled.
3293 static void flush_cpu_slab(struct work_struct *w)
3295 struct kmem_cache *s;
3296 struct kmem_cache_cpu *c;
3297 struct slub_flush_work *sfw;
3299 sfw = container_of(w, struct slub_flush_work, work);
3301 s = sfw->s;
3302 c = this_cpu_ptr(s->cpu_slab);
3304 if (c->slab)
3305 flush_slab(s, c);
3307 put_partials(s);
3310 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3312 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3314 return c->slab || slub_percpu_partial(c);
3317 static DEFINE_MUTEX(flush_lock);
3318 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3320 static void flush_all_cpus_locked(struct kmem_cache *s)
3322 struct slub_flush_work *sfw;
3323 unsigned int cpu;
3325 lockdep_assert_cpus_held();
3326 mutex_lock(&flush_lock);
3328 for_each_online_cpu(cpu) {
3329 sfw = &per_cpu(slub_flush, cpu);
3330 if (!has_cpu_slab(cpu, s)) {
3331 sfw->skip = true;
3332 continue;
3334 INIT_WORK(&sfw->work, flush_cpu_slab);
3335 sfw->skip = false;
3336 sfw->s = s;
3337 queue_work_on(cpu, flushwq, &sfw->work);
3340 for_each_online_cpu(cpu) {
3341 sfw = &per_cpu(slub_flush, cpu);
3342 if (sfw->skip)
3343 continue;
3344 flush_work(&sfw->work);
3347 mutex_unlock(&flush_lock);
3350 static void flush_all(struct kmem_cache *s)
3352 cpus_read_lock();
3353 flush_all_cpus_locked(s);
3354 cpus_read_unlock();
3358 * Use the cpu notifier to insure that the cpu slabs are flushed when
3359 * necessary.
3361 static int slub_cpu_dead(unsigned int cpu)
3363 struct kmem_cache *s;
3365 mutex_lock(&slab_mutex);
3366 list_for_each_entry(s, &slab_caches, list)
3367 __flush_cpu_slab(s, cpu);
3368 mutex_unlock(&slab_mutex);
3369 return 0;
3372 #else /* CONFIG_SLUB_TINY */
3373 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3374 static inline void flush_all(struct kmem_cache *s) { }
3375 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3376 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3377 #endif /* CONFIG_SLUB_TINY */
3380 * Check if the objects in a per cpu structure fit numa
3381 * locality expectations.
3383 static inline int node_match(struct slab *slab, int node)
3385 #ifdef CONFIG_NUMA
3386 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3387 return 0;
3388 #endif
3389 return 1;
3392 #ifdef CONFIG_SLUB_DEBUG
3393 static int count_free(struct slab *slab)
3395 return slab->objects - slab->inuse;
3398 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3400 return atomic_long_read(&n->total_objects);
3403 /* Supports checking bulk free of a constructed freelist */
3404 static inline bool free_debug_processing(struct kmem_cache *s,
3405 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3406 unsigned long addr, depot_stack_handle_t handle)
3408 bool checks_ok = false;
3409 void *object = head;
3410 int cnt = 0;
3412 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3413 if (!check_slab(s, slab))
3414 goto out;
3417 if (slab->inuse < *bulk_cnt) {
3418 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3419 slab->inuse, *bulk_cnt);
3420 goto out;
3423 next_object:
3425 if (++cnt > *bulk_cnt)
3426 goto out_cnt;
3428 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3429 if (!free_consistency_checks(s, slab, object, addr))
3430 goto out;
3433 if (s->flags & SLAB_STORE_USER)
3434 set_track_update(s, object, TRACK_FREE, addr, handle);
3435 trace(s, slab, object, 0);
3436 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3437 init_object(s, object, SLUB_RED_INACTIVE);
3439 /* Reached end of constructed freelist yet? */
3440 if (object != tail) {
3441 object = get_freepointer(s, object);
3442 goto next_object;
3444 checks_ok = true;
3446 out_cnt:
3447 if (cnt != *bulk_cnt) {
3448 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3449 *bulk_cnt, cnt);
3450 *bulk_cnt = cnt;
3453 out:
3455 if (!checks_ok)
3456 slab_fix(s, "Object at 0x%p not freed", object);
3458 return checks_ok;
3460 #endif /* CONFIG_SLUB_DEBUG */
3462 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3463 static unsigned long count_partial(struct kmem_cache_node *n,
3464 int (*get_count)(struct slab *))
3466 unsigned long flags;
3467 unsigned long x = 0;
3468 struct slab *slab;
3470 spin_lock_irqsave(&n->list_lock, flags);
3471 list_for_each_entry(slab, &n->partial, slab_list)
3472 x += get_count(slab);
3473 spin_unlock_irqrestore(&n->list_lock, flags);
3474 return x;
3476 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3478 #ifdef CONFIG_SLUB_DEBUG
3479 #define MAX_PARTIAL_TO_SCAN 10000
3481 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3483 unsigned long flags;
3484 unsigned long x = 0;
3485 struct slab *slab;
3487 spin_lock_irqsave(&n->list_lock, flags);
3488 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3489 list_for_each_entry(slab, &n->partial, slab_list)
3490 x += slab->objects - slab->inuse;
3491 } else {
3493 * For a long list, approximate the total count of objects in
3494 * it to meet the limit on the number of slabs to scan.
3495 * Scan from both the list's head and tail for better accuracy.
3497 unsigned long scanned = 0;
3499 list_for_each_entry(slab, &n->partial, slab_list) {
3500 x += slab->objects - slab->inuse;
3501 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3502 break;
3504 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3505 x += slab->objects - slab->inuse;
3506 if (++scanned == MAX_PARTIAL_TO_SCAN)
3507 break;
3509 x = mult_frac(x, n->nr_partial, scanned);
3510 x = min(x, node_nr_objs(n));
3512 spin_unlock_irqrestore(&n->list_lock, flags);
3513 return x;
3516 static noinline void
3517 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3519 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3520 DEFAULT_RATELIMIT_BURST);
3521 int cpu = raw_smp_processor_id();
3522 int node;
3523 struct kmem_cache_node *n;
3525 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3526 return;
3528 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3529 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3530 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3531 s->name, s->object_size, s->size, oo_order(s->oo),
3532 oo_order(s->min));
3534 if (oo_order(s->min) > get_order(s->object_size))
3535 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3536 s->name);
3538 for_each_kmem_cache_node(s, node, n) {
3539 unsigned long nr_slabs;
3540 unsigned long nr_objs;
3541 unsigned long nr_free;
3543 nr_free = count_partial_free_approx(n);
3544 nr_slabs = node_nr_slabs(n);
3545 nr_objs = node_nr_objs(n);
3547 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3548 node, nr_slabs, nr_objs, nr_free);
3551 #else /* CONFIG_SLUB_DEBUG */
3552 static inline void
3553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3554 #endif
3556 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3558 if (unlikely(slab_test_pfmemalloc(slab)))
3559 return gfp_pfmemalloc_allowed(gfpflags);
3561 return true;
3564 #ifndef CONFIG_SLUB_TINY
3565 static inline bool
3566 __update_cpu_freelist_fast(struct kmem_cache *s,
3567 void *freelist_old, void *freelist_new,
3568 unsigned long tid)
3570 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3571 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3573 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3574 &old.full, new.full);
3578 * Check the slab->freelist and either transfer the freelist to the
3579 * per cpu freelist or deactivate the slab.
3581 * The slab is still frozen if the return value is not NULL.
3583 * If this function returns NULL then the slab has been unfrozen.
3585 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3587 struct slab new;
3588 unsigned long counters;
3589 void *freelist;
3591 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3593 do {
3594 freelist = slab->freelist;
3595 counters = slab->counters;
3597 new.counters = counters;
3599 new.inuse = slab->objects;
3600 new.frozen = freelist != NULL;
3602 } while (!__slab_update_freelist(s, slab,
3603 freelist, counters,
3604 NULL, new.counters,
3605 "get_freelist"));
3607 return freelist;
3611 * Freeze the partial slab and return the pointer to the freelist.
3613 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3615 struct slab new;
3616 unsigned long counters;
3617 void *freelist;
3619 do {
3620 freelist = slab->freelist;
3621 counters = slab->counters;
3623 new.counters = counters;
3624 VM_BUG_ON(new.frozen);
3626 new.inuse = slab->objects;
3627 new.frozen = 1;
3629 } while (!slab_update_freelist(s, slab,
3630 freelist, counters,
3631 NULL, new.counters,
3632 "freeze_slab"));
3634 return freelist;
3638 * Slow path. The lockless freelist is empty or we need to perform
3639 * debugging duties.
3641 * Processing is still very fast if new objects have been freed to the
3642 * regular freelist. In that case we simply take over the regular freelist
3643 * as the lockless freelist and zap the regular freelist.
3645 * If that is not working then we fall back to the partial lists. We take the
3646 * first element of the freelist as the object to allocate now and move the
3647 * rest of the freelist to the lockless freelist.
3649 * And if we were unable to get a new slab from the partial slab lists then
3650 * we need to allocate a new slab. This is the slowest path since it involves
3651 * a call to the page allocator and the setup of a new slab.
3653 * Version of __slab_alloc to use when we know that preemption is
3654 * already disabled (which is the case for bulk allocation).
3656 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3657 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3659 void *freelist;
3660 struct slab *slab;
3661 unsigned long flags;
3662 struct partial_context pc;
3663 bool try_thisnode = true;
3665 stat(s, ALLOC_SLOWPATH);
3667 reread_slab:
3669 slab = READ_ONCE(c->slab);
3670 if (!slab) {
3672 * if the node is not online or has no normal memory, just
3673 * ignore the node constraint
3675 if (unlikely(node != NUMA_NO_NODE &&
3676 !node_isset(node, slab_nodes)))
3677 node = NUMA_NO_NODE;
3678 goto new_slab;
3681 if (unlikely(!node_match(slab, node))) {
3683 * same as above but node_match() being false already
3684 * implies node != NUMA_NO_NODE
3686 if (!node_isset(node, slab_nodes)) {
3687 node = NUMA_NO_NODE;
3688 } else {
3689 stat(s, ALLOC_NODE_MISMATCH);
3690 goto deactivate_slab;
3695 * By rights, we should be searching for a slab page that was
3696 * PFMEMALLOC but right now, we are losing the pfmemalloc
3697 * information when the page leaves the per-cpu allocator
3699 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3700 goto deactivate_slab;
3702 /* must check again c->slab in case we got preempted and it changed */
3703 local_lock_irqsave(&s->cpu_slab->lock, flags);
3704 if (unlikely(slab != c->slab)) {
3705 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3706 goto reread_slab;
3708 freelist = c->freelist;
3709 if (freelist)
3710 goto load_freelist;
3712 freelist = get_freelist(s, slab);
3714 if (!freelist) {
3715 c->slab = NULL;
3716 c->tid = next_tid(c->tid);
3717 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3718 stat(s, DEACTIVATE_BYPASS);
3719 goto new_slab;
3722 stat(s, ALLOC_REFILL);
3724 load_freelist:
3726 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3729 * freelist is pointing to the list of objects to be used.
3730 * slab is pointing to the slab from which the objects are obtained.
3731 * That slab must be frozen for per cpu allocations to work.
3733 VM_BUG_ON(!c->slab->frozen);
3734 c->freelist = get_freepointer(s, freelist);
3735 c->tid = next_tid(c->tid);
3736 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3737 return freelist;
3739 deactivate_slab:
3741 local_lock_irqsave(&s->cpu_slab->lock, flags);
3742 if (slab != c->slab) {
3743 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3744 goto reread_slab;
3746 freelist = c->freelist;
3747 c->slab = NULL;
3748 c->freelist = NULL;
3749 c->tid = next_tid(c->tid);
3750 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3751 deactivate_slab(s, slab, freelist);
3753 new_slab:
3755 #ifdef CONFIG_SLUB_CPU_PARTIAL
3756 while (slub_percpu_partial(c)) {
3757 local_lock_irqsave(&s->cpu_slab->lock, flags);
3758 if (unlikely(c->slab)) {
3759 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3760 goto reread_slab;
3762 if (unlikely(!slub_percpu_partial(c))) {
3763 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3764 /* we were preempted and partial list got empty */
3765 goto new_objects;
3768 slab = slub_percpu_partial(c);
3769 slub_set_percpu_partial(c, slab);
3771 if (likely(node_match(slab, node) &&
3772 pfmemalloc_match(slab, gfpflags))) {
3773 c->slab = slab;
3774 freelist = get_freelist(s, slab);
3775 VM_BUG_ON(!freelist);
3776 stat(s, CPU_PARTIAL_ALLOC);
3777 goto load_freelist;
3780 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3782 slab->next = NULL;
3783 __put_partials(s, slab);
3785 #endif
3787 new_objects:
3789 pc.flags = gfpflags;
3791 * When a preferred node is indicated but no __GFP_THISNODE
3793 * 1) try to get a partial slab from target node only by having
3794 * __GFP_THISNODE in pc.flags for get_partial()
3795 * 2) if 1) failed, try to allocate a new slab from target node with
3796 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3797 * 3) if 2) failed, retry with original gfpflags which will allow
3798 * get_partial() try partial lists of other nodes before potentially
3799 * allocating new page from other nodes
3801 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3802 && try_thisnode))
3803 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3805 pc.orig_size = orig_size;
3806 slab = get_partial(s, node, &pc);
3807 if (slab) {
3808 if (kmem_cache_debug(s)) {
3809 freelist = pc.object;
3811 * For debug caches here we had to go through
3812 * alloc_single_from_partial() so just store the
3813 * tracking info and return the object.
3815 if (s->flags & SLAB_STORE_USER)
3816 set_track(s, freelist, TRACK_ALLOC, addr);
3818 return freelist;
3821 freelist = freeze_slab(s, slab);
3822 goto retry_load_slab;
3825 slub_put_cpu_ptr(s->cpu_slab);
3826 slab = new_slab(s, pc.flags, node);
3827 c = slub_get_cpu_ptr(s->cpu_slab);
3829 if (unlikely(!slab)) {
3830 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3831 && try_thisnode) {
3832 try_thisnode = false;
3833 goto new_objects;
3835 slab_out_of_memory(s, gfpflags, node);
3836 return NULL;
3839 stat(s, ALLOC_SLAB);
3841 if (kmem_cache_debug(s)) {
3842 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3844 if (unlikely(!freelist))
3845 goto new_objects;
3847 if (s->flags & SLAB_STORE_USER)
3848 set_track(s, freelist, TRACK_ALLOC, addr);
3850 return freelist;
3854 * No other reference to the slab yet so we can
3855 * muck around with it freely without cmpxchg
3857 freelist = slab->freelist;
3858 slab->freelist = NULL;
3859 slab->inuse = slab->objects;
3860 slab->frozen = 1;
3862 inc_slabs_node(s, slab_nid(slab), slab->objects);
3864 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3866 * For !pfmemalloc_match() case we don't load freelist so that
3867 * we don't make further mismatched allocations easier.
3869 deactivate_slab(s, slab, get_freepointer(s, freelist));
3870 return freelist;
3873 retry_load_slab:
3875 local_lock_irqsave(&s->cpu_slab->lock, flags);
3876 if (unlikely(c->slab)) {
3877 void *flush_freelist = c->freelist;
3878 struct slab *flush_slab = c->slab;
3880 c->slab = NULL;
3881 c->freelist = NULL;
3882 c->tid = next_tid(c->tid);
3884 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3886 deactivate_slab(s, flush_slab, flush_freelist);
3888 stat(s, CPUSLAB_FLUSH);
3890 goto retry_load_slab;
3892 c->slab = slab;
3894 goto load_freelist;
3898 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3899 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3900 * pointer.
3902 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3903 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3905 void *p;
3907 #ifdef CONFIG_PREEMPT_COUNT
3909 * We may have been preempted and rescheduled on a different
3910 * cpu before disabling preemption. Need to reload cpu area
3911 * pointer.
3913 c = slub_get_cpu_ptr(s->cpu_slab);
3914 #endif
3916 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3917 #ifdef CONFIG_PREEMPT_COUNT
3918 slub_put_cpu_ptr(s->cpu_slab);
3919 #endif
3920 return p;
3923 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3924 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3926 struct kmem_cache_cpu *c;
3927 struct slab *slab;
3928 unsigned long tid;
3929 void *object;
3931 redo:
3933 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3934 * enabled. We may switch back and forth between cpus while
3935 * reading from one cpu area. That does not matter as long
3936 * as we end up on the original cpu again when doing the cmpxchg.
3938 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3939 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3940 * the tid. If we are preempted and switched to another cpu between the
3941 * two reads, it's OK as the two are still associated with the same cpu
3942 * and cmpxchg later will validate the cpu.
3944 c = raw_cpu_ptr(s->cpu_slab);
3945 tid = READ_ONCE(c->tid);
3948 * Irqless object alloc/free algorithm used here depends on sequence
3949 * of fetching cpu_slab's data. tid should be fetched before anything
3950 * on c to guarantee that object and slab associated with previous tid
3951 * won't be used with current tid. If we fetch tid first, object and
3952 * slab could be one associated with next tid and our alloc/free
3953 * request will be failed. In this case, we will retry. So, no problem.
3955 barrier();
3958 * The transaction ids are globally unique per cpu and per operation on
3959 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3960 * occurs on the right processor and that there was no operation on the
3961 * linked list in between.
3964 object = c->freelist;
3965 slab = c->slab;
3967 #ifdef CONFIG_NUMA
3968 if (static_branch_unlikely(&strict_numa) &&
3969 node == NUMA_NO_NODE) {
3971 struct mempolicy *mpol = current->mempolicy;
3973 if (mpol) {
3975 * Special BIND rule support. If existing slab
3976 * is in permitted set then do not redirect
3977 * to a particular node.
3978 * Otherwise we apply the memory policy to get
3979 * the node we need to allocate on.
3981 if (mpol->mode != MPOL_BIND || !slab ||
3982 !node_isset(slab_nid(slab), mpol->nodes))
3984 node = mempolicy_slab_node();
3987 #endif
3989 if (!USE_LOCKLESS_FAST_PATH() ||
3990 unlikely(!object || !slab || !node_match(slab, node))) {
3991 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3992 } else {
3993 void *next_object = get_freepointer_safe(s, object);
3996 * The cmpxchg will only match if there was no additional
3997 * operation and if we are on the right processor.
3999 * The cmpxchg does the following atomically (without lock
4000 * semantics!)
4001 * 1. Relocate first pointer to the current per cpu area.
4002 * 2. Verify that tid and freelist have not been changed
4003 * 3. If they were not changed replace tid and freelist
4005 * Since this is without lock semantics the protection is only
4006 * against code executing on this cpu *not* from access by
4007 * other cpus.
4009 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4010 note_cmpxchg_failure("slab_alloc", s, tid);
4011 goto redo;
4013 prefetch_freepointer(s, next_object);
4014 stat(s, ALLOC_FASTPATH);
4017 return object;
4019 #else /* CONFIG_SLUB_TINY */
4020 static void *__slab_alloc_node(struct kmem_cache *s,
4021 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4023 struct partial_context pc;
4024 struct slab *slab;
4025 void *object;
4027 pc.flags = gfpflags;
4028 pc.orig_size = orig_size;
4029 slab = get_partial(s, node, &pc);
4031 if (slab)
4032 return pc.object;
4034 slab = new_slab(s, gfpflags, node);
4035 if (unlikely(!slab)) {
4036 slab_out_of_memory(s, gfpflags, node);
4037 return NULL;
4040 object = alloc_single_from_new_slab(s, slab, orig_size);
4042 return object;
4044 #endif /* CONFIG_SLUB_TINY */
4047 * If the object has been wiped upon free, make sure it's fully initialized by
4048 * zeroing out freelist pointer.
4050 * Note that we also wipe custom freelist pointers.
4052 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4053 void *obj)
4055 if (unlikely(slab_want_init_on_free(s)) && obj &&
4056 !freeptr_outside_object(s))
4057 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4058 0, sizeof(void *));
4061 static __fastpath_inline
4062 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4064 flags &= gfp_allowed_mask;
4066 might_alloc(flags);
4068 if (unlikely(should_failslab(s, flags)))
4069 return NULL;
4071 return s;
4074 static __fastpath_inline
4075 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4076 gfp_t flags, size_t size, void **p, bool init,
4077 unsigned int orig_size)
4079 unsigned int zero_size = s->object_size;
4080 bool kasan_init = init;
4081 size_t i;
4082 gfp_t init_flags = flags & gfp_allowed_mask;
4085 * For kmalloc object, the allocated memory size(object_size) is likely
4086 * larger than the requested size(orig_size). If redzone check is
4087 * enabled for the extra space, don't zero it, as it will be redzoned
4088 * soon. The redzone operation for this extra space could be seen as a
4089 * replacement of current poisoning under certain debug option, and
4090 * won't break other sanity checks.
4092 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4093 (s->flags & SLAB_KMALLOC))
4094 zero_size = orig_size;
4097 * When slab_debug is enabled, avoid memory initialization integrated
4098 * into KASAN and instead zero out the memory via the memset below with
4099 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4100 * cause false-positive reports. This does not lead to a performance
4101 * penalty on production builds, as slab_debug is not intended to be
4102 * enabled there.
4104 if (__slub_debug_enabled())
4105 kasan_init = false;
4108 * As memory initialization might be integrated into KASAN,
4109 * kasan_slab_alloc and initialization memset must be
4110 * kept together to avoid discrepancies in behavior.
4112 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4114 for (i = 0; i < size; i++) {
4115 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4116 if (p[i] && init && (!kasan_init ||
4117 !kasan_has_integrated_init()))
4118 memset(p[i], 0, zero_size);
4119 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4120 s->flags, init_flags);
4121 kmsan_slab_alloc(s, p[i], init_flags);
4122 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4125 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4129 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4130 * have the fastpath folded into their functions. So no function call
4131 * overhead for requests that can be satisfied on the fastpath.
4133 * The fastpath works by first checking if the lockless freelist can be used.
4134 * If not then __slab_alloc is called for slow processing.
4136 * Otherwise we can simply pick the next object from the lockless free list.
4138 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4139 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4141 void *object;
4142 bool init = false;
4144 s = slab_pre_alloc_hook(s, gfpflags);
4145 if (unlikely(!s))
4146 return NULL;
4148 object = kfence_alloc(s, orig_size, gfpflags);
4149 if (unlikely(object))
4150 goto out;
4152 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4154 maybe_wipe_obj_freeptr(s, object);
4155 init = slab_want_init_on_alloc(gfpflags, s);
4157 out:
4159 * When init equals 'true', like for kzalloc() family, only
4160 * @orig_size bytes might be zeroed instead of s->object_size
4161 * In case this fails due to memcg_slab_post_alloc_hook(),
4162 * object is set to NULL
4164 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4166 return object;
4169 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4171 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4172 s->object_size);
4174 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4176 return ret;
4178 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4180 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4181 gfp_t gfpflags)
4183 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4184 s->object_size);
4186 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4188 return ret;
4190 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4192 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4194 if (!memcg_kmem_online())
4195 return true;
4197 return memcg_slab_post_charge(objp, gfpflags);
4199 EXPORT_SYMBOL(kmem_cache_charge);
4202 * kmem_cache_alloc_node - Allocate an object on the specified node
4203 * @s: The cache to allocate from.
4204 * @gfpflags: See kmalloc().
4205 * @node: node number of the target node.
4207 * Identical to kmem_cache_alloc but it will allocate memory on the given
4208 * node, which can improve the performance for cpu bound structures.
4210 * Fallback to other node is possible if __GFP_THISNODE is not set.
4212 * Return: pointer to the new object or %NULL in case of error
4214 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4216 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4218 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4220 return ret;
4222 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4225 * To avoid unnecessary overhead, we pass through large allocation requests
4226 * directly to the page allocator. We use __GFP_COMP, because we will need to
4227 * know the allocation order to free the pages properly in kfree.
4229 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4231 struct folio *folio;
4232 void *ptr = NULL;
4233 unsigned int order = get_order(size);
4235 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4236 flags = kmalloc_fix_flags(flags);
4238 flags |= __GFP_COMP;
4239 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4240 if (folio) {
4241 ptr = folio_address(folio);
4242 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4243 PAGE_SIZE << order);
4246 ptr = kasan_kmalloc_large(ptr, size, flags);
4247 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4248 kmemleak_alloc(ptr, size, 1, flags);
4249 kmsan_kmalloc_large(ptr, size, flags);
4251 return ptr;
4254 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4256 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4258 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4259 flags, NUMA_NO_NODE);
4260 return ret;
4262 EXPORT_SYMBOL(__kmalloc_large_noprof);
4264 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4266 void *ret = ___kmalloc_large_node(size, flags, node);
4268 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4269 flags, node);
4270 return ret;
4272 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4274 static __always_inline
4275 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4276 unsigned long caller)
4278 struct kmem_cache *s;
4279 void *ret;
4281 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4282 ret = __kmalloc_large_node_noprof(size, flags, node);
4283 trace_kmalloc(caller, ret, size,
4284 PAGE_SIZE << get_order(size), flags, node);
4285 return ret;
4288 if (unlikely(!size))
4289 return ZERO_SIZE_PTR;
4291 s = kmalloc_slab(size, b, flags, caller);
4293 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4294 ret = kasan_kmalloc(s, ret, size, flags);
4295 trace_kmalloc(caller, ret, size, s->size, flags, node);
4296 return ret;
4298 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4300 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4302 EXPORT_SYMBOL(__kmalloc_node_noprof);
4304 void *__kmalloc_noprof(size_t size, gfp_t flags)
4306 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4308 EXPORT_SYMBOL(__kmalloc_noprof);
4310 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4311 int node, unsigned long caller)
4313 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4316 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4318 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4320 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4321 _RET_IP_, size);
4323 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4325 ret = kasan_kmalloc(s, ret, size, gfpflags);
4326 return ret;
4328 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4330 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4331 int node, size_t size)
4333 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4335 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4337 ret = kasan_kmalloc(s, ret, size, gfpflags);
4338 return ret;
4340 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4342 static noinline void free_to_partial_list(
4343 struct kmem_cache *s, struct slab *slab,
4344 void *head, void *tail, int bulk_cnt,
4345 unsigned long addr)
4347 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4348 struct slab *slab_free = NULL;
4349 int cnt = bulk_cnt;
4350 unsigned long flags;
4351 depot_stack_handle_t handle = 0;
4353 if (s->flags & SLAB_STORE_USER)
4354 handle = set_track_prepare();
4356 spin_lock_irqsave(&n->list_lock, flags);
4358 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4359 void *prior = slab->freelist;
4361 /* Perform the actual freeing while we still hold the locks */
4362 slab->inuse -= cnt;
4363 set_freepointer(s, tail, prior);
4364 slab->freelist = head;
4367 * If the slab is empty, and node's partial list is full,
4368 * it should be discarded anyway no matter it's on full or
4369 * partial list.
4371 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4372 slab_free = slab;
4374 if (!prior) {
4375 /* was on full list */
4376 remove_full(s, n, slab);
4377 if (!slab_free) {
4378 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4379 stat(s, FREE_ADD_PARTIAL);
4381 } else if (slab_free) {
4382 remove_partial(n, slab);
4383 stat(s, FREE_REMOVE_PARTIAL);
4387 if (slab_free) {
4389 * Update the counters while still holding n->list_lock to
4390 * prevent spurious validation warnings
4392 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4395 spin_unlock_irqrestore(&n->list_lock, flags);
4397 if (slab_free) {
4398 stat(s, FREE_SLAB);
4399 free_slab(s, slab_free);
4404 * Slow path handling. This may still be called frequently since objects
4405 * have a longer lifetime than the cpu slabs in most processing loads.
4407 * So we still attempt to reduce cache line usage. Just take the slab
4408 * lock and free the item. If there is no additional partial slab
4409 * handling required then we can return immediately.
4411 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4412 void *head, void *tail, int cnt,
4413 unsigned long addr)
4416 void *prior;
4417 int was_frozen;
4418 struct slab new;
4419 unsigned long counters;
4420 struct kmem_cache_node *n = NULL;
4421 unsigned long flags;
4422 bool on_node_partial;
4424 stat(s, FREE_SLOWPATH);
4426 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4427 free_to_partial_list(s, slab, head, tail, cnt, addr);
4428 return;
4431 do {
4432 if (unlikely(n)) {
4433 spin_unlock_irqrestore(&n->list_lock, flags);
4434 n = NULL;
4436 prior = slab->freelist;
4437 counters = slab->counters;
4438 set_freepointer(s, tail, prior);
4439 new.counters = counters;
4440 was_frozen = new.frozen;
4441 new.inuse -= cnt;
4442 if ((!new.inuse || !prior) && !was_frozen) {
4443 /* Needs to be taken off a list */
4444 if (!kmem_cache_has_cpu_partial(s) || prior) {
4446 n = get_node(s, slab_nid(slab));
4448 * Speculatively acquire the list_lock.
4449 * If the cmpxchg does not succeed then we may
4450 * drop the list_lock without any processing.
4452 * Otherwise the list_lock will synchronize with
4453 * other processors updating the list of slabs.
4455 spin_lock_irqsave(&n->list_lock, flags);
4457 on_node_partial = slab_test_node_partial(slab);
4461 } while (!slab_update_freelist(s, slab,
4462 prior, counters,
4463 head, new.counters,
4464 "__slab_free"));
4466 if (likely(!n)) {
4468 if (likely(was_frozen)) {
4470 * The list lock was not taken therefore no list
4471 * activity can be necessary.
4473 stat(s, FREE_FROZEN);
4474 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4476 * If we started with a full slab then put it onto the
4477 * per cpu partial list.
4479 put_cpu_partial(s, slab, 1);
4480 stat(s, CPU_PARTIAL_FREE);
4483 return;
4487 * This slab was partially empty but not on the per-node partial list,
4488 * in which case we shouldn't manipulate its list, just return.
4490 if (prior && !on_node_partial) {
4491 spin_unlock_irqrestore(&n->list_lock, flags);
4492 return;
4495 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4496 goto slab_empty;
4499 * Objects left in the slab. If it was not on the partial list before
4500 * then add it.
4502 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4503 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4504 stat(s, FREE_ADD_PARTIAL);
4506 spin_unlock_irqrestore(&n->list_lock, flags);
4507 return;
4509 slab_empty:
4510 if (prior) {
4512 * Slab on the partial list.
4514 remove_partial(n, slab);
4515 stat(s, FREE_REMOVE_PARTIAL);
4518 spin_unlock_irqrestore(&n->list_lock, flags);
4519 stat(s, FREE_SLAB);
4520 discard_slab(s, slab);
4523 #ifndef CONFIG_SLUB_TINY
4525 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4526 * can perform fastpath freeing without additional function calls.
4528 * The fastpath is only possible if we are freeing to the current cpu slab
4529 * of this processor. This typically the case if we have just allocated
4530 * the item before.
4532 * If fastpath is not possible then fall back to __slab_free where we deal
4533 * with all sorts of special processing.
4535 * Bulk free of a freelist with several objects (all pointing to the
4536 * same slab) possible by specifying head and tail ptr, plus objects
4537 * count (cnt). Bulk free indicated by tail pointer being set.
4539 static __always_inline void do_slab_free(struct kmem_cache *s,
4540 struct slab *slab, void *head, void *tail,
4541 int cnt, unsigned long addr)
4543 struct kmem_cache_cpu *c;
4544 unsigned long tid;
4545 void **freelist;
4547 redo:
4549 * Determine the currently cpus per cpu slab.
4550 * The cpu may change afterward. However that does not matter since
4551 * data is retrieved via this pointer. If we are on the same cpu
4552 * during the cmpxchg then the free will succeed.
4554 c = raw_cpu_ptr(s->cpu_slab);
4555 tid = READ_ONCE(c->tid);
4557 /* Same with comment on barrier() in __slab_alloc_node() */
4558 barrier();
4560 if (unlikely(slab != c->slab)) {
4561 __slab_free(s, slab, head, tail, cnt, addr);
4562 return;
4565 if (USE_LOCKLESS_FAST_PATH()) {
4566 freelist = READ_ONCE(c->freelist);
4568 set_freepointer(s, tail, freelist);
4570 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4571 note_cmpxchg_failure("slab_free", s, tid);
4572 goto redo;
4574 } else {
4575 /* Update the free list under the local lock */
4576 local_lock(&s->cpu_slab->lock);
4577 c = this_cpu_ptr(s->cpu_slab);
4578 if (unlikely(slab != c->slab)) {
4579 local_unlock(&s->cpu_slab->lock);
4580 goto redo;
4582 tid = c->tid;
4583 freelist = c->freelist;
4585 set_freepointer(s, tail, freelist);
4586 c->freelist = head;
4587 c->tid = next_tid(tid);
4589 local_unlock(&s->cpu_slab->lock);
4591 stat_add(s, FREE_FASTPATH, cnt);
4593 #else /* CONFIG_SLUB_TINY */
4594 static void do_slab_free(struct kmem_cache *s,
4595 struct slab *slab, void *head, void *tail,
4596 int cnt, unsigned long addr)
4598 __slab_free(s, slab, head, tail, cnt, addr);
4600 #endif /* CONFIG_SLUB_TINY */
4602 static __fastpath_inline
4603 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4604 unsigned long addr)
4606 memcg_slab_free_hook(s, slab, &object, 1);
4607 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4609 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4610 do_slab_free(s, slab, object, object, 1, addr);
4613 #ifdef CONFIG_MEMCG
4614 /* Do not inline the rare memcg charging failed path into the allocation path */
4615 static noinline
4616 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4618 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4619 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4621 #endif
4623 static __fastpath_inline
4624 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4625 void *tail, void **p, int cnt, unsigned long addr)
4627 memcg_slab_free_hook(s, slab, p, cnt);
4628 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4630 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4631 * to remove objects, whose reuse must be delayed.
4633 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4634 do_slab_free(s, slab, head, tail, cnt, addr);
4637 #ifdef CONFIG_SLUB_RCU_DEBUG
4638 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4640 struct rcu_delayed_free *delayed_free =
4641 container_of(rcu_head, struct rcu_delayed_free, head);
4642 void *object = delayed_free->object;
4643 struct slab *slab = virt_to_slab(object);
4644 struct kmem_cache *s;
4646 kfree(delayed_free);
4648 if (WARN_ON(is_kfence_address(object)))
4649 return;
4651 /* find the object and the cache again */
4652 if (WARN_ON(!slab))
4653 return;
4654 s = slab->slab_cache;
4655 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4656 return;
4658 /* resume freeing */
4659 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4660 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4662 #endif /* CONFIG_SLUB_RCU_DEBUG */
4664 #ifdef CONFIG_KASAN_GENERIC
4665 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4667 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4669 #endif
4671 static inline struct kmem_cache *virt_to_cache(const void *obj)
4673 struct slab *slab;
4675 slab = virt_to_slab(obj);
4676 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4677 return NULL;
4678 return slab->slab_cache;
4681 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4683 struct kmem_cache *cachep;
4685 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4686 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4687 return s;
4689 cachep = virt_to_cache(x);
4690 if (WARN(cachep && cachep != s,
4691 "%s: Wrong slab cache. %s but object is from %s\n",
4692 __func__, s->name, cachep->name))
4693 print_tracking(cachep, x);
4694 return cachep;
4698 * kmem_cache_free - Deallocate an object
4699 * @s: The cache the allocation was from.
4700 * @x: The previously allocated object.
4702 * Free an object which was previously allocated from this
4703 * cache.
4705 void kmem_cache_free(struct kmem_cache *s, void *x)
4707 s = cache_from_obj(s, x);
4708 if (!s)
4709 return;
4710 trace_kmem_cache_free(_RET_IP_, x, s);
4711 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4713 EXPORT_SYMBOL(kmem_cache_free);
4715 static void free_large_kmalloc(struct folio *folio, void *object)
4717 unsigned int order = folio_order(folio);
4719 if (WARN_ON_ONCE(order == 0))
4720 pr_warn_once("object pointer: 0x%p\n", object);
4722 kmemleak_free(object);
4723 kasan_kfree_large(object);
4724 kmsan_kfree_large(object);
4726 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4727 -(PAGE_SIZE << order));
4728 folio_put(folio);
4732 * kfree - free previously allocated memory
4733 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4735 * If @object is NULL, no operation is performed.
4737 void kfree(const void *object)
4739 struct folio *folio;
4740 struct slab *slab;
4741 struct kmem_cache *s;
4742 void *x = (void *)object;
4744 trace_kfree(_RET_IP_, object);
4746 if (unlikely(ZERO_OR_NULL_PTR(object)))
4747 return;
4749 folio = virt_to_folio(object);
4750 if (unlikely(!folio_test_slab(folio))) {
4751 free_large_kmalloc(folio, (void *)object);
4752 return;
4755 slab = folio_slab(folio);
4756 s = slab->slab_cache;
4757 slab_free(s, slab, x, _RET_IP_);
4759 EXPORT_SYMBOL(kfree);
4761 static __always_inline __realloc_size(2) void *
4762 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4764 void *ret;
4765 size_t ks = 0;
4766 int orig_size = 0;
4767 struct kmem_cache *s = NULL;
4769 if (unlikely(ZERO_OR_NULL_PTR(p)))
4770 goto alloc_new;
4772 /* Check for double-free. */
4773 if (!kasan_check_byte(p))
4774 return NULL;
4776 if (is_kfence_address(p)) {
4777 ks = orig_size = kfence_ksize(p);
4778 } else {
4779 struct folio *folio;
4781 folio = virt_to_folio(p);
4782 if (unlikely(!folio_test_slab(folio))) {
4783 /* Big kmalloc object */
4784 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4785 WARN_ON(p != folio_address(folio));
4786 ks = folio_size(folio);
4787 } else {
4788 s = folio_slab(folio)->slab_cache;
4789 orig_size = get_orig_size(s, (void *)p);
4790 ks = s->object_size;
4794 /* If the old object doesn't fit, allocate a bigger one */
4795 if (new_size > ks)
4796 goto alloc_new;
4798 /* Zero out spare memory. */
4799 if (want_init_on_alloc(flags)) {
4800 kasan_disable_current();
4801 if (orig_size && orig_size < new_size)
4802 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4803 else
4804 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4805 kasan_enable_current();
4808 /* Setup kmalloc redzone when needed */
4809 if (s && slub_debug_orig_size(s)) {
4810 set_orig_size(s, (void *)p, new_size);
4811 if (s->flags & SLAB_RED_ZONE && new_size < ks)
4812 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4813 SLUB_RED_ACTIVE, ks - new_size);
4816 p = kasan_krealloc(p, new_size, flags);
4817 return (void *)p;
4819 alloc_new:
4820 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4821 if (ret && p) {
4822 /* Disable KASAN checks as the object's redzone is accessed. */
4823 kasan_disable_current();
4824 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4825 kasan_enable_current();
4828 return ret;
4832 * krealloc - reallocate memory. The contents will remain unchanged.
4833 * @p: object to reallocate memory for.
4834 * @new_size: how many bytes of memory are required.
4835 * @flags: the type of memory to allocate.
4837 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
4838 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4840 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4841 * initial memory allocation, every subsequent call to this API for the same
4842 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4843 * __GFP_ZERO is not fully honored by this API.
4845 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4846 * size of an allocation (but not the exact size it was allocated with) and
4847 * hence implements the following semantics for shrinking and growing buffers
4848 * with __GFP_ZERO.
4850 * new bucket
4851 * 0 size size
4852 * |--------|----------------|
4853 * | keep | zero |
4855 * Otherwise, the original allocation size 'orig_size' could be used to
4856 * precisely clear the requested size, and the new size will also be stored
4857 * as the new 'orig_size'.
4859 * In any case, the contents of the object pointed to are preserved up to the
4860 * lesser of the new and old sizes.
4862 * Return: pointer to the allocated memory or %NULL in case of error
4864 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4866 void *ret;
4868 if (unlikely(!new_size)) {
4869 kfree(p);
4870 return ZERO_SIZE_PTR;
4873 ret = __do_krealloc(p, new_size, flags);
4874 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4875 kfree(p);
4877 return ret;
4879 EXPORT_SYMBOL(krealloc_noprof);
4881 struct detached_freelist {
4882 struct slab *slab;
4883 void *tail;
4884 void *freelist;
4885 int cnt;
4886 struct kmem_cache *s;
4890 * This function progressively scans the array with free objects (with
4891 * a limited look ahead) and extract objects belonging to the same
4892 * slab. It builds a detached freelist directly within the given
4893 * slab/objects. This can happen without any need for
4894 * synchronization, because the objects are owned by running process.
4895 * The freelist is build up as a single linked list in the objects.
4896 * The idea is, that this detached freelist can then be bulk
4897 * transferred to the real freelist(s), but only requiring a single
4898 * synchronization primitive. Look ahead in the array is limited due
4899 * to performance reasons.
4901 static inline
4902 int build_detached_freelist(struct kmem_cache *s, size_t size,
4903 void **p, struct detached_freelist *df)
4905 int lookahead = 3;
4906 void *object;
4907 struct folio *folio;
4908 size_t same;
4910 object = p[--size];
4911 folio = virt_to_folio(object);
4912 if (!s) {
4913 /* Handle kalloc'ed objects */
4914 if (unlikely(!folio_test_slab(folio))) {
4915 free_large_kmalloc(folio, object);
4916 df->slab = NULL;
4917 return size;
4919 /* Derive kmem_cache from object */
4920 df->slab = folio_slab(folio);
4921 df->s = df->slab->slab_cache;
4922 } else {
4923 df->slab = folio_slab(folio);
4924 df->s = cache_from_obj(s, object); /* Support for memcg */
4927 /* Start new detached freelist */
4928 df->tail = object;
4929 df->freelist = object;
4930 df->cnt = 1;
4932 if (is_kfence_address(object))
4933 return size;
4935 set_freepointer(df->s, object, NULL);
4937 same = size;
4938 while (size) {
4939 object = p[--size];
4940 /* df->slab is always set at this point */
4941 if (df->slab == virt_to_slab(object)) {
4942 /* Opportunity build freelist */
4943 set_freepointer(df->s, object, df->freelist);
4944 df->freelist = object;
4945 df->cnt++;
4946 same--;
4947 if (size != same)
4948 swap(p[size], p[same]);
4949 continue;
4952 /* Limit look ahead search */
4953 if (!--lookahead)
4954 break;
4957 return same;
4961 * Internal bulk free of objects that were not initialised by the post alloc
4962 * hooks and thus should not be processed by the free hooks
4964 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4966 if (!size)
4967 return;
4969 do {
4970 struct detached_freelist df;
4972 size = build_detached_freelist(s, size, p, &df);
4973 if (!df.slab)
4974 continue;
4976 if (kfence_free(df.freelist))
4977 continue;
4979 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4980 _RET_IP_);
4981 } while (likely(size));
4984 /* Note that interrupts must be enabled when calling this function. */
4985 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4987 if (!size)
4988 return;
4990 do {
4991 struct detached_freelist df;
4993 size = build_detached_freelist(s, size, p, &df);
4994 if (!df.slab)
4995 continue;
4997 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4998 df.cnt, _RET_IP_);
4999 } while (likely(size));
5001 EXPORT_SYMBOL(kmem_cache_free_bulk);
5003 #ifndef CONFIG_SLUB_TINY
5004 static inline
5005 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5006 void **p)
5008 struct kmem_cache_cpu *c;
5009 unsigned long irqflags;
5010 int i;
5013 * Drain objects in the per cpu slab, while disabling local
5014 * IRQs, which protects against PREEMPT and interrupts
5015 * handlers invoking normal fastpath.
5017 c = slub_get_cpu_ptr(s->cpu_slab);
5018 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5020 for (i = 0; i < size; i++) {
5021 void *object = kfence_alloc(s, s->object_size, flags);
5023 if (unlikely(object)) {
5024 p[i] = object;
5025 continue;
5028 object = c->freelist;
5029 if (unlikely(!object)) {
5031 * We may have removed an object from c->freelist using
5032 * the fastpath in the previous iteration; in that case,
5033 * c->tid has not been bumped yet.
5034 * Since ___slab_alloc() may reenable interrupts while
5035 * allocating memory, we should bump c->tid now.
5037 c->tid = next_tid(c->tid);
5039 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5042 * Invoking slow path likely have side-effect
5043 * of re-populating per CPU c->freelist
5045 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5046 _RET_IP_, c, s->object_size);
5047 if (unlikely(!p[i]))
5048 goto error;
5050 c = this_cpu_ptr(s->cpu_slab);
5051 maybe_wipe_obj_freeptr(s, p[i]);
5053 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5055 continue; /* goto for-loop */
5057 c->freelist = get_freepointer(s, object);
5058 p[i] = object;
5059 maybe_wipe_obj_freeptr(s, p[i]);
5060 stat(s, ALLOC_FASTPATH);
5062 c->tid = next_tid(c->tid);
5063 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5064 slub_put_cpu_ptr(s->cpu_slab);
5066 return i;
5068 error:
5069 slub_put_cpu_ptr(s->cpu_slab);
5070 __kmem_cache_free_bulk(s, i, p);
5071 return 0;
5074 #else /* CONFIG_SLUB_TINY */
5075 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5076 size_t size, void **p)
5078 int i;
5080 for (i = 0; i < size; i++) {
5081 void *object = kfence_alloc(s, s->object_size, flags);
5083 if (unlikely(object)) {
5084 p[i] = object;
5085 continue;
5088 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5089 _RET_IP_, s->object_size);
5090 if (unlikely(!p[i]))
5091 goto error;
5093 maybe_wipe_obj_freeptr(s, p[i]);
5096 return i;
5098 error:
5099 __kmem_cache_free_bulk(s, i, p);
5100 return 0;
5102 #endif /* CONFIG_SLUB_TINY */
5104 /* Note that interrupts must be enabled when calling this function. */
5105 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5106 void **p)
5108 int i;
5110 if (!size)
5111 return 0;
5113 s = slab_pre_alloc_hook(s, flags);
5114 if (unlikely(!s))
5115 return 0;
5117 i = __kmem_cache_alloc_bulk(s, flags, size, p);
5118 if (unlikely(i == 0))
5119 return 0;
5122 * memcg and kmem_cache debug support and memory initialization.
5123 * Done outside of the IRQ disabled fastpath loop.
5125 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5126 slab_want_init_on_alloc(flags, s), s->object_size))) {
5127 return 0;
5129 return i;
5131 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5135 * Object placement in a slab is made very easy because we always start at
5136 * offset 0. If we tune the size of the object to the alignment then we can
5137 * get the required alignment by putting one properly sized object after
5138 * another.
5140 * Notice that the allocation order determines the sizes of the per cpu
5141 * caches. Each processor has always one slab available for allocations.
5142 * Increasing the allocation order reduces the number of times that slabs
5143 * must be moved on and off the partial lists and is therefore a factor in
5144 * locking overhead.
5148 * Minimum / Maximum order of slab pages. This influences locking overhead
5149 * and slab fragmentation. A higher order reduces the number of partial slabs
5150 * and increases the number of allocations possible without having to
5151 * take the list_lock.
5153 static unsigned int slub_min_order;
5154 static unsigned int slub_max_order =
5155 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5156 static unsigned int slub_min_objects;
5159 * Calculate the order of allocation given an slab object size.
5161 * The order of allocation has significant impact on performance and other
5162 * system components. Generally order 0 allocations should be preferred since
5163 * order 0 does not cause fragmentation in the page allocator. Larger objects
5164 * be problematic to put into order 0 slabs because there may be too much
5165 * unused space left. We go to a higher order if more than 1/16th of the slab
5166 * would be wasted.
5168 * In order to reach satisfactory performance we must ensure that a minimum
5169 * number of objects is in one slab. Otherwise we may generate too much
5170 * activity on the partial lists which requires taking the list_lock. This is
5171 * less a concern for large slabs though which are rarely used.
5173 * slab_max_order specifies the order where we begin to stop considering the
5174 * number of objects in a slab as critical. If we reach slab_max_order then
5175 * we try to keep the page order as low as possible. So we accept more waste
5176 * of space in favor of a small page order.
5178 * Higher order allocations also allow the placement of more objects in a
5179 * slab and thereby reduce object handling overhead. If the user has
5180 * requested a higher minimum order then we start with that one instead of
5181 * the smallest order which will fit the object.
5183 static inline unsigned int calc_slab_order(unsigned int size,
5184 unsigned int min_order, unsigned int max_order,
5185 unsigned int fract_leftover)
5187 unsigned int order;
5189 for (order = min_order; order <= max_order; order++) {
5191 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5192 unsigned int rem;
5194 rem = slab_size % size;
5196 if (rem <= slab_size / fract_leftover)
5197 break;
5200 return order;
5203 static inline int calculate_order(unsigned int size)
5205 unsigned int order;
5206 unsigned int min_objects;
5207 unsigned int max_objects;
5208 unsigned int min_order;
5210 min_objects = slub_min_objects;
5211 if (!min_objects) {
5213 * Some architectures will only update present cpus when
5214 * onlining them, so don't trust the number if it's just 1. But
5215 * we also don't want to use nr_cpu_ids always, as on some other
5216 * architectures, there can be many possible cpus, but never
5217 * onlined. Here we compromise between trying to avoid too high
5218 * order on systems that appear larger than they are, and too
5219 * low order on systems that appear smaller than they are.
5221 unsigned int nr_cpus = num_present_cpus();
5222 if (nr_cpus <= 1)
5223 nr_cpus = nr_cpu_ids;
5224 min_objects = 4 * (fls(nr_cpus) + 1);
5226 /* min_objects can't be 0 because get_order(0) is undefined */
5227 max_objects = max(order_objects(slub_max_order, size), 1U);
5228 min_objects = min(min_objects, max_objects);
5230 min_order = max_t(unsigned int, slub_min_order,
5231 get_order(min_objects * size));
5232 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5233 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5236 * Attempt to find best configuration for a slab. This works by first
5237 * attempting to generate a layout with the best possible configuration
5238 * and backing off gradually.
5240 * We start with accepting at most 1/16 waste and try to find the
5241 * smallest order from min_objects-derived/slab_min_order up to
5242 * slab_max_order that will satisfy the constraint. Note that increasing
5243 * the order can only result in same or less fractional waste, not more.
5245 * If that fails, we increase the acceptable fraction of waste and try
5246 * again. The last iteration with fraction of 1/2 would effectively
5247 * accept any waste and give us the order determined by min_objects, as
5248 * long as at least single object fits within slab_max_order.
5250 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5251 order = calc_slab_order(size, min_order, slub_max_order,
5252 fraction);
5253 if (order <= slub_max_order)
5254 return order;
5258 * Doh this slab cannot be placed using slab_max_order.
5260 order = get_order(size);
5261 if (order <= MAX_PAGE_ORDER)
5262 return order;
5263 return -ENOSYS;
5266 static void
5267 init_kmem_cache_node(struct kmem_cache_node *n)
5269 n->nr_partial = 0;
5270 spin_lock_init(&n->list_lock);
5271 INIT_LIST_HEAD(&n->partial);
5272 #ifdef CONFIG_SLUB_DEBUG
5273 atomic_long_set(&n->nr_slabs, 0);
5274 atomic_long_set(&n->total_objects, 0);
5275 INIT_LIST_HEAD(&n->full);
5276 #endif
5279 #ifndef CONFIG_SLUB_TINY
5280 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5282 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5283 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5284 sizeof(struct kmem_cache_cpu));
5287 * Must align to double word boundary for the double cmpxchg
5288 * instructions to work; see __pcpu_double_call_return_bool().
5290 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5291 2 * sizeof(void *));
5293 if (!s->cpu_slab)
5294 return 0;
5296 init_kmem_cache_cpus(s);
5298 return 1;
5300 #else
5301 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5303 return 1;
5305 #endif /* CONFIG_SLUB_TINY */
5307 static struct kmem_cache *kmem_cache_node;
5310 * No kmalloc_node yet so do it by hand. We know that this is the first
5311 * slab on the node for this slabcache. There are no concurrent accesses
5312 * possible.
5314 * Note that this function only works on the kmem_cache_node
5315 * when allocating for the kmem_cache_node. This is used for bootstrapping
5316 * memory on a fresh node that has no slab structures yet.
5318 static void early_kmem_cache_node_alloc(int node)
5320 struct slab *slab;
5321 struct kmem_cache_node *n;
5323 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5325 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5327 BUG_ON(!slab);
5328 if (slab_nid(slab) != node) {
5329 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5330 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5333 n = slab->freelist;
5334 BUG_ON(!n);
5335 #ifdef CONFIG_SLUB_DEBUG
5336 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5337 #endif
5338 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5339 slab->freelist = get_freepointer(kmem_cache_node, n);
5340 slab->inuse = 1;
5341 kmem_cache_node->node[node] = n;
5342 init_kmem_cache_node(n);
5343 inc_slabs_node(kmem_cache_node, node, slab->objects);
5346 * No locks need to be taken here as it has just been
5347 * initialized and there is no concurrent access.
5349 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5352 static void free_kmem_cache_nodes(struct kmem_cache *s)
5354 int node;
5355 struct kmem_cache_node *n;
5357 for_each_kmem_cache_node(s, node, n) {
5358 s->node[node] = NULL;
5359 kmem_cache_free(kmem_cache_node, n);
5363 void __kmem_cache_release(struct kmem_cache *s)
5365 cache_random_seq_destroy(s);
5366 #ifndef CONFIG_SLUB_TINY
5367 free_percpu(s->cpu_slab);
5368 #endif
5369 free_kmem_cache_nodes(s);
5372 static int init_kmem_cache_nodes(struct kmem_cache *s)
5374 int node;
5376 for_each_node_mask(node, slab_nodes) {
5377 struct kmem_cache_node *n;
5379 if (slab_state == DOWN) {
5380 early_kmem_cache_node_alloc(node);
5381 continue;
5383 n = kmem_cache_alloc_node(kmem_cache_node,
5384 GFP_KERNEL, node);
5386 if (!n) {
5387 free_kmem_cache_nodes(s);
5388 return 0;
5391 init_kmem_cache_node(n);
5392 s->node[node] = n;
5394 return 1;
5397 static void set_cpu_partial(struct kmem_cache *s)
5399 #ifdef CONFIG_SLUB_CPU_PARTIAL
5400 unsigned int nr_objects;
5403 * cpu_partial determined the maximum number of objects kept in the
5404 * per cpu partial lists of a processor.
5406 * Per cpu partial lists mainly contain slabs that just have one
5407 * object freed. If they are used for allocation then they can be
5408 * filled up again with minimal effort. The slab will never hit the
5409 * per node partial lists and therefore no locking will be required.
5411 * For backwards compatibility reasons, this is determined as number
5412 * of objects, even though we now limit maximum number of pages, see
5413 * slub_set_cpu_partial()
5415 if (!kmem_cache_has_cpu_partial(s))
5416 nr_objects = 0;
5417 else if (s->size >= PAGE_SIZE)
5418 nr_objects = 6;
5419 else if (s->size >= 1024)
5420 nr_objects = 24;
5421 else if (s->size >= 256)
5422 nr_objects = 52;
5423 else
5424 nr_objects = 120;
5426 slub_set_cpu_partial(s, nr_objects);
5427 #endif
5431 * calculate_sizes() determines the order and the distribution of data within
5432 * a slab object.
5434 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5436 slab_flags_t flags = s->flags;
5437 unsigned int size = s->object_size;
5438 unsigned int order;
5441 * Round up object size to the next word boundary. We can only
5442 * place the free pointer at word boundaries and this determines
5443 * the possible location of the free pointer.
5445 size = ALIGN(size, sizeof(void *));
5447 #ifdef CONFIG_SLUB_DEBUG
5449 * Determine if we can poison the object itself. If the user of
5450 * the slab may touch the object after free or before allocation
5451 * then we should never poison the object itself.
5453 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5454 !s->ctor)
5455 s->flags |= __OBJECT_POISON;
5456 else
5457 s->flags &= ~__OBJECT_POISON;
5461 * If we are Redzoning then check if there is some space between the
5462 * end of the object and the free pointer. If not then add an
5463 * additional word to have some bytes to store Redzone information.
5465 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5466 size += sizeof(void *);
5467 #endif
5470 * With that we have determined the number of bytes in actual use
5471 * by the object and redzoning.
5473 s->inuse = size;
5475 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5476 (flags & SLAB_POISON) || s->ctor ||
5477 ((flags & SLAB_RED_ZONE) &&
5478 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5480 * Relocate free pointer after the object if it is not
5481 * permitted to overwrite the first word of the object on
5482 * kmem_cache_free.
5484 * This is the case if we do RCU, have a constructor or
5485 * destructor, are poisoning the objects, or are
5486 * redzoning an object smaller than sizeof(void *) or are
5487 * redzoning an object with slub_debug_orig_size() enabled,
5488 * in which case the right redzone may be extended.
5490 * The assumption that s->offset >= s->inuse means free
5491 * pointer is outside of the object is used in the
5492 * freeptr_outside_object() function. If that is no
5493 * longer true, the function needs to be modified.
5495 s->offset = size;
5496 size += sizeof(void *);
5497 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5498 s->offset = args->freeptr_offset;
5499 } else {
5501 * Store freelist pointer near middle of object to keep
5502 * it away from the edges of the object to avoid small
5503 * sized over/underflows from neighboring allocations.
5505 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5508 #ifdef CONFIG_SLUB_DEBUG
5509 if (flags & SLAB_STORE_USER) {
5511 * Need to store information about allocs and frees after
5512 * the object.
5514 size += 2 * sizeof(struct track);
5516 /* Save the original kmalloc request size */
5517 if (flags & SLAB_KMALLOC)
5518 size += sizeof(unsigned int);
5520 #endif
5522 kasan_cache_create(s, &size, &s->flags);
5523 #ifdef CONFIG_SLUB_DEBUG
5524 if (flags & SLAB_RED_ZONE) {
5526 * Add some empty padding so that we can catch
5527 * overwrites from earlier objects rather than let
5528 * tracking information or the free pointer be
5529 * corrupted if a user writes before the start
5530 * of the object.
5532 size += sizeof(void *);
5534 s->red_left_pad = sizeof(void *);
5535 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5536 size += s->red_left_pad;
5538 #endif
5541 * SLUB stores one object immediately after another beginning from
5542 * offset 0. In order to align the objects we have to simply size
5543 * each object to conform to the alignment.
5545 size = ALIGN(size, s->align);
5546 s->size = size;
5547 s->reciprocal_size = reciprocal_value(size);
5548 order = calculate_order(size);
5550 if ((int)order < 0)
5551 return 0;
5553 s->allocflags = __GFP_COMP;
5555 if (s->flags & SLAB_CACHE_DMA)
5556 s->allocflags |= GFP_DMA;
5558 if (s->flags & SLAB_CACHE_DMA32)
5559 s->allocflags |= GFP_DMA32;
5561 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5562 s->allocflags |= __GFP_RECLAIMABLE;
5565 * Determine the number of objects per slab
5567 s->oo = oo_make(order, size);
5568 s->min = oo_make(get_order(size), size);
5570 return !!oo_objects(s->oo);
5573 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5574 const char *text)
5576 #ifdef CONFIG_SLUB_DEBUG
5577 void *addr = slab_address(slab);
5578 void *p;
5580 slab_err(s, slab, text, s->name);
5582 spin_lock(&object_map_lock);
5583 __fill_map(object_map, s, slab);
5585 for_each_object(p, s, addr, slab->objects) {
5587 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5588 if (slab_add_kunit_errors())
5589 continue;
5590 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5591 print_tracking(s, p);
5594 spin_unlock(&object_map_lock);
5595 #endif
5599 * Attempt to free all partial slabs on a node.
5600 * This is called from __kmem_cache_shutdown(). We must take list_lock
5601 * because sysfs file might still access partial list after the shutdowning.
5603 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5605 LIST_HEAD(discard);
5606 struct slab *slab, *h;
5608 BUG_ON(irqs_disabled());
5609 spin_lock_irq(&n->list_lock);
5610 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5611 if (!slab->inuse) {
5612 remove_partial(n, slab);
5613 list_add(&slab->slab_list, &discard);
5614 } else {
5615 list_slab_objects(s, slab,
5616 "Objects remaining in %s on __kmem_cache_shutdown()");
5619 spin_unlock_irq(&n->list_lock);
5621 list_for_each_entry_safe(slab, h, &discard, slab_list)
5622 discard_slab(s, slab);
5625 bool __kmem_cache_empty(struct kmem_cache *s)
5627 int node;
5628 struct kmem_cache_node *n;
5630 for_each_kmem_cache_node(s, node, n)
5631 if (n->nr_partial || node_nr_slabs(n))
5632 return false;
5633 return true;
5637 * Release all resources used by a slab cache.
5639 int __kmem_cache_shutdown(struct kmem_cache *s)
5641 int node;
5642 struct kmem_cache_node *n;
5644 flush_all_cpus_locked(s);
5645 /* Attempt to free all objects */
5646 for_each_kmem_cache_node(s, node, n) {
5647 free_partial(s, n);
5648 if (n->nr_partial || node_nr_slabs(n))
5649 return 1;
5651 return 0;
5654 #ifdef CONFIG_PRINTK
5655 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5657 void *base;
5658 int __maybe_unused i;
5659 unsigned int objnr;
5660 void *objp;
5661 void *objp0;
5662 struct kmem_cache *s = slab->slab_cache;
5663 struct track __maybe_unused *trackp;
5665 kpp->kp_ptr = object;
5666 kpp->kp_slab = slab;
5667 kpp->kp_slab_cache = s;
5668 base = slab_address(slab);
5669 objp0 = kasan_reset_tag(object);
5670 #ifdef CONFIG_SLUB_DEBUG
5671 objp = restore_red_left(s, objp0);
5672 #else
5673 objp = objp0;
5674 #endif
5675 objnr = obj_to_index(s, slab, objp);
5676 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5677 objp = base + s->size * objnr;
5678 kpp->kp_objp = objp;
5679 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5680 || (objp - base) % s->size) ||
5681 !(s->flags & SLAB_STORE_USER))
5682 return;
5683 #ifdef CONFIG_SLUB_DEBUG
5684 objp = fixup_red_left(s, objp);
5685 trackp = get_track(s, objp, TRACK_ALLOC);
5686 kpp->kp_ret = (void *)trackp->addr;
5687 #ifdef CONFIG_STACKDEPOT
5689 depot_stack_handle_t handle;
5690 unsigned long *entries;
5691 unsigned int nr_entries;
5693 handle = READ_ONCE(trackp->handle);
5694 if (handle) {
5695 nr_entries = stack_depot_fetch(handle, &entries);
5696 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5697 kpp->kp_stack[i] = (void *)entries[i];
5700 trackp = get_track(s, objp, TRACK_FREE);
5701 handle = READ_ONCE(trackp->handle);
5702 if (handle) {
5703 nr_entries = stack_depot_fetch(handle, &entries);
5704 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5705 kpp->kp_free_stack[i] = (void *)entries[i];
5708 #endif
5709 #endif
5711 #endif
5713 /********************************************************************
5714 * Kmalloc subsystem
5715 *******************************************************************/
5717 static int __init setup_slub_min_order(char *str)
5719 get_option(&str, (int *)&slub_min_order);
5721 if (slub_min_order > slub_max_order)
5722 slub_max_order = slub_min_order;
5724 return 1;
5727 __setup("slab_min_order=", setup_slub_min_order);
5728 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5731 static int __init setup_slub_max_order(char *str)
5733 get_option(&str, (int *)&slub_max_order);
5734 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5736 if (slub_min_order > slub_max_order)
5737 slub_min_order = slub_max_order;
5739 return 1;
5742 __setup("slab_max_order=", setup_slub_max_order);
5743 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5745 static int __init setup_slub_min_objects(char *str)
5747 get_option(&str, (int *)&slub_min_objects);
5749 return 1;
5752 __setup("slab_min_objects=", setup_slub_min_objects);
5753 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5755 #ifdef CONFIG_NUMA
5756 static int __init setup_slab_strict_numa(char *str)
5758 if (nr_node_ids > 1) {
5759 static_branch_enable(&strict_numa);
5760 pr_info("SLUB: Strict NUMA enabled.\n");
5761 } else {
5762 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
5765 return 1;
5768 __setup("slab_strict_numa", setup_slab_strict_numa);
5769 #endif
5772 #ifdef CONFIG_HARDENED_USERCOPY
5774 * Rejects incorrectly sized objects and objects that are to be copied
5775 * to/from userspace but do not fall entirely within the containing slab
5776 * cache's usercopy region.
5778 * Returns NULL if check passes, otherwise const char * to name of cache
5779 * to indicate an error.
5781 void __check_heap_object(const void *ptr, unsigned long n,
5782 const struct slab *slab, bool to_user)
5784 struct kmem_cache *s;
5785 unsigned int offset;
5786 bool is_kfence = is_kfence_address(ptr);
5788 ptr = kasan_reset_tag(ptr);
5790 /* Find object and usable object size. */
5791 s = slab->slab_cache;
5793 /* Reject impossible pointers. */
5794 if (ptr < slab_address(slab))
5795 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5796 to_user, 0, n);
5798 /* Find offset within object. */
5799 if (is_kfence)
5800 offset = ptr - kfence_object_start(ptr);
5801 else
5802 offset = (ptr - slab_address(slab)) % s->size;
5804 /* Adjust for redzone and reject if within the redzone. */
5805 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5806 if (offset < s->red_left_pad)
5807 usercopy_abort("SLUB object in left red zone",
5808 s->name, to_user, offset, n);
5809 offset -= s->red_left_pad;
5812 /* Allow address range falling entirely within usercopy region. */
5813 if (offset >= s->useroffset &&
5814 offset - s->useroffset <= s->usersize &&
5815 n <= s->useroffset - offset + s->usersize)
5816 return;
5818 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5820 #endif /* CONFIG_HARDENED_USERCOPY */
5822 #define SHRINK_PROMOTE_MAX 32
5825 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5826 * up most to the head of the partial lists. New allocations will then
5827 * fill those up and thus they can be removed from the partial lists.
5829 * The slabs with the least items are placed last. This results in them
5830 * being allocated from last increasing the chance that the last objects
5831 * are freed in them.
5833 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5835 int node;
5836 int i;
5837 struct kmem_cache_node *n;
5838 struct slab *slab;
5839 struct slab *t;
5840 struct list_head discard;
5841 struct list_head promote[SHRINK_PROMOTE_MAX];
5842 unsigned long flags;
5843 int ret = 0;
5845 for_each_kmem_cache_node(s, node, n) {
5846 INIT_LIST_HEAD(&discard);
5847 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5848 INIT_LIST_HEAD(promote + i);
5850 spin_lock_irqsave(&n->list_lock, flags);
5853 * Build lists of slabs to discard or promote.
5855 * Note that concurrent frees may occur while we hold the
5856 * list_lock. slab->inuse here is the upper limit.
5858 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5859 int free = slab->objects - slab->inuse;
5861 /* Do not reread slab->inuse */
5862 barrier();
5864 /* We do not keep full slabs on the list */
5865 BUG_ON(free <= 0);
5867 if (free == slab->objects) {
5868 list_move(&slab->slab_list, &discard);
5869 slab_clear_node_partial(slab);
5870 n->nr_partial--;
5871 dec_slabs_node(s, node, slab->objects);
5872 } else if (free <= SHRINK_PROMOTE_MAX)
5873 list_move(&slab->slab_list, promote + free - 1);
5877 * Promote the slabs filled up most to the head of the
5878 * partial list.
5880 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5881 list_splice(promote + i, &n->partial);
5883 spin_unlock_irqrestore(&n->list_lock, flags);
5885 /* Release empty slabs */
5886 list_for_each_entry_safe(slab, t, &discard, slab_list)
5887 free_slab(s, slab);
5889 if (node_nr_slabs(n))
5890 ret = 1;
5893 return ret;
5896 int __kmem_cache_shrink(struct kmem_cache *s)
5898 flush_all(s);
5899 return __kmem_cache_do_shrink(s);
5902 static int slab_mem_going_offline_callback(void *arg)
5904 struct kmem_cache *s;
5906 mutex_lock(&slab_mutex);
5907 list_for_each_entry(s, &slab_caches, list) {
5908 flush_all_cpus_locked(s);
5909 __kmem_cache_do_shrink(s);
5911 mutex_unlock(&slab_mutex);
5913 return 0;
5916 static void slab_mem_offline_callback(void *arg)
5918 struct memory_notify *marg = arg;
5919 int offline_node;
5921 offline_node = marg->status_change_nid_normal;
5924 * If the node still has available memory. we need kmem_cache_node
5925 * for it yet.
5927 if (offline_node < 0)
5928 return;
5930 mutex_lock(&slab_mutex);
5931 node_clear(offline_node, slab_nodes);
5933 * We no longer free kmem_cache_node structures here, as it would be
5934 * racy with all get_node() users, and infeasible to protect them with
5935 * slab_mutex.
5937 mutex_unlock(&slab_mutex);
5940 static int slab_mem_going_online_callback(void *arg)
5942 struct kmem_cache_node *n;
5943 struct kmem_cache *s;
5944 struct memory_notify *marg = arg;
5945 int nid = marg->status_change_nid_normal;
5946 int ret = 0;
5949 * If the node's memory is already available, then kmem_cache_node is
5950 * already created. Nothing to do.
5952 if (nid < 0)
5953 return 0;
5956 * We are bringing a node online. No memory is available yet. We must
5957 * allocate a kmem_cache_node structure in order to bring the node
5958 * online.
5960 mutex_lock(&slab_mutex);
5961 list_for_each_entry(s, &slab_caches, list) {
5963 * The structure may already exist if the node was previously
5964 * onlined and offlined.
5966 if (get_node(s, nid))
5967 continue;
5969 * XXX: kmem_cache_alloc_node will fallback to other nodes
5970 * since memory is not yet available from the node that
5971 * is brought up.
5973 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5974 if (!n) {
5975 ret = -ENOMEM;
5976 goto out;
5978 init_kmem_cache_node(n);
5979 s->node[nid] = n;
5982 * Any cache created after this point will also have kmem_cache_node
5983 * initialized for the new node.
5985 node_set(nid, slab_nodes);
5986 out:
5987 mutex_unlock(&slab_mutex);
5988 return ret;
5991 static int slab_memory_callback(struct notifier_block *self,
5992 unsigned long action, void *arg)
5994 int ret = 0;
5996 switch (action) {
5997 case MEM_GOING_ONLINE:
5998 ret = slab_mem_going_online_callback(arg);
5999 break;
6000 case MEM_GOING_OFFLINE:
6001 ret = slab_mem_going_offline_callback(arg);
6002 break;
6003 case MEM_OFFLINE:
6004 case MEM_CANCEL_ONLINE:
6005 slab_mem_offline_callback(arg);
6006 break;
6007 case MEM_ONLINE:
6008 case MEM_CANCEL_OFFLINE:
6009 break;
6011 if (ret)
6012 ret = notifier_from_errno(ret);
6013 else
6014 ret = NOTIFY_OK;
6015 return ret;
6018 /********************************************************************
6019 * Basic setup of slabs
6020 *******************************************************************/
6023 * Used for early kmem_cache structures that were allocated using
6024 * the page allocator. Allocate them properly then fix up the pointers
6025 * that may be pointing to the wrong kmem_cache structure.
6028 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6030 int node;
6031 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6032 struct kmem_cache_node *n;
6034 memcpy(s, static_cache, kmem_cache->object_size);
6037 * This runs very early, and only the boot processor is supposed to be
6038 * up. Even if it weren't true, IRQs are not up so we couldn't fire
6039 * IPIs around.
6041 __flush_cpu_slab(s, smp_processor_id());
6042 for_each_kmem_cache_node(s, node, n) {
6043 struct slab *p;
6045 list_for_each_entry(p, &n->partial, slab_list)
6046 p->slab_cache = s;
6048 #ifdef CONFIG_SLUB_DEBUG
6049 list_for_each_entry(p, &n->full, slab_list)
6050 p->slab_cache = s;
6051 #endif
6053 list_add(&s->list, &slab_caches);
6054 return s;
6057 void __init kmem_cache_init(void)
6059 static __initdata struct kmem_cache boot_kmem_cache,
6060 boot_kmem_cache_node;
6061 int node;
6063 if (debug_guardpage_minorder())
6064 slub_max_order = 0;
6066 /* Print slub debugging pointers without hashing */
6067 if (__slub_debug_enabled())
6068 no_hash_pointers_enable(NULL);
6070 kmem_cache_node = &boot_kmem_cache_node;
6071 kmem_cache = &boot_kmem_cache;
6074 * Initialize the nodemask for which we will allocate per node
6075 * structures. Here we don't need taking slab_mutex yet.
6077 for_each_node_state(node, N_NORMAL_MEMORY)
6078 node_set(node, slab_nodes);
6080 create_boot_cache(kmem_cache_node, "kmem_cache_node",
6081 sizeof(struct kmem_cache_node),
6082 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6084 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6086 /* Able to allocate the per node structures */
6087 slab_state = PARTIAL;
6089 create_boot_cache(kmem_cache, "kmem_cache",
6090 offsetof(struct kmem_cache, node) +
6091 nr_node_ids * sizeof(struct kmem_cache_node *),
6092 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6094 kmem_cache = bootstrap(&boot_kmem_cache);
6095 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6097 /* Now we can use the kmem_cache to allocate kmalloc slabs */
6098 setup_kmalloc_cache_index_table();
6099 create_kmalloc_caches();
6101 /* Setup random freelists for each cache */
6102 init_freelist_randomization();
6104 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6105 slub_cpu_dead);
6107 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6108 cache_line_size(),
6109 slub_min_order, slub_max_order, slub_min_objects,
6110 nr_cpu_ids, nr_node_ids);
6113 void __init kmem_cache_init_late(void)
6115 #ifndef CONFIG_SLUB_TINY
6116 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6117 WARN_ON(!flushwq);
6118 #endif
6121 struct kmem_cache *
6122 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6123 slab_flags_t flags, void (*ctor)(void *))
6125 struct kmem_cache *s;
6127 s = find_mergeable(size, align, flags, name, ctor);
6128 if (s) {
6129 if (sysfs_slab_alias(s, name))
6130 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6131 name);
6133 s->refcount++;
6136 * Adjust the object sizes so that we clear
6137 * the complete object on kzalloc.
6139 s->object_size = max(s->object_size, size);
6140 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6143 return s;
6146 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6147 unsigned int size, struct kmem_cache_args *args,
6148 slab_flags_t flags)
6150 int err = -EINVAL;
6152 s->name = name;
6153 s->size = s->object_size = size;
6155 s->flags = kmem_cache_flags(flags, s->name);
6156 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6157 s->random = get_random_long();
6158 #endif
6159 s->align = args->align;
6160 s->ctor = args->ctor;
6161 #ifdef CONFIG_HARDENED_USERCOPY
6162 s->useroffset = args->useroffset;
6163 s->usersize = args->usersize;
6164 #endif
6166 if (!calculate_sizes(args, s))
6167 goto out;
6168 if (disable_higher_order_debug) {
6170 * Disable debugging flags that store metadata if the min slab
6171 * order increased.
6173 if (get_order(s->size) > get_order(s->object_size)) {
6174 s->flags &= ~DEBUG_METADATA_FLAGS;
6175 s->offset = 0;
6176 if (!calculate_sizes(args, s))
6177 goto out;
6181 #ifdef system_has_freelist_aba
6182 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6183 /* Enable fast mode */
6184 s->flags |= __CMPXCHG_DOUBLE;
6186 #endif
6189 * The larger the object size is, the more slabs we want on the partial
6190 * list to avoid pounding the page allocator excessively.
6192 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6193 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6195 set_cpu_partial(s);
6197 #ifdef CONFIG_NUMA
6198 s->remote_node_defrag_ratio = 1000;
6199 #endif
6201 /* Initialize the pre-computed randomized freelist if slab is up */
6202 if (slab_state >= UP) {
6203 if (init_cache_random_seq(s))
6204 goto out;
6207 if (!init_kmem_cache_nodes(s))
6208 goto out;
6210 if (!alloc_kmem_cache_cpus(s))
6211 goto out;
6213 err = 0;
6215 /* Mutex is not taken during early boot */
6216 if (slab_state <= UP)
6217 goto out;
6220 * Failing to create sysfs files is not critical to SLUB functionality.
6221 * If it fails, proceed with cache creation without these files.
6223 if (sysfs_slab_add(s))
6224 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6226 if (s->flags & SLAB_STORE_USER)
6227 debugfs_slab_add(s);
6229 out:
6230 if (err)
6231 __kmem_cache_release(s);
6232 return err;
6235 #ifdef SLAB_SUPPORTS_SYSFS
6236 static int count_inuse(struct slab *slab)
6238 return slab->inuse;
6241 static int count_total(struct slab *slab)
6243 return slab->objects;
6245 #endif
6247 #ifdef CONFIG_SLUB_DEBUG
6248 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6249 unsigned long *obj_map)
6251 void *p;
6252 void *addr = slab_address(slab);
6254 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6255 return;
6257 /* Now we know that a valid freelist exists */
6258 __fill_map(obj_map, s, slab);
6259 for_each_object(p, s, addr, slab->objects) {
6260 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6261 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6263 if (!check_object(s, slab, p, val))
6264 break;
6268 static int validate_slab_node(struct kmem_cache *s,
6269 struct kmem_cache_node *n, unsigned long *obj_map)
6271 unsigned long count = 0;
6272 struct slab *slab;
6273 unsigned long flags;
6275 spin_lock_irqsave(&n->list_lock, flags);
6277 list_for_each_entry(slab, &n->partial, slab_list) {
6278 validate_slab(s, slab, obj_map);
6279 count++;
6281 if (count != n->nr_partial) {
6282 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6283 s->name, count, n->nr_partial);
6284 slab_add_kunit_errors();
6287 if (!(s->flags & SLAB_STORE_USER))
6288 goto out;
6290 list_for_each_entry(slab, &n->full, slab_list) {
6291 validate_slab(s, slab, obj_map);
6292 count++;
6294 if (count != node_nr_slabs(n)) {
6295 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6296 s->name, count, node_nr_slabs(n));
6297 slab_add_kunit_errors();
6300 out:
6301 spin_unlock_irqrestore(&n->list_lock, flags);
6302 return count;
6305 long validate_slab_cache(struct kmem_cache *s)
6307 int node;
6308 unsigned long count = 0;
6309 struct kmem_cache_node *n;
6310 unsigned long *obj_map;
6312 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6313 if (!obj_map)
6314 return -ENOMEM;
6316 flush_all(s);
6317 for_each_kmem_cache_node(s, node, n)
6318 count += validate_slab_node(s, n, obj_map);
6320 bitmap_free(obj_map);
6322 return count;
6324 EXPORT_SYMBOL(validate_slab_cache);
6326 #ifdef CONFIG_DEBUG_FS
6328 * Generate lists of code addresses where slabcache objects are allocated
6329 * and freed.
6332 struct location {
6333 depot_stack_handle_t handle;
6334 unsigned long count;
6335 unsigned long addr;
6336 unsigned long waste;
6337 long long sum_time;
6338 long min_time;
6339 long max_time;
6340 long min_pid;
6341 long max_pid;
6342 DECLARE_BITMAP(cpus, NR_CPUS);
6343 nodemask_t nodes;
6346 struct loc_track {
6347 unsigned long max;
6348 unsigned long count;
6349 struct location *loc;
6350 loff_t idx;
6353 static struct dentry *slab_debugfs_root;
6355 static void free_loc_track(struct loc_track *t)
6357 if (t->max)
6358 free_pages((unsigned long)t->loc,
6359 get_order(sizeof(struct location) * t->max));
6362 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6364 struct location *l;
6365 int order;
6367 order = get_order(sizeof(struct location) * max);
6369 l = (void *)__get_free_pages(flags, order);
6370 if (!l)
6371 return 0;
6373 if (t->count) {
6374 memcpy(l, t->loc, sizeof(struct location) * t->count);
6375 free_loc_track(t);
6377 t->max = max;
6378 t->loc = l;
6379 return 1;
6382 static int add_location(struct loc_track *t, struct kmem_cache *s,
6383 const struct track *track,
6384 unsigned int orig_size)
6386 long start, end, pos;
6387 struct location *l;
6388 unsigned long caddr, chandle, cwaste;
6389 unsigned long age = jiffies - track->when;
6390 depot_stack_handle_t handle = 0;
6391 unsigned int waste = s->object_size - orig_size;
6393 #ifdef CONFIG_STACKDEPOT
6394 handle = READ_ONCE(track->handle);
6395 #endif
6396 start = -1;
6397 end = t->count;
6399 for ( ; ; ) {
6400 pos = start + (end - start + 1) / 2;
6403 * There is nothing at "end". If we end up there
6404 * we need to add something to before end.
6406 if (pos == end)
6407 break;
6409 l = &t->loc[pos];
6410 caddr = l->addr;
6411 chandle = l->handle;
6412 cwaste = l->waste;
6413 if ((track->addr == caddr) && (handle == chandle) &&
6414 (waste == cwaste)) {
6416 l->count++;
6417 if (track->when) {
6418 l->sum_time += age;
6419 if (age < l->min_time)
6420 l->min_time = age;
6421 if (age > l->max_time)
6422 l->max_time = age;
6424 if (track->pid < l->min_pid)
6425 l->min_pid = track->pid;
6426 if (track->pid > l->max_pid)
6427 l->max_pid = track->pid;
6429 cpumask_set_cpu(track->cpu,
6430 to_cpumask(l->cpus));
6432 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6433 return 1;
6436 if (track->addr < caddr)
6437 end = pos;
6438 else if (track->addr == caddr && handle < chandle)
6439 end = pos;
6440 else if (track->addr == caddr && handle == chandle &&
6441 waste < cwaste)
6442 end = pos;
6443 else
6444 start = pos;
6448 * Not found. Insert new tracking element.
6450 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6451 return 0;
6453 l = t->loc + pos;
6454 if (pos < t->count)
6455 memmove(l + 1, l,
6456 (t->count - pos) * sizeof(struct location));
6457 t->count++;
6458 l->count = 1;
6459 l->addr = track->addr;
6460 l->sum_time = age;
6461 l->min_time = age;
6462 l->max_time = age;
6463 l->min_pid = track->pid;
6464 l->max_pid = track->pid;
6465 l->handle = handle;
6466 l->waste = waste;
6467 cpumask_clear(to_cpumask(l->cpus));
6468 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6469 nodes_clear(l->nodes);
6470 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6471 return 1;
6474 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6475 struct slab *slab, enum track_item alloc,
6476 unsigned long *obj_map)
6478 void *addr = slab_address(slab);
6479 bool is_alloc = (alloc == TRACK_ALLOC);
6480 void *p;
6482 __fill_map(obj_map, s, slab);
6484 for_each_object(p, s, addr, slab->objects)
6485 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6486 add_location(t, s, get_track(s, p, alloc),
6487 is_alloc ? get_orig_size(s, p) :
6488 s->object_size);
6490 #endif /* CONFIG_DEBUG_FS */
6491 #endif /* CONFIG_SLUB_DEBUG */
6493 #ifdef SLAB_SUPPORTS_SYSFS
6494 enum slab_stat_type {
6495 SL_ALL, /* All slabs */
6496 SL_PARTIAL, /* Only partially allocated slabs */
6497 SL_CPU, /* Only slabs used for cpu caches */
6498 SL_OBJECTS, /* Determine allocated objects not slabs */
6499 SL_TOTAL /* Determine object capacity not slabs */
6502 #define SO_ALL (1 << SL_ALL)
6503 #define SO_PARTIAL (1 << SL_PARTIAL)
6504 #define SO_CPU (1 << SL_CPU)
6505 #define SO_OBJECTS (1 << SL_OBJECTS)
6506 #define SO_TOTAL (1 << SL_TOTAL)
6508 static ssize_t show_slab_objects(struct kmem_cache *s,
6509 char *buf, unsigned long flags)
6511 unsigned long total = 0;
6512 int node;
6513 int x;
6514 unsigned long *nodes;
6515 int len = 0;
6517 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6518 if (!nodes)
6519 return -ENOMEM;
6521 if (flags & SO_CPU) {
6522 int cpu;
6524 for_each_possible_cpu(cpu) {
6525 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6526 cpu);
6527 int node;
6528 struct slab *slab;
6530 slab = READ_ONCE(c->slab);
6531 if (!slab)
6532 continue;
6534 node = slab_nid(slab);
6535 if (flags & SO_TOTAL)
6536 x = slab->objects;
6537 else if (flags & SO_OBJECTS)
6538 x = slab->inuse;
6539 else
6540 x = 1;
6542 total += x;
6543 nodes[node] += x;
6545 #ifdef CONFIG_SLUB_CPU_PARTIAL
6546 slab = slub_percpu_partial_read_once(c);
6547 if (slab) {
6548 node = slab_nid(slab);
6549 if (flags & SO_TOTAL)
6550 WARN_ON_ONCE(1);
6551 else if (flags & SO_OBJECTS)
6552 WARN_ON_ONCE(1);
6553 else
6554 x = data_race(slab->slabs);
6555 total += x;
6556 nodes[node] += x;
6558 #endif
6563 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6564 * already held which will conflict with an existing lock order:
6566 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6568 * We don't really need mem_hotplug_lock (to hold off
6569 * slab_mem_going_offline_callback) here because slab's memory hot
6570 * unplug code doesn't destroy the kmem_cache->node[] data.
6573 #ifdef CONFIG_SLUB_DEBUG
6574 if (flags & SO_ALL) {
6575 struct kmem_cache_node *n;
6577 for_each_kmem_cache_node(s, node, n) {
6579 if (flags & SO_TOTAL)
6580 x = node_nr_objs(n);
6581 else if (flags & SO_OBJECTS)
6582 x = node_nr_objs(n) - count_partial(n, count_free);
6583 else
6584 x = node_nr_slabs(n);
6585 total += x;
6586 nodes[node] += x;
6589 } else
6590 #endif
6591 if (flags & SO_PARTIAL) {
6592 struct kmem_cache_node *n;
6594 for_each_kmem_cache_node(s, node, n) {
6595 if (flags & SO_TOTAL)
6596 x = count_partial(n, count_total);
6597 else if (flags & SO_OBJECTS)
6598 x = count_partial(n, count_inuse);
6599 else
6600 x = n->nr_partial;
6601 total += x;
6602 nodes[node] += x;
6606 len += sysfs_emit_at(buf, len, "%lu", total);
6607 #ifdef CONFIG_NUMA
6608 for (node = 0; node < nr_node_ids; node++) {
6609 if (nodes[node])
6610 len += sysfs_emit_at(buf, len, " N%d=%lu",
6611 node, nodes[node]);
6613 #endif
6614 len += sysfs_emit_at(buf, len, "\n");
6615 kfree(nodes);
6617 return len;
6620 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6621 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6623 struct slab_attribute {
6624 struct attribute attr;
6625 ssize_t (*show)(struct kmem_cache *s, char *buf);
6626 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6629 #define SLAB_ATTR_RO(_name) \
6630 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6632 #define SLAB_ATTR(_name) \
6633 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6635 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6637 return sysfs_emit(buf, "%u\n", s->size);
6639 SLAB_ATTR_RO(slab_size);
6641 static ssize_t align_show(struct kmem_cache *s, char *buf)
6643 return sysfs_emit(buf, "%u\n", s->align);
6645 SLAB_ATTR_RO(align);
6647 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6649 return sysfs_emit(buf, "%u\n", s->object_size);
6651 SLAB_ATTR_RO(object_size);
6653 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6655 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6657 SLAB_ATTR_RO(objs_per_slab);
6659 static ssize_t order_show(struct kmem_cache *s, char *buf)
6661 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6663 SLAB_ATTR_RO(order);
6665 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6667 return sysfs_emit(buf, "%lu\n", s->min_partial);
6670 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6671 size_t length)
6673 unsigned long min;
6674 int err;
6676 err = kstrtoul(buf, 10, &min);
6677 if (err)
6678 return err;
6680 s->min_partial = min;
6681 return length;
6683 SLAB_ATTR(min_partial);
6685 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6687 unsigned int nr_partial = 0;
6688 #ifdef CONFIG_SLUB_CPU_PARTIAL
6689 nr_partial = s->cpu_partial;
6690 #endif
6692 return sysfs_emit(buf, "%u\n", nr_partial);
6695 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6696 size_t length)
6698 unsigned int objects;
6699 int err;
6701 err = kstrtouint(buf, 10, &objects);
6702 if (err)
6703 return err;
6704 if (objects && !kmem_cache_has_cpu_partial(s))
6705 return -EINVAL;
6707 slub_set_cpu_partial(s, objects);
6708 flush_all(s);
6709 return length;
6711 SLAB_ATTR(cpu_partial);
6713 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6715 if (!s->ctor)
6716 return 0;
6717 return sysfs_emit(buf, "%pS\n", s->ctor);
6719 SLAB_ATTR_RO(ctor);
6721 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6723 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6725 SLAB_ATTR_RO(aliases);
6727 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6729 return show_slab_objects(s, buf, SO_PARTIAL);
6731 SLAB_ATTR_RO(partial);
6733 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6735 return show_slab_objects(s, buf, SO_CPU);
6737 SLAB_ATTR_RO(cpu_slabs);
6739 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6741 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6743 SLAB_ATTR_RO(objects_partial);
6745 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6747 int objects = 0;
6748 int slabs = 0;
6749 int cpu __maybe_unused;
6750 int len = 0;
6752 #ifdef CONFIG_SLUB_CPU_PARTIAL
6753 for_each_online_cpu(cpu) {
6754 struct slab *slab;
6756 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6758 if (slab)
6759 slabs += data_race(slab->slabs);
6761 #endif
6763 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6764 objects = (slabs * oo_objects(s->oo)) / 2;
6765 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6767 #ifdef CONFIG_SLUB_CPU_PARTIAL
6768 for_each_online_cpu(cpu) {
6769 struct slab *slab;
6771 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6772 if (slab) {
6773 slabs = data_race(slab->slabs);
6774 objects = (slabs * oo_objects(s->oo)) / 2;
6775 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6776 cpu, objects, slabs);
6779 #endif
6780 len += sysfs_emit_at(buf, len, "\n");
6782 return len;
6784 SLAB_ATTR_RO(slabs_cpu_partial);
6786 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6788 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6790 SLAB_ATTR_RO(reclaim_account);
6792 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6794 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6796 SLAB_ATTR_RO(hwcache_align);
6798 #ifdef CONFIG_ZONE_DMA
6799 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6801 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6803 SLAB_ATTR_RO(cache_dma);
6804 #endif
6806 #ifdef CONFIG_HARDENED_USERCOPY
6807 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6809 return sysfs_emit(buf, "%u\n", s->usersize);
6811 SLAB_ATTR_RO(usersize);
6812 #endif
6814 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6816 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6818 SLAB_ATTR_RO(destroy_by_rcu);
6820 #ifdef CONFIG_SLUB_DEBUG
6821 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6823 return show_slab_objects(s, buf, SO_ALL);
6825 SLAB_ATTR_RO(slabs);
6827 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6829 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6831 SLAB_ATTR_RO(total_objects);
6833 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6835 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6837 SLAB_ATTR_RO(objects);
6839 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6841 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6843 SLAB_ATTR_RO(sanity_checks);
6845 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6847 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6849 SLAB_ATTR_RO(trace);
6851 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6853 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6856 SLAB_ATTR_RO(red_zone);
6858 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6860 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6863 SLAB_ATTR_RO(poison);
6865 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6867 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6870 SLAB_ATTR_RO(store_user);
6872 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6874 return 0;
6877 static ssize_t validate_store(struct kmem_cache *s,
6878 const char *buf, size_t length)
6880 int ret = -EINVAL;
6882 if (buf[0] == '1' && kmem_cache_debug(s)) {
6883 ret = validate_slab_cache(s);
6884 if (ret >= 0)
6885 ret = length;
6887 return ret;
6889 SLAB_ATTR(validate);
6891 #endif /* CONFIG_SLUB_DEBUG */
6893 #ifdef CONFIG_FAILSLAB
6894 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6896 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6899 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6900 size_t length)
6902 if (s->refcount > 1)
6903 return -EINVAL;
6905 if (buf[0] == '1')
6906 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6907 else
6908 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6910 return length;
6912 SLAB_ATTR(failslab);
6913 #endif
6915 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6917 return 0;
6920 static ssize_t shrink_store(struct kmem_cache *s,
6921 const char *buf, size_t length)
6923 if (buf[0] == '1')
6924 kmem_cache_shrink(s);
6925 else
6926 return -EINVAL;
6927 return length;
6929 SLAB_ATTR(shrink);
6931 #ifdef CONFIG_NUMA
6932 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6934 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6937 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6938 const char *buf, size_t length)
6940 unsigned int ratio;
6941 int err;
6943 err = kstrtouint(buf, 10, &ratio);
6944 if (err)
6945 return err;
6946 if (ratio > 100)
6947 return -ERANGE;
6949 s->remote_node_defrag_ratio = ratio * 10;
6951 return length;
6953 SLAB_ATTR(remote_node_defrag_ratio);
6954 #endif
6956 #ifdef CONFIG_SLUB_STATS
6957 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6959 unsigned long sum = 0;
6960 int cpu;
6961 int len = 0;
6962 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6964 if (!data)
6965 return -ENOMEM;
6967 for_each_online_cpu(cpu) {
6968 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6970 data[cpu] = x;
6971 sum += x;
6974 len += sysfs_emit_at(buf, len, "%lu", sum);
6976 #ifdef CONFIG_SMP
6977 for_each_online_cpu(cpu) {
6978 if (data[cpu])
6979 len += sysfs_emit_at(buf, len, " C%d=%u",
6980 cpu, data[cpu]);
6982 #endif
6983 kfree(data);
6984 len += sysfs_emit_at(buf, len, "\n");
6986 return len;
6989 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6991 int cpu;
6993 for_each_online_cpu(cpu)
6994 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6997 #define STAT_ATTR(si, text) \
6998 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
7000 return show_stat(s, buf, si); \
7002 static ssize_t text##_store(struct kmem_cache *s, \
7003 const char *buf, size_t length) \
7005 if (buf[0] != '0') \
7006 return -EINVAL; \
7007 clear_stat(s, si); \
7008 return length; \
7010 SLAB_ATTR(text); \
7012 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7013 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7014 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7015 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7016 STAT_ATTR(FREE_FROZEN, free_frozen);
7017 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7018 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7019 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7020 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7021 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7022 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7023 STAT_ATTR(FREE_SLAB, free_slab);
7024 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7025 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7026 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7027 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7028 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7029 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7030 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7031 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7032 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7033 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7034 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7035 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7036 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7037 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7038 #endif /* CONFIG_SLUB_STATS */
7040 #ifdef CONFIG_KFENCE
7041 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7043 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7046 static ssize_t skip_kfence_store(struct kmem_cache *s,
7047 const char *buf, size_t length)
7049 int ret = length;
7051 if (buf[0] == '0')
7052 s->flags &= ~SLAB_SKIP_KFENCE;
7053 else if (buf[0] == '1')
7054 s->flags |= SLAB_SKIP_KFENCE;
7055 else
7056 ret = -EINVAL;
7058 return ret;
7060 SLAB_ATTR(skip_kfence);
7061 #endif
7063 static struct attribute *slab_attrs[] = {
7064 &slab_size_attr.attr,
7065 &object_size_attr.attr,
7066 &objs_per_slab_attr.attr,
7067 &order_attr.attr,
7068 &min_partial_attr.attr,
7069 &cpu_partial_attr.attr,
7070 &objects_partial_attr.attr,
7071 &partial_attr.attr,
7072 &cpu_slabs_attr.attr,
7073 &ctor_attr.attr,
7074 &aliases_attr.attr,
7075 &align_attr.attr,
7076 &hwcache_align_attr.attr,
7077 &reclaim_account_attr.attr,
7078 &destroy_by_rcu_attr.attr,
7079 &shrink_attr.attr,
7080 &slabs_cpu_partial_attr.attr,
7081 #ifdef CONFIG_SLUB_DEBUG
7082 &total_objects_attr.attr,
7083 &objects_attr.attr,
7084 &slabs_attr.attr,
7085 &sanity_checks_attr.attr,
7086 &trace_attr.attr,
7087 &red_zone_attr.attr,
7088 &poison_attr.attr,
7089 &store_user_attr.attr,
7090 &validate_attr.attr,
7091 #endif
7092 #ifdef CONFIG_ZONE_DMA
7093 &cache_dma_attr.attr,
7094 #endif
7095 #ifdef CONFIG_NUMA
7096 &remote_node_defrag_ratio_attr.attr,
7097 #endif
7098 #ifdef CONFIG_SLUB_STATS
7099 &alloc_fastpath_attr.attr,
7100 &alloc_slowpath_attr.attr,
7101 &free_fastpath_attr.attr,
7102 &free_slowpath_attr.attr,
7103 &free_frozen_attr.attr,
7104 &free_add_partial_attr.attr,
7105 &free_remove_partial_attr.attr,
7106 &alloc_from_partial_attr.attr,
7107 &alloc_slab_attr.attr,
7108 &alloc_refill_attr.attr,
7109 &alloc_node_mismatch_attr.attr,
7110 &free_slab_attr.attr,
7111 &cpuslab_flush_attr.attr,
7112 &deactivate_full_attr.attr,
7113 &deactivate_empty_attr.attr,
7114 &deactivate_to_head_attr.attr,
7115 &deactivate_to_tail_attr.attr,
7116 &deactivate_remote_frees_attr.attr,
7117 &deactivate_bypass_attr.attr,
7118 &order_fallback_attr.attr,
7119 &cmpxchg_double_fail_attr.attr,
7120 &cmpxchg_double_cpu_fail_attr.attr,
7121 &cpu_partial_alloc_attr.attr,
7122 &cpu_partial_free_attr.attr,
7123 &cpu_partial_node_attr.attr,
7124 &cpu_partial_drain_attr.attr,
7125 #endif
7126 #ifdef CONFIG_FAILSLAB
7127 &failslab_attr.attr,
7128 #endif
7129 #ifdef CONFIG_HARDENED_USERCOPY
7130 &usersize_attr.attr,
7131 #endif
7132 #ifdef CONFIG_KFENCE
7133 &skip_kfence_attr.attr,
7134 #endif
7136 NULL
7139 static const struct attribute_group slab_attr_group = {
7140 .attrs = slab_attrs,
7143 static ssize_t slab_attr_show(struct kobject *kobj,
7144 struct attribute *attr,
7145 char *buf)
7147 struct slab_attribute *attribute;
7148 struct kmem_cache *s;
7150 attribute = to_slab_attr(attr);
7151 s = to_slab(kobj);
7153 if (!attribute->show)
7154 return -EIO;
7156 return attribute->show(s, buf);
7159 static ssize_t slab_attr_store(struct kobject *kobj,
7160 struct attribute *attr,
7161 const char *buf, size_t len)
7163 struct slab_attribute *attribute;
7164 struct kmem_cache *s;
7166 attribute = to_slab_attr(attr);
7167 s = to_slab(kobj);
7169 if (!attribute->store)
7170 return -EIO;
7172 return attribute->store(s, buf, len);
7175 static void kmem_cache_release(struct kobject *k)
7177 slab_kmem_cache_release(to_slab(k));
7180 static const struct sysfs_ops slab_sysfs_ops = {
7181 .show = slab_attr_show,
7182 .store = slab_attr_store,
7185 static const struct kobj_type slab_ktype = {
7186 .sysfs_ops = &slab_sysfs_ops,
7187 .release = kmem_cache_release,
7190 static struct kset *slab_kset;
7192 static inline struct kset *cache_kset(struct kmem_cache *s)
7194 return slab_kset;
7197 #define ID_STR_LENGTH 32
7199 /* Create a unique string id for a slab cache:
7201 * Format :[flags-]size
7203 static char *create_unique_id(struct kmem_cache *s)
7205 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7206 char *p = name;
7208 if (!name)
7209 return ERR_PTR(-ENOMEM);
7211 *p++ = ':';
7213 * First flags affecting slabcache operations. We will only
7214 * get here for aliasable slabs so we do not need to support
7215 * too many flags. The flags here must cover all flags that
7216 * are matched during merging to guarantee that the id is
7217 * unique.
7219 if (s->flags & SLAB_CACHE_DMA)
7220 *p++ = 'd';
7221 if (s->flags & SLAB_CACHE_DMA32)
7222 *p++ = 'D';
7223 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7224 *p++ = 'a';
7225 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7226 *p++ = 'F';
7227 if (s->flags & SLAB_ACCOUNT)
7228 *p++ = 'A';
7229 if (p != name + 1)
7230 *p++ = '-';
7231 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7233 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7234 kfree(name);
7235 return ERR_PTR(-EINVAL);
7237 kmsan_unpoison_memory(name, p - name);
7238 return name;
7241 static int sysfs_slab_add(struct kmem_cache *s)
7243 int err;
7244 const char *name;
7245 struct kset *kset = cache_kset(s);
7246 int unmergeable = slab_unmergeable(s);
7248 if (!unmergeable && disable_higher_order_debug &&
7249 (slub_debug & DEBUG_METADATA_FLAGS))
7250 unmergeable = 1;
7252 if (unmergeable) {
7254 * Slabcache can never be merged so we can use the name proper.
7255 * This is typically the case for debug situations. In that
7256 * case we can catch duplicate names easily.
7258 sysfs_remove_link(&slab_kset->kobj, s->name);
7259 name = s->name;
7260 } else {
7262 * Create a unique name for the slab as a target
7263 * for the symlinks.
7265 name = create_unique_id(s);
7266 if (IS_ERR(name))
7267 return PTR_ERR(name);
7270 s->kobj.kset = kset;
7271 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7272 if (err)
7273 goto out;
7275 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7276 if (err)
7277 goto out_del_kobj;
7279 if (!unmergeable) {
7280 /* Setup first alias */
7281 sysfs_slab_alias(s, s->name);
7283 out:
7284 if (!unmergeable)
7285 kfree(name);
7286 return err;
7287 out_del_kobj:
7288 kobject_del(&s->kobj);
7289 goto out;
7292 void sysfs_slab_unlink(struct kmem_cache *s)
7294 if (s->kobj.state_in_sysfs)
7295 kobject_del(&s->kobj);
7298 void sysfs_slab_release(struct kmem_cache *s)
7300 kobject_put(&s->kobj);
7304 * Need to buffer aliases during bootup until sysfs becomes
7305 * available lest we lose that information.
7307 struct saved_alias {
7308 struct kmem_cache *s;
7309 const char *name;
7310 struct saved_alias *next;
7313 static struct saved_alias *alias_list;
7315 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7317 struct saved_alias *al;
7319 if (slab_state == FULL) {
7321 * If we have a leftover link then remove it.
7323 sysfs_remove_link(&slab_kset->kobj, name);
7325 * The original cache may have failed to generate sysfs file.
7326 * In that case, sysfs_create_link() returns -ENOENT and
7327 * symbolic link creation is skipped.
7329 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7332 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7333 if (!al)
7334 return -ENOMEM;
7336 al->s = s;
7337 al->name = name;
7338 al->next = alias_list;
7339 alias_list = al;
7340 kmsan_unpoison_memory(al, sizeof(*al));
7341 return 0;
7344 static int __init slab_sysfs_init(void)
7346 struct kmem_cache *s;
7347 int err;
7349 mutex_lock(&slab_mutex);
7351 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7352 if (!slab_kset) {
7353 mutex_unlock(&slab_mutex);
7354 pr_err("Cannot register slab subsystem.\n");
7355 return -ENOMEM;
7358 slab_state = FULL;
7360 list_for_each_entry(s, &slab_caches, list) {
7361 err = sysfs_slab_add(s);
7362 if (err)
7363 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7364 s->name);
7367 while (alias_list) {
7368 struct saved_alias *al = alias_list;
7370 alias_list = alias_list->next;
7371 err = sysfs_slab_alias(al->s, al->name);
7372 if (err)
7373 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7374 al->name);
7375 kfree(al);
7378 mutex_unlock(&slab_mutex);
7379 return 0;
7381 late_initcall(slab_sysfs_init);
7382 #endif /* SLAB_SUPPORTS_SYSFS */
7384 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7385 static int slab_debugfs_show(struct seq_file *seq, void *v)
7387 struct loc_track *t = seq->private;
7388 struct location *l;
7389 unsigned long idx;
7391 idx = (unsigned long) t->idx;
7392 if (idx < t->count) {
7393 l = &t->loc[idx];
7395 seq_printf(seq, "%7ld ", l->count);
7397 if (l->addr)
7398 seq_printf(seq, "%pS", (void *)l->addr);
7399 else
7400 seq_puts(seq, "<not-available>");
7402 if (l->waste)
7403 seq_printf(seq, " waste=%lu/%lu",
7404 l->count * l->waste, l->waste);
7406 if (l->sum_time != l->min_time) {
7407 seq_printf(seq, " age=%ld/%llu/%ld",
7408 l->min_time, div_u64(l->sum_time, l->count),
7409 l->max_time);
7410 } else
7411 seq_printf(seq, " age=%ld", l->min_time);
7413 if (l->min_pid != l->max_pid)
7414 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7415 else
7416 seq_printf(seq, " pid=%ld",
7417 l->min_pid);
7419 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7420 seq_printf(seq, " cpus=%*pbl",
7421 cpumask_pr_args(to_cpumask(l->cpus)));
7423 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7424 seq_printf(seq, " nodes=%*pbl",
7425 nodemask_pr_args(&l->nodes));
7427 #ifdef CONFIG_STACKDEPOT
7429 depot_stack_handle_t handle;
7430 unsigned long *entries;
7431 unsigned int nr_entries, j;
7433 handle = READ_ONCE(l->handle);
7434 if (handle) {
7435 nr_entries = stack_depot_fetch(handle, &entries);
7436 seq_puts(seq, "\n");
7437 for (j = 0; j < nr_entries; j++)
7438 seq_printf(seq, " %pS\n", (void *)entries[j]);
7441 #endif
7442 seq_puts(seq, "\n");
7445 if (!idx && !t->count)
7446 seq_puts(seq, "No data\n");
7448 return 0;
7451 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7455 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7457 struct loc_track *t = seq->private;
7459 t->idx = ++(*ppos);
7460 if (*ppos <= t->count)
7461 return ppos;
7463 return NULL;
7466 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7468 struct location *loc1 = (struct location *)a;
7469 struct location *loc2 = (struct location *)b;
7471 if (loc1->count > loc2->count)
7472 return -1;
7473 else
7474 return 1;
7477 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7479 struct loc_track *t = seq->private;
7481 t->idx = *ppos;
7482 return ppos;
7485 static const struct seq_operations slab_debugfs_sops = {
7486 .start = slab_debugfs_start,
7487 .next = slab_debugfs_next,
7488 .stop = slab_debugfs_stop,
7489 .show = slab_debugfs_show,
7492 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7495 struct kmem_cache_node *n;
7496 enum track_item alloc;
7497 int node;
7498 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7499 sizeof(struct loc_track));
7500 struct kmem_cache *s = file_inode(filep)->i_private;
7501 unsigned long *obj_map;
7503 if (!t)
7504 return -ENOMEM;
7506 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7507 if (!obj_map) {
7508 seq_release_private(inode, filep);
7509 return -ENOMEM;
7512 alloc = debugfs_get_aux_num(filep);
7514 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7515 bitmap_free(obj_map);
7516 seq_release_private(inode, filep);
7517 return -ENOMEM;
7520 for_each_kmem_cache_node(s, node, n) {
7521 unsigned long flags;
7522 struct slab *slab;
7524 if (!node_nr_slabs(n))
7525 continue;
7527 spin_lock_irqsave(&n->list_lock, flags);
7528 list_for_each_entry(slab, &n->partial, slab_list)
7529 process_slab(t, s, slab, alloc, obj_map);
7530 list_for_each_entry(slab, &n->full, slab_list)
7531 process_slab(t, s, slab, alloc, obj_map);
7532 spin_unlock_irqrestore(&n->list_lock, flags);
7535 /* Sort locations by count */
7536 sort_r(t->loc, t->count, sizeof(struct location),
7537 cmp_loc_by_count, NULL, NULL);
7539 bitmap_free(obj_map);
7540 return 0;
7543 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7545 struct seq_file *seq = file->private_data;
7546 struct loc_track *t = seq->private;
7548 free_loc_track(t);
7549 return seq_release_private(inode, file);
7552 static const struct file_operations slab_debugfs_fops = {
7553 .open = slab_debug_trace_open,
7554 .read = seq_read,
7555 .llseek = seq_lseek,
7556 .release = slab_debug_trace_release,
7559 static void debugfs_slab_add(struct kmem_cache *s)
7561 struct dentry *slab_cache_dir;
7563 if (unlikely(!slab_debugfs_root))
7564 return;
7566 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7568 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7569 TRACK_ALLOC, &slab_debugfs_fops);
7571 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7572 TRACK_FREE, &slab_debugfs_fops);
7575 void debugfs_slab_release(struct kmem_cache *s)
7577 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7580 static int __init slab_debugfs_init(void)
7582 struct kmem_cache *s;
7584 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7586 list_for_each_entry(s, &slab_caches, list)
7587 if (s->flags & SLAB_STORE_USER)
7588 debugfs_slab_add(s);
7590 return 0;
7593 __initcall(slab_debugfs_init);
7594 #endif
7596 * The /proc/slabinfo ABI
7598 #ifdef CONFIG_SLUB_DEBUG
7599 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7601 unsigned long nr_slabs = 0;
7602 unsigned long nr_objs = 0;
7603 unsigned long nr_free = 0;
7604 int node;
7605 struct kmem_cache_node *n;
7607 for_each_kmem_cache_node(s, node, n) {
7608 nr_slabs += node_nr_slabs(n);
7609 nr_objs += node_nr_objs(n);
7610 nr_free += count_partial_free_approx(n);
7613 sinfo->active_objs = nr_objs - nr_free;
7614 sinfo->num_objs = nr_objs;
7615 sinfo->active_slabs = nr_slabs;
7616 sinfo->num_slabs = nr_slabs;
7617 sinfo->objects_per_slab = oo_objects(s->oo);
7618 sinfo->cache_order = oo_order(s->oo);
7620 #endif /* CONFIG_SLUB_DEBUG */