1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/blkdev.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
53 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
55 static void free_swap_count_continuations(struct swap_info_struct
*);
56 static void swap_entry_range_free(struct swap_info_struct
*si
,
57 struct swap_cluster_info
*ci
,
58 swp_entry_t entry
, unsigned int nr_pages
);
59 static void swap_range_alloc(struct swap_info_struct
*si
,
60 unsigned int nr_entries
);
61 static bool folio_swapcache_freeable(struct folio
*folio
);
62 static struct swap_cluster_info
*lock_cluster(struct swap_info_struct
*si
,
63 unsigned long offset
);
64 static inline void unlock_cluster(struct swap_cluster_info
*ci
);
66 static DEFINE_SPINLOCK(swap_lock
);
67 static unsigned int nr_swapfiles
;
68 atomic_long_t nr_swap_pages
;
70 * Some modules use swappable objects and may try to swap them out under
71 * memory pressure (via the shrinker). Before doing so, they may wish to
72 * check to see if any swap space is available.
74 EXPORT_SYMBOL_GPL(nr_swap_pages
);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages
;
77 static int least_priority
= -1;
78 unsigned long swapfile_maximum_size
;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported
;
81 #endif /* CONFIG_MIGRATION */
83 static const char Bad_file
[] = "Bad swap file entry ";
84 static const char Unused_file
[] = "Unused swap file entry ";
85 static const char Bad_offset
[] = "Bad swap offset entry ";
86 static const char Unused_offset
[] = "Unused swap offset entry ";
89 * all active swap_info_structs
90 * protected with swap_lock, and ordered by priority.
92 static PLIST_HEAD(swap_active_head
);
95 * all available (active, not full) swap_info_structs
96 * protected with swap_avail_lock, ordered by priority.
97 * This is used by folio_alloc_swap() instead of swap_active_head
98 * because swap_active_head includes all swap_info_structs,
99 * but folio_alloc_swap() doesn't need to look at full ones.
100 * This uses its own lock instead of swap_lock because when a
101 * swap_info_struct changes between not-full/full, it needs to
102 * add/remove itself to/from this list, but the swap_info_struct->lock
103 * is held and the locking order requires swap_lock to be taken
104 * before any swap_info_struct->lock.
106 static struct plist_head
*swap_avail_heads
;
107 static DEFINE_SPINLOCK(swap_avail_lock
);
109 static struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
111 static DEFINE_MUTEX(swapon_mutex
);
113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
114 /* Activity counter to indicate that a swapon or swapoff has occurred */
115 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
117 atomic_t nr_rotate_swap
= ATOMIC_INIT(0);
119 static struct swap_info_struct
*swap_type_to_swap_info(int type
)
121 if (type
>= MAX_SWAPFILES
)
124 return READ_ONCE(swap_info
[type
]); /* rcu_dereference() */
127 static inline unsigned char swap_count(unsigned char ent
)
129 return ent
& ~SWAP_HAS_CACHE
; /* may include COUNT_CONTINUED flag */
133 * Use the second highest bit of inuse_pages counter as the indicator
134 * if one swap device is on the available plist, so the atomic can
135 * still be updated arithmetically while having special data embedded.
137 * inuse_pages counter is the only thing indicating if a device should
138 * be on avail_lists or not (except swapon / swapoff). By embedding the
139 * off-list bit in the atomic counter, updates no longer need any lock
140 * to check the list status.
142 * This bit will be set if the device is not on the plist and not
143 * usable, will be cleared if the device is on the plist.
145 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
146 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
147 static long swap_usage_in_pages(struct swap_info_struct
*si
)
149 return atomic_long_read(&si
->inuse_pages
) & SWAP_USAGE_COUNTER_MASK
;
152 /* Reclaim the swap entry anyway if possible */
153 #define TTRS_ANYWAY 0x1
155 * Reclaim the swap entry if there are no more mappings of the
158 #define TTRS_UNMAPPED 0x2
159 /* Reclaim the swap entry if swap is getting full */
160 #define TTRS_FULL 0x4
161 /* Reclaim directly, bypass the slot cache and don't touch device lock */
162 #define TTRS_DIRECT 0x8
164 static bool swap_is_has_cache(struct swap_info_struct
*si
,
165 unsigned long offset
, int nr_pages
)
167 unsigned char *map
= si
->swap_map
+ offset
;
168 unsigned char *map_end
= map
+ nr_pages
;
171 VM_BUG_ON(!(*map
& SWAP_HAS_CACHE
));
172 if (*map
!= SWAP_HAS_CACHE
)
174 } while (++map
< map_end
);
179 static bool swap_is_last_map(struct swap_info_struct
*si
,
180 unsigned long offset
, int nr_pages
, bool *has_cache
)
182 unsigned char *map
= si
->swap_map
+ offset
;
183 unsigned char *map_end
= map
+ nr_pages
;
184 unsigned char count
= *map
;
186 if (swap_count(count
) != 1)
189 while (++map
< map_end
) {
194 *has_cache
= !!(count
& SWAP_HAS_CACHE
);
199 * returns number of pages in the folio that backs the swap entry. If positive,
200 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
201 * folio was associated with the swap entry.
203 static int __try_to_reclaim_swap(struct swap_info_struct
*si
,
204 unsigned long offset
, unsigned long flags
)
206 swp_entry_t entry
= swp_entry(si
->type
, offset
);
207 struct address_space
*address_space
= swap_address_space(entry
);
208 struct swap_cluster_info
*ci
;
213 folio
= filemap_get_folio(address_space
, swap_cache_index(entry
));
217 nr_pages
= folio_nr_pages(folio
);
221 * When this function is called from scan_swap_map_slots() and it's
222 * called by vmscan.c at reclaiming folios. So we hold a folio lock
223 * here. We have to use trylock for avoiding deadlock. This is a special
224 * case and you should use folio_free_swap() with explicit folio_lock()
225 * in usual operations.
227 if (!folio_trylock(folio
))
230 /* offset could point to the middle of a large folio */
232 offset
= swp_offset(entry
);
234 need_reclaim
= ((flags
& TTRS_ANYWAY
) ||
235 ((flags
& TTRS_UNMAPPED
) && !folio_mapped(folio
)) ||
236 ((flags
& TTRS_FULL
) && mem_cgroup_swap_full(folio
)));
237 if (!need_reclaim
|| !folio_swapcache_freeable(folio
))
241 * It's safe to delete the folio from swap cache only if the folio's
242 * swap_map is HAS_CACHE only, which means the slots have no page table
243 * reference or pending writeback, and can't be allocated to others.
245 ci
= lock_cluster(si
, offset
);
246 need_reclaim
= swap_is_has_cache(si
, offset
, nr_pages
);
251 if (!(flags
& TTRS_DIRECT
)) {
252 /* Free through slot cache */
253 delete_from_swap_cache(folio
);
254 folio_set_dirty(folio
);
259 xa_lock_irq(&address_space
->i_pages
);
260 __delete_from_swap_cache(folio
, entry
, NULL
);
261 xa_unlock_irq(&address_space
->i_pages
);
262 folio_ref_sub(folio
, nr_pages
);
263 folio_set_dirty(folio
);
265 ci
= lock_cluster(si
, offset
);
266 swap_entry_range_free(si
, ci
, entry
, nr_pages
);
276 static inline struct swap_extent
*first_se(struct swap_info_struct
*sis
)
278 struct rb_node
*rb
= rb_first(&sis
->swap_extent_root
);
279 return rb_entry(rb
, struct swap_extent
, rb_node
);
282 static inline struct swap_extent
*next_se(struct swap_extent
*se
)
284 struct rb_node
*rb
= rb_next(&se
->rb_node
);
285 return rb
? rb_entry(rb
, struct swap_extent
, rb_node
) : NULL
;
289 * swapon tell device that all the old swap contents can be discarded,
290 * to allow the swap device to optimize its wear-levelling.
292 static int discard_swap(struct swap_info_struct
*si
)
294 struct swap_extent
*se
;
295 sector_t start_block
;
299 /* Do not discard the swap header page! */
301 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
302 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
304 err
= blkdev_issue_discard(si
->bdev
, start_block
,
305 nr_blocks
, GFP_KERNEL
);
311 for (se
= next_se(se
); se
; se
= next_se(se
)) {
312 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
313 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
315 err
= blkdev_issue_discard(si
->bdev
, start_block
,
316 nr_blocks
, GFP_KERNEL
);
322 return err
; /* That will often be -EOPNOTSUPP */
325 static struct swap_extent
*
326 offset_to_swap_extent(struct swap_info_struct
*sis
, unsigned long offset
)
328 struct swap_extent
*se
;
331 rb
= sis
->swap_extent_root
.rb_node
;
333 se
= rb_entry(rb
, struct swap_extent
, rb_node
);
334 if (offset
< se
->start_page
)
336 else if (offset
>= se
->start_page
+ se
->nr_pages
)
341 /* It *must* be present */
345 sector_t
swap_folio_sector(struct folio
*folio
)
347 struct swap_info_struct
*sis
= swp_swap_info(folio
->swap
);
348 struct swap_extent
*se
;
352 offset
= swp_offset(folio
->swap
);
353 se
= offset_to_swap_extent(sis
, offset
);
354 sector
= se
->start_block
+ (offset
- se
->start_page
);
355 return sector
<< (PAGE_SHIFT
- 9);
359 * swap allocation tell device that a cluster of swap can now be discarded,
360 * to allow the swap device to optimize its wear-levelling.
362 static void discard_swap_cluster(struct swap_info_struct
*si
,
363 pgoff_t start_page
, pgoff_t nr_pages
)
365 struct swap_extent
*se
= offset_to_swap_extent(si
, start_page
);
368 pgoff_t offset
= start_page
- se
->start_page
;
369 sector_t start_block
= se
->start_block
+ offset
;
370 sector_t nr_blocks
= se
->nr_pages
- offset
;
372 if (nr_blocks
> nr_pages
)
373 nr_blocks
= nr_pages
;
374 start_page
+= nr_blocks
;
375 nr_pages
-= nr_blocks
;
377 start_block
<<= PAGE_SHIFT
- 9;
378 nr_blocks
<<= PAGE_SHIFT
- 9;
379 if (blkdev_issue_discard(si
->bdev
, start_block
,
380 nr_blocks
, GFP_NOIO
))
387 #ifdef CONFIG_THP_SWAP
388 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
390 #define swap_entry_order(order) (order)
392 #define SWAPFILE_CLUSTER 256
395 * Define swap_entry_order() as constant to let compiler to optimize
396 * out some code if !CONFIG_THP_SWAP
398 #define swap_entry_order(order) 0
400 #define LATENCY_LIMIT 256
402 static inline bool cluster_is_empty(struct swap_cluster_info
*info
)
404 return info
->count
== 0;
407 static inline bool cluster_is_discard(struct swap_cluster_info
*info
)
409 return info
->flags
== CLUSTER_FLAG_DISCARD
;
412 static inline bool cluster_is_usable(struct swap_cluster_info
*ci
, int order
)
414 if (unlikely(ci
->flags
> CLUSTER_FLAG_USABLE
))
418 return cluster_is_empty(ci
) || order
== ci
->order
;
421 static inline unsigned int cluster_index(struct swap_info_struct
*si
,
422 struct swap_cluster_info
*ci
)
424 return ci
- si
->cluster_info
;
427 static inline struct swap_cluster_info
*offset_to_cluster(struct swap_info_struct
*si
,
428 unsigned long offset
)
430 return &si
->cluster_info
[offset
/ SWAPFILE_CLUSTER
];
433 static inline unsigned int cluster_offset(struct swap_info_struct
*si
,
434 struct swap_cluster_info
*ci
)
436 return cluster_index(si
, ci
) * SWAPFILE_CLUSTER
;
439 static inline struct swap_cluster_info
*lock_cluster(struct swap_info_struct
*si
,
440 unsigned long offset
)
442 struct swap_cluster_info
*ci
;
444 ci
= offset_to_cluster(si
, offset
);
445 spin_lock(&ci
->lock
);
450 static inline void unlock_cluster(struct swap_cluster_info
*ci
)
452 spin_unlock(&ci
->lock
);
455 static void move_cluster(struct swap_info_struct
*si
,
456 struct swap_cluster_info
*ci
, struct list_head
*list
,
457 enum swap_cluster_flags new_flags
)
459 VM_WARN_ON(ci
->flags
== new_flags
);
461 BUILD_BUG_ON(1 << sizeof(ci
->flags
) * BITS_PER_BYTE
< CLUSTER_FLAG_MAX
);
462 lockdep_assert_held(&ci
->lock
);
464 spin_lock(&si
->lock
);
465 if (ci
->flags
== CLUSTER_FLAG_NONE
)
466 list_add_tail(&ci
->list
, list
);
468 list_move_tail(&ci
->list
, list
);
469 spin_unlock(&si
->lock
);
471 if (ci
->flags
== CLUSTER_FLAG_FRAG
)
472 atomic_long_dec(&si
->frag_cluster_nr
[ci
->order
]);
473 else if (new_flags
== CLUSTER_FLAG_FRAG
)
474 atomic_long_inc(&si
->frag_cluster_nr
[ci
->order
]);
475 ci
->flags
= new_flags
;
478 /* Add a cluster to discard list and schedule it to do discard */
479 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
480 struct swap_cluster_info
*ci
)
482 unsigned int idx
= cluster_index(si
, ci
);
484 * If scan_swap_map_slots() can't find a free cluster, it will check
485 * si->swap_map directly. To make sure the discarding cluster isn't
486 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
487 * It will be cleared after discard
489 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
490 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
491 VM_BUG_ON(ci
->flags
== CLUSTER_FLAG_FREE
);
492 move_cluster(si
, ci
, &si
->discard_clusters
, CLUSTER_FLAG_DISCARD
);
493 schedule_work(&si
->discard_work
);
496 static void __free_cluster(struct swap_info_struct
*si
, struct swap_cluster_info
*ci
)
498 lockdep_assert_held(&ci
->lock
);
499 move_cluster(si
, ci
, &si
->free_clusters
, CLUSTER_FLAG_FREE
);
504 * Isolate and lock the first cluster that is not contented on a list,
505 * clean its flag before taken off-list. Cluster flag must be in sync
506 * with list status, so cluster updaters can always know the cluster
507 * list status without touching si lock.
509 * Note it's possible that all clusters on a list are contented so
510 * this returns NULL for an non-empty list.
512 static struct swap_cluster_info
*isolate_lock_cluster(
513 struct swap_info_struct
*si
, struct list_head
*list
)
515 struct swap_cluster_info
*ci
, *ret
= NULL
;
517 spin_lock(&si
->lock
);
519 if (unlikely(!(si
->flags
& SWP_WRITEOK
)))
522 list_for_each_entry(ci
, list
, list
) {
523 if (!spin_trylock(&ci
->lock
))
526 /* We may only isolate and clear flags of following lists */
527 VM_BUG_ON(!ci
->flags
);
528 VM_BUG_ON(ci
->flags
> CLUSTER_FLAG_USABLE
&&
529 ci
->flags
!= CLUSTER_FLAG_FULL
);
532 ci
->flags
= CLUSTER_FLAG_NONE
;
537 spin_unlock(&si
->lock
);
543 * Doing discard actually. After a cluster discard is finished, the cluster
544 * will be added to free cluster list. Discard cluster is a bit special as
545 * they don't participate in allocation or reclaim, so clusters marked as
546 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
548 static bool swap_do_scheduled_discard(struct swap_info_struct
*si
)
550 struct swap_cluster_info
*ci
;
554 spin_lock(&si
->lock
);
555 while (!list_empty(&si
->discard_clusters
)) {
556 ci
= list_first_entry(&si
->discard_clusters
, struct swap_cluster_info
, list
);
558 * Delete the cluster from list to prepare for discard, but keep
559 * the CLUSTER_FLAG_DISCARD flag, there could be percpu_cluster
560 * pointing to it, or ran into by relocate_cluster.
563 idx
= cluster_index(si
, ci
);
564 spin_unlock(&si
->lock
);
565 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
568 spin_lock(&ci
->lock
);
570 * Discard is done, clear its flags as it's off-list, then
571 * return the cluster to allocation list.
573 ci
->flags
= CLUSTER_FLAG_NONE
;
574 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
575 0, SWAPFILE_CLUSTER
);
576 __free_cluster(si
, ci
);
577 spin_unlock(&ci
->lock
);
579 spin_lock(&si
->lock
);
581 spin_unlock(&si
->lock
);
585 static void swap_discard_work(struct work_struct
*work
)
587 struct swap_info_struct
*si
;
589 si
= container_of(work
, struct swap_info_struct
, discard_work
);
591 swap_do_scheduled_discard(si
);
594 static void swap_users_ref_free(struct percpu_ref
*ref
)
596 struct swap_info_struct
*si
;
598 si
= container_of(ref
, struct swap_info_struct
, users
);
603 * Must be called after freeing if ci->count == 0, moves the cluster to free
606 static void free_cluster(struct swap_info_struct
*si
, struct swap_cluster_info
*ci
)
608 VM_BUG_ON(ci
->count
!= 0);
609 VM_BUG_ON(ci
->flags
== CLUSTER_FLAG_FREE
);
610 lockdep_assert_held(&ci
->lock
);
613 * If the swap is discardable, prepare discard the cluster
614 * instead of free it immediately. The cluster will be freed
617 if ((si
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
618 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
619 swap_cluster_schedule_discard(si
, ci
);
623 __free_cluster(si
, ci
);
627 * Must be called after freeing if ci->count != 0, moves the cluster to
630 static void partial_free_cluster(struct swap_info_struct
*si
,
631 struct swap_cluster_info
*ci
)
633 VM_BUG_ON(!ci
->count
|| ci
->count
== SWAPFILE_CLUSTER
);
634 lockdep_assert_held(&ci
->lock
);
636 if (ci
->flags
!= CLUSTER_FLAG_NONFULL
)
637 move_cluster(si
, ci
, &si
->nonfull_clusters
[ci
->order
],
638 CLUSTER_FLAG_NONFULL
);
642 * Must be called after allocation, moves the cluster to full or frag list.
643 * Note: allocation doesn't acquire si lock, and may drop the ci lock for
644 * reclaim, so the cluster could be any where when called.
646 static void relocate_cluster(struct swap_info_struct
*si
,
647 struct swap_cluster_info
*ci
)
649 lockdep_assert_held(&ci
->lock
);
651 /* Discard cluster must remain off-list or on discard list */
652 if (cluster_is_discard(ci
))
656 free_cluster(si
, ci
);
657 } else if (ci
->count
!= SWAPFILE_CLUSTER
) {
658 if (ci
->flags
!= CLUSTER_FLAG_FRAG
)
659 move_cluster(si
, ci
, &si
->frag_clusters
[ci
->order
],
662 if (ci
->flags
!= CLUSTER_FLAG_FULL
)
663 move_cluster(si
, ci
, &si
->full_clusters
,
669 * The cluster corresponding to page_nr will be used. The cluster will not be
670 * added to free cluster list and its usage counter will be increased by 1.
671 * Only used for initialization.
673 static void inc_cluster_info_page(struct swap_info_struct
*si
,
674 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
676 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
677 struct swap_cluster_info
*ci
;
679 ci
= cluster_info
+ idx
;
682 VM_BUG_ON(ci
->count
> SWAPFILE_CLUSTER
);
683 VM_BUG_ON(ci
->flags
);
686 static bool cluster_reclaim_range(struct swap_info_struct
*si
,
687 struct swap_cluster_info
*ci
,
688 unsigned long start
, unsigned long end
)
690 unsigned char *map
= si
->swap_map
;
691 unsigned long offset
= start
;
694 spin_unlock(&ci
->lock
);
696 switch (READ_ONCE(map
[offset
])) {
701 nr_reclaim
= __try_to_reclaim_swap(si
, offset
, TTRS_ANYWAY
| TTRS_DIRECT
);
703 offset
+= nr_reclaim
;
710 } while (offset
< end
);
712 spin_lock(&ci
->lock
);
714 * Recheck the range no matter reclaim succeeded or not, the slot
715 * could have been be freed while we are not holding the lock.
717 for (offset
= start
; offset
< end
; offset
++)
718 if (READ_ONCE(map
[offset
]))
724 static bool cluster_scan_range(struct swap_info_struct
*si
,
725 struct swap_cluster_info
*ci
,
726 unsigned long start
, unsigned int nr_pages
,
729 unsigned long offset
, end
= start
+ nr_pages
;
730 unsigned char *map
= si
->swap_map
;
732 for (offset
= start
; offset
< end
; offset
++) {
733 switch (READ_ONCE(map
[offset
])) {
739 *need_reclaim
= true;
749 static bool cluster_alloc_range(struct swap_info_struct
*si
, struct swap_cluster_info
*ci
,
750 unsigned int start
, unsigned char usage
,
753 unsigned int nr_pages
= 1 << order
;
755 lockdep_assert_held(&ci
->lock
);
757 if (!(si
->flags
& SWP_WRITEOK
))
761 * The first allocation in a cluster makes the
762 * cluster exclusive to this order
764 if (cluster_is_empty(ci
))
767 memset(si
->swap_map
+ start
, usage
, nr_pages
);
768 swap_range_alloc(si
, nr_pages
);
769 ci
->count
+= nr_pages
;
774 /* Try use a new cluster for current CPU and allocate from it. */
775 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct
*si
,
776 struct swap_cluster_info
*ci
,
777 unsigned long offset
,
781 unsigned int next
= SWAP_ENTRY_INVALID
, found
= SWAP_ENTRY_INVALID
;
782 unsigned long start
= ALIGN_DOWN(offset
, SWAPFILE_CLUSTER
);
783 unsigned long end
= min(start
+ SWAPFILE_CLUSTER
, si
->max
);
784 unsigned int nr_pages
= 1 << order
;
785 bool need_reclaim
, ret
;
787 lockdep_assert_held(&ci
->lock
);
789 if (end
< nr_pages
|| ci
->count
+ nr_pages
> SWAPFILE_CLUSTER
)
792 for (end
-= nr_pages
; offset
<= end
; offset
+= nr_pages
) {
793 need_reclaim
= false;
794 if (!cluster_scan_range(si
, ci
, offset
, nr_pages
, &need_reclaim
))
797 ret
= cluster_reclaim_range(si
, ci
, offset
, offset
+ nr_pages
);
799 * Reclaim drops ci->lock and cluster could be used
800 * by another order. Not checking flag as off-list
801 * cluster has no flag set, and change of list
802 * won't cause fragmentation.
804 if (!cluster_is_usable(ci
, order
))
806 if (cluster_is_empty(ci
))
808 /* Reclaim failed but cluster is usable, try next */
812 if (!cluster_alloc_range(si
, ci
, offset
, usage
, order
))
816 if (ci
->count
< SWAPFILE_CLUSTER
&& offset
<= end
)
821 relocate_cluster(si
, ci
);
823 if (si
->flags
& SWP_SOLIDSTATE
)
824 __this_cpu_write(si
->percpu_cluster
->next
[order
], next
);
826 si
->global_cluster
->next
[order
] = next
;
830 /* Return true if reclaimed a whole cluster */
831 static void swap_reclaim_full_clusters(struct swap_info_struct
*si
, bool force
)
834 unsigned long offset
, end
;
835 struct swap_cluster_info
*ci
;
836 unsigned char *map
= si
->swap_map
;
840 to_scan
= swap_usage_in_pages(si
) / SWAPFILE_CLUSTER
;
842 while ((ci
= isolate_lock_cluster(si
, &si
->full_clusters
))) {
843 offset
= cluster_offset(si
, ci
);
844 end
= min(si
->max
, offset
+ SWAPFILE_CLUSTER
);
847 while (offset
< end
) {
848 if (READ_ONCE(map
[offset
]) == SWAP_HAS_CACHE
) {
849 spin_unlock(&ci
->lock
);
850 nr_reclaim
= __try_to_reclaim_swap(si
, offset
,
851 TTRS_ANYWAY
| TTRS_DIRECT
);
852 spin_lock(&ci
->lock
);
854 offset
+= abs(nr_reclaim
);
867 static void swap_reclaim_work(struct work_struct
*work
)
869 struct swap_info_struct
*si
;
871 si
= container_of(work
, struct swap_info_struct
, reclaim_work
);
873 swap_reclaim_full_clusters(si
, true);
877 * Try to get swap entries with specified order from current cpu's swap entry
878 * pool (a cluster). This might involve allocating a new cluster for current CPU
881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct
*si
, int order
,
884 struct swap_cluster_info
*ci
;
885 unsigned int offset
, found
= 0;
887 if (si
->flags
& SWP_SOLIDSTATE
) {
888 /* Fast path using per CPU cluster */
889 local_lock(&si
->percpu_cluster
->lock
);
890 offset
= __this_cpu_read(si
->percpu_cluster
->next
[order
]);
892 /* Serialize HDD SWAP allocation for each device. */
893 spin_lock(&si
->global_cluster_lock
);
894 offset
= si
->global_cluster
->next
[order
];
898 ci
= lock_cluster(si
, offset
);
899 /* Cluster could have been used by another order */
900 if (cluster_is_usable(ci
, order
)) {
901 if (cluster_is_empty(ci
))
902 offset
= cluster_offset(si
, ci
);
903 found
= alloc_swap_scan_cluster(si
, ci
, offset
,
913 ci
= isolate_lock_cluster(si
, &si
->free_clusters
);
915 found
= alloc_swap_scan_cluster(si
, ci
, cluster_offset(si
, ci
),
921 /* Try reclaim from full clusters if free clusters list is drained */
923 swap_reclaim_full_clusters(si
, false);
925 if (order
< PMD_ORDER
) {
926 unsigned int frags
= 0, frags_existing
;
928 while ((ci
= isolate_lock_cluster(si
, &si
->nonfull_clusters
[order
]))) {
929 found
= alloc_swap_scan_cluster(si
, ci
, cluster_offset(si
, ci
),
933 /* Clusters failed to allocate are moved to frag_clusters */
937 frags_existing
= atomic_long_read(&si
->frag_cluster_nr
[order
]);
938 while (frags
< frags_existing
&&
939 (ci
= isolate_lock_cluster(si
, &si
->frag_clusters
[order
]))) {
940 atomic_long_dec(&si
->frag_cluster_nr
[order
]);
942 * Rotate the frag list to iterate, they were all
943 * failing high order allocation or moved here due to
944 * per-CPU usage, but they could contain newly released
945 * reclaimable (eg. lazy-freed swap cache) slots.
947 found
= alloc_swap_scan_cluster(si
, ci
, cluster_offset(si
, ci
),
956 * We don't have free cluster but have some clusters in
957 * discarding, do discard now and reclaim them, then
958 * reread cluster_next_cpu since we dropped si->lock
960 if ((si
->flags
& SWP_PAGE_DISCARD
) && swap_do_scheduled_discard(si
))
966 /* Order 0 stealing from higher order */
967 for (int o
= 1; o
< SWAP_NR_ORDERS
; o
++) {
969 * Clusters here have at least one usable slots and can't fail order 0
970 * allocation, but reclaim may drop si->lock and race with another user.
972 while ((ci
= isolate_lock_cluster(si
, &si
->frag_clusters
[o
]))) {
973 atomic_long_dec(&si
->frag_cluster_nr
[o
]);
974 found
= alloc_swap_scan_cluster(si
, ci
, cluster_offset(si
, ci
),
980 while ((ci
= isolate_lock_cluster(si
, &si
->nonfull_clusters
[o
]))) {
981 found
= alloc_swap_scan_cluster(si
, ci
, cluster_offset(si
, ci
),
988 if (si
->flags
& SWP_SOLIDSTATE
)
989 local_unlock(&si
->percpu_cluster
->lock
);
991 spin_unlock(&si
->global_cluster_lock
);
995 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
996 static void del_from_avail_list(struct swap_info_struct
*si
, bool swapoff
)
1001 spin_lock(&swap_avail_lock
);
1005 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1006 * swapoff here so it's synchronized by both si->lock and
1007 * swap_avail_lock, to ensure the result can be seen by
1008 * add_to_avail_list.
1010 lockdep_assert_held(&si
->lock
);
1011 si
->flags
&= ~SWP_WRITEOK
;
1012 atomic_long_or(SWAP_USAGE_OFFLIST_BIT
, &si
->inuse_pages
);
1015 * If not called by swapoff, take it off-list only if it's
1016 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1017 * si->inuse_pages == pages), any concurrent slot freeing,
1018 * or device already removed from plist by someone else
1019 * will make this return false.
1022 if (!atomic_long_try_cmpxchg(&si
->inuse_pages
, &pages
,
1023 pages
| SWAP_USAGE_OFFLIST_BIT
))
1028 plist_del(&si
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
1031 spin_unlock(&swap_avail_lock
);
1034 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
1035 static void add_to_avail_list(struct swap_info_struct
*si
, bool swapon
)
1039 unsigned long pages
;
1041 spin_lock(&swap_avail_lock
);
1043 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1045 lockdep_assert_held(&si
->lock
);
1046 si
->flags
|= SWP_WRITEOK
;
1048 if (!(READ_ONCE(si
->flags
) & SWP_WRITEOK
))
1052 if (!(atomic_long_read(&si
->inuse_pages
) & SWAP_USAGE_OFFLIST_BIT
))
1055 val
= atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT
, &si
->inuse_pages
);
1058 * When device is full and device is on the plist, only one updater will
1059 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1060 * that updater happen to be here, just skip adding.
1064 /* Just like the cmpxchg in del_from_avail_list */
1065 if (atomic_long_try_cmpxchg(&si
->inuse_pages
, &pages
,
1066 pages
| SWAP_USAGE_OFFLIST_BIT
))
1071 plist_add(&si
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
1074 spin_unlock(&swap_avail_lock
);
1078 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1079 * within each cluster, so the total contribution to the global counter should
1080 * always be positive and cannot exceed the total number of usable slots.
1082 static bool swap_usage_add(struct swap_info_struct
*si
, unsigned int nr_entries
)
1084 long val
= atomic_long_add_return_relaxed(nr_entries
, &si
->inuse_pages
);
1087 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1088 * remove it from the plist.
1090 if (unlikely(val
== si
->pages
)) {
1091 del_from_avail_list(si
, false);
1098 static void swap_usage_sub(struct swap_info_struct
*si
, unsigned int nr_entries
)
1100 long val
= atomic_long_sub_return_relaxed(nr_entries
, &si
->inuse_pages
);
1103 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1104 * remove it from the plist.
1106 if (unlikely(val
& SWAP_USAGE_OFFLIST_BIT
))
1107 add_to_avail_list(si
, false);
1110 static void swap_range_alloc(struct swap_info_struct
*si
,
1111 unsigned int nr_entries
)
1113 if (swap_usage_add(si
, nr_entries
)) {
1115 schedule_work(&si
->reclaim_work
);
1119 static void swap_range_free(struct swap_info_struct
*si
, unsigned long offset
,
1120 unsigned int nr_entries
)
1122 unsigned long begin
= offset
;
1123 unsigned long end
= offset
+ nr_entries
- 1;
1124 void (*swap_slot_free_notify
)(struct block_device
*, unsigned long);
1128 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1129 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1131 for (i
= 0; i
< nr_entries
; i
++) {
1132 clear_bit(offset
+ i
, si
->zeromap
);
1133 zswap_invalidate(swp_entry(si
->type
, offset
+ i
));
1136 if (si
->flags
& SWP_BLKDEV
)
1137 swap_slot_free_notify
=
1138 si
->bdev
->bd_disk
->fops
->swap_slot_free_notify
;
1140 swap_slot_free_notify
= NULL
;
1141 while (offset
<= end
) {
1142 arch_swap_invalidate_page(si
->type
, offset
);
1143 if (swap_slot_free_notify
)
1144 swap_slot_free_notify(si
->bdev
, offset
);
1147 clear_shadow_from_swap_cache(si
->type
, begin
, end
);
1150 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1151 * only after the above cleanups are done.
1154 atomic_long_add(nr_entries
, &nr_swap_pages
);
1155 swap_usage_sub(si
, nr_entries
);
1158 static int cluster_alloc_swap(struct swap_info_struct
*si
,
1159 unsigned char usage
, int nr
,
1160 swp_entry_t slots
[], int order
)
1164 while (n_ret
< nr
) {
1165 unsigned long offset
= cluster_alloc_swap_entry(si
, order
, usage
);
1169 slots
[n_ret
++] = swp_entry(si
->type
, offset
);
1175 static int scan_swap_map_slots(struct swap_info_struct
*si
,
1176 unsigned char usage
, int nr
,
1177 swp_entry_t slots
[], int order
)
1179 unsigned int nr_pages
= 1 << order
;
1182 * We try to cluster swap pages by allocating them sequentially
1183 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
1184 * way, however, we resort to first-free allocation, starting
1185 * a new cluster. This prevents us from scattering swap pages
1186 * all over the entire swap partition, so that we reduce
1187 * overall disk seek times between swap pages. -- sct
1188 * But we do now try to find an empty cluster. -Andrea
1189 * And we let swap pages go all over an SSD partition. Hugh
1193 * Should not even be attempting large allocations when huge
1194 * page swap is disabled. Warn and fail the allocation.
1196 if (!IS_ENABLED(CONFIG_THP_SWAP
) ||
1197 nr_pages
> SWAPFILE_CLUSTER
) {
1203 * Swapfile is not block device so unable
1204 * to allocate large entries.
1206 if (!(si
->flags
& SWP_BLKDEV
))
1210 return cluster_alloc_swap(si
, usage
, nr
, slots
, order
);
1213 static bool get_swap_device_info(struct swap_info_struct
*si
)
1215 if (!percpu_ref_tryget_live(&si
->users
))
1218 * Guarantee the si->users are checked before accessing other
1219 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1222 * Paired with the spin_unlock() after setup_swap_info() in
1223 * enable_swap_info(), and smp_wmb() in swapoff.
1229 int get_swap_pages(int n_goal
, swp_entry_t swp_entries
[], int entry_order
)
1231 int order
= swap_entry_order(entry_order
);
1232 unsigned long size
= 1 << order
;
1233 struct swap_info_struct
*si
, *next
;
1238 spin_lock(&swap_avail_lock
);
1240 avail_pgs
= atomic_long_read(&nr_swap_pages
) / size
;
1241 if (avail_pgs
<= 0) {
1242 spin_unlock(&swap_avail_lock
);
1246 n_goal
= min3((long)n_goal
, (long)SWAP_BATCH
, avail_pgs
);
1248 atomic_long_sub(n_goal
* size
, &nr_swap_pages
);
1251 node
= numa_node_id();
1252 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[node
], avail_lists
[node
]) {
1253 /* requeue si to after same-priority siblings */
1254 plist_requeue(&si
->avail_lists
[node
], &swap_avail_heads
[node
]);
1255 spin_unlock(&swap_avail_lock
);
1256 if (get_swap_device_info(si
)) {
1257 n_ret
= scan_swap_map_slots(si
, SWAP_HAS_CACHE
,
1258 n_goal
, swp_entries
, order
);
1259 put_swap_device(si
);
1260 if (n_ret
|| size
> 1)
1264 spin_lock(&swap_avail_lock
);
1266 * if we got here, it's likely that si was almost full before,
1267 * and since scan_swap_map_slots() can drop the si->lock,
1268 * multiple callers probably all tried to get a page from the
1269 * same si and it filled up before we could get one; or, the si
1270 * filled up between us dropping swap_avail_lock and taking
1271 * si->lock. Since we dropped the swap_avail_lock, the
1272 * swap_avail_head list may have been modified; so if next is
1273 * still in the swap_avail_head list then try it, otherwise
1274 * start over if we have not gotten any slots.
1276 if (plist_node_empty(&next
->avail_lists
[node
]))
1280 spin_unlock(&swap_avail_lock
);
1284 atomic_long_add((long)(n_goal
- n_ret
) * size
,
1290 static struct swap_info_struct
*_swap_info_get(swp_entry_t entry
)
1292 struct swap_info_struct
*si
;
1293 unsigned long offset
;
1297 si
= swp_swap_info(entry
);
1300 if (data_race(!(si
->flags
& SWP_USED
)))
1302 offset
= swp_offset(entry
);
1303 if (offset
>= si
->max
)
1305 if (data_race(!si
->swap_map
[swp_offset(entry
)]))
1310 pr_err("%s: %s%08lx\n", __func__
, Unused_offset
, entry
.val
);
1313 pr_err("%s: %s%08lx\n", __func__
, Bad_offset
, entry
.val
);
1316 pr_err("%s: %s%08lx\n", __func__
, Unused_file
, entry
.val
);
1319 pr_err("%s: %s%08lx\n", __func__
, Bad_file
, entry
.val
);
1324 static unsigned char __swap_entry_free_locked(struct swap_info_struct
*si
,
1325 unsigned long offset
,
1326 unsigned char usage
)
1328 unsigned char count
;
1329 unsigned char has_cache
;
1331 count
= si
->swap_map
[offset
];
1333 has_cache
= count
& SWAP_HAS_CACHE
;
1334 count
&= ~SWAP_HAS_CACHE
;
1336 if (usage
== SWAP_HAS_CACHE
) {
1337 VM_BUG_ON(!has_cache
);
1339 } else if (count
== SWAP_MAP_SHMEM
) {
1341 * Or we could insist on shmem.c using a special
1342 * swap_shmem_free() and free_shmem_swap_and_cache()...
1345 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
1346 if (count
== COUNT_CONTINUED
) {
1347 if (swap_count_continued(si
, offset
, count
))
1348 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
1350 count
= SWAP_MAP_MAX
;
1355 usage
= count
| has_cache
;
1357 WRITE_ONCE(si
->swap_map
[offset
], usage
);
1359 WRITE_ONCE(si
->swap_map
[offset
], SWAP_HAS_CACHE
);
1365 * When we get a swap entry, if there aren't some other ways to
1366 * prevent swapoff, such as the folio in swap cache is locked, RCU
1367 * reader side is locked, etc., the swap entry may become invalid
1368 * because of swapoff. Then, we need to enclose all swap related
1369 * functions with get_swap_device() and put_swap_device(), unless the
1370 * swap functions call get/put_swap_device() by themselves.
1372 * RCU reader side lock (including any spinlock) is sufficient to
1373 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1374 * before freeing data structures.
1376 * Check whether swap entry is valid in the swap device. If so,
1377 * return pointer to swap_info_struct, and keep the swap entry valid
1378 * via preventing the swap device from being swapoff, until
1379 * put_swap_device() is called. Otherwise return NULL.
1381 * Notice that swapoff or swapoff+swapon can still happen before the
1382 * percpu_ref_tryget_live() in get_swap_device() or after the
1383 * percpu_ref_put() in put_swap_device() if there isn't any other way
1384 * to prevent swapoff. The caller must be prepared for that. For
1385 * example, the following situation is possible.
1389 * ... swapoff+swapon
1390 * __read_swap_cache_async()
1391 * swapcache_prepare()
1392 * __swap_duplicate()
1394 * // verify PTE not changed
1396 * In __swap_duplicate(), the swap_map need to be checked before
1397 * changing partly because the specified swap entry may be for another
1398 * swap device which has been swapoff. And in do_swap_page(), after
1399 * the page is read from the swap device, the PTE is verified not
1400 * changed with the page table locked to check whether the swap device
1401 * has been swapoff or swapoff+swapon.
1403 struct swap_info_struct
*get_swap_device(swp_entry_t entry
)
1405 struct swap_info_struct
*si
;
1406 unsigned long offset
;
1410 si
= swp_swap_info(entry
);
1413 if (!get_swap_device_info(si
))
1415 offset
= swp_offset(entry
);
1416 if (offset
>= si
->max
)
1421 pr_err("%s: %s%08lx\n", __func__
, Bad_file
, entry
.val
);
1425 pr_err("%s: %s%08lx\n", __func__
, Bad_offset
, entry
.val
);
1426 percpu_ref_put(&si
->users
);
1430 static unsigned char __swap_entry_free(struct swap_info_struct
*si
,
1433 struct swap_cluster_info
*ci
;
1434 unsigned long offset
= swp_offset(entry
);
1435 unsigned char usage
;
1437 ci
= lock_cluster(si
, offset
);
1438 usage
= __swap_entry_free_locked(si
, offset
, 1);
1440 swap_entry_range_free(si
, ci
, swp_entry(si
->type
, offset
), 1);
1446 static bool __swap_entries_free(struct swap_info_struct
*si
,
1447 swp_entry_t entry
, int nr
)
1449 unsigned long offset
= swp_offset(entry
);
1450 unsigned int type
= swp_type(entry
);
1451 struct swap_cluster_info
*ci
;
1452 bool has_cache
= false;
1453 unsigned char count
;
1456 if (nr
<= 1 || swap_count(data_race(si
->swap_map
[offset
])) != 1)
1458 /* cross into another cluster */
1459 if (nr
> SWAPFILE_CLUSTER
- offset
% SWAPFILE_CLUSTER
)
1462 ci
= lock_cluster(si
, offset
);
1463 if (!swap_is_last_map(si
, offset
, nr
, &has_cache
)) {
1467 for (i
= 0; i
< nr
; i
++)
1468 WRITE_ONCE(si
->swap_map
[offset
+ i
], SWAP_HAS_CACHE
);
1470 swap_entry_range_free(si
, ci
, entry
, nr
);
1476 for (i
= 0; i
< nr
; i
++) {
1477 if (data_race(si
->swap_map
[offset
+ i
])) {
1478 count
= __swap_entry_free(si
, swp_entry(type
, offset
+ i
));
1479 if (count
== SWAP_HAS_CACHE
)
1489 * Drop the last HAS_CACHE flag of swap entries, caller have to
1490 * ensure all entries belong to the same cgroup.
1492 static void swap_entry_range_free(struct swap_info_struct
*si
,
1493 struct swap_cluster_info
*ci
,
1494 swp_entry_t entry
, unsigned int nr_pages
)
1496 unsigned long offset
= swp_offset(entry
);
1497 unsigned char *map
= si
->swap_map
+ offset
;
1498 unsigned char *map_end
= map
+ nr_pages
;
1500 /* It should never free entries across different clusters */
1501 VM_BUG_ON(ci
!= offset_to_cluster(si
, offset
+ nr_pages
- 1));
1502 VM_BUG_ON(cluster_is_empty(ci
));
1503 VM_BUG_ON(ci
->count
< nr_pages
);
1505 ci
->count
-= nr_pages
;
1507 VM_BUG_ON(*map
!= SWAP_HAS_CACHE
);
1509 } while (++map
< map_end
);
1511 mem_cgroup_uncharge_swap(entry
, nr_pages
);
1512 swap_range_free(si
, offset
, nr_pages
);
1515 free_cluster(si
, ci
);
1517 partial_free_cluster(si
, ci
);
1520 static void cluster_swap_free_nr(struct swap_info_struct
*si
,
1521 unsigned long offset
, int nr_pages
,
1522 unsigned char usage
)
1524 struct swap_cluster_info
*ci
;
1525 unsigned long end
= offset
+ nr_pages
;
1527 ci
= lock_cluster(si
, offset
);
1529 if (!__swap_entry_free_locked(si
, offset
, usage
))
1530 swap_entry_range_free(si
, ci
, swp_entry(si
->type
, offset
), 1);
1531 } while (++offset
< end
);
1536 * Caller has made sure that the swap device corresponding to entry
1537 * is still around or has not been recycled.
1539 void swap_free_nr(swp_entry_t entry
, int nr_pages
)
1542 struct swap_info_struct
*sis
;
1543 unsigned long offset
= swp_offset(entry
);
1545 sis
= _swap_info_get(entry
);
1550 nr
= min_t(int, nr_pages
, SWAPFILE_CLUSTER
- offset
% SWAPFILE_CLUSTER
);
1551 cluster_swap_free_nr(sis
, offset
, nr
, 1);
1558 * Called after dropping swapcache to decrease refcnt to swap entries.
1560 void put_swap_folio(struct folio
*folio
, swp_entry_t entry
)
1562 unsigned long offset
= swp_offset(entry
);
1563 struct swap_cluster_info
*ci
;
1564 struct swap_info_struct
*si
;
1565 int size
= 1 << swap_entry_order(folio_order(folio
));
1567 si
= _swap_info_get(entry
);
1571 ci
= lock_cluster(si
, offset
);
1572 if (swap_is_has_cache(si
, offset
, size
))
1573 swap_entry_range_free(si
, ci
, entry
, size
);
1575 for (int i
= 0; i
< size
; i
++, entry
.val
++) {
1576 if (!__swap_entry_free_locked(si
, offset
+ i
, SWAP_HAS_CACHE
))
1577 swap_entry_range_free(si
, ci
, entry
, 1);
1583 void swapcache_free_entries(swp_entry_t
*entries
, int n
)
1586 struct swap_cluster_info
*ci
;
1587 struct swap_info_struct
*si
= NULL
;
1592 for (i
= 0; i
< n
; ++i
) {
1593 si
= _swap_info_get(entries
[i
]);
1595 ci
= lock_cluster(si
, swp_offset(entries
[i
]));
1596 swap_entry_range_free(si
, ci
, entries
[i
], 1);
1602 int __swap_count(swp_entry_t entry
)
1604 struct swap_info_struct
*si
= swp_swap_info(entry
);
1605 pgoff_t offset
= swp_offset(entry
);
1607 return swap_count(si
->swap_map
[offset
]);
1611 * How many references to @entry are currently swapped out?
1612 * This does not give an exact answer when swap count is continued,
1613 * but does include the high COUNT_CONTINUED flag to allow for that.
1615 int swap_swapcount(struct swap_info_struct
*si
, swp_entry_t entry
)
1617 pgoff_t offset
= swp_offset(entry
);
1618 struct swap_cluster_info
*ci
;
1621 ci
= lock_cluster(si
, offset
);
1622 count
= swap_count(si
->swap_map
[offset
]);
1628 * How many references to @entry are currently swapped out?
1629 * This considers COUNT_CONTINUED so it returns exact answer.
1631 int swp_swapcount(swp_entry_t entry
)
1633 int count
, tmp_count
, n
;
1634 struct swap_info_struct
*si
;
1635 struct swap_cluster_info
*ci
;
1640 si
= _swap_info_get(entry
);
1644 offset
= swp_offset(entry
);
1646 ci
= lock_cluster(si
, offset
);
1648 count
= swap_count(si
->swap_map
[offset
]);
1649 if (!(count
& COUNT_CONTINUED
))
1652 count
&= ~COUNT_CONTINUED
;
1653 n
= SWAP_MAP_MAX
+ 1;
1655 page
= vmalloc_to_page(si
->swap_map
+ offset
);
1656 offset
&= ~PAGE_MASK
;
1657 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
1660 page
= list_next_entry(page
, lru
);
1661 map
= kmap_local_page(page
);
1662 tmp_count
= map
[offset
];
1665 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
1666 n
*= (SWAP_CONT_MAX
+ 1);
1667 } while (tmp_count
& COUNT_CONTINUED
);
1673 static bool swap_page_trans_huge_swapped(struct swap_info_struct
*si
,
1674 swp_entry_t entry
, int order
)
1676 struct swap_cluster_info
*ci
;
1677 unsigned char *map
= si
->swap_map
;
1678 unsigned int nr_pages
= 1 << order
;
1679 unsigned long roffset
= swp_offset(entry
);
1680 unsigned long offset
= round_down(roffset
, nr_pages
);
1684 ci
= lock_cluster(si
, offset
);
1685 if (nr_pages
== 1) {
1686 if (swap_count(map
[roffset
]))
1690 for (i
= 0; i
< nr_pages
; i
++) {
1691 if (swap_count(map
[offset
+ i
])) {
1701 static bool folio_swapped(struct folio
*folio
)
1703 swp_entry_t entry
= folio
->swap
;
1704 struct swap_info_struct
*si
= _swap_info_get(entry
);
1709 if (!IS_ENABLED(CONFIG_THP_SWAP
) || likely(!folio_test_large(folio
)))
1710 return swap_swapcount(si
, entry
) != 0;
1712 return swap_page_trans_huge_swapped(si
, entry
, folio_order(folio
));
1715 static bool folio_swapcache_freeable(struct folio
*folio
)
1717 VM_BUG_ON_FOLIO(!folio_test_locked(folio
), folio
);
1719 if (!folio_test_swapcache(folio
))
1721 if (folio_test_writeback(folio
))
1725 * Once hibernation has begun to create its image of memory,
1726 * there's a danger that one of the calls to folio_free_swap()
1727 * - most probably a call from __try_to_reclaim_swap() while
1728 * hibernation is allocating its own swap pages for the image,
1729 * but conceivably even a call from memory reclaim - will free
1730 * the swap from a folio which has already been recorded in the
1731 * image as a clean swapcache folio, and then reuse its swap for
1732 * another page of the image. On waking from hibernation, the
1733 * original folio might be freed under memory pressure, then
1734 * later read back in from swap, now with the wrong data.
1736 * Hibernation suspends storage while it is writing the image
1737 * to disk so check that here.
1739 if (pm_suspended_storage())
1746 * folio_free_swap() - Free the swap space used for this folio.
1747 * @folio: The folio to remove.
1749 * If swap is getting full, or if there are no more mappings of this folio,
1750 * then call folio_free_swap to free its swap space.
1752 * Return: true if we were able to release the swap space.
1754 bool folio_free_swap(struct folio
*folio
)
1756 if (!folio_swapcache_freeable(folio
))
1758 if (folio_swapped(folio
))
1761 delete_from_swap_cache(folio
);
1762 folio_set_dirty(folio
);
1767 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1768 * reclaim their cache if no more references remain.
1769 * @entry: First entry of range.
1770 * @nr: Number of entries in range.
1772 * For each swap entry in the contiguous range, release a reference. If any swap
1773 * entries become free, try to reclaim their underlying folios, if present. The
1774 * offset range is defined by [entry.offset, entry.offset + nr).
1776 void free_swap_and_cache_nr(swp_entry_t entry
, int nr
)
1778 const unsigned long start_offset
= swp_offset(entry
);
1779 const unsigned long end_offset
= start_offset
+ nr
;
1780 struct swap_info_struct
*si
;
1781 bool any_only_cache
= false;
1782 unsigned long offset
;
1784 if (non_swap_entry(entry
))
1787 si
= get_swap_device(entry
);
1791 if (WARN_ON(end_offset
> si
->max
))
1795 * First free all entries in the range.
1797 any_only_cache
= __swap_entries_free(si
, entry
, nr
);
1800 * Short-circuit the below loop if none of the entries had their
1801 * reference drop to zero.
1803 if (!any_only_cache
)
1807 * Now go back over the range trying to reclaim the swap cache. This is
1808 * more efficient for large folios because we will only try to reclaim
1809 * the swap once per folio in the common case. If we do
1810 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1811 * latter will get a reference and lock the folio for every individual
1812 * page but will only succeed once the swap slot for every subpage is
1815 for (offset
= start_offset
; offset
< end_offset
; offset
+= nr
) {
1817 if (READ_ONCE(si
->swap_map
[offset
]) == SWAP_HAS_CACHE
) {
1819 * Folios are always naturally aligned in swap so
1820 * advance forward to the next boundary. Zero means no
1821 * folio was found for the swap entry, so advance by 1
1822 * in this case. Negative value means folio was found
1823 * but could not be reclaimed. Here we can still advance
1824 * to the next boundary.
1826 nr
= __try_to_reclaim_swap(si
, offset
,
1827 TTRS_UNMAPPED
| TTRS_FULL
);
1832 nr
= ALIGN(offset
+ 1, nr
) - offset
;
1837 put_swap_device(si
);
1840 #ifdef CONFIG_HIBERNATION
1842 swp_entry_t
get_swap_page_of_type(int type
)
1844 struct swap_info_struct
*si
= swap_type_to_swap_info(type
);
1845 swp_entry_t entry
= {0};
1850 /* This is called for allocating swap entry, not cache */
1851 if (get_swap_device_info(si
)) {
1852 if ((si
->flags
& SWP_WRITEOK
) && scan_swap_map_slots(si
, 1, 1, &entry
, 0))
1853 atomic_long_dec(&nr_swap_pages
);
1854 put_swap_device(si
);
1861 * Find the swap type that corresponds to given device (if any).
1863 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1864 * from 0, in which the swap header is expected to be located.
1866 * This is needed for the suspend to disk (aka swsusp).
1868 int swap_type_of(dev_t device
, sector_t offset
)
1875 spin_lock(&swap_lock
);
1876 for (type
= 0; type
< nr_swapfiles
; type
++) {
1877 struct swap_info_struct
*sis
= swap_info
[type
];
1879 if (!(sis
->flags
& SWP_WRITEOK
))
1882 if (device
== sis
->bdev
->bd_dev
) {
1883 struct swap_extent
*se
= first_se(sis
);
1885 if (se
->start_block
== offset
) {
1886 spin_unlock(&swap_lock
);
1891 spin_unlock(&swap_lock
);
1895 int find_first_swap(dev_t
*device
)
1899 spin_lock(&swap_lock
);
1900 for (type
= 0; type
< nr_swapfiles
; type
++) {
1901 struct swap_info_struct
*sis
= swap_info
[type
];
1903 if (!(sis
->flags
& SWP_WRITEOK
))
1905 *device
= sis
->bdev
->bd_dev
;
1906 spin_unlock(&swap_lock
);
1909 spin_unlock(&swap_lock
);
1914 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1915 * corresponding to given index in swap_info (swap type).
1917 sector_t
swapdev_block(int type
, pgoff_t offset
)
1919 struct swap_info_struct
*si
= swap_type_to_swap_info(type
);
1920 struct swap_extent
*se
;
1922 if (!si
|| !(si
->flags
& SWP_WRITEOK
))
1924 se
= offset_to_swap_extent(si
, offset
);
1925 return se
->start_block
+ (offset
- se
->start_page
);
1929 * Return either the total number of swap pages of given type, or the number
1930 * of free pages of that type (depending on @free)
1932 * This is needed for software suspend
1934 unsigned int count_swap_pages(int type
, int free
)
1938 spin_lock(&swap_lock
);
1939 if ((unsigned int)type
< nr_swapfiles
) {
1940 struct swap_info_struct
*sis
= swap_info
[type
];
1942 spin_lock(&sis
->lock
);
1943 if (sis
->flags
& SWP_WRITEOK
) {
1946 n
-= swap_usage_in_pages(sis
);
1948 spin_unlock(&sis
->lock
);
1950 spin_unlock(&swap_lock
);
1953 #endif /* CONFIG_HIBERNATION */
1955 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1957 return pte_same(pte_swp_clear_flags(pte
), swp_pte
);
1961 * No need to decide whether this PTE shares the swap entry with others,
1962 * just let do_wp_page work it out if a write is requested later - to
1963 * force COW, vm_page_prot omits write permission from any private vma.
1965 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1966 unsigned long addr
, swp_entry_t entry
, struct folio
*folio
)
1969 struct folio
*swapcache
;
1971 pte_t
*pte
, new_pte
, old_pte
;
1972 bool hwpoisoned
= false;
1976 folio
= ksm_might_need_to_copy(folio
, vma
, addr
);
1977 if (unlikely(!folio
))
1979 else if (unlikely(folio
== ERR_PTR(-EHWPOISON
))) {
1984 page
= folio_file_page(folio
, swp_offset(entry
));
1985 if (PageHWPoison(page
))
1988 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1989 if (unlikely(!pte
|| !pte_same_as_swp(ptep_get(pte
),
1990 swp_entry_to_pte(entry
)))) {
1995 old_pte
= ptep_get(pte
);
1997 if (unlikely(hwpoisoned
|| !folio_test_uptodate(folio
))) {
1998 swp_entry_t swp_entry
;
2000 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
2002 swp_entry
= make_hwpoison_entry(page
);
2004 swp_entry
= make_poisoned_swp_entry();
2006 new_pte
= swp_entry_to_pte(swp_entry
);
2012 * Some architectures may have to restore extra metadata to the page
2013 * when reading from swap. This metadata may be indexed by swap entry
2014 * so this must be called before swap_free().
2016 arch_swap_restore(folio_swap(entry
, folio
), folio
);
2018 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
2019 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
2021 if (folio
== swapcache
) {
2022 rmap_t rmap_flags
= RMAP_NONE
;
2025 * See do_swap_page(): writeback would be problematic.
2026 * However, we do a folio_wait_writeback() just before this
2027 * call and have the folio locked.
2029 VM_BUG_ON_FOLIO(folio_test_writeback(folio
), folio
);
2030 if (pte_swp_exclusive(old_pte
))
2031 rmap_flags
|= RMAP_EXCLUSIVE
;
2033 * We currently only expect small !anon folios, which are either
2034 * fully exclusive or fully shared. If we ever get large folios
2035 * here, we have to be careful.
2037 if (!folio_test_anon(folio
)) {
2038 VM_WARN_ON_ONCE(folio_test_large(folio
));
2039 VM_WARN_ON_FOLIO(!folio_test_locked(folio
), folio
);
2040 folio_add_new_anon_rmap(folio
, vma
, addr
, rmap_flags
);
2042 folio_add_anon_rmap_pte(folio
, page
, vma
, addr
, rmap_flags
);
2044 } else { /* ksm created a completely new copy */
2045 folio_add_new_anon_rmap(folio
, vma
, addr
, RMAP_EXCLUSIVE
);
2046 folio_add_lru_vma(folio
, vma
);
2048 new_pte
= pte_mkold(mk_pte(page
, vma
->vm_page_prot
));
2049 if (pte_swp_soft_dirty(old_pte
))
2050 new_pte
= pte_mksoft_dirty(new_pte
);
2051 if (pte_swp_uffd_wp(old_pte
))
2052 new_pte
= pte_mkuffd_wp(new_pte
);
2054 set_pte_at(vma
->vm_mm
, addr
, pte
, new_pte
);
2058 pte_unmap_unlock(pte
, ptl
);
2059 if (folio
!= swapcache
) {
2060 folio_unlock(folio
);
2066 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2067 unsigned long addr
, unsigned long end
,
2071 struct swap_info_struct
*si
;
2073 si
= swap_info
[type
];
2075 struct folio
*folio
;
2076 unsigned long offset
;
2077 unsigned char swp_count
;
2083 pte
= pte_offset_map(pmd
, addr
);
2088 ptent
= ptep_get_lockless(pte
);
2090 if (!is_swap_pte(ptent
))
2093 entry
= pte_to_swp_entry(ptent
);
2094 if (swp_type(entry
) != type
)
2097 offset
= swp_offset(entry
);
2101 folio
= swap_cache_get_folio(entry
, vma
, addr
);
2103 struct vm_fault vmf
= {
2106 .real_address
= addr
,
2110 folio
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
2114 swp_count
= READ_ONCE(si
->swap_map
[offset
]);
2115 if (swp_count
== 0 || swp_count
== SWAP_MAP_BAD
)
2121 folio_wait_writeback(folio
);
2122 ret
= unuse_pte(vma
, pmd
, addr
, entry
, folio
);
2124 folio_unlock(folio
);
2129 folio_free_swap(folio
);
2130 folio_unlock(folio
);
2132 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2139 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
2140 unsigned long addr
, unsigned long end
,
2147 pmd
= pmd_offset(pud
, addr
);
2150 next
= pmd_addr_end(addr
, end
);
2151 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, type
);
2154 } while (pmd
++, addr
= next
, addr
!= end
);
2158 static inline int unuse_pud_range(struct vm_area_struct
*vma
, p4d_t
*p4d
,
2159 unsigned long addr
, unsigned long end
,
2166 pud
= pud_offset(p4d
, addr
);
2168 next
= pud_addr_end(addr
, end
);
2169 if (pud_none_or_clear_bad(pud
))
2171 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, type
);
2174 } while (pud
++, addr
= next
, addr
!= end
);
2178 static inline int unuse_p4d_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
2179 unsigned long addr
, unsigned long end
,
2186 p4d
= p4d_offset(pgd
, addr
);
2188 next
= p4d_addr_end(addr
, end
);
2189 if (p4d_none_or_clear_bad(p4d
))
2191 ret
= unuse_pud_range(vma
, p4d
, addr
, next
, type
);
2194 } while (p4d
++, addr
= next
, addr
!= end
);
2198 static int unuse_vma(struct vm_area_struct
*vma
, unsigned int type
)
2201 unsigned long addr
, end
, next
;
2204 addr
= vma
->vm_start
;
2207 pgd
= pgd_offset(vma
->vm_mm
, addr
);
2209 next
= pgd_addr_end(addr
, end
);
2210 if (pgd_none_or_clear_bad(pgd
))
2212 ret
= unuse_p4d_range(vma
, pgd
, addr
, next
, type
);
2215 } while (pgd
++, addr
= next
, addr
!= end
);
2219 static int unuse_mm(struct mm_struct
*mm
, unsigned int type
)
2221 struct vm_area_struct
*vma
;
2223 VMA_ITERATOR(vmi
, mm
, 0);
2226 for_each_vma(vmi
, vma
) {
2227 if (vma
->anon_vma
&& !is_vm_hugetlb_page(vma
)) {
2228 ret
= unuse_vma(vma
, type
);
2235 mmap_read_unlock(mm
);
2240 * Scan swap_map from current position to next entry still in use.
2241 * Return 0 if there are no inuse entries after prev till end of
2244 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
2248 unsigned char count
;
2251 * No need for swap_lock here: we're just looking
2252 * for whether an entry is in use, not modifying it; false
2253 * hits are okay, and sys_swapoff() has already prevented new
2254 * allocations from this area (while holding swap_lock).
2256 for (i
= prev
+ 1; i
< si
->max
; i
++) {
2257 count
= READ_ONCE(si
->swap_map
[i
]);
2258 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
2260 if ((i
% LATENCY_LIMIT
) == 0)
2270 static int try_to_unuse(unsigned int type
)
2272 struct mm_struct
*prev_mm
;
2273 struct mm_struct
*mm
;
2274 struct list_head
*p
;
2276 struct swap_info_struct
*si
= swap_info
[type
];
2277 struct folio
*folio
;
2281 if (!swap_usage_in_pages(si
))
2285 retval
= shmem_unuse(type
);
2292 spin_lock(&mmlist_lock
);
2293 p
= &init_mm
.mmlist
;
2294 while (swap_usage_in_pages(si
) &&
2295 !signal_pending(current
) &&
2296 (p
= p
->next
) != &init_mm
.mmlist
) {
2298 mm
= list_entry(p
, struct mm_struct
, mmlist
);
2299 if (!mmget_not_zero(mm
))
2301 spin_unlock(&mmlist_lock
);
2304 retval
= unuse_mm(mm
, type
);
2311 * Make sure that we aren't completely killing
2312 * interactive performance.
2315 spin_lock(&mmlist_lock
);
2317 spin_unlock(&mmlist_lock
);
2322 while (swap_usage_in_pages(si
) &&
2323 !signal_pending(current
) &&
2324 (i
= find_next_to_unuse(si
, i
)) != 0) {
2326 entry
= swp_entry(type
, i
);
2327 folio
= filemap_get_folio(swap_address_space(entry
), swap_cache_index(entry
));
2332 * It is conceivable that a racing task removed this folio from
2333 * swap cache just before we acquired the page lock. The folio
2334 * might even be back in swap cache on another swap area. But
2335 * that is okay, folio_free_swap() only removes stale folios.
2338 folio_wait_writeback(folio
);
2339 folio_free_swap(folio
);
2340 folio_unlock(folio
);
2345 * Lets check again to see if there are still swap entries in the map.
2346 * If yes, we would need to do retry the unuse logic again.
2347 * Under global memory pressure, swap entries can be reinserted back
2348 * into process space after the mmlist loop above passes over them.
2350 * Limit the number of retries? No: when mmget_not_zero()
2351 * above fails, that mm is likely to be freeing swap from
2352 * exit_mmap(), which proceeds at its own independent pace;
2353 * and even shmem_writepage() could have been preempted after
2354 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2355 * and robust (though cpu-intensive) just to keep retrying.
2357 if (swap_usage_in_pages(si
)) {
2358 if (!signal_pending(current
))
2365 * Make sure that further cleanups after try_to_unuse() returns happen
2366 * after swap_range_free() reduces si->inuse_pages to 0.
2373 * After a successful try_to_unuse, if no swap is now in use, we know
2374 * we can empty the mmlist. swap_lock must be held on entry and exit.
2375 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2376 * added to the mmlist just after page_duplicate - before would be racy.
2378 static void drain_mmlist(void)
2380 struct list_head
*p
, *next
;
2383 for (type
= 0; type
< nr_swapfiles
; type
++)
2384 if (swap_usage_in_pages(swap_info
[type
]))
2386 spin_lock(&mmlist_lock
);
2387 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
2389 spin_unlock(&mmlist_lock
);
2393 * Free all of a swapdev's extent information
2395 static void destroy_swap_extents(struct swap_info_struct
*sis
)
2397 while (!RB_EMPTY_ROOT(&sis
->swap_extent_root
)) {
2398 struct rb_node
*rb
= sis
->swap_extent_root
.rb_node
;
2399 struct swap_extent
*se
= rb_entry(rb
, struct swap_extent
, rb_node
);
2401 rb_erase(rb
, &sis
->swap_extent_root
);
2405 if (sis
->flags
& SWP_ACTIVATED
) {
2406 struct file
*swap_file
= sis
->swap_file
;
2407 struct address_space
*mapping
= swap_file
->f_mapping
;
2409 sis
->flags
&= ~SWP_ACTIVATED
;
2410 if (mapping
->a_ops
->swap_deactivate
)
2411 mapping
->a_ops
->swap_deactivate(swap_file
);
2416 * Add a block range (and the corresponding page range) into this swapdev's
2419 * This function rather assumes that it is called in ascending page order.
2422 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
2423 unsigned long nr_pages
, sector_t start_block
)
2425 struct rb_node
**link
= &sis
->swap_extent_root
.rb_node
, *parent
= NULL
;
2426 struct swap_extent
*se
;
2427 struct swap_extent
*new_se
;
2430 * place the new node at the right most since the
2431 * function is called in ascending page order.
2435 link
= &parent
->rb_right
;
2439 se
= rb_entry(parent
, struct swap_extent
, rb_node
);
2440 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
2441 if (se
->start_block
+ se
->nr_pages
== start_block
) {
2443 se
->nr_pages
+= nr_pages
;
2448 /* No merge, insert a new extent. */
2449 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
2452 new_se
->start_page
= start_page
;
2453 new_se
->nr_pages
= nr_pages
;
2454 new_se
->start_block
= start_block
;
2456 rb_link_node(&new_se
->rb_node
, parent
, link
);
2457 rb_insert_color(&new_se
->rb_node
, &sis
->swap_extent_root
);
2460 EXPORT_SYMBOL_GPL(add_swap_extent
);
2463 * A `swap extent' is a simple thing which maps a contiguous range of pages
2464 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2465 * built at swapon time and is then used at swap_writepage/swap_read_folio
2466 * time for locating where on disk a page belongs.
2468 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2469 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2470 * swap files identically.
2472 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2473 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2474 * swapfiles are handled *identically* after swapon time.
2476 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2477 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2478 * blocks are found which do not fall within the PAGE_SIZE alignment
2479 * requirements, they are simply tossed out - we will never use those blocks
2482 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2483 * prevents users from writing to the swap device, which will corrupt memory.
2485 * The amount of disk space which a single swap extent represents varies.
2486 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2487 * extents in the rbtree. - akpm.
2489 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
2491 struct file
*swap_file
= sis
->swap_file
;
2492 struct address_space
*mapping
= swap_file
->f_mapping
;
2493 struct inode
*inode
= mapping
->host
;
2496 if (S_ISBLK(inode
->i_mode
)) {
2497 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2502 if (mapping
->a_ops
->swap_activate
) {
2503 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
2506 sis
->flags
|= SWP_ACTIVATED
;
2507 if ((sis
->flags
& SWP_FS_OPS
) &&
2508 sio_pool_init() != 0) {
2509 destroy_swap_extents(sis
);
2515 return generic_swapfile_activate(sis
, swap_file
, span
);
2518 static int swap_node(struct swap_info_struct
*si
)
2520 struct block_device
*bdev
;
2525 bdev
= si
->swap_file
->f_inode
->i_sb
->s_bdev
;
2527 return bdev
? bdev
->bd_disk
->node_id
: NUMA_NO_NODE
;
2530 static void setup_swap_info(struct swap_info_struct
*si
, int prio
,
2531 unsigned char *swap_map
,
2532 struct swap_cluster_info
*cluster_info
,
2533 unsigned long *zeromap
)
2540 si
->prio
= --least_priority
;
2542 * the plist prio is negated because plist ordering is
2543 * low-to-high, while swap ordering is high-to-low
2545 si
->list
.prio
= -si
->prio
;
2548 si
->avail_lists
[i
].prio
= -si
->prio
;
2550 if (swap_node(si
) == i
)
2551 si
->avail_lists
[i
].prio
= 1;
2553 si
->avail_lists
[i
].prio
= -si
->prio
;
2556 si
->swap_map
= swap_map
;
2557 si
->cluster_info
= cluster_info
;
2558 si
->zeromap
= zeromap
;
2561 static void _enable_swap_info(struct swap_info_struct
*si
)
2563 atomic_long_add(si
->pages
, &nr_swap_pages
);
2564 total_swap_pages
+= si
->pages
;
2566 assert_spin_locked(&swap_lock
);
2568 * both lists are plists, and thus priority ordered.
2569 * swap_active_head needs to be priority ordered for swapoff(),
2570 * which on removal of any swap_info_struct with an auto-assigned
2571 * (i.e. negative) priority increments the auto-assigned priority
2572 * of any lower-priority swap_info_structs.
2573 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2574 * which allocates swap pages from the highest available priority
2577 plist_add(&si
->list
, &swap_active_head
);
2579 /* Add back to available list */
2580 add_to_avail_list(si
, true);
2583 static void enable_swap_info(struct swap_info_struct
*si
, int prio
,
2584 unsigned char *swap_map
,
2585 struct swap_cluster_info
*cluster_info
,
2586 unsigned long *zeromap
)
2588 spin_lock(&swap_lock
);
2589 spin_lock(&si
->lock
);
2590 setup_swap_info(si
, prio
, swap_map
, cluster_info
, zeromap
);
2591 spin_unlock(&si
->lock
);
2592 spin_unlock(&swap_lock
);
2594 * Finished initializing swap device, now it's safe to reference it.
2596 percpu_ref_resurrect(&si
->users
);
2597 spin_lock(&swap_lock
);
2598 spin_lock(&si
->lock
);
2599 _enable_swap_info(si
);
2600 spin_unlock(&si
->lock
);
2601 spin_unlock(&swap_lock
);
2604 static void reinsert_swap_info(struct swap_info_struct
*si
)
2606 spin_lock(&swap_lock
);
2607 spin_lock(&si
->lock
);
2608 setup_swap_info(si
, si
->prio
, si
->swap_map
, si
->cluster_info
, si
->zeromap
);
2609 _enable_swap_info(si
);
2610 spin_unlock(&si
->lock
);
2611 spin_unlock(&swap_lock
);
2614 static bool __has_usable_swap(void)
2616 return !plist_head_empty(&swap_active_head
);
2619 bool has_usable_swap(void)
2623 spin_lock(&swap_lock
);
2624 ret
= __has_usable_swap();
2625 spin_unlock(&swap_lock
);
2630 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2631 * see the updated flags, so there will be no more allocations.
2633 static void wait_for_allocation(struct swap_info_struct
*si
)
2635 unsigned long offset
;
2636 unsigned long end
= ALIGN(si
->max
, SWAPFILE_CLUSTER
);
2637 struct swap_cluster_info
*ci
;
2639 BUG_ON(si
->flags
& SWP_WRITEOK
);
2641 for (offset
= 0; offset
< end
; offset
+= SWAPFILE_CLUSTER
) {
2642 ci
= lock_cluster(si
, offset
);
2644 offset
+= SWAPFILE_CLUSTER
;
2648 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
2650 struct swap_info_struct
*p
= NULL
;
2651 unsigned char *swap_map
;
2652 unsigned long *zeromap
;
2653 struct swap_cluster_info
*cluster_info
;
2654 struct file
*swap_file
, *victim
;
2655 struct address_space
*mapping
;
2656 struct inode
*inode
;
2657 struct filename
*pathname
;
2660 if (!capable(CAP_SYS_ADMIN
))
2663 BUG_ON(!current
->mm
);
2665 pathname
= getname(specialfile
);
2666 if (IS_ERR(pathname
))
2667 return PTR_ERR(pathname
);
2669 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
2670 err
= PTR_ERR(victim
);
2674 mapping
= victim
->f_mapping
;
2675 spin_lock(&swap_lock
);
2676 plist_for_each_entry(p
, &swap_active_head
, list
) {
2677 if (p
->flags
& SWP_WRITEOK
) {
2678 if (p
->swap_file
->f_mapping
== mapping
) {
2686 spin_unlock(&swap_lock
);
2689 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
2690 vm_unacct_memory(p
->pages
);
2693 spin_unlock(&swap_lock
);
2696 spin_lock(&p
->lock
);
2697 del_from_avail_list(p
, true);
2699 struct swap_info_struct
*si
= p
;
2702 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
2705 for_each_node(nid
) {
2706 if (si
->avail_lists
[nid
].prio
!= 1)
2707 si
->avail_lists
[nid
].prio
--;
2712 plist_del(&p
->list
, &swap_active_head
);
2713 atomic_long_sub(p
->pages
, &nr_swap_pages
);
2714 total_swap_pages
-= p
->pages
;
2715 spin_unlock(&p
->lock
);
2716 spin_unlock(&swap_lock
);
2718 wait_for_allocation(p
);
2720 disable_swap_slots_cache_lock();
2722 set_current_oom_origin();
2723 err
= try_to_unuse(p
->type
);
2724 clear_current_oom_origin();
2727 /* re-insert swap space back into swap_list */
2728 reinsert_swap_info(p
);
2729 reenable_swap_slots_cache_unlock();
2733 reenable_swap_slots_cache_unlock();
2736 * Wait for swap operations protected by get/put_swap_device()
2737 * to complete. Because of synchronize_rcu() here, all swap
2738 * operations protected by RCU reader side lock (including any
2739 * spinlock) will be waited too. This makes it easy to
2740 * prevent folio_test_swapcache() and the following swap cache
2741 * operations from racing with swapoff.
2743 percpu_ref_kill(&p
->users
);
2745 wait_for_completion(&p
->comp
);
2747 flush_work(&p
->discard_work
);
2748 flush_work(&p
->reclaim_work
);
2750 destroy_swap_extents(p
);
2751 if (p
->flags
& SWP_CONTINUED
)
2752 free_swap_count_continuations(p
);
2754 if (!p
->bdev
|| !bdev_nonrot(p
->bdev
))
2755 atomic_dec(&nr_rotate_swap
);
2757 mutex_lock(&swapon_mutex
);
2758 spin_lock(&swap_lock
);
2759 spin_lock(&p
->lock
);
2762 swap_file
= p
->swap_file
;
2763 p
->swap_file
= NULL
;
2765 swap_map
= p
->swap_map
;
2767 zeromap
= p
->zeromap
;
2769 cluster_info
= p
->cluster_info
;
2770 p
->cluster_info
= NULL
;
2771 spin_unlock(&p
->lock
);
2772 spin_unlock(&swap_lock
);
2773 arch_swap_invalidate_area(p
->type
);
2774 zswap_swapoff(p
->type
);
2775 mutex_unlock(&swapon_mutex
);
2776 free_percpu(p
->percpu_cluster
);
2777 p
->percpu_cluster
= NULL
;
2778 kfree(p
->global_cluster
);
2779 p
->global_cluster
= NULL
;
2782 kvfree(cluster_info
);
2783 /* Destroy swap account information */
2784 swap_cgroup_swapoff(p
->type
);
2785 exit_swap_address_space(p
->type
);
2787 inode
= mapping
->host
;
2790 inode
->i_flags
&= ~S_SWAPFILE
;
2791 inode_unlock(inode
);
2792 filp_close(swap_file
, NULL
);
2795 * Clear the SWP_USED flag after all resources are freed so that swapon
2796 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2797 * not hold p->lock after we cleared its SWP_WRITEOK.
2799 spin_lock(&swap_lock
);
2801 spin_unlock(&swap_lock
);
2804 atomic_inc(&proc_poll_event
);
2805 wake_up_interruptible(&proc_poll_wait
);
2808 filp_close(victim
, NULL
);
2814 #ifdef CONFIG_PROC_FS
2815 static __poll_t
swaps_poll(struct file
*file
, poll_table
*wait
)
2817 struct seq_file
*seq
= file
->private_data
;
2819 poll_wait(file
, &proc_poll_wait
, wait
);
2821 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2822 seq
->poll_event
= atomic_read(&proc_poll_event
);
2823 return EPOLLIN
| EPOLLRDNORM
| EPOLLERR
| EPOLLPRI
;
2826 return EPOLLIN
| EPOLLRDNORM
;
2830 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2832 struct swap_info_struct
*si
;
2836 mutex_lock(&swapon_mutex
);
2839 return SEQ_START_TOKEN
;
2841 for (type
= 0; (si
= swap_type_to_swap_info(type
)); type
++) {
2842 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2851 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2853 struct swap_info_struct
*si
= v
;
2856 if (v
== SEQ_START_TOKEN
)
2859 type
= si
->type
+ 1;
2862 for (; (si
= swap_type_to_swap_info(type
)); type
++) {
2863 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2871 static void swap_stop(struct seq_file
*swap
, void *v
)
2873 mutex_unlock(&swapon_mutex
);
2876 static int swap_show(struct seq_file
*swap
, void *v
)
2878 struct swap_info_struct
*si
= v
;
2881 unsigned long bytes
, inuse
;
2883 if (si
== SEQ_START_TOKEN
) {
2884 seq_puts(swap
, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2888 bytes
= K(si
->pages
);
2889 inuse
= K(swap_usage_in_pages(si
));
2891 file
= si
->swap_file
;
2892 len
= seq_file_path(swap
, file
, " \t\n\\");
2893 seq_printf(swap
, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2894 len
< 40 ? 40 - len
: 1, " ",
2895 S_ISBLK(file_inode(file
)->i_mode
) ?
2896 "partition" : "file\t",
2897 bytes
, bytes
< 10000000 ? "\t" : "",
2898 inuse
, inuse
< 10000000 ? "\t" : "",
2903 static const struct seq_operations swaps_op
= {
2904 .start
= swap_start
,
2910 static int swaps_open(struct inode
*inode
, struct file
*file
)
2912 struct seq_file
*seq
;
2915 ret
= seq_open(file
, &swaps_op
);
2919 seq
= file
->private_data
;
2920 seq
->poll_event
= atomic_read(&proc_poll_event
);
2924 static const struct proc_ops swaps_proc_ops
= {
2925 .proc_flags
= PROC_ENTRY_PERMANENT
,
2926 .proc_open
= swaps_open
,
2927 .proc_read
= seq_read
,
2928 .proc_lseek
= seq_lseek
,
2929 .proc_release
= seq_release
,
2930 .proc_poll
= swaps_poll
,
2933 static int __init
procswaps_init(void)
2935 proc_create("swaps", 0, NULL
, &swaps_proc_ops
);
2938 __initcall(procswaps_init
);
2939 #endif /* CONFIG_PROC_FS */
2941 #ifdef MAX_SWAPFILES_CHECK
2942 static int __init
max_swapfiles_check(void)
2944 MAX_SWAPFILES_CHECK();
2947 late_initcall(max_swapfiles_check
);
2950 static struct swap_info_struct
*alloc_swap_info(void)
2952 struct swap_info_struct
*p
;
2953 struct swap_info_struct
*defer
= NULL
;
2957 p
= kvzalloc(struct_size(p
, avail_lists
, nr_node_ids
), GFP_KERNEL
);
2959 return ERR_PTR(-ENOMEM
);
2961 if (percpu_ref_init(&p
->users
, swap_users_ref_free
,
2962 PERCPU_REF_INIT_DEAD
, GFP_KERNEL
)) {
2964 return ERR_PTR(-ENOMEM
);
2967 spin_lock(&swap_lock
);
2968 for (type
= 0; type
< nr_swapfiles
; type
++) {
2969 if (!(swap_info
[type
]->flags
& SWP_USED
))
2972 if (type
>= MAX_SWAPFILES
) {
2973 spin_unlock(&swap_lock
);
2974 percpu_ref_exit(&p
->users
);
2976 return ERR_PTR(-EPERM
);
2978 if (type
>= nr_swapfiles
) {
2981 * Publish the swap_info_struct after initializing it.
2982 * Note that kvzalloc() above zeroes all its fields.
2984 smp_store_release(&swap_info
[type
], p
); /* rcu_assign_pointer() */
2988 p
= swap_info
[type
];
2990 * Do not memset this entry: a racing procfs swap_next()
2991 * would be relying on p->type to remain valid.
2994 p
->swap_extent_root
= RB_ROOT
;
2995 plist_node_init(&p
->list
, 0);
2997 plist_node_init(&p
->avail_lists
[i
], 0);
2998 p
->flags
= SWP_USED
;
2999 spin_unlock(&swap_lock
);
3001 percpu_ref_exit(&defer
->users
);
3004 spin_lock_init(&p
->lock
);
3005 spin_lock_init(&p
->cont_lock
);
3006 atomic_long_set(&p
->inuse_pages
, SWAP_USAGE_OFFLIST_BIT
);
3007 init_completion(&p
->comp
);
3012 static int claim_swapfile(struct swap_info_struct
*si
, struct inode
*inode
)
3014 if (S_ISBLK(inode
->i_mode
)) {
3015 si
->bdev
= I_BDEV(inode
);
3017 * Zoned block devices contain zones that have a sequential
3018 * write only restriction. Hence zoned block devices are not
3019 * suitable for swapping. Disallow them here.
3021 if (bdev_is_zoned(si
->bdev
))
3023 si
->flags
|= SWP_BLKDEV
;
3024 } else if (S_ISREG(inode
->i_mode
)) {
3025 si
->bdev
= inode
->i_sb
->s_bdev
;
3033 * Find out how many pages are allowed for a single swap device. There
3034 * are two limiting factors:
3035 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3036 * 2) the number of bits in the swap pte, as defined by the different
3039 * In order to find the largest possible bit mask, a swap entry with
3040 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3041 * decoded to a swp_entry_t again, and finally the swap offset is
3044 * This will mask all the bits from the initial ~0UL mask that can't
3045 * be encoded in either the swp_entry_t or the architecture definition
3048 unsigned long generic_max_swapfile_size(void)
3050 return swp_offset(pte_to_swp_entry(
3051 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3054 /* Can be overridden by an architecture for additional checks. */
3055 __weak
unsigned long arch_max_swapfile_size(void)
3057 return generic_max_swapfile_size();
3060 static unsigned long read_swap_header(struct swap_info_struct
*si
,
3061 union swap_header
*swap_header
,
3062 struct inode
*inode
)
3065 unsigned long maxpages
;
3066 unsigned long swapfilepages
;
3067 unsigned long last_page
;
3069 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
3070 pr_err("Unable to find swap-space signature\n");
3074 /* swap partition endianness hack... */
3075 if (swab32(swap_header
->info
.version
) == 1) {
3076 swab32s(&swap_header
->info
.version
);
3077 swab32s(&swap_header
->info
.last_page
);
3078 swab32s(&swap_header
->info
.nr_badpages
);
3079 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
3081 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
3082 swab32s(&swap_header
->info
.badpages
[i
]);
3084 /* Check the swap header's sub-version */
3085 if (swap_header
->info
.version
!= 1) {
3086 pr_warn("Unable to handle swap header version %d\n",
3087 swap_header
->info
.version
);
3091 maxpages
= swapfile_maximum_size
;
3092 last_page
= swap_header
->info
.last_page
;
3094 pr_warn("Empty swap-file\n");
3097 if (last_page
> maxpages
) {
3098 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3099 K(maxpages
), K(last_page
));
3101 if (maxpages
> last_page
) {
3102 maxpages
= last_page
+ 1;
3103 /* p->max is an unsigned int: don't overflow it */
3104 if ((unsigned int)maxpages
== 0)
3105 maxpages
= UINT_MAX
;
3110 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
3111 if (swapfilepages
&& maxpages
> swapfilepages
) {
3112 pr_warn("Swap area shorter than signature indicates\n");
3115 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
3117 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
3123 #define SWAP_CLUSTER_INFO_COLS \
3124 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3125 #define SWAP_CLUSTER_SPACE_COLS \
3126 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3127 #define SWAP_CLUSTER_COLS \
3128 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3130 static int setup_swap_map_and_extents(struct swap_info_struct
*si
,
3131 union swap_header
*swap_header
,
3132 unsigned char *swap_map
,
3133 unsigned long maxpages
,
3136 unsigned int nr_good_pages
;
3140 nr_good_pages
= maxpages
- 1; /* omit header page */
3142 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
3143 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
3144 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
3146 if (page_nr
< maxpages
) {
3147 swap_map
[page_nr
] = SWAP_MAP_BAD
;
3152 if (nr_good_pages
) {
3153 swap_map
[0] = SWAP_MAP_BAD
;
3155 si
->pages
= nr_good_pages
;
3156 nr_extents
= setup_swap_extents(si
, span
);
3159 nr_good_pages
= si
->pages
;
3161 if (!nr_good_pages
) {
3162 pr_warn("Empty swap-file\n");
3169 static struct swap_cluster_info
*setup_clusters(struct swap_info_struct
*si
,
3170 union swap_header
*swap_header
,
3171 unsigned long maxpages
)
3173 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
3174 struct swap_cluster_info
*cluster_info
;
3175 unsigned long i
, j
, k
, idx
;
3176 int cpu
, err
= -ENOMEM
;
3178 cluster_info
= kvcalloc(nr_clusters
, sizeof(*cluster_info
), GFP_KERNEL
);
3182 for (i
= 0; i
< nr_clusters
; i
++)
3183 spin_lock_init(&cluster_info
[i
].lock
);
3185 if (si
->flags
& SWP_SOLIDSTATE
) {
3186 si
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
3187 if (!si
->percpu_cluster
)
3190 for_each_possible_cpu(cpu
) {
3191 struct percpu_cluster
*cluster
;
3193 cluster
= per_cpu_ptr(si
->percpu_cluster
, cpu
);
3194 for (i
= 0; i
< SWAP_NR_ORDERS
; i
++)
3195 cluster
->next
[i
] = SWAP_ENTRY_INVALID
;
3196 local_lock_init(&cluster
->lock
);
3199 si
->global_cluster
= kmalloc(sizeof(*si
->global_cluster
),
3201 if (!si
->global_cluster
)
3203 for (i
= 0; i
< SWAP_NR_ORDERS
; i
++)
3204 si
->global_cluster
->next
[i
] = SWAP_ENTRY_INVALID
;
3205 spin_lock_init(&si
->global_cluster_lock
);
3209 * Mark unusable pages as unavailable. The clusters aren't
3210 * marked free yet, so no list operations are involved yet.
3212 * See setup_swap_map_and_extents(): header page, bad pages,
3213 * and the EOF part of the last cluster.
3215 inc_cluster_info_page(si
, cluster_info
, 0);
3216 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
3217 inc_cluster_info_page(si
, cluster_info
,
3218 swap_header
->info
.badpages
[i
]);
3219 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
3220 inc_cluster_info_page(si
, cluster_info
, i
);
3222 INIT_LIST_HEAD(&si
->free_clusters
);
3223 INIT_LIST_HEAD(&si
->full_clusters
);
3224 INIT_LIST_HEAD(&si
->discard_clusters
);
3226 for (i
= 0; i
< SWAP_NR_ORDERS
; i
++) {
3227 INIT_LIST_HEAD(&si
->nonfull_clusters
[i
]);
3228 INIT_LIST_HEAD(&si
->frag_clusters
[i
]);
3229 atomic_long_set(&si
->frag_cluster_nr
[i
], 0);
3233 * Reduce false cache line sharing between cluster_info and
3234 * sharing same address space.
3236 for (k
= 0; k
< SWAP_CLUSTER_COLS
; k
++) {
3237 j
= k
% SWAP_CLUSTER_COLS
;
3238 for (i
= 0; i
< DIV_ROUND_UP(nr_clusters
, SWAP_CLUSTER_COLS
); i
++) {
3239 struct swap_cluster_info
*ci
;
3240 idx
= i
* SWAP_CLUSTER_COLS
+ j
;
3241 ci
= cluster_info
+ idx
;
3242 if (idx
>= nr_clusters
)
3245 ci
->flags
= CLUSTER_FLAG_NONFULL
;
3246 list_add_tail(&ci
->list
, &si
->nonfull_clusters
[0]);
3249 ci
->flags
= CLUSTER_FLAG_FREE
;
3250 list_add_tail(&ci
->list
, &si
->free_clusters
);
3254 return cluster_info
;
3257 kvfree(cluster_info
);
3259 return ERR_PTR(err
);
3262 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
3264 struct swap_info_struct
*si
;
3265 struct filename
*name
;
3266 struct file
*swap_file
= NULL
;
3267 struct address_space
*mapping
;
3268 struct dentry
*dentry
;
3271 union swap_header
*swap_header
;
3274 unsigned long maxpages
;
3275 unsigned char *swap_map
= NULL
;
3276 unsigned long *zeromap
= NULL
;
3277 struct swap_cluster_info
*cluster_info
= NULL
;
3278 struct folio
*folio
= NULL
;
3279 struct inode
*inode
= NULL
;
3280 bool inced_nr_rotate_swap
= false;
3282 if (swap_flags
& ~SWAP_FLAGS_VALID
)
3285 if (!capable(CAP_SYS_ADMIN
))
3288 if (!swap_avail_heads
)
3291 si
= alloc_swap_info();
3295 INIT_WORK(&si
->discard_work
, swap_discard_work
);
3296 INIT_WORK(&si
->reclaim_work
, swap_reclaim_work
);
3298 name
= getname(specialfile
);
3300 error
= PTR_ERR(name
);
3304 swap_file
= file_open_name(name
, O_RDWR
| O_LARGEFILE
| O_EXCL
, 0);
3305 if (IS_ERR(swap_file
)) {
3306 error
= PTR_ERR(swap_file
);
3311 si
->swap_file
= swap_file
;
3312 mapping
= swap_file
->f_mapping
;
3313 dentry
= swap_file
->f_path
.dentry
;
3314 inode
= mapping
->host
;
3316 error
= claim_swapfile(si
, inode
);
3317 if (unlikely(error
))
3321 if (d_unlinked(dentry
) || cant_mount(dentry
)) {
3323 goto bad_swap_unlock_inode
;
3325 if (IS_SWAPFILE(inode
)) {
3327 goto bad_swap_unlock_inode
;
3331 * Read the swap header.
3333 if (!mapping
->a_ops
->read_folio
) {
3335 goto bad_swap_unlock_inode
;
3337 folio
= read_mapping_folio(mapping
, 0, swap_file
);
3338 if (IS_ERR(folio
)) {
3339 error
= PTR_ERR(folio
);
3340 goto bad_swap_unlock_inode
;
3342 swap_header
= kmap_local_folio(folio
, 0);
3344 maxpages
= read_swap_header(si
, swap_header
, inode
);
3345 if (unlikely(!maxpages
)) {
3347 goto bad_swap_unlock_inode
;
3350 /* OK, set up the swap map and apply the bad block list */
3351 swap_map
= vzalloc(maxpages
);
3354 goto bad_swap_unlock_inode
;
3357 error
= swap_cgroup_swapon(si
->type
, maxpages
);
3359 goto bad_swap_unlock_inode
;
3361 nr_extents
= setup_swap_map_and_extents(si
, swap_header
, swap_map
,
3363 if (unlikely(nr_extents
< 0)) {
3365 goto bad_swap_unlock_inode
;
3369 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3370 * be above MAX_PAGE_ORDER incase of a large swap file.
3372 zeromap
= kvmalloc_array(BITS_TO_LONGS(maxpages
), sizeof(long),
3373 GFP_KERNEL
| __GFP_ZERO
);
3376 goto bad_swap_unlock_inode
;
3379 if (si
->bdev
&& bdev_stable_writes(si
->bdev
))
3380 si
->flags
|= SWP_STABLE_WRITES
;
3382 if (si
->bdev
&& bdev_synchronous(si
->bdev
))
3383 si
->flags
|= SWP_SYNCHRONOUS_IO
;
3385 if (si
->bdev
&& bdev_nonrot(si
->bdev
)) {
3386 si
->flags
|= SWP_SOLIDSTATE
;
3388 atomic_inc(&nr_rotate_swap
);
3389 inced_nr_rotate_swap
= true;
3392 cluster_info
= setup_clusters(si
, swap_header
, maxpages
);
3393 if (IS_ERR(cluster_info
)) {
3394 error
= PTR_ERR(cluster_info
);
3395 cluster_info
= NULL
;
3396 goto bad_swap_unlock_inode
;
3399 if ((swap_flags
& SWAP_FLAG_DISCARD
) &&
3400 si
->bdev
&& bdev_max_discard_sectors(si
->bdev
)) {
3402 * When discard is enabled for swap with no particular
3403 * policy flagged, we set all swap discard flags here in
3404 * order to sustain backward compatibility with older
3405 * swapon(8) releases.
3407 si
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
3411 * By flagging sys_swapon, a sysadmin can tell us to
3412 * either do single-time area discards only, or to just
3413 * perform discards for released swap page-clusters.
3414 * Now it's time to adjust the p->flags accordingly.
3416 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
3417 si
->flags
&= ~SWP_PAGE_DISCARD
;
3418 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
3419 si
->flags
&= ~SWP_AREA_DISCARD
;
3421 /* issue a swapon-time discard if it's still required */
3422 if (si
->flags
& SWP_AREA_DISCARD
) {
3423 int err
= discard_swap(si
);
3425 pr_err("swapon: discard_swap(%p): %d\n",
3430 error
= init_swap_address_space(si
->type
, maxpages
);
3432 goto bad_swap_unlock_inode
;
3434 error
= zswap_swapon(si
->type
, maxpages
);
3436 goto free_swap_address_space
;
3439 * Flush any pending IO and dirty mappings before we start using this
3442 inode
->i_flags
|= S_SWAPFILE
;
3443 error
= inode_drain_writes(inode
);
3445 inode
->i_flags
&= ~S_SWAPFILE
;
3446 goto free_swap_zswap
;
3449 mutex_lock(&swapon_mutex
);
3451 if (swap_flags
& SWAP_FLAG_PREFER
)
3453 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
3454 enable_swap_info(si
, prio
, swap_map
, cluster_info
, zeromap
);
3456 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3457 K(si
->pages
), name
->name
, si
->prio
, nr_extents
,
3458 K((unsigned long long)span
),
3459 (si
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
3460 (si
->flags
& SWP_DISCARDABLE
) ? "D" : "",
3461 (si
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
3462 (si
->flags
& SWP_PAGE_DISCARD
) ? "c" : "");
3464 mutex_unlock(&swapon_mutex
);
3465 atomic_inc(&proc_poll_event
);
3466 wake_up_interruptible(&proc_poll_wait
);
3471 zswap_swapoff(si
->type
);
3472 free_swap_address_space
:
3473 exit_swap_address_space(si
->type
);
3474 bad_swap_unlock_inode
:
3475 inode_unlock(inode
);
3477 free_percpu(si
->percpu_cluster
);
3478 si
->percpu_cluster
= NULL
;
3479 kfree(si
->global_cluster
);
3480 si
->global_cluster
= NULL
;
3482 destroy_swap_extents(si
);
3483 swap_cgroup_swapoff(si
->type
);
3484 spin_lock(&swap_lock
);
3485 si
->swap_file
= NULL
;
3487 spin_unlock(&swap_lock
);
3490 kvfree(cluster_info
);
3491 if (inced_nr_rotate_swap
)
3492 atomic_dec(&nr_rotate_swap
);
3494 filp_close(swap_file
, NULL
);
3496 if (!IS_ERR_OR_NULL(folio
))
3497 folio_release_kmap(folio
, swap_header
);
3501 inode_unlock(inode
);
3503 enable_swap_slots_cache();
3507 void si_swapinfo(struct sysinfo
*val
)
3510 unsigned long nr_to_be_unused
= 0;
3512 spin_lock(&swap_lock
);
3513 for (type
= 0; type
< nr_swapfiles
; type
++) {
3514 struct swap_info_struct
*si
= swap_info
[type
];
3516 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
3517 nr_to_be_unused
+= swap_usage_in_pages(si
);
3519 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
3520 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
3521 spin_unlock(&swap_lock
);
3525 * Verify that nr swap entries are valid and increment their swap map counts.
3527 * Returns error code in following case.
3529 * - swp_entry is invalid -> EINVAL
3530 * - swp_entry is migration entry -> EINVAL
3531 * - swap-cache reference is requested but there is already one. -> EEXIST
3532 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3533 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3535 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
, int nr
)
3537 struct swap_info_struct
*si
;
3538 struct swap_cluster_info
*ci
;
3539 unsigned long offset
;
3540 unsigned char count
;
3541 unsigned char has_cache
;
3544 si
= swp_swap_info(entry
);
3546 offset
= swp_offset(entry
);
3547 VM_WARN_ON(nr
> SWAPFILE_CLUSTER
- offset
% SWAPFILE_CLUSTER
);
3548 VM_WARN_ON(usage
== 1 && nr
> 1);
3549 ci
= lock_cluster(si
, offset
);
3552 for (i
= 0; i
< nr
; i
++) {
3553 count
= si
->swap_map
[offset
+ i
];
3556 * swapin_readahead() doesn't check if a swap entry is valid, so the
3557 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3559 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
3564 has_cache
= count
& SWAP_HAS_CACHE
;
3565 count
&= ~SWAP_HAS_CACHE
;
3567 if (!count
&& !has_cache
) {
3569 } else if (usage
== SWAP_HAS_CACHE
) {
3572 } else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
) {
3580 for (i
= 0; i
< nr
; i
++) {
3581 count
= si
->swap_map
[offset
+ i
];
3582 has_cache
= count
& SWAP_HAS_CACHE
;
3583 count
&= ~SWAP_HAS_CACHE
;
3585 if (usage
== SWAP_HAS_CACHE
)
3586 has_cache
= SWAP_HAS_CACHE
;
3587 else if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
3589 else if (swap_count_continued(si
, offset
+ i
, count
))
3590 count
= COUNT_CONTINUED
;
3593 * Don't need to rollback changes, because if
3594 * usage == 1, there must be nr == 1.
3600 WRITE_ONCE(si
->swap_map
[offset
+ i
], count
| has_cache
);
3609 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3610 * (in which case its reference count is never incremented).
3612 void swap_shmem_alloc(swp_entry_t entry
, int nr
)
3614 __swap_duplicate(entry
, SWAP_MAP_SHMEM
, nr
);
3618 * Increase reference count of swap entry by 1.
3619 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3620 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3621 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3622 * might occur if a page table entry has got corrupted.
3624 int swap_duplicate(swp_entry_t entry
)
3628 while (!err
&& __swap_duplicate(entry
, 1, 1) == -ENOMEM
)
3629 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
3634 * @entry: first swap entry from which we allocate nr swap cache.
3636 * Called when allocating swap cache for existing swap entries,
3637 * This can return error codes. Returns 0 at success.
3638 * -EEXIST means there is a swap cache.
3639 * Note: return code is different from swap_duplicate().
3641 int swapcache_prepare(swp_entry_t entry
, int nr
)
3643 return __swap_duplicate(entry
, SWAP_HAS_CACHE
, nr
);
3646 void swapcache_clear(struct swap_info_struct
*si
, swp_entry_t entry
, int nr
)
3648 unsigned long offset
= swp_offset(entry
);
3650 cluster_swap_free_nr(si
, offset
, nr
, SWAP_HAS_CACHE
);
3653 struct swap_info_struct
*swp_swap_info(swp_entry_t entry
)
3655 return swap_type_to_swap_info(swp_type(entry
));
3659 * out-of-line methods to avoid include hell.
3661 struct address_space
*swapcache_mapping(struct folio
*folio
)
3663 return swp_swap_info(folio
->swap
)->swap_file
->f_mapping
;
3665 EXPORT_SYMBOL_GPL(swapcache_mapping
);
3667 pgoff_t
__folio_swap_cache_index(struct folio
*folio
)
3669 return swap_cache_index(folio
->swap
);
3671 EXPORT_SYMBOL_GPL(__folio_swap_cache_index
);
3674 * add_swap_count_continuation - called when a swap count is duplicated
3675 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3676 * page of the original vmalloc'ed swap_map, to hold the continuation count
3677 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3678 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3680 * These continuation pages are seldom referenced: the common paths all work
3681 * on the original swap_map, only referring to a continuation page when the
3682 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3684 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3685 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3686 * can be called after dropping locks.
3688 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
3690 struct swap_info_struct
*si
;
3691 struct swap_cluster_info
*ci
;
3694 struct page
*list_page
;
3696 unsigned char count
;
3700 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3701 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3703 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
3705 si
= get_swap_device(entry
);
3708 * An acceptable race has occurred since the failing
3709 * __swap_duplicate(): the swap device may be swapoff
3714 offset
= swp_offset(entry
);
3716 ci
= lock_cluster(si
, offset
);
3718 count
= swap_count(si
->swap_map
[offset
]);
3720 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
3722 * The higher the swap count, the more likely it is that tasks
3723 * will race to add swap count continuation: we need to avoid
3724 * over-provisioning.
3734 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3735 offset
&= ~PAGE_MASK
;
3737 spin_lock(&si
->cont_lock
);
3739 * Page allocation does not initialize the page's lru field,
3740 * but it does always reset its private field.
3742 if (!page_private(head
)) {
3743 BUG_ON(count
& COUNT_CONTINUED
);
3744 INIT_LIST_HEAD(&head
->lru
);
3745 set_page_private(head
, SWP_CONTINUED
);
3746 si
->flags
|= SWP_CONTINUED
;
3749 list_for_each_entry(list_page
, &head
->lru
, lru
) {
3753 * If the previous map said no continuation, but we've found
3754 * a continuation page, free our allocation and use this one.
3756 if (!(count
& COUNT_CONTINUED
))
3757 goto out_unlock_cont
;
3759 map
= kmap_local_page(list_page
) + offset
;
3764 * If this continuation count now has some space in it,
3765 * free our allocation and use this one.
3767 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
3768 goto out_unlock_cont
;
3771 list_add_tail(&page
->lru
, &head
->lru
);
3772 page
= NULL
; /* now it's attached, don't free it */
3774 spin_unlock(&si
->cont_lock
);
3777 put_swap_device(si
);
3785 * swap_count_continued - when the original swap_map count is incremented
3786 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3787 * into, carry if so, or else fail until a new continuation page is allocated;
3788 * when the original swap_map count is decremented from 0 with continuation,
3789 * borrow from the continuation and report whether it still holds more.
3790 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3793 static bool swap_count_continued(struct swap_info_struct
*si
,
3794 pgoff_t offset
, unsigned char count
)
3801 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3802 if (page_private(head
) != SWP_CONTINUED
) {
3803 BUG_ON(count
& COUNT_CONTINUED
);
3804 return false; /* need to add count continuation */
3807 spin_lock(&si
->cont_lock
);
3808 offset
&= ~PAGE_MASK
;
3809 page
= list_next_entry(head
, lru
);
3810 map
= kmap_local_page(page
) + offset
;
3812 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
3813 goto init_map
; /* jump over SWAP_CONT_MAX checks */
3815 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
3817 * Think of how you add 1 to 999
3819 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
3821 page
= list_next_entry(page
, lru
);
3822 BUG_ON(page
== head
);
3823 map
= kmap_local_page(page
) + offset
;
3825 if (*map
== SWAP_CONT_MAX
) {
3827 page
= list_next_entry(page
, lru
);
3829 ret
= false; /* add count continuation */
3832 map
= kmap_local_page(page
) + offset
;
3833 init_map
: *map
= 0; /* we didn't zero the page */
3837 while ((page
= list_prev_entry(page
, lru
)) != head
) {
3838 map
= kmap_local_page(page
) + offset
;
3839 *map
= COUNT_CONTINUED
;
3842 ret
= true; /* incremented */
3844 } else { /* decrementing */
3846 * Think of how you subtract 1 from 1000
3848 BUG_ON(count
!= COUNT_CONTINUED
);
3849 while (*map
== COUNT_CONTINUED
) {
3851 page
= list_next_entry(page
, lru
);
3852 BUG_ON(page
== head
);
3853 map
= kmap_local_page(page
) + offset
;
3860 while ((page
= list_prev_entry(page
, lru
)) != head
) {
3861 map
= kmap_local_page(page
) + offset
;
3862 *map
= SWAP_CONT_MAX
| count
;
3863 count
= COUNT_CONTINUED
;
3866 ret
= count
== COUNT_CONTINUED
;
3869 spin_unlock(&si
->cont_lock
);
3874 * free_swap_count_continuations - swapoff free all the continuation pages
3875 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3877 static void free_swap_count_continuations(struct swap_info_struct
*si
)
3881 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
3883 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3884 if (page_private(head
)) {
3885 struct page
*page
, *next
;
3887 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
3888 list_del(&page
->lru
);
3895 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3896 void __folio_throttle_swaprate(struct folio
*folio
, gfp_t gfp
)
3898 struct swap_info_struct
*si
, *next
;
3899 int nid
= folio_nid(folio
);
3901 if (!(gfp
& __GFP_IO
))
3904 if (!__has_usable_swap())
3907 if (!blk_cgroup_congested())
3911 * We've already scheduled a throttle, avoid taking the global swap
3914 if (current
->throttle_disk
)
3917 spin_lock(&swap_avail_lock
);
3918 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[nid
],
3921 blkcg_schedule_throttle(si
->bdev
->bd_disk
, true);
3925 spin_unlock(&swap_avail_lock
);
3929 static int __init
swapfile_init(void)
3933 swap_avail_heads
= kmalloc_array(nr_node_ids
, sizeof(struct plist_head
),
3935 if (!swap_avail_heads
) {
3936 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3941 plist_head_init(&swap_avail_heads
[nid
]);
3943 swapfile_maximum_size
= arch_max_swapfile_size();
3945 #ifdef CONFIG_MIGRATION
3946 if (swapfile_maximum_size
>= (1UL << SWP_MIG_TOTAL_BITS
))
3947 swap_migration_ad_supported
= true;
3948 #endif /* CONFIG_MIGRATION */
3952 subsys_initcall(swapfile_init
);