1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
48 const int page_cluster_max
= 31;
52 * The following folio batches are grouped together because they are protected
53 * by disabling preemption (and interrupts remain enabled).
56 struct folio_batch lru_add
;
57 struct folio_batch lru_deactivate_file
;
58 struct folio_batch lru_deactivate
;
59 struct folio_batch lru_lazyfree
;
61 struct folio_batch lru_activate
;
63 /* Protecting the following batches which require disabling interrupts */
64 local_lock_t lock_irq
;
65 struct folio_batch lru_move_tail
;
68 static DEFINE_PER_CPU(struct cpu_fbatches
, cpu_fbatches
) = {
69 .lock
= INIT_LOCAL_LOCK(lock
),
70 .lock_irq
= INIT_LOCAL_LOCK(lock_irq
),
73 static void __page_cache_release(struct folio
*folio
, struct lruvec
**lruvecp
,
74 unsigned long *flagsp
)
76 if (folio_test_lru(folio
)) {
77 folio_lruvec_relock_irqsave(folio
, lruvecp
, flagsp
);
78 lruvec_del_folio(*lruvecp
, folio
);
79 __folio_clear_lru_flags(folio
);
84 * This path almost never happens for VM activity - pages are normally freed
85 * in batches. But it gets used by networking - and for compound pages.
87 static void page_cache_release(struct folio
*folio
)
89 struct lruvec
*lruvec
= NULL
;
92 __page_cache_release(folio
, &lruvec
, &flags
);
94 unlock_page_lruvec_irqrestore(lruvec
, flags
);
97 void __folio_put(struct folio
*folio
)
99 if (unlikely(folio_is_zone_device(folio
))) {
100 free_zone_device_folio(folio
);
104 if (folio_test_hugetlb(folio
)) {
105 free_huge_folio(folio
);
109 page_cache_release(folio
);
110 folio_unqueue_deferred_split(folio
);
111 mem_cgroup_uncharge(folio
);
112 free_frozen_pages(&folio
->page
, folio_order(folio
));
114 EXPORT_SYMBOL(__folio_put
);
116 typedef void (*move_fn_t
)(struct lruvec
*lruvec
, struct folio
*folio
);
118 static void lru_add(struct lruvec
*lruvec
, struct folio
*folio
)
120 int was_unevictable
= folio_test_clear_unevictable(folio
);
121 long nr_pages
= folio_nr_pages(folio
);
123 VM_BUG_ON_FOLIO(folio_test_lru(folio
), folio
);
126 * Is an smp_mb__after_atomic() still required here, before
127 * folio_evictable() tests the mlocked flag, to rule out the possibility
128 * of stranding an evictable folio on an unevictable LRU? I think
129 * not, because __munlock_folio() only clears the mlocked flag
130 * while the LRU lock is held.
132 * (That is not true of __page_cache_release(), and not necessarily
133 * true of folios_put(): but those only clear the mlocked flag after
134 * folio_put_testzero() has excluded any other users of the folio.)
136 if (folio_evictable(folio
)) {
138 __count_vm_events(UNEVICTABLE_PGRESCUED
, nr_pages
);
140 folio_clear_active(folio
);
141 folio_set_unevictable(folio
);
143 * folio->mlock_count = !!folio_test_mlocked(folio)?
144 * But that leaves __mlock_folio() in doubt whether another
145 * actor has already counted the mlock or not. Err on the
146 * safe side, underestimate, let page reclaim fix it, rather
147 * than leaving a page on the unevictable LRU indefinitely.
149 folio
->mlock_count
= 0;
150 if (!was_unevictable
)
151 __count_vm_events(UNEVICTABLE_PGCULLED
, nr_pages
);
154 lruvec_add_folio(lruvec
, folio
);
155 trace_mm_lru_insertion(folio
);
158 static void folio_batch_move_lru(struct folio_batch
*fbatch
, move_fn_t move_fn
)
161 struct lruvec
*lruvec
= NULL
;
162 unsigned long flags
= 0;
164 for (i
= 0; i
< folio_batch_count(fbatch
); i
++) {
165 struct folio
*folio
= fbatch
->folios
[i
];
167 folio_lruvec_relock_irqsave(folio
, &lruvec
, &flags
);
168 move_fn(lruvec
, folio
);
170 folio_set_lru(folio
);
174 unlock_page_lruvec_irqrestore(lruvec
, flags
);
178 static void __folio_batch_add_and_move(struct folio_batch __percpu
*fbatch
,
179 struct folio
*folio
, move_fn_t move_fn
,
180 bool on_lru
, bool disable_irq
)
184 if (on_lru
&& !folio_test_clear_lru(folio
))
190 local_lock_irqsave(&cpu_fbatches
.lock_irq
, flags
);
192 local_lock(&cpu_fbatches
.lock
);
194 if (!folio_batch_add(this_cpu_ptr(fbatch
), folio
) || folio_test_large(folio
) ||
195 lru_cache_disabled())
196 folio_batch_move_lru(this_cpu_ptr(fbatch
), move_fn
);
199 local_unlock_irqrestore(&cpu_fbatches
.lock_irq
, flags
);
201 local_unlock(&cpu_fbatches
.lock
);
204 #define folio_batch_add_and_move(folio, op, on_lru) \
205 __folio_batch_add_and_move( \
210 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \
213 static void lru_move_tail(struct lruvec
*lruvec
, struct folio
*folio
)
215 if (folio_test_unevictable(folio
))
218 lruvec_del_folio(lruvec
, folio
);
219 folio_clear_active(folio
);
220 lruvec_add_folio_tail(lruvec
, folio
);
221 __count_vm_events(PGROTATED
, folio_nr_pages(folio
));
225 * Writeback is about to end against a folio which has been marked for
226 * immediate reclaim. If it still appears to be reclaimable, move it
227 * to the tail of the inactive list.
229 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
231 void folio_rotate_reclaimable(struct folio
*folio
)
233 if (folio_test_locked(folio
) || folio_test_dirty(folio
) ||
234 folio_test_unevictable(folio
))
237 folio_batch_add_and_move(folio
, lru_move_tail
, true);
240 void lru_note_cost(struct lruvec
*lruvec
, bool file
,
241 unsigned int nr_io
, unsigned int nr_rotated
)
246 * Reflect the relative cost of incurring IO and spending CPU
247 * time on rotations. This doesn't attempt to make a precise
248 * comparison, it just says: if reloads are about comparable
249 * between the LRU lists, or rotations are overwhelmingly
250 * different between them, adjust scan balance for CPU work.
252 cost
= nr_io
* SWAP_CLUSTER_MAX
+ nr_rotated
;
255 unsigned long lrusize
;
258 * Hold lruvec->lru_lock is safe here, since
259 * 1) The pinned lruvec in reclaim, or
260 * 2) From a pre-LRU page during refault (which also holds the
261 * rcu lock, so would be safe even if the page was on the LRU
262 * and could move simultaneously to a new lruvec).
264 spin_lock_irq(&lruvec
->lru_lock
);
265 /* Record cost event */
267 lruvec
->file_cost
+= cost
;
269 lruvec
->anon_cost
+= cost
;
272 * Decay previous events
274 * Because workloads change over time (and to avoid
275 * overflow) we keep these statistics as a floating
276 * average, which ends up weighing recent refaults
277 * more than old ones.
279 lrusize
= lruvec_page_state(lruvec
, NR_INACTIVE_ANON
) +
280 lruvec_page_state(lruvec
, NR_ACTIVE_ANON
) +
281 lruvec_page_state(lruvec
, NR_INACTIVE_FILE
) +
282 lruvec_page_state(lruvec
, NR_ACTIVE_FILE
);
284 if (lruvec
->file_cost
+ lruvec
->anon_cost
> lrusize
/ 4) {
285 lruvec
->file_cost
/= 2;
286 lruvec
->anon_cost
/= 2;
288 spin_unlock_irq(&lruvec
->lru_lock
);
289 } while ((lruvec
= parent_lruvec(lruvec
)));
292 void lru_note_cost_refault(struct folio
*folio
)
294 lru_note_cost(folio_lruvec(folio
), folio_is_file_lru(folio
),
295 folio_nr_pages(folio
), 0);
298 static void lru_activate(struct lruvec
*lruvec
, struct folio
*folio
)
300 long nr_pages
= folio_nr_pages(folio
);
302 if (folio_test_active(folio
) || folio_test_unevictable(folio
))
306 lruvec_del_folio(lruvec
, folio
);
307 folio_set_active(folio
);
308 lruvec_add_folio(lruvec
, folio
);
309 trace_mm_lru_activate(folio
);
311 __count_vm_events(PGACTIVATE
, nr_pages
);
312 __count_memcg_events(lruvec_memcg(lruvec
), PGACTIVATE
, nr_pages
);
316 static void folio_activate_drain(int cpu
)
318 struct folio_batch
*fbatch
= &per_cpu(cpu_fbatches
.lru_activate
, cpu
);
320 if (folio_batch_count(fbatch
))
321 folio_batch_move_lru(fbatch
, lru_activate
);
324 void folio_activate(struct folio
*folio
)
326 if (folio_test_active(folio
) || folio_test_unevictable(folio
))
329 folio_batch_add_and_move(folio
, lru_activate
, true);
333 static inline void folio_activate_drain(int cpu
)
337 void folio_activate(struct folio
*folio
)
339 struct lruvec
*lruvec
;
341 if (!folio_test_clear_lru(folio
))
344 lruvec
= folio_lruvec_lock_irq(folio
);
345 lru_activate(lruvec
, folio
);
346 unlock_page_lruvec_irq(lruvec
);
347 folio_set_lru(folio
);
351 static void __lru_cache_activate_folio(struct folio
*folio
)
353 struct folio_batch
*fbatch
;
356 local_lock(&cpu_fbatches
.lock
);
357 fbatch
= this_cpu_ptr(&cpu_fbatches
.lru_add
);
360 * Search backwards on the optimistic assumption that the folio being
361 * activated has just been added to this batch. Note that only
362 * the local batch is examined as a !LRU folio could be in the
363 * process of being released, reclaimed, migrated or on a remote
364 * batch that is currently being drained. Furthermore, marking
365 * a remote batch's folio active potentially hits a race where
366 * a folio is marked active just after it is added to the inactive
367 * list causing accounting errors and BUG_ON checks to trigger.
369 for (i
= folio_batch_count(fbatch
) - 1; i
>= 0; i
--) {
370 struct folio
*batch_folio
= fbatch
->folios
[i
];
372 if (batch_folio
== folio
) {
373 folio_set_active(folio
);
378 local_unlock(&cpu_fbatches
.lock
);
381 #ifdef CONFIG_LRU_GEN
383 static void lru_gen_inc_refs(struct folio
*folio
)
385 unsigned long new_flags
, old_flags
= READ_ONCE(folio
->flags
);
387 if (folio_test_unevictable(folio
))
390 /* see the comment on LRU_REFS_FLAGS */
391 if (!folio_test_referenced(folio
)) {
392 set_mask_bits(&folio
->flags
, LRU_REFS_MASK
, BIT(PG_referenced
));
397 if ((old_flags
& LRU_REFS_MASK
) == LRU_REFS_MASK
) {
398 if (!folio_test_workingset(folio
))
399 folio_set_workingset(folio
);
403 new_flags
= old_flags
+ BIT(LRU_REFS_PGOFF
);
404 } while (!try_cmpxchg(&folio
->flags
, &old_flags
, new_flags
));
407 static bool lru_gen_clear_refs(struct folio
*folio
)
409 struct lru_gen_folio
*lrugen
;
410 int gen
= folio_lru_gen(folio
);
411 int type
= folio_is_file_lru(folio
);
416 set_mask_bits(&folio
->flags
, LRU_REFS_FLAGS
| BIT(PG_workingset
), 0);
418 lrugen
= &folio_lruvec(folio
)->lrugen
;
419 /* whether can do without shuffling under the LRU lock */
420 return gen
== lru_gen_from_seq(READ_ONCE(lrugen
->min_seq
[type
]));
423 #else /* !CONFIG_LRU_GEN */
425 static void lru_gen_inc_refs(struct folio
*folio
)
429 static bool lru_gen_clear_refs(struct folio
*folio
)
434 #endif /* CONFIG_LRU_GEN */
437 * folio_mark_accessed - Mark a folio as having seen activity.
438 * @folio: The folio to mark.
440 * This function will perform one of the following transitions:
442 * * inactive,unreferenced -> inactive,referenced
443 * * inactive,referenced -> active,unreferenced
444 * * active,unreferenced -> active,referenced
446 * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
447 * __folio_set_referenced() may be substituted for folio_mark_accessed().
449 void folio_mark_accessed(struct folio
*folio
)
451 if (folio_test_dropbehind(folio
))
453 if (lru_gen_enabled()) {
454 lru_gen_inc_refs(folio
);
458 if (!folio_test_referenced(folio
)) {
459 folio_set_referenced(folio
);
460 } else if (folio_test_unevictable(folio
)) {
462 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
463 * this list is never rotated or maintained, so marking an
464 * unevictable page accessed has no effect.
466 } else if (!folio_test_active(folio
)) {
468 * If the folio is on the LRU, queue it for activation via
469 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
470 * folio_batch, mark it active and it'll be moved to the active
471 * LRU on the next drain.
473 if (folio_test_lru(folio
))
474 folio_activate(folio
);
476 __lru_cache_activate_folio(folio
);
477 folio_clear_referenced(folio
);
478 workingset_activation(folio
);
480 if (folio_test_idle(folio
))
481 folio_clear_idle(folio
);
483 EXPORT_SYMBOL(folio_mark_accessed
);
486 * folio_add_lru - Add a folio to an LRU list.
487 * @folio: The folio to be added to the LRU.
489 * Queue the folio for addition to the LRU. The decision on whether
490 * to add the page to the [in]active [file|anon] list is deferred until the
491 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
492 * have the folio added to the active list using folio_mark_accessed().
494 void folio_add_lru(struct folio
*folio
)
496 VM_BUG_ON_FOLIO(folio_test_active(folio
) &&
497 folio_test_unevictable(folio
), folio
);
498 VM_BUG_ON_FOLIO(folio_test_lru(folio
), folio
);
500 /* see the comment in lru_gen_folio_seq() */
501 if (lru_gen_enabled() && !folio_test_unevictable(folio
) &&
502 lru_gen_in_fault() && !(current
->flags
& PF_MEMALLOC
))
503 folio_set_active(folio
);
505 folio_batch_add_and_move(folio
, lru_add
, false);
507 EXPORT_SYMBOL(folio_add_lru
);
510 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
511 * @folio: The folio to be added to the LRU.
512 * @vma: VMA in which the folio is mapped.
514 * If the VMA is mlocked, @folio is added to the unevictable list.
515 * Otherwise, it is treated the same way as folio_add_lru().
517 void folio_add_lru_vma(struct folio
*folio
, struct vm_area_struct
*vma
)
519 VM_BUG_ON_FOLIO(folio_test_lru(folio
), folio
);
521 if (unlikely((vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
)) == VM_LOCKED
))
522 mlock_new_folio(folio
);
524 folio_add_lru(folio
);
528 * If the folio cannot be invalidated, it is moved to the
529 * inactive list to speed up its reclaim. It is moved to the
530 * head of the list, rather than the tail, to give the flusher
531 * threads some time to write it out, as this is much more
532 * effective than the single-page writeout from reclaim.
534 * If the folio isn't mapped and dirty/writeback, the folio
535 * could be reclaimed asap using the reclaim flag.
537 * 1. active, mapped folio -> none
538 * 2. active, dirty/writeback folio -> inactive, head, reclaim
539 * 3. inactive, mapped folio -> none
540 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
541 * 5. inactive, clean -> inactive, tail
544 * In 4, it moves to the head of the inactive list so the folio is
545 * written out by flusher threads as this is much more efficient
546 * than the single-page writeout from reclaim.
548 static void lru_deactivate_file(struct lruvec
*lruvec
, struct folio
*folio
)
550 bool active
= folio_test_active(folio
) || lru_gen_enabled();
551 long nr_pages
= folio_nr_pages(folio
);
553 if (folio_test_unevictable(folio
))
556 /* Some processes are using the folio */
557 if (folio_mapped(folio
))
560 lruvec_del_folio(lruvec
, folio
);
561 folio_clear_active(folio
);
562 folio_clear_referenced(folio
);
564 if (folio_test_writeback(folio
) || folio_test_dirty(folio
)) {
566 * Setting the reclaim flag could race with
567 * folio_end_writeback() and confuse readahead. But the
568 * race window is _really_ small and it's not a critical
571 lruvec_add_folio(lruvec
, folio
);
572 folio_set_reclaim(folio
);
575 * The folio's writeback ended while it was in the batch.
576 * We move that folio to the tail of the inactive list.
578 lruvec_add_folio_tail(lruvec
, folio
);
579 __count_vm_events(PGROTATED
, nr_pages
);
583 __count_vm_events(PGDEACTIVATE
, nr_pages
);
584 __count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
589 static void lru_deactivate(struct lruvec
*lruvec
, struct folio
*folio
)
591 long nr_pages
= folio_nr_pages(folio
);
593 if (folio_test_unevictable(folio
) || !(folio_test_active(folio
) || lru_gen_enabled()))
596 lruvec_del_folio(lruvec
, folio
);
597 folio_clear_active(folio
);
598 folio_clear_referenced(folio
);
599 lruvec_add_folio(lruvec
, folio
);
601 __count_vm_events(PGDEACTIVATE
, nr_pages
);
602 __count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
, nr_pages
);
605 static void lru_lazyfree(struct lruvec
*lruvec
, struct folio
*folio
)
607 long nr_pages
= folio_nr_pages(folio
);
609 if (!folio_test_anon(folio
) || !folio_test_swapbacked(folio
) ||
610 folio_test_swapcache(folio
) || folio_test_unevictable(folio
))
613 lruvec_del_folio(lruvec
, folio
);
614 folio_clear_active(folio
);
615 if (lru_gen_enabled())
616 lru_gen_clear_refs(folio
);
618 folio_clear_referenced(folio
);
620 * Lazyfree folios are clean anonymous folios. They have
621 * the swapbacked flag cleared, to distinguish them from normal
624 folio_clear_swapbacked(folio
);
625 lruvec_add_folio(lruvec
, folio
);
627 __count_vm_events(PGLAZYFREE
, nr_pages
);
628 __count_memcg_events(lruvec_memcg(lruvec
), PGLAZYFREE
, nr_pages
);
632 * Drain pages out of the cpu's folio_batch.
633 * Either "cpu" is the current CPU, and preemption has already been
634 * disabled; or "cpu" is being hot-unplugged, and is already dead.
636 void lru_add_drain_cpu(int cpu
)
638 struct cpu_fbatches
*fbatches
= &per_cpu(cpu_fbatches
, cpu
);
639 struct folio_batch
*fbatch
= &fbatches
->lru_add
;
641 if (folio_batch_count(fbatch
))
642 folio_batch_move_lru(fbatch
, lru_add
);
644 fbatch
= &fbatches
->lru_move_tail
;
645 /* Disabling interrupts below acts as a compiler barrier. */
646 if (data_race(folio_batch_count(fbatch
))) {
649 /* No harm done if a racing interrupt already did this */
650 local_lock_irqsave(&cpu_fbatches
.lock_irq
, flags
);
651 folio_batch_move_lru(fbatch
, lru_move_tail
);
652 local_unlock_irqrestore(&cpu_fbatches
.lock_irq
, flags
);
655 fbatch
= &fbatches
->lru_deactivate_file
;
656 if (folio_batch_count(fbatch
))
657 folio_batch_move_lru(fbatch
, lru_deactivate_file
);
659 fbatch
= &fbatches
->lru_deactivate
;
660 if (folio_batch_count(fbatch
))
661 folio_batch_move_lru(fbatch
, lru_deactivate
);
663 fbatch
= &fbatches
->lru_lazyfree
;
664 if (folio_batch_count(fbatch
))
665 folio_batch_move_lru(fbatch
, lru_lazyfree
);
667 folio_activate_drain(cpu
);
671 * deactivate_file_folio() - Deactivate a file folio.
672 * @folio: Folio to deactivate.
674 * This function hints to the VM that @folio is a good reclaim candidate,
675 * for example if its invalidation fails due to the folio being dirty
676 * or under writeback.
678 * Context: Caller holds a reference on the folio.
680 void deactivate_file_folio(struct folio
*folio
)
682 /* Deactivating an unevictable folio will not accelerate reclaim */
683 if (folio_test_unevictable(folio
))
686 if (lru_gen_enabled() && lru_gen_clear_refs(folio
))
689 folio_batch_add_and_move(folio
, lru_deactivate_file
, true);
693 * folio_deactivate - deactivate a folio
694 * @folio: folio to deactivate
696 * folio_deactivate() moves @folio to the inactive list if @folio was on the
697 * active list and was not unevictable. This is done to accelerate the
700 void folio_deactivate(struct folio
*folio
)
702 if (folio_test_unevictable(folio
))
705 if (lru_gen_enabled() ? lru_gen_clear_refs(folio
) : !folio_test_active(folio
))
708 folio_batch_add_and_move(folio
, lru_deactivate
, true);
712 * folio_mark_lazyfree - make an anon folio lazyfree
713 * @folio: folio to deactivate
715 * folio_mark_lazyfree() moves @folio to the inactive file list.
716 * This is done to accelerate the reclaim of @folio.
718 void folio_mark_lazyfree(struct folio
*folio
)
720 if (!folio_test_anon(folio
) || !folio_test_swapbacked(folio
) ||
721 folio_test_swapcache(folio
) || folio_test_unevictable(folio
))
724 folio_batch_add_and_move(folio
, lru_lazyfree
, true);
727 void lru_add_drain(void)
729 local_lock(&cpu_fbatches
.lock
);
730 lru_add_drain_cpu(smp_processor_id());
731 local_unlock(&cpu_fbatches
.lock
);
736 * It's called from per-cpu workqueue context in SMP case so
737 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
738 * the same cpu. It shouldn't be a problem in !SMP case since
739 * the core is only one and the locks will disable preemption.
741 static void lru_add_and_bh_lrus_drain(void)
743 local_lock(&cpu_fbatches
.lock
);
744 lru_add_drain_cpu(smp_processor_id());
745 local_unlock(&cpu_fbatches
.lock
);
746 invalidate_bh_lrus_cpu();
750 void lru_add_drain_cpu_zone(struct zone
*zone
)
752 local_lock(&cpu_fbatches
.lock
);
753 lru_add_drain_cpu(smp_processor_id());
754 drain_local_pages(zone
);
755 local_unlock(&cpu_fbatches
.lock
);
761 static DEFINE_PER_CPU(struct work_struct
, lru_add_drain_work
);
763 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
765 lru_add_and_bh_lrus_drain();
768 static bool cpu_needs_drain(unsigned int cpu
)
770 struct cpu_fbatches
*fbatches
= &per_cpu(cpu_fbatches
, cpu
);
772 /* Check these in order of likelihood that they're not zero */
773 return folio_batch_count(&fbatches
->lru_add
) ||
774 folio_batch_count(&fbatches
->lru_move_tail
) ||
775 folio_batch_count(&fbatches
->lru_deactivate_file
) ||
776 folio_batch_count(&fbatches
->lru_deactivate
) ||
777 folio_batch_count(&fbatches
->lru_lazyfree
) ||
778 folio_batch_count(&fbatches
->lru_activate
) ||
779 need_mlock_drain(cpu
) ||
780 has_bh_in_lru(cpu
, NULL
);
784 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
785 * kworkers being shut down before our page_alloc_cpu_dead callback is
786 * executed on the offlined cpu.
787 * Calling this function with cpu hotplug locks held can actually lead
788 * to obscure indirect dependencies via WQ context.
790 static inline void __lru_add_drain_all(bool force_all_cpus
)
793 * lru_drain_gen - Global pages generation number
795 * (A) Definition: global lru_drain_gen = x implies that all generations
796 * 0 < n <= x are already *scheduled* for draining.
798 * This is an optimization for the highly-contended use case where a
799 * user space workload keeps constantly generating a flow of pages for
802 static unsigned int lru_drain_gen
;
803 static struct cpumask has_work
;
804 static DEFINE_MUTEX(lock
);
805 unsigned cpu
, this_gen
;
808 * Make sure nobody triggers this path before mm_percpu_wq is fully
811 if (WARN_ON(!mm_percpu_wq
))
815 * Guarantee folio_batch counter stores visible by this CPU
816 * are visible to other CPUs before loading the current drain
822 * (B) Locally cache global LRU draining generation number
824 * The read barrier ensures that the counter is loaded before the mutex
825 * is taken. It pairs with smp_mb() inside the mutex critical section
828 this_gen
= smp_load_acquire(&lru_drain_gen
);
833 * (C) Exit the draining operation if a newer generation, from another
834 * lru_add_drain_all(), was already scheduled for draining. Check (A).
836 if (unlikely(this_gen
!= lru_drain_gen
&& !force_all_cpus
))
840 * (D) Increment global generation number
842 * Pairs with smp_load_acquire() at (B), outside of the critical
843 * section. Use a full memory barrier to guarantee that the
844 * new global drain generation number is stored before loading
845 * folio_batch counters.
847 * This pairing must be done here, before the for_each_online_cpu loop
848 * below which drains the page vectors.
850 * Let x, y, and z represent some system CPU numbers, where x < y < z.
851 * Assume CPU #z is in the middle of the for_each_online_cpu loop
852 * below and has already reached CPU #y's per-cpu data. CPU #x comes
853 * along, adds some pages to its per-cpu vectors, then calls
854 * lru_add_drain_all().
856 * If the paired barrier is done at any later step, e.g. after the
857 * loop, CPU #x will just exit at (C) and miss flushing out all of its
860 WRITE_ONCE(lru_drain_gen
, lru_drain_gen
+ 1);
863 cpumask_clear(&has_work
);
864 for_each_online_cpu(cpu
) {
865 struct work_struct
*work
= &per_cpu(lru_add_drain_work
, cpu
);
867 if (cpu_needs_drain(cpu
)) {
868 INIT_WORK(work
, lru_add_drain_per_cpu
);
869 queue_work_on(cpu
, mm_percpu_wq
, work
);
870 __cpumask_set_cpu(cpu
, &has_work
);
874 for_each_cpu(cpu
, &has_work
)
875 flush_work(&per_cpu(lru_add_drain_work
, cpu
));
881 void lru_add_drain_all(void)
883 __lru_add_drain_all(false);
886 void lru_add_drain_all(void)
890 #endif /* CONFIG_SMP */
892 atomic_t lru_disable_count
= ATOMIC_INIT(0);
895 * lru_cache_disable() needs to be called before we start compiling
896 * a list of folios to be migrated using folio_isolate_lru().
897 * It drains folios on LRU cache and then disable on all cpus until
898 * lru_cache_enable is called.
900 * Must be paired with a call to lru_cache_enable().
902 void lru_cache_disable(void)
904 atomic_inc(&lru_disable_count
);
906 * Readers of lru_disable_count are protected by either disabling
907 * preemption or rcu_read_lock:
909 * preempt_disable, local_irq_disable [bh_lru_lock()]
910 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
911 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
913 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
914 * preempt_disable() regions of code. So any CPU which sees
915 * lru_disable_count = 0 will have exited the critical
916 * section when synchronize_rcu() returns.
918 synchronize_rcu_expedited();
920 __lru_add_drain_all(true);
922 lru_add_and_bh_lrus_drain();
927 * folios_put_refs - Reduce the reference count on a batch of folios.
928 * @folios: The folios.
929 * @refs: The number of refs to subtract from each folio.
931 * Like folio_put(), but for a batch of folios. This is more efficient
932 * than writing the loop yourself as it will optimise the locks which need
933 * to be taken if the folios are freed. The folios batch is returned
934 * empty and ready to be reused for another batch; there is no need
935 * to reinitialise it. If @refs is NULL, we subtract one from each
938 * Context: May be called in process or interrupt context, but not in NMI
939 * context. May be called while holding a spinlock.
941 void folios_put_refs(struct folio_batch
*folios
, unsigned int *refs
)
944 struct lruvec
*lruvec
= NULL
;
945 unsigned long flags
= 0;
947 for (i
= 0, j
= 0; i
< folios
->nr
; i
++) {
948 struct folio
*folio
= folios
->folios
[i
];
949 unsigned int nr_refs
= refs
? refs
[i
] : 1;
951 if (is_huge_zero_folio(folio
))
954 if (folio_is_zone_device(folio
)) {
956 unlock_page_lruvec_irqrestore(lruvec
, flags
);
959 if (put_devmap_managed_folio_refs(folio
, nr_refs
))
961 if (folio_ref_sub_and_test(folio
, nr_refs
))
962 free_zone_device_folio(folio
);
966 if (!folio_ref_sub_and_test(folio
, nr_refs
))
969 /* hugetlb has its own memcg */
970 if (folio_test_hugetlb(folio
)) {
972 unlock_page_lruvec_irqrestore(lruvec
, flags
);
975 free_huge_folio(folio
);
978 folio_unqueue_deferred_split(folio
);
979 __page_cache_release(folio
, &lruvec
, &flags
);
982 folios
->folios
[j
] = folio
;
986 unlock_page_lruvec_irqrestore(lruvec
, flags
);
988 folio_batch_reinit(folios
);
993 mem_cgroup_uncharge_folios(folios
);
994 free_unref_folios(folios
);
996 EXPORT_SYMBOL(folios_put_refs
);
999 * release_pages - batched put_page()
1000 * @arg: array of pages to release
1001 * @nr: number of pages
1003 * Decrement the reference count on all the pages in @arg. If it
1004 * fell to zero, remove the page from the LRU and free it.
1006 * Note that the argument can be an array of pages, encoded pages,
1007 * or folio pointers. We ignore any encoded bits, and turn any of
1008 * them into just a folio that gets free'd.
1010 void release_pages(release_pages_arg arg
, int nr
)
1012 struct folio_batch fbatch
;
1013 int refs
[PAGEVEC_SIZE
];
1014 struct encoded_page
**encoded
= arg
.encoded_pages
;
1017 folio_batch_init(&fbatch
);
1018 for (i
= 0; i
< nr
; i
++) {
1019 /* Turn any of the argument types into a folio */
1020 struct folio
*folio
= page_folio(encoded_page_ptr(encoded
[i
]));
1022 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1023 refs
[fbatch
.nr
] = 1;
1024 if (unlikely(encoded_page_flags(encoded
[i
]) &
1025 ENCODED_PAGE_BIT_NR_PAGES_NEXT
))
1026 refs
[fbatch
.nr
] = encoded_nr_pages(encoded
[++i
]);
1028 if (folio_batch_add(&fbatch
, folio
) > 0)
1030 folios_put_refs(&fbatch
, refs
);
1034 folios_put_refs(&fbatch
, refs
);
1036 EXPORT_SYMBOL(release_pages
);
1039 * The folios which we're about to release may be in the deferred lru-addition
1040 * queues. That would prevent them from really being freed right now. That's
1041 * OK from a correctness point of view but is inefficient - those folios may be
1042 * cache-warm and we want to give them back to the page allocator ASAP.
1044 * So __folio_batch_release() will drain those queues here.
1045 * folio_batch_move_lru() calls folios_put() directly to avoid
1048 void __folio_batch_release(struct folio_batch
*fbatch
)
1050 if (!fbatch
->percpu_pvec_drained
) {
1052 fbatch
->percpu_pvec_drained
= true;
1056 EXPORT_SYMBOL(__folio_batch_release
);
1059 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1060 * @fbatch: The batch to prune
1062 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1063 * entries. This function prunes all the non-folio entries from @fbatch
1064 * without leaving holes, so that it can be passed on to folio-only batch
1067 void folio_batch_remove_exceptionals(struct folio_batch
*fbatch
)
1071 for (i
= 0, j
= 0; i
< folio_batch_count(fbatch
); i
++) {
1072 struct folio
*folio
= fbatch
->folios
[i
];
1073 if (!xa_is_value(folio
))
1074 fbatch
->folios
[j
++] = folio
;
1080 * Perform any setup for the swap system
1082 void __init
swap_setup(void)
1084 unsigned long megs
= totalram_pages() >> (20 - PAGE_SHIFT
);
1086 /* Use a smaller cluster for small-memory machines */
1092 * Right now other parts of the system means that we
1093 * _really_ don't want to cluster much more