Linux 6.14-rc1
[linux-stable.git] / mm / vma.c
blobaf1d549b179c9c7f59d0c1309692055adf2573a4
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /*
4 * VMA-specific functions.
5 */
7 #include "vma_internal.h"
8 #include "vma.h"
10 struct mmap_state {
11 struct mm_struct *mm;
12 struct vma_iterator *vmi;
14 unsigned long addr;
15 unsigned long end;
16 pgoff_t pgoff;
17 unsigned long pglen;
18 unsigned long flags;
19 struct file *file;
21 unsigned long charged;
22 bool retry_merge;
24 struct vm_area_struct *prev;
25 struct vm_area_struct *next;
27 /* Unmapping state. */
28 struct vma_munmap_struct vms;
29 struct ma_state mas_detach;
30 struct maple_tree mt_detach;
33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \
34 struct mmap_state name = { \
35 .mm = mm_, \
36 .vmi = vmi_, \
37 .addr = addr_, \
38 .end = (addr_) + (len_), \
39 .pgoff = pgoff_, \
40 .pglen = PHYS_PFN(len_), \
41 .flags = flags_, \
42 .file = file_, \
45 #define VMG_MMAP_STATE(name, map_, vma_) \
46 struct vma_merge_struct name = { \
47 .mm = (map_)->mm, \
48 .vmi = (map_)->vmi, \
49 .start = (map_)->addr, \
50 .end = (map_)->end, \
51 .flags = (map_)->flags, \
52 .pgoff = (map_)->pgoff, \
53 .file = (map_)->file, \
54 .prev = (map_)->prev, \
55 .vma = vma_, \
56 .next = (vma_) ? NULL : (map_)->next, \
57 .state = VMA_MERGE_START, \
58 .merge_flags = VMG_FLAG_DEFAULT, \
61 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
63 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
65 if (!mpol_equal(vmg->policy, vma_policy(vma)))
66 return false;
68 * VM_SOFTDIRTY should not prevent from VMA merging, if we
69 * match the flags but dirty bit -- the caller should mark
70 * merged VMA as dirty. If dirty bit won't be excluded from
71 * comparison, we increase pressure on the memory system forcing
72 * the kernel to generate new VMAs when old one could be
73 * extended instead.
75 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
76 return false;
77 if (vma->vm_file != vmg->file)
78 return false;
79 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
80 return false;
81 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
82 return false;
83 return true;
86 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
87 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
90 * The list_is_singular() test is to avoid merging VMA cloned from
91 * parents. This can improve scalability caused by anon_vma lock.
93 if ((!anon_vma1 || !anon_vma2) && (!vma ||
94 list_is_singular(&vma->anon_vma_chain)))
95 return true;
96 return anon_vma1 == anon_vma2;
99 /* Are the anon_vma's belonging to each VMA compatible with one another? */
100 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
101 struct vm_area_struct *vma2)
103 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
107 * init_multi_vma_prep() - Initializer for struct vma_prepare
108 * @vp: The vma_prepare struct
109 * @vma: The vma that will be altered once locked
110 * @next: The next vma if it is to be adjusted
111 * @remove: The first vma to be removed
112 * @remove2: The second vma to be removed
114 static void init_multi_vma_prep(struct vma_prepare *vp,
115 struct vm_area_struct *vma,
116 struct vm_area_struct *next,
117 struct vm_area_struct *remove,
118 struct vm_area_struct *remove2)
120 memset(vp, 0, sizeof(struct vma_prepare));
121 vp->vma = vma;
122 vp->anon_vma = vma->anon_vma;
123 vp->remove = remove;
124 vp->remove2 = remove2;
125 vp->adj_next = next;
126 if (!vp->anon_vma && next)
127 vp->anon_vma = next->anon_vma;
129 vp->file = vma->vm_file;
130 if (vp->file)
131 vp->mapping = vma->vm_file->f_mapping;
136 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
137 * in front of (at a lower virtual address and file offset than) the vma.
139 * We cannot merge two vmas if they have differently assigned (non-NULL)
140 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
142 * We don't check here for the merged mmap wrapping around the end of pagecache
143 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
144 * wrap, nor mmaps which cover the final page at index -1UL.
146 * We assume the vma may be removed as part of the merge.
148 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
150 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
152 if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
153 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
154 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
155 return true;
158 return false;
162 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
163 * beyond (at a higher virtual address and file offset than) the vma.
165 * We cannot merge two vmas if they have differently assigned (non-NULL)
166 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
168 * We assume that vma is not removed as part of the merge.
170 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
172 if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
173 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
174 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
175 return true;
177 return false;
180 static void __vma_link_file(struct vm_area_struct *vma,
181 struct address_space *mapping)
183 if (vma_is_shared_maywrite(vma))
184 mapping_allow_writable(mapping);
186 flush_dcache_mmap_lock(mapping);
187 vma_interval_tree_insert(vma, &mapping->i_mmap);
188 flush_dcache_mmap_unlock(mapping);
192 * Requires inode->i_mapping->i_mmap_rwsem
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 struct address_space *mapping)
197 if (vma_is_shared_maywrite(vma))
198 mapping_unmap_writable(mapping);
200 flush_dcache_mmap_lock(mapping);
201 vma_interval_tree_remove(vma, &mapping->i_mmap);
202 flush_dcache_mmap_unlock(mapping);
206 * vma has some anon_vma assigned, and is already inserted on that
207 * anon_vma's interval trees.
209 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
210 * vma must be removed from the anon_vma's interval trees using
211 * anon_vma_interval_tree_pre_update_vma().
213 * After the update, the vma will be reinserted using
214 * anon_vma_interval_tree_post_update_vma().
216 * The entire update must be protected by exclusive mmap_lock and by
217 * the root anon_vma's mutex.
219 static void
220 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
222 struct anon_vma_chain *avc;
224 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
225 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
228 static void
229 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
231 struct anon_vma_chain *avc;
233 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
234 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
238 * vma_prepare() - Helper function for handling locking VMAs prior to altering
239 * @vp: The initialized vma_prepare struct
241 static void vma_prepare(struct vma_prepare *vp)
243 if (vp->file) {
244 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
246 if (vp->adj_next)
247 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
248 vp->adj_next->vm_end);
250 i_mmap_lock_write(vp->mapping);
251 if (vp->insert && vp->insert->vm_file) {
253 * Put into interval tree now, so instantiated pages
254 * are visible to arm/parisc __flush_dcache_page
255 * throughout; but we cannot insert into address
256 * space until vma start or end is updated.
258 __vma_link_file(vp->insert,
259 vp->insert->vm_file->f_mapping);
263 if (vp->anon_vma) {
264 anon_vma_lock_write(vp->anon_vma);
265 anon_vma_interval_tree_pre_update_vma(vp->vma);
266 if (vp->adj_next)
267 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
270 if (vp->file) {
271 flush_dcache_mmap_lock(vp->mapping);
272 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
273 if (vp->adj_next)
274 vma_interval_tree_remove(vp->adj_next,
275 &vp->mapping->i_mmap);
281 * vma_complete- Helper function for handling the unlocking after altering VMAs,
282 * or for inserting a VMA.
284 * @vp: The vma_prepare struct
285 * @vmi: The vma iterator
286 * @mm: The mm_struct
288 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
289 struct mm_struct *mm)
291 if (vp->file) {
292 if (vp->adj_next)
293 vma_interval_tree_insert(vp->adj_next,
294 &vp->mapping->i_mmap);
295 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
296 flush_dcache_mmap_unlock(vp->mapping);
299 if (vp->remove && vp->file) {
300 __remove_shared_vm_struct(vp->remove, vp->mapping);
301 if (vp->remove2)
302 __remove_shared_vm_struct(vp->remove2, vp->mapping);
303 } else if (vp->insert) {
305 * split_vma has split insert from vma, and needs
306 * us to insert it before dropping the locks
307 * (it may either follow vma or precede it).
309 vma_iter_store(vmi, vp->insert);
310 mm->map_count++;
313 if (vp->anon_vma) {
314 anon_vma_interval_tree_post_update_vma(vp->vma);
315 if (vp->adj_next)
316 anon_vma_interval_tree_post_update_vma(vp->adj_next);
317 anon_vma_unlock_write(vp->anon_vma);
320 if (vp->file) {
321 i_mmap_unlock_write(vp->mapping);
322 uprobe_mmap(vp->vma);
324 if (vp->adj_next)
325 uprobe_mmap(vp->adj_next);
328 if (vp->remove) {
329 again:
330 vma_mark_detached(vp->remove, true);
331 if (vp->file) {
332 uprobe_munmap(vp->remove, vp->remove->vm_start,
333 vp->remove->vm_end);
334 fput(vp->file);
336 if (vp->remove->anon_vma)
337 anon_vma_merge(vp->vma, vp->remove);
338 mm->map_count--;
339 mpol_put(vma_policy(vp->remove));
340 if (!vp->remove2)
341 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
342 vm_area_free(vp->remove);
345 * In mprotect's case 6 (see comments on vma_merge),
346 * we are removing both mid and next vmas
348 if (vp->remove2) {
349 vp->remove = vp->remove2;
350 vp->remove2 = NULL;
351 goto again;
354 if (vp->insert && vp->file)
355 uprobe_mmap(vp->insert);
359 * init_vma_prep() - Initializer wrapper for vma_prepare struct
360 * @vp: The vma_prepare struct
361 * @vma: The vma that will be altered once locked
363 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
365 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
369 * Can the proposed VMA be merged with the left (previous) VMA taking into
370 * account the start position of the proposed range.
372 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
375 return vmg->prev && vmg->prev->vm_end == vmg->start &&
376 can_vma_merge_after(vmg);
380 * Can the proposed VMA be merged with the right (next) VMA taking into
381 * account the end position of the proposed range.
383 * In addition, if we can merge with the left VMA, ensure that left and right
384 * anon_vma's are also compatible.
386 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
387 bool can_merge_left)
389 if (!vmg->next || vmg->end != vmg->next->vm_start ||
390 !can_vma_merge_before(vmg))
391 return false;
393 if (!can_merge_left)
394 return true;
397 * If we can merge with prev (left) and next (right), indicating that
398 * each VMA's anon_vma is compatible with the proposed anon_vma, this
399 * does not mean prev and next are compatible with EACH OTHER.
401 * We therefore check this in addition to mergeability to either side.
403 return are_anon_vmas_compatible(vmg->prev, vmg->next);
407 * Close a vm structure and free it.
409 void remove_vma(struct vm_area_struct *vma, bool unreachable)
411 might_sleep();
412 vma_close(vma);
413 if (vma->vm_file)
414 fput(vma->vm_file);
415 mpol_put(vma_policy(vma));
416 if (unreachable)
417 __vm_area_free(vma);
418 else
419 vm_area_free(vma);
423 * Get rid of page table information in the indicated region.
425 * Called with the mm semaphore held.
427 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
428 struct vm_area_struct *prev, struct vm_area_struct *next)
430 struct mm_struct *mm = vma->vm_mm;
431 struct mmu_gather tlb;
433 tlb_gather_mmu(&tlb, mm);
434 update_hiwater_rss(mm);
435 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
436 /* mm_wr_locked = */ true);
437 mas_set(mas, vma->vm_end);
438 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
439 next ? next->vm_start : USER_PGTABLES_CEILING,
440 /* mm_wr_locked = */ true);
441 tlb_finish_mmu(&tlb);
445 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
446 * has already been checked or doesn't make sense to fail.
447 * VMA Iterator will point to the original VMA.
449 static __must_check int
450 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
451 unsigned long addr, int new_below)
453 struct vma_prepare vp;
454 struct vm_area_struct *new;
455 int err;
457 WARN_ON(vma->vm_start >= addr);
458 WARN_ON(vma->vm_end <= addr);
460 if (vma->vm_ops && vma->vm_ops->may_split) {
461 err = vma->vm_ops->may_split(vma, addr);
462 if (err)
463 return err;
466 new = vm_area_dup(vma);
467 if (!new)
468 return -ENOMEM;
470 if (new_below) {
471 new->vm_end = addr;
472 } else {
473 new->vm_start = addr;
474 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
477 err = -ENOMEM;
478 vma_iter_config(vmi, new->vm_start, new->vm_end);
479 if (vma_iter_prealloc(vmi, new))
480 goto out_free_vma;
482 err = vma_dup_policy(vma, new);
483 if (err)
484 goto out_free_vmi;
486 err = anon_vma_clone(new, vma);
487 if (err)
488 goto out_free_mpol;
490 if (new->vm_file)
491 get_file(new->vm_file);
493 if (new->vm_ops && new->vm_ops->open)
494 new->vm_ops->open(new);
496 vma_start_write(vma);
497 vma_start_write(new);
499 init_vma_prep(&vp, vma);
500 vp.insert = new;
501 vma_prepare(&vp);
502 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
504 if (new_below) {
505 vma->vm_start = addr;
506 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
507 } else {
508 vma->vm_end = addr;
511 /* vma_complete stores the new vma */
512 vma_complete(&vp, vmi, vma->vm_mm);
513 validate_mm(vma->vm_mm);
515 /* Success. */
516 if (new_below)
517 vma_next(vmi);
518 else
519 vma_prev(vmi);
521 return 0;
523 out_free_mpol:
524 mpol_put(vma_policy(new));
525 out_free_vmi:
526 vma_iter_free(vmi);
527 out_free_vma:
528 vm_area_free(new);
529 return err;
533 * Split a vma into two pieces at address 'addr', a new vma is allocated
534 * either for the first part or the tail.
536 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
537 unsigned long addr, int new_below)
539 if (vma->vm_mm->map_count >= sysctl_max_map_count)
540 return -ENOMEM;
542 return __split_vma(vmi, vma, addr, new_below);
546 * dup_anon_vma() - Helper function to duplicate anon_vma
547 * @dst: The destination VMA
548 * @src: The source VMA
549 * @dup: Pointer to the destination VMA when successful.
551 * Returns: 0 on success.
553 static int dup_anon_vma(struct vm_area_struct *dst,
554 struct vm_area_struct *src, struct vm_area_struct **dup)
557 * Easily overlooked: when mprotect shifts the boundary, make sure the
558 * expanding vma has anon_vma set if the shrinking vma had, to cover any
559 * anon pages imported.
561 if (src->anon_vma && !dst->anon_vma) {
562 int ret;
564 vma_assert_write_locked(dst);
565 dst->anon_vma = src->anon_vma;
566 ret = anon_vma_clone(dst, src);
567 if (ret)
568 return ret;
570 *dup = dst;
573 return 0;
576 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
577 void validate_mm(struct mm_struct *mm)
579 int bug = 0;
580 int i = 0;
581 struct vm_area_struct *vma;
582 VMA_ITERATOR(vmi, mm, 0);
584 mt_validate(&mm->mm_mt);
585 for_each_vma(vmi, vma) {
586 #ifdef CONFIG_DEBUG_VM_RB
587 struct anon_vma *anon_vma = vma->anon_vma;
588 struct anon_vma_chain *avc;
589 #endif
590 unsigned long vmi_start, vmi_end;
591 bool warn = 0;
593 vmi_start = vma_iter_addr(&vmi);
594 vmi_end = vma_iter_end(&vmi);
595 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
596 warn = 1;
598 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
599 warn = 1;
601 if (warn) {
602 pr_emerg("issue in %s\n", current->comm);
603 dump_stack();
604 dump_vma(vma);
605 pr_emerg("tree range: %px start %lx end %lx\n", vma,
606 vmi_start, vmi_end - 1);
607 vma_iter_dump_tree(&vmi);
610 #ifdef CONFIG_DEBUG_VM_RB
611 if (anon_vma) {
612 anon_vma_lock_read(anon_vma);
613 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
614 anon_vma_interval_tree_verify(avc);
615 anon_vma_unlock_read(anon_vma);
617 #endif
618 /* Check for a infinite loop */
619 if (++i > mm->map_count + 10) {
620 i = -1;
621 break;
624 if (i != mm->map_count) {
625 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
626 bug = 1;
628 VM_BUG_ON_MM(bug, mm);
630 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
632 /* Actually perform the VMA merge operation. */
633 static int commit_merge(struct vma_merge_struct *vmg,
634 struct vm_area_struct *adjust,
635 struct vm_area_struct *remove,
636 struct vm_area_struct *remove2,
637 long adj_start,
638 bool expanded)
640 struct vma_prepare vp;
642 init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
644 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
645 vp.anon_vma != adjust->anon_vma);
647 if (expanded) {
648 /* Note: vma iterator must be pointing to 'start'. */
649 vma_iter_config(vmg->vmi, vmg->start, vmg->end);
650 } else {
651 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
652 adjust->vm_end);
655 if (vma_iter_prealloc(vmg->vmi, vmg->vma))
656 return -ENOMEM;
658 vma_prepare(&vp);
659 vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
660 vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
662 if (expanded)
663 vma_iter_store(vmg->vmi, vmg->vma);
665 if (adj_start) {
666 adjust->vm_start += adj_start;
667 adjust->vm_pgoff += PHYS_PFN(adj_start);
668 if (adj_start < 0) {
669 WARN_ON(expanded);
670 vma_iter_store(vmg->vmi, adjust);
674 vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
676 return 0;
679 /* We can only remove VMAs when merging if they do not have a close hook. */
680 static bool can_merge_remove_vma(struct vm_area_struct *vma)
682 return !vma->vm_ops || !vma->vm_ops->close;
686 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
687 * attributes modified.
689 * @vmg: Describes the modifications being made to a VMA and associated
690 * metadata.
692 * When the attributes of a range within a VMA change, then it might be possible
693 * for immediately adjacent VMAs to be merged into that VMA due to having
694 * identical properties.
696 * This function checks for the existence of any such mergeable VMAs and updates
697 * the maple tree describing the @vmg->vma->vm_mm address space to account for
698 * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
700 * As part of this operation, if a merge occurs, the @vmg object will have its
701 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
702 * calls to this function should reset these fields.
704 * Returns: The merged VMA if merge succeeds, or NULL otherwise.
706 * ASSUMPTIONS:
707 * - The caller must assign the VMA to be modifed to @vmg->vma.
708 * - The caller must have set @vmg->prev to the previous VMA, if there is one.
709 * - The caller must not set @vmg->next, as we determine this.
710 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
711 * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
713 static __must_check struct vm_area_struct *vma_merge_existing_range(
714 struct vma_merge_struct *vmg)
716 struct vm_area_struct *vma = vmg->vma;
717 struct vm_area_struct *prev = vmg->prev;
718 struct vm_area_struct *next, *res;
719 struct vm_area_struct *anon_dup = NULL;
720 struct vm_area_struct *adjust = NULL;
721 unsigned long start = vmg->start;
722 unsigned long end = vmg->end;
723 bool left_side = vma && start == vma->vm_start;
724 bool right_side = vma && end == vma->vm_end;
725 int err = 0;
726 long adj_start = 0;
727 bool merge_will_delete_vma, merge_will_delete_next;
728 bool merge_left, merge_right, merge_both;
729 bool expanded;
731 mmap_assert_write_locked(vmg->mm);
732 VM_WARN_ON_VMG(!vma, vmg); /* We are modifying a VMA, so caller must specify. */
733 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
734 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
735 VM_WARN_ON_VMG(start >= end, vmg);
738 * If vma == prev, then we are offset into a VMA. Otherwise, if we are
739 * not, we must span a portion of the VMA.
741 VM_WARN_ON_VMG(vma && ((vma != prev && vmg->start != vma->vm_start) ||
742 vmg->end > vma->vm_end), vmg);
743 /* The vmi must be positioned within vmg->vma. */
744 VM_WARN_ON_VMG(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
745 vma_iter_addr(vmg->vmi) < vma->vm_end), vmg);
747 vmg->state = VMA_MERGE_NOMERGE;
750 * If a special mapping or if the range being modified is neither at the
751 * furthermost left or right side of the VMA, then we have no chance of
752 * merging and should abort.
754 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
755 return NULL;
757 if (left_side)
758 merge_left = can_vma_merge_left(vmg);
759 else
760 merge_left = false;
762 if (right_side) {
763 next = vmg->next = vma_iter_next_range(vmg->vmi);
764 vma_iter_prev_range(vmg->vmi);
766 merge_right = can_vma_merge_right(vmg, merge_left);
767 } else {
768 merge_right = false;
769 next = NULL;
772 if (merge_left) /* If merging prev, position iterator there. */
773 vma_prev(vmg->vmi);
774 else if (!merge_right) /* If we have nothing to merge, abort. */
775 return NULL;
777 merge_both = merge_left && merge_right;
778 /* If we span the entire VMA, a merge implies it will be deleted. */
779 merge_will_delete_vma = left_side && right_side;
782 * If we need to remove vma in its entirety but are unable to do so,
783 * we have no sensible recourse but to abort the merge.
785 if (merge_will_delete_vma && !can_merge_remove_vma(vma))
786 return NULL;
789 * If we merge both VMAs, then next is also deleted. This implies
790 * merge_will_delete_vma also.
792 merge_will_delete_next = merge_both;
795 * If we cannot delete next, then we can reduce the operation to merging
796 * prev and vma (thereby deleting vma).
798 if (merge_will_delete_next && !can_merge_remove_vma(next)) {
799 merge_will_delete_next = false;
800 merge_right = false;
801 merge_both = false;
804 /* No matter what happens, we will be adjusting vma. */
805 vma_start_write(vma);
807 if (merge_left)
808 vma_start_write(prev);
810 if (merge_right)
811 vma_start_write(next);
813 if (merge_both) {
815 * |<----->|
816 * |-------*********-------|
817 * prev vma next
818 * extend delete delete
821 vmg->vma = prev;
822 vmg->start = prev->vm_start;
823 vmg->end = next->vm_end;
824 vmg->pgoff = prev->vm_pgoff;
827 * We already ensured anon_vma compatibility above, so now it's
828 * simply a case of, if prev has no anon_vma object, which of
829 * next or vma contains the anon_vma we must duplicate.
831 err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
832 } else if (merge_left) {
834 * |<----->| OR
835 * |<--------->|
836 * |-------*************
837 * prev vma
838 * extend shrink/delete
841 vmg->vma = prev;
842 vmg->start = prev->vm_start;
843 vmg->pgoff = prev->vm_pgoff;
845 if (!merge_will_delete_vma) {
846 adjust = vma;
847 adj_start = vmg->end - vma->vm_start;
850 err = dup_anon_vma(prev, vma, &anon_dup);
851 } else { /* merge_right */
853 * |<----->| OR
854 * |<--------->|
855 * *************-------|
856 * vma next
857 * shrink/delete extend
860 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
862 VM_WARN_ON_VMG(!merge_right, vmg);
863 /* If we are offset into a VMA, then prev must be vma. */
864 VM_WARN_ON_VMG(vmg->start > vma->vm_start && prev && vma != prev, vmg);
866 if (merge_will_delete_vma) {
867 vmg->vma = next;
868 vmg->end = next->vm_end;
869 vmg->pgoff = next->vm_pgoff - pglen;
870 } else {
872 * We shrink vma and expand next.
874 * IMPORTANT: This is the ONLY case where the final
875 * merged VMA is NOT vmg->vma, but rather vmg->next.
878 vmg->start = vma->vm_start;
879 vmg->end = start;
880 vmg->pgoff = vma->vm_pgoff;
882 adjust = next;
883 adj_start = -(vma->vm_end - start);
886 err = dup_anon_vma(next, vma, &anon_dup);
889 if (err)
890 goto abort;
893 * In nearly all cases, we expand vmg->vma. There is one exception -
894 * merge_right where we partially span the VMA. In this case we shrink
895 * the end of vmg->vma and adjust the start of vmg->next accordingly.
897 expanded = !merge_right || merge_will_delete_vma;
899 if (commit_merge(vmg, adjust,
900 merge_will_delete_vma ? vma : NULL,
901 merge_will_delete_next ? next : NULL,
902 adj_start, expanded)) {
903 if (anon_dup)
904 unlink_anon_vmas(anon_dup);
906 vmg->state = VMA_MERGE_ERROR_NOMEM;
907 return NULL;
910 res = merge_left ? prev : next;
911 khugepaged_enter_vma(res, vmg->flags);
913 vmg->state = VMA_MERGE_SUCCESS;
914 return res;
916 abort:
917 vma_iter_set(vmg->vmi, start);
918 vma_iter_load(vmg->vmi);
919 vmg->state = VMA_MERGE_ERROR_NOMEM;
920 return NULL;
924 * vma_merge_new_range - Attempt to merge a new VMA into address space
926 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
927 * (exclusive), which we try to merge with any adjacent VMAs if possible.
929 * We are about to add a VMA to the address space starting at @vmg->start and
930 * ending at @vmg->end. There are three different possible scenarios:
932 * 1. There is a VMA with identical properties immediately adjacent to the
933 * proposed new VMA [@vmg->start, @vmg->end) either before or after it -
934 * EXPAND that VMA:
936 * Proposed: |-----| or |-----|
937 * Existing: |----| |----|
939 * 2. There are VMAs with identical properties immediately adjacent to the
940 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
941 * EXPAND the former and REMOVE the latter:
943 * Proposed: |-----|
944 * Existing: |----| |----|
946 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
947 * VMAs do not have identical attributes - NO MERGE POSSIBLE.
949 * In instances where we can merge, this function returns the expanded VMA which
950 * will have its range adjusted accordingly and the underlying maple tree also
951 * adjusted.
953 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
954 * to the VMA we expanded.
956 * This function adjusts @vmg to provide @vmg->next if not already specified,
957 * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
959 * ASSUMPTIONS:
960 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
961 * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
962 other than VMAs that will be unmapped should the operation succeed.
963 * - The caller must have specified the previous vma in @vmg->prev.
964 * - The caller must have specified the next vma in @vmg->next.
965 * - The caller must have positioned the vmi at or before the gap.
967 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
969 struct vm_area_struct *prev = vmg->prev;
970 struct vm_area_struct *next = vmg->next;
971 unsigned long end = vmg->end;
972 bool can_merge_left, can_merge_right;
973 bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND;
975 mmap_assert_write_locked(vmg->mm);
976 VM_WARN_ON_VMG(vmg->vma, vmg);
977 /* vmi must point at or before the gap. */
978 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
980 vmg->state = VMA_MERGE_NOMERGE;
982 /* Special VMAs are unmergeable, also if no prev/next. */
983 if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
984 return NULL;
986 can_merge_left = can_vma_merge_left(vmg);
987 can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left);
989 /* If we can merge with the next VMA, adjust vmg accordingly. */
990 if (can_merge_right) {
991 vmg->end = next->vm_end;
992 vmg->vma = next;
995 /* If we can merge with the previous VMA, adjust vmg accordingly. */
996 if (can_merge_left) {
997 vmg->start = prev->vm_start;
998 vmg->vma = prev;
999 vmg->pgoff = prev->vm_pgoff;
1002 * If this merge would result in removal of the next VMA but we
1003 * are not permitted to do so, reduce the operation to merging
1004 * prev and vma.
1006 if (can_merge_right && !can_merge_remove_vma(next))
1007 vmg->end = end;
1009 /* In expand-only case we are already positioned at prev. */
1010 if (!just_expand) {
1011 /* Equivalent to going to the previous range. */
1012 vma_prev(vmg->vmi);
1017 * Now try to expand adjacent VMA(s). This takes care of removing the
1018 * following VMA if we have VMAs on both sides.
1020 if (vmg->vma && !vma_expand(vmg)) {
1021 khugepaged_enter_vma(vmg->vma, vmg->flags);
1022 vmg->state = VMA_MERGE_SUCCESS;
1023 return vmg->vma;
1026 return NULL;
1030 * vma_expand - Expand an existing VMA
1032 * @vmg: Describes a VMA expansion operation.
1034 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end.
1035 * Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
1036 * vmg->next->vm_end. Checking if the vmg->vma can expand and merge with
1037 * vmg->next needs to be handled by the caller.
1039 * Returns: 0 on success.
1041 * ASSUMPTIONS:
1042 * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
1043 * - The caller must have set @vmg->vma and @vmg->next.
1045 int vma_expand(struct vma_merge_struct *vmg)
1047 struct vm_area_struct *anon_dup = NULL;
1048 bool remove_next = false;
1049 struct vm_area_struct *vma = vmg->vma;
1050 struct vm_area_struct *next = vmg->next;
1052 mmap_assert_write_locked(vmg->mm);
1054 vma_start_write(vma);
1055 if (next && (vma != next) && (vmg->end == next->vm_end)) {
1056 int ret;
1058 remove_next = true;
1059 /* This should already have been checked by this point. */
1060 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg);
1061 vma_start_write(next);
1062 ret = dup_anon_vma(vma, next, &anon_dup);
1063 if (ret)
1064 return ret;
1067 /* Not merging but overwriting any part of next is not handled. */
1068 VM_WARN_ON_VMG(next && !remove_next &&
1069 next != vma && vmg->end > next->vm_start, vmg);
1070 /* Only handles expanding */
1071 VM_WARN_ON_VMG(vma->vm_start < vmg->start || vma->vm_end > vmg->end, vmg);
1073 if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
1074 goto nomem;
1076 return 0;
1078 nomem:
1079 vmg->state = VMA_MERGE_ERROR_NOMEM;
1080 if (anon_dup)
1081 unlink_anon_vmas(anon_dup);
1082 return -ENOMEM;
1086 * vma_shrink() - Reduce an existing VMAs memory area
1087 * @vmi: The vma iterator
1088 * @vma: The VMA to modify
1089 * @start: The new start
1090 * @end: The new end
1092 * Returns: 0 on success, -ENOMEM otherwise
1094 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1095 unsigned long start, unsigned long end, pgoff_t pgoff)
1097 struct vma_prepare vp;
1099 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1101 if (vma->vm_start < start)
1102 vma_iter_config(vmi, vma->vm_start, start);
1103 else
1104 vma_iter_config(vmi, end, vma->vm_end);
1106 if (vma_iter_prealloc(vmi, NULL))
1107 return -ENOMEM;
1109 vma_start_write(vma);
1111 init_vma_prep(&vp, vma);
1112 vma_prepare(&vp);
1113 vma_adjust_trans_huge(vma, start, end, 0);
1115 vma_iter_clear(vmi);
1116 vma_set_range(vma, start, end, pgoff);
1117 vma_complete(&vp, vmi, vma->vm_mm);
1118 validate_mm(vma->vm_mm);
1119 return 0;
1122 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1123 struct ma_state *mas_detach, bool mm_wr_locked)
1125 struct mmu_gather tlb;
1127 if (!vms->clear_ptes) /* Nothing to do */
1128 return;
1131 * We can free page tables without write-locking mmap_lock because VMAs
1132 * were isolated before we downgraded mmap_lock.
1134 mas_set(mas_detach, 1);
1135 tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1136 update_hiwater_rss(vms->vma->vm_mm);
1137 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1138 vms->vma_count, mm_wr_locked);
1140 mas_set(mas_detach, 1);
1141 /* start and end may be different if there is no prev or next vma. */
1142 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1143 vms->unmap_end, mm_wr_locked);
1144 tlb_finish_mmu(&tlb);
1145 vms->clear_ptes = false;
1148 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1149 struct ma_state *mas_detach)
1151 struct vm_area_struct *vma;
1153 if (!vms->nr_pages)
1154 return;
1156 vms_clear_ptes(vms, mas_detach, true);
1157 mas_set(mas_detach, 0);
1158 mas_for_each(mas_detach, vma, ULONG_MAX)
1159 vma_close(vma);
1163 * vms_complete_munmap_vmas() - Finish the munmap() operation
1164 * @vms: The vma munmap struct
1165 * @mas_detach: The maple state of the detached vmas
1167 * This updates the mm_struct, unmaps the region, frees the resources
1168 * used for the munmap() and may downgrade the lock - if requested. Everything
1169 * needed to be done once the vma maple tree is updated.
1171 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1172 struct ma_state *mas_detach)
1174 struct vm_area_struct *vma;
1175 struct mm_struct *mm;
1177 mm = current->mm;
1178 mm->map_count -= vms->vma_count;
1179 mm->locked_vm -= vms->locked_vm;
1180 if (vms->unlock)
1181 mmap_write_downgrade(mm);
1183 if (!vms->nr_pages)
1184 return;
1186 vms_clear_ptes(vms, mas_detach, !vms->unlock);
1187 /* Update high watermark before we lower total_vm */
1188 update_hiwater_vm(mm);
1189 /* Stat accounting */
1190 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1191 /* Paranoid bookkeeping */
1192 VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1193 VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1194 VM_WARN_ON(vms->data_vm > mm->data_vm);
1195 mm->exec_vm -= vms->exec_vm;
1196 mm->stack_vm -= vms->stack_vm;
1197 mm->data_vm -= vms->data_vm;
1199 /* Remove and clean up vmas */
1200 mas_set(mas_detach, 0);
1201 mas_for_each(mas_detach, vma, ULONG_MAX)
1202 remove_vma(vma, /* unreachable = */ false);
1204 vm_unacct_memory(vms->nr_accounted);
1205 validate_mm(mm);
1206 if (vms->unlock)
1207 mmap_read_unlock(mm);
1209 __mt_destroy(mas_detach->tree);
1213 * reattach_vmas() - Undo any munmap work and free resources
1214 * @mas_detach: The maple state with the detached maple tree
1216 * Reattach any detached vmas and free up the maple tree used to track the vmas.
1218 static void reattach_vmas(struct ma_state *mas_detach)
1220 struct vm_area_struct *vma;
1222 mas_set(mas_detach, 0);
1223 mas_for_each(mas_detach, vma, ULONG_MAX)
1224 vma_mark_detached(vma, false);
1226 __mt_destroy(mas_detach->tree);
1230 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1231 * for removal at a later date. Handles splitting first and last if necessary
1232 * and marking the vmas as isolated.
1234 * @vms: The vma munmap struct
1235 * @mas_detach: The maple state tracking the detached tree
1237 * Return: 0 on success, error otherwise
1239 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1240 struct ma_state *mas_detach)
1242 struct vm_area_struct *next = NULL;
1243 int error;
1246 * If we need to split any vma, do it now to save pain later.
1247 * Does it split the first one?
1249 if (vms->start > vms->vma->vm_start) {
1252 * Make sure that map_count on return from munmap() will
1253 * not exceed its limit; but let map_count go just above
1254 * its limit temporarily, to help free resources as expected.
1256 if (vms->end < vms->vma->vm_end &&
1257 vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1258 error = -ENOMEM;
1259 goto map_count_exceeded;
1262 /* Don't bother splitting the VMA if we can't unmap it anyway */
1263 if (!can_modify_vma(vms->vma)) {
1264 error = -EPERM;
1265 goto start_split_failed;
1268 error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1269 if (error)
1270 goto start_split_failed;
1272 vms->prev = vma_prev(vms->vmi);
1273 if (vms->prev)
1274 vms->unmap_start = vms->prev->vm_end;
1277 * Detach a range of VMAs from the mm. Using next as a temp variable as
1278 * it is always overwritten.
1280 for_each_vma_range(*(vms->vmi), next, vms->end) {
1281 long nrpages;
1283 if (!can_modify_vma(next)) {
1284 error = -EPERM;
1285 goto modify_vma_failed;
1287 /* Does it split the end? */
1288 if (next->vm_end > vms->end) {
1289 error = __split_vma(vms->vmi, next, vms->end, 0);
1290 if (error)
1291 goto end_split_failed;
1293 vma_start_write(next);
1294 mas_set(mas_detach, vms->vma_count++);
1295 error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1296 if (error)
1297 goto munmap_gather_failed;
1299 vma_mark_detached(next, true);
1300 nrpages = vma_pages(next);
1302 vms->nr_pages += nrpages;
1303 if (next->vm_flags & VM_LOCKED)
1304 vms->locked_vm += nrpages;
1306 if (next->vm_flags & VM_ACCOUNT)
1307 vms->nr_accounted += nrpages;
1309 if (is_exec_mapping(next->vm_flags))
1310 vms->exec_vm += nrpages;
1311 else if (is_stack_mapping(next->vm_flags))
1312 vms->stack_vm += nrpages;
1313 else if (is_data_mapping(next->vm_flags))
1314 vms->data_vm += nrpages;
1316 if (vms->uf) {
1318 * If userfaultfd_unmap_prep returns an error the vmas
1319 * will remain split, but userland will get a
1320 * highly unexpected error anyway. This is no
1321 * different than the case where the first of the two
1322 * __split_vma fails, but we don't undo the first
1323 * split, despite we could. This is unlikely enough
1324 * failure that it's not worth optimizing it for.
1326 error = userfaultfd_unmap_prep(next, vms->start,
1327 vms->end, vms->uf);
1328 if (error)
1329 goto userfaultfd_error;
1331 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1332 BUG_ON(next->vm_start < vms->start);
1333 BUG_ON(next->vm_start > vms->end);
1334 #endif
1337 vms->next = vma_next(vms->vmi);
1338 if (vms->next)
1339 vms->unmap_end = vms->next->vm_start;
1341 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1342 /* Make sure no VMAs are about to be lost. */
1344 MA_STATE(test, mas_detach->tree, 0, 0);
1345 struct vm_area_struct *vma_mas, *vma_test;
1346 int test_count = 0;
1348 vma_iter_set(vms->vmi, vms->start);
1349 rcu_read_lock();
1350 vma_test = mas_find(&test, vms->vma_count - 1);
1351 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1352 BUG_ON(vma_mas != vma_test);
1353 test_count++;
1354 vma_test = mas_next(&test, vms->vma_count - 1);
1356 rcu_read_unlock();
1357 BUG_ON(vms->vma_count != test_count);
1359 #endif
1361 while (vma_iter_addr(vms->vmi) > vms->start)
1362 vma_iter_prev_range(vms->vmi);
1364 vms->clear_ptes = true;
1365 return 0;
1367 userfaultfd_error:
1368 munmap_gather_failed:
1369 end_split_failed:
1370 modify_vma_failed:
1371 reattach_vmas(mas_detach);
1372 start_split_failed:
1373 map_count_exceeded:
1374 return error;
1378 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1379 * @vms: The vma munmap struct
1380 * @vmi: The vma iterator
1381 * @vma: The first vm_area_struct to munmap
1382 * @start: The aligned start address to munmap
1383 * @end: The aligned end address to munmap
1384 * @uf: The userfaultfd list_head
1385 * @unlock: Unlock after the operation. Only unlocked on success
1387 static void init_vma_munmap(struct vma_munmap_struct *vms,
1388 struct vma_iterator *vmi, struct vm_area_struct *vma,
1389 unsigned long start, unsigned long end, struct list_head *uf,
1390 bool unlock)
1392 vms->vmi = vmi;
1393 vms->vma = vma;
1394 if (vma) {
1395 vms->start = start;
1396 vms->end = end;
1397 } else {
1398 vms->start = vms->end = 0;
1400 vms->unlock = unlock;
1401 vms->uf = uf;
1402 vms->vma_count = 0;
1403 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1404 vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1405 vms->unmap_start = FIRST_USER_ADDRESS;
1406 vms->unmap_end = USER_PGTABLES_CEILING;
1407 vms->clear_ptes = false;
1411 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1412 * @vmi: The vma iterator
1413 * @vma: The starting vm_area_struct
1414 * @mm: The mm_struct
1415 * @start: The aligned start address to munmap.
1416 * @end: The aligned end address to munmap.
1417 * @uf: The userfaultfd list_head
1418 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
1419 * success.
1421 * Return: 0 on success and drops the lock if so directed, error and leaves the
1422 * lock held otherwise.
1424 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1425 struct mm_struct *mm, unsigned long start, unsigned long end,
1426 struct list_head *uf, bool unlock)
1428 struct maple_tree mt_detach;
1429 MA_STATE(mas_detach, &mt_detach, 0, 0);
1430 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1431 mt_on_stack(mt_detach);
1432 struct vma_munmap_struct vms;
1433 int error;
1435 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1436 error = vms_gather_munmap_vmas(&vms, &mas_detach);
1437 if (error)
1438 goto gather_failed;
1440 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1441 if (error)
1442 goto clear_tree_failed;
1444 /* Point of no return */
1445 vms_complete_munmap_vmas(&vms, &mas_detach);
1446 return 0;
1448 clear_tree_failed:
1449 reattach_vmas(&mas_detach);
1450 gather_failed:
1451 validate_mm(mm);
1452 return error;
1456 * do_vmi_munmap() - munmap a given range.
1457 * @vmi: The vma iterator
1458 * @mm: The mm_struct
1459 * @start: The start address to munmap
1460 * @len: The length of the range to munmap
1461 * @uf: The userfaultfd list_head
1462 * @unlock: set to true if the user wants to drop the mmap_lock on success
1464 * This function takes a @mas that is either pointing to the previous VMA or set
1465 * to MA_START and sets it up to remove the mapping(s). The @len will be
1466 * aligned.
1468 * Return: 0 on success and drops the lock if so directed, error and leaves the
1469 * lock held otherwise.
1471 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1472 unsigned long start, size_t len, struct list_head *uf,
1473 bool unlock)
1475 unsigned long end;
1476 struct vm_area_struct *vma;
1478 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1479 return -EINVAL;
1481 end = start + PAGE_ALIGN(len);
1482 if (end == start)
1483 return -EINVAL;
1485 /* Find the first overlapping VMA */
1486 vma = vma_find(vmi, end);
1487 if (!vma) {
1488 if (unlock)
1489 mmap_write_unlock(mm);
1490 return 0;
1493 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1497 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1498 * context and anonymous VMA name within the range [start, end).
1500 * As a result, we might be able to merge the newly modified VMA range with an
1501 * adjacent VMA with identical properties.
1503 * If no merge is possible and the range does not span the entirety of the VMA,
1504 * we then need to split the VMA to accommodate the change.
1506 * The function returns either the merged VMA, the original VMA if a split was
1507 * required instead, or an error if the split failed.
1509 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1511 struct vm_area_struct *vma = vmg->vma;
1512 struct vm_area_struct *merged;
1514 /* First, try to merge. */
1515 merged = vma_merge_existing_range(vmg);
1516 if (merged)
1517 return merged;
1519 /* Split any preceding portion of the VMA. */
1520 if (vma->vm_start < vmg->start) {
1521 int err = split_vma(vmg->vmi, vma, vmg->start, 1);
1523 if (err)
1524 return ERR_PTR(err);
1527 /* Split any trailing portion of the VMA. */
1528 if (vma->vm_end > vmg->end) {
1529 int err = split_vma(vmg->vmi, vma, vmg->end, 0);
1531 if (err)
1532 return ERR_PTR(err);
1535 return vma;
1538 struct vm_area_struct *vma_modify_flags(
1539 struct vma_iterator *vmi, struct vm_area_struct *prev,
1540 struct vm_area_struct *vma, unsigned long start, unsigned long end,
1541 unsigned long new_flags)
1543 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1545 vmg.flags = new_flags;
1547 return vma_modify(&vmg);
1550 struct vm_area_struct
1551 *vma_modify_flags_name(struct vma_iterator *vmi,
1552 struct vm_area_struct *prev,
1553 struct vm_area_struct *vma,
1554 unsigned long start,
1555 unsigned long end,
1556 unsigned long new_flags,
1557 struct anon_vma_name *new_name)
1559 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1561 vmg.flags = new_flags;
1562 vmg.anon_name = new_name;
1564 return vma_modify(&vmg);
1567 struct vm_area_struct
1568 *vma_modify_policy(struct vma_iterator *vmi,
1569 struct vm_area_struct *prev,
1570 struct vm_area_struct *vma,
1571 unsigned long start, unsigned long end,
1572 struct mempolicy *new_pol)
1574 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1576 vmg.policy = new_pol;
1578 return vma_modify(&vmg);
1581 struct vm_area_struct
1582 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1583 struct vm_area_struct *prev,
1584 struct vm_area_struct *vma,
1585 unsigned long start, unsigned long end,
1586 unsigned long new_flags,
1587 struct vm_userfaultfd_ctx new_ctx)
1589 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1591 vmg.flags = new_flags;
1592 vmg.uffd_ctx = new_ctx;
1594 return vma_modify(&vmg);
1598 * Expand vma by delta bytes, potentially merging with an immediately adjacent
1599 * VMA with identical properties.
1601 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1602 struct vm_area_struct *vma,
1603 unsigned long delta)
1605 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1607 vmg.next = vma_iter_next_rewind(vmi, NULL);
1608 vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
1610 return vma_merge_new_range(&vmg);
1613 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1615 vb->count = 0;
1618 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1620 struct address_space *mapping;
1621 int i;
1623 mapping = vb->vmas[0]->vm_file->f_mapping;
1624 i_mmap_lock_write(mapping);
1625 for (i = 0; i < vb->count; i++) {
1626 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1627 __remove_shared_vm_struct(vb->vmas[i], mapping);
1629 i_mmap_unlock_write(mapping);
1631 unlink_file_vma_batch_init(vb);
1634 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1635 struct vm_area_struct *vma)
1637 if (vma->vm_file == NULL)
1638 return;
1640 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1641 vb->count == ARRAY_SIZE(vb->vmas))
1642 unlink_file_vma_batch_process(vb);
1644 vb->vmas[vb->count] = vma;
1645 vb->count++;
1648 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1650 if (vb->count > 0)
1651 unlink_file_vma_batch_process(vb);
1655 * Unlink a file-based vm structure from its interval tree, to hide
1656 * vma from rmap and vmtruncate before freeing its page tables.
1658 void unlink_file_vma(struct vm_area_struct *vma)
1660 struct file *file = vma->vm_file;
1662 if (file) {
1663 struct address_space *mapping = file->f_mapping;
1665 i_mmap_lock_write(mapping);
1666 __remove_shared_vm_struct(vma, mapping);
1667 i_mmap_unlock_write(mapping);
1671 void vma_link_file(struct vm_area_struct *vma)
1673 struct file *file = vma->vm_file;
1674 struct address_space *mapping;
1676 if (file) {
1677 mapping = file->f_mapping;
1678 i_mmap_lock_write(mapping);
1679 __vma_link_file(vma, mapping);
1680 i_mmap_unlock_write(mapping);
1684 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1686 VMA_ITERATOR(vmi, mm, 0);
1688 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1689 if (vma_iter_prealloc(&vmi, vma))
1690 return -ENOMEM;
1692 vma_start_write(vma);
1693 vma_iter_store(&vmi, vma);
1694 vma_link_file(vma);
1695 mm->map_count++;
1696 validate_mm(mm);
1697 return 0;
1701 * Copy the vma structure to a new location in the same mm,
1702 * prior to moving page table entries, to effect an mremap move.
1704 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1705 unsigned long addr, unsigned long len, pgoff_t pgoff,
1706 bool *need_rmap_locks)
1708 struct vm_area_struct *vma = *vmap;
1709 unsigned long vma_start = vma->vm_start;
1710 struct mm_struct *mm = vma->vm_mm;
1711 struct vm_area_struct *new_vma;
1712 bool faulted_in_anon_vma = true;
1713 VMA_ITERATOR(vmi, mm, addr);
1714 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1717 * If anonymous vma has not yet been faulted, update new pgoff
1718 * to match new location, to increase its chance of merging.
1720 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1721 pgoff = addr >> PAGE_SHIFT;
1722 faulted_in_anon_vma = false;
1725 new_vma = find_vma_prev(mm, addr, &vmg.prev);
1726 if (new_vma && new_vma->vm_start < addr + len)
1727 return NULL; /* should never get here */
1729 vmg.vma = NULL; /* New VMA range. */
1730 vmg.pgoff = pgoff;
1731 vmg.next = vma_iter_next_rewind(&vmi, NULL);
1732 new_vma = vma_merge_new_range(&vmg);
1734 if (new_vma) {
1736 * Source vma may have been merged into new_vma
1738 if (unlikely(vma_start >= new_vma->vm_start &&
1739 vma_start < new_vma->vm_end)) {
1741 * The only way we can get a vma_merge with
1742 * self during an mremap is if the vma hasn't
1743 * been faulted in yet and we were allowed to
1744 * reset the dst vma->vm_pgoff to the
1745 * destination address of the mremap to allow
1746 * the merge to happen. mremap must change the
1747 * vm_pgoff linearity between src and dst vmas
1748 * (in turn preventing a vma_merge) to be
1749 * safe. It is only safe to keep the vm_pgoff
1750 * linear if there are no pages mapped yet.
1752 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1753 *vmap = vma = new_vma;
1755 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1756 } else {
1757 new_vma = vm_area_dup(vma);
1758 if (!new_vma)
1759 goto out;
1760 vma_set_range(new_vma, addr, addr + len, pgoff);
1761 if (vma_dup_policy(vma, new_vma))
1762 goto out_free_vma;
1763 if (anon_vma_clone(new_vma, vma))
1764 goto out_free_mempol;
1765 if (new_vma->vm_file)
1766 get_file(new_vma->vm_file);
1767 if (new_vma->vm_ops && new_vma->vm_ops->open)
1768 new_vma->vm_ops->open(new_vma);
1769 if (vma_link(mm, new_vma))
1770 goto out_vma_link;
1771 *need_rmap_locks = false;
1773 return new_vma;
1775 out_vma_link:
1776 vma_close(new_vma);
1778 if (new_vma->vm_file)
1779 fput(new_vma->vm_file);
1781 unlink_anon_vmas(new_vma);
1782 out_free_mempol:
1783 mpol_put(vma_policy(new_vma));
1784 out_free_vma:
1785 vm_area_free(new_vma);
1786 out:
1787 return NULL;
1791 * Rough compatibility check to quickly see if it's even worth looking
1792 * at sharing an anon_vma.
1794 * They need to have the same vm_file, and the flags can only differ
1795 * in things that mprotect may change.
1797 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1798 * we can merge the two vma's. For example, we refuse to merge a vma if
1799 * there is a vm_ops->close() function, because that indicates that the
1800 * driver is doing some kind of reference counting. But that doesn't
1801 * really matter for the anon_vma sharing case.
1803 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1805 return a->vm_end == b->vm_start &&
1806 mpol_equal(vma_policy(a), vma_policy(b)) &&
1807 a->vm_file == b->vm_file &&
1808 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1809 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1813 * Do some basic sanity checking to see if we can re-use the anon_vma
1814 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1815 * the same as 'old', the other will be the new one that is trying
1816 * to share the anon_vma.
1818 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1819 * the anon_vma of 'old' is concurrently in the process of being set up
1820 * by another page fault trying to merge _that_. But that's ok: if it
1821 * is being set up, that automatically means that it will be a singleton
1822 * acceptable for merging, so we can do all of this optimistically. But
1823 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1825 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1826 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1827 * is to return an anon_vma that is "complex" due to having gone through
1828 * a fork).
1830 * We also make sure that the two vma's are compatible (adjacent,
1831 * and with the same memory policies). That's all stable, even with just
1832 * a read lock on the mmap_lock.
1834 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1835 struct vm_area_struct *a,
1836 struct vm_area_struct *b)
1838 if (anon_vma_compatible(a, b)) {
1839 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1841 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1842 return anon_vma;
1844 return NULL;
1848 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1849 * neighbouring vmas for a suitable anon_vma, before it goes off
1850 * to allocate a new anon_vma. It checks because a repetitive
1851 * sequence of mprotects and faults may otherwise lead to distinct
1852 * anon_vmas being allocated, preventing vma merge in subsequent
1853 * mprotect.
1855 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1857 struct anon_vma *anon_vma = NULL;
1858 struct vm_area_struct *prev, *next;
1859 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1861 /* Try next first. */
1862 next = vma_iter_load(&vmi);
1863 if (next) {
1864 anon_vma = reusable_anon_vma(next, vma, next);
1865 if (anon_vma)
1866 return anon_vma;
1869 prev = vma_prev(&vmi);
1870 VM_BUG_ON_VMA(prev != vma, vma);
1871 prev = vma_prev(&vmi);
1872 /* Try prev next. */
1873 if (prev)
1874 anon_vma = reusable_anon_vma(prev, prev, vma);
1877 * We might reach here with anon_vma == NULL if we can't find
1878 * any reusable anon_vma.
1879 * There's no absolute need to look only at touching neighbours:
1880 * we could search further afield for "compatible" anon_vmas.
1881 * But it would probably just be a waste of time searching,
1882 * or lead to too many vmas hanging off the same anon_vma.
1883 * We're trying to allow mprotect remerging later on,
1884 * not trying to minimize memory used for anon_vmas.
1886 return anon_vma;
1889 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1891 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1894 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1896 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1897 (VM_WRITE | VM_SHARED);
1900 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1902 /* No managed pages to writeback. */
1903 if (vma->vm_flags & VM_PFNMAP)
1904 return false;
1906 return vma->vm_file && vma->vm_file->f_mapping &&
1907 mapping_can_writeback(vma->vm_file->f_mapping);
1911 * Does this VMA require the underlying folios to have their dirty state
1912 * tracked?
1914 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1916 /* Only shared, writable VMAs require dirty tracking. */
1917 if (!vma_is_shared_writable(vma))
1918 return false;
1920 /* Does the filesystem need to be notified? */
1921 if (vm_ops_needs_writenotify(vma->vm_ops))
1922 return true;
1925 * Even if the filesystem doesn't indicate a need for writenotify, if it
1926 * can writeback, dirty tracking is still required.
1928 return vma_fs_can_writeback(vma);
1932 * Some shared mappings will want the pages marked read-only
1933 * to track write events. If so, we'll downgrade vm_page_prot
1934 * to the private version (using protection_map[] without the
1935 * VM_SHARED bit).
1937 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1939 /* If it was private or non-writable, the write bit is already clear */
1940 if (!vma_is_shared_writable(vma))
1941 return false;
1943 /* The backer wishes to know when pages are first written to? */
1944 if (vm_ops_needs_writenotify(vma->vm_ops))
1945 return true;
1947 /* The open routine did something to the protections that pgprot_modify
1948 * won't preserve? */
1949 if (pgprot_val(vm_page_prot) !=
1950 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1951 return false;
1954 * Do we need to track softdirty? hugetlb does not support softdirty
1955 * tracking yet.
1957 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1958 return true;
1960 /* Do we need write faults for uffd-wp tracking? */
1961 if (userfaultfd_wp(vma))
1962 return true;
1964 /* Can the mapping track the dirty pages? */
1965 return vma_fs_can_writeback(vma);
1968 static DEFINE_MUTEX(mm_all_locks_mutex);
1970 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1972 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1974 * The LSB of head.next can't change from under us
1975 * because we hold the mm_all_locks_mutex.
1977 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1979 * We can safely modify head.next after taking the
1980 * anon_vma->root->rwsem. If some other vma in this mm shares
1981 * the same anon_vma we won't take it again.
1983 * No need of atomic instructions here, head.next
1984 * can't change from under us thanks to the
1985 * anon_vma->root->rwsem.
1987 if (__test_and_set_bit(0, (unsigned long *)
1988 &anon_vma->root->rb_root.rb_root.rb_node))
1989 BUG();
1993 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1995 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1997 * AS_MM_ALL_LOCKS can't change from under us because
1998 * we hold the mm_all_locks_mutex.
2000 * Operations on ->flags have to be atomic because
2001 * even if AS_MM_ALL_LOCKS is stable thanks to the
2002 * mm_all_locks_mutex, there may be other cpus
2003 * changing other bitflags in parallel to us.
2005 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2006 BUG();
2007 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2012 * This operation locks against the VM for all pte/vma/mm related
2013 * operations that could ever happen on a certain mm. This includes
2014 * vmtruncate, try_to_unmap, and all page faults.
2016 * The caller must take the mmap_lock in write mode before calling
2017 * mm_take_all_locks(). The caller isn't allowed to release the
2018 * mmap_lock until mm_drop_all_locks() returns.
2020 * mmap_lock in write mode is required in order to block all operations
2021 * that could modify pagetables and free pages without need of
2022 * altering the vma layout. It's also needed in write mode to avoid new
2023 * anon_vmas to be associated with existing vmas.
2025 * A single task can't take more than one mm_take_all_locks() in a row
2026 * or it would deadlock.
2028 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2029 * mapping->flags avoid to take the same lock twice, if more than one
2030 * vma in this mm is backed by the same anon_vma or address_space.
2032 * We take locks in following order, accordingly to comment at beginning
2033 * of mm/rmap.c:
2034 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2035 * hugetlb mapping);
2036 * - all vmas marked locked
2037 * - all i_mmap_rwsem locks;
2038 * - all anon_vma->rwseml
2040 * We can take all locks within these types randomly because the VM code
2041 * doesn't nest them and we protected from parallel mm_take_all_locks() by
2042 * mm_all_locks_mutex.
2044 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2045 * that may have to take thousand of locks.
2047 * mm_take_all_locks() can fail if it's interrupted by signals.
2049 int mm_take_all_locks(struct mm_struct *mm)
2051 struct vm_area_struct *vma;
2052 struct anon_vma_chain *avc;
2053 VMA_ITERATOR(vmi, mm, 0);
2055 mmap_assert_write_locked(mm);
2057 mutex_lock(&mm_all_locks_mutex);
2060 * vma_start_write() does not have a complement in mm_drop_all_locks()
2061 * because vma_start_write() is always asymmetrical; it marks a VMA as
2062 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2063 * is reached.
2065 for_each_vma(vmi, vma) {
2066 if (signal_pending(current))
2067 goto out_unlock;
2068 vma_start_write(vma);
2071 vma_iter_init(&vmi, mm, 0);
2072 for_each_vma(vmi, vma) {
2073 if (signal_pending(current))
2074 goto out_unlock;
2075 if (vma->vm_file && vma->vm_file->f_mapping &&
2076 is_vm_hugetlb_page(vma))
2077 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2080 vma_iter_init(&vmi, mm, 0);
2081 for_each_vma(vmi, vma) {
2082 if (signal_pending(current))
2083 goto out_unlock;
2084 if (vma->vm_file && vma->vm_file->f_mapping &&
2085 !is_vm_hugetlb_page(vma))
2086 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2089 vma_iter_init(&vmi, mm, 0);
2090 for_each_vma(vmi, vma) {
2091 if (signal_pending(current))
2092 goto out_unlock;
2093 if (vma->anon_vma)
2094 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2095 vm_lock_anon_vma(mm, avc->anon_vma);
2098 return 0;
2100 out_unlock:
2101 mm_drop_all_locks(mm);
2102 return -EINTR;
2105 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2107 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2109 * The LSB of head.next can't change to 0 from under
2110 * us because we hold the mm_all_locks_mutex.
2112 * We must however clear the bitflag before unlocking
2113 * the vma so the users using the anon_vma->rb_root will
2114 * never see our bitflag.
2116 * No need of atomic instructions here, head.next
2117 * can't change from under us until we release the
2118 * anon_vma->root->rwsem.
2120 if (!__test_and_clear_bit(0, (unsigned long *)
2121 &anon_vma->root->rb_root.rb_root.rb_node))
2122 BUG();
2123 anon_vma_unlock_write(anon_vma);
2127 static void vm_unlock_mapping(struct address_space *mapping)
2129 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2131 * AS_MM_ALL_LOCKS can't change to 0 from under us
2132 * because we hold the mm_all_locks_mutex.
2134 i_mmap_unlock_write(mapping);
2135 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2136 &mapping->flags))
2137 BUG();
2142 * The mmap_lock cannot be released by the caller until
2143 * mm_drop_all_locks() returns.
2145 void mm_drop_all_locks(struct mm_struct *mm)
2147 struct vm_area_struct *vma;
2148 struct anon_vma_chain *avc;
2149 VMA_ITERATOR(vmi, mm, 0);
2151 mmap_assert_write_locked(mm);
2152 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2154 for_each_vma(vmi, vma) {
2155 if (vma->anon_vma)
2156 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2157 vm_unlock_anon_vma(avc->anon_vma);
2158 if (vma->vm_file && vma->vm_file->f_mapping)
2159 vm_unlock_mapping(vma->vm_file->f_mapping);
2162 mutex_unlock(&mm_all_locks_mutex);
2166 * We account for memory if it's a private writeable mapping,
2167 * not hugepages and VM_NORESERVE wasn't set.
2169 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2172 * hugetlb has its own accounting separate from the core VM
2173 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2175 if (file && is_file_hugepages(file))
2176 return false;
2178 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2182 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2183 * operation.
2184 * @vms: The vma unmap structure
2185 * @mas_detach: The maple state with the detached maple tree
2187 * Reattach any detached vmas, free up the maple tree used to track the vmas.
2188 * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2189 * have been called), then a NULL is written over the vmas and the vmas are
2190 * removed (munmap() completed).
2192 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2193 struct ma_state *mas_detach)
2195 struct ma_state *mas = &vms->vmi->mas;
2197 if (!vms->nr_pages)
2198 return;
2200 if (vms->clear_ptes)
2201 return reattach_vmas(mas_detach);
2204 * Aborting cannot just call the vm_ops open() because they are often
2205 * not symmetrical and state data has been lost. Resort to the old
2206 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2208 mas_set_range(mas, vms->start, vms->end - 1);
2209 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2210 /* Clean up the insertion of the unfortunate gap */
2211 vms_complete_munmap_vmas(vms, mas_detach);
2215 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be
2216 * unmapped once the map operation is completed, check limits, account mapping
2217 * and clean up any pre-existing VMAs.
2219 * @map: Mapping state.
2220 * @uf: Userfaultfd context list.
2222 * Returns: 0 on success, error code otherwise.
2224 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf)
2226 int error;
2227 struct vma_iterator *vmi = map->vmi;
2228 struct vma_munmap_struct *vms = &map->vms;
2230 /* Find the first overlapping VMA and initialise unmap state. */
2231 vms->vma = vma_find(vmi, map->end);
2232 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2233 /* unlock = */ false);
2235 /* OK, we have overlapping VMAs - prepare to unmap them. */
2236 if (vms->vma) {
2237 mt_init_flags(&map->mt_detach,
2238 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2239 mt_on_stack(map->mt_detach);
2240 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2241 /* Prepare to unmap any existing mapping in the area */
2242 error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2243 if (error) {
2244 /* On error VMAs will already have been reattached. */
2245 vms->nr_pages = 0;
2246 return error;
2249 map->next = vms->next;
2250 map->prev = vms->prev;
2251 } else {
2252 map->next = vma_iter_next_rewind(vmi, &map->prev);
2255 /* Check against address space limit. */
2256 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages))
2257 return -ENOMEM;
2259 /* Private writable mapping: check memory availability. */
2260 if (accountable_mapping(map->file, map->flags)) {
2261 map->charged = map->pglen;
2262 map->charged -= vms->nr_accounted;
2263 if (map->charged) {
2264 error = security_vm_enough_memory_mm(map->mm, map->charged);
2265 if (error)
2266 return error;
2269 vms->nr_accounted = 0;
2270 map->flags |= VM_ACCOUNT;
2274 * Clear PTEs while the vma is still in the tree so that rmap
2275 * cannot race with the freeing later in the truncate scenario.
2276 * This is also needed for mmap_file(), which is why vm_ops
2277 * close function is called.
2279 vms_clean_up_area(vms, &map->mas_detach);
2281 return 0;
2285 static int __mmap_new_file_vma(struct mmap_state *map,
2286 struct vm_area_struct *vma)
2288 struct vma_iterator *vmi = map->vmi;
2289 int error;
2291 vma->vm_file = get_file(map->file);
2292 error = mmap_file(vma->vm_file, vma);
2293 if (error) {
2294 fput(vma->vm_file);
2295 vma->vm_file = NULL;
2297 vma_iter_set(vmi, vma->vm_end);
2298 /* Undo any partial mapping done by a device driver. */
2299 unmap_region(&vmi->mas, vma, map->prev, map->next);
2301 return error;
2304 /* Drivers cannot alter the address of the VMA. */
2305 WARN_ON_ONCE(map->addr != vma->vm_start);
2307 * Drivers should not permit writability when previously it was
2308 * disallowed.
2310 VM_WARN_ON_ONCE(map->flags != vma->vm_flags &&
2311 !(map->flags & VM_MAYWRITE) &&
2312 (vma->vm_flags & VM_MAYWRITE));
2314 /* If the flags change (and are mergeable), let's retry later. */
2315 map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL);
2316 map->flags = vma->vm_flags;
2318 return 0;
2322 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2323 * possible.
2325 * @map: Mapping state.
2326 * @vmap: Output pointer for the new VMA.
2328 * Returns: Zero on success, or an error.
2330 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2332 struct vma_iterator *vmi = map->vmi;
2333 int error = 0;
2334 struct vm_area_struct *vma;
2337 * Determine the object being mapped and call the appropriate
2338 * specific mapper. the address has already been validated, but
2339 * not unmapped, but the maps are removed from the list.
2341 vma = vm_area_alloc(map->mm);
2342 if (!vma)
2343 return -ENOMEM;
2345 vma_iter_config(vmi, map->addr, map->end);
2346 vma_set_range(vma, map->addr, map->end, map->pgoff);
2347 vm_flags_init(vma, map->flags);
2348 vma->vm_page_prot = vm_get_page_prot(map->flags);
2350 if (vma_iter_prealloc(vmi, vma)) {
2351 error = -ENOMEM;
2352 goto free_vma;
2355 if (map->file)
2356 error = __mmap_new_file_vma(map, vma);
2357 else if (map->flags & VM_SHARED)
2358 error = shmem_zero_setup(vma);
2359 else
2360 vma_set_anonymous(vma);
2362 if (error)
2363 goto free_iter_vma;
2365 #ifdef CONFIG_SPARC64
2366 /* TODO: Fix SPARC ADI! */
2367 WARN_ON_ONCE(!arch_validate_flags(map->flags));
2368 #endif
2370 /* Lock the VMA since it is modified after insertion into VMA tree */
2371 vma_start_write(vma);
2372 vma_iter_store(vmi, vma);
2373 map->mm->map_count++;
2374 vma_link_file(vma);
2377 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2378 * call covers the non-merge case.
2380 khugepaged_enter_vma(vma, map->flags);
2381 ksm_add_vma(vma);
2382 *vmap = vma;
2383 return 0;
2385 free_iter_vma:
2386 vma_iter_free(vmi);
2387 free_vma:
2388 vm_area_free(vma);
2389 return error;
2393 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2394 * statistics, handle locking and finalise the VMA.
2396 * @map: Mapping state.
2397 * @vma: Merged or newly allocated VMA for the mmap()'d region.
2399 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2401 struct mm_struct *mm = map->mm;
2402 unsigned long vm_flags = vma->vm_flags;
2404 perf_event_mmap(vma);
2406 /* Unmap any existing mapping in the area. */
2407 vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2409 vm_stat_account(mm, vma->vm_flags, map->pglen);
2410 if (vm_flags & VM_LOCKED) {
2411 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2412 is_vm_hugetlb_page(vma) ||
2413 vma == get_gate_vma(mm))
2414 vm_flags_clear(vma, VM_LOCKED_MASK);
2415 else
2416 mm->locked_vm += map->pglen;
2419 if (vma->vm_file)
2420 uprobe_mmap(vma);
2423 * New (or expanded) vma always get soft dirty status.
2424 * Otherwise user-space soft-dirty page tracker won't
2425 * be able to distinguish situation when vma area unmapped,
2426 * then new mapped in-place (which must be aimed as
2427 * a completely new data area).
2429 vm_flags_set(vma, VM_SOFTDIRTY);
2431 vma_set_page_prot(vma);
2434 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2435 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2436 struct list_head *uf)
2438 struct mm_struct *mm = current->mm;
2439 struct vm_area_struct *vma = NULL;
2440 int error;
2441 VMA_ITERATOR(vmi, mm, addr);
2442 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2444 error = __mmap_prepare(&map, uf);
2445 if (error)
2446 goto abort_munmap;
2448 /* Attempt to merge with adjacent VMAs... */
2449 if (map.prev || map.next) {
2450 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2452 vma = vma_merge_new_range(&vmg);
2455 /* ...but if we can't, allocate a new VMA. */
2456 if (!vma) {
2457 error = __mmap_new_vma(&map, &vma);
2458 if (error)
2459 goto unacct_error;
2462 /* If flags changed, we might be able to merge, so try again. */
2463 if (map.retry_merge) {
2464 struct vm_area_struct *merged;
2465 VMG_MMAP_STATE(vmg, &map, vma);
2467 vma_iter_config(map.vmi, map.addr, map.end);
2468 merged = vma_merge_existing_range(&vmg);
2469 if (merged)
2470 vma = merged;
2473 __mmap_complete(&map, vma);
2475 return addr;
2477 /* Accounting was done by __mmap_prepare(). */
2478 unacct_error:
2479 if (map.charged)
2480 vm_unacct_memory(map.charged);
2481 abort_munmap:
2482 vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2483 return error;
2487 * mmap_region() - Actually perform the userland mapping of a VMA into
2488 * current->mm with known, aligned and overflow-checked @addr and @len, and
2489 * correctly determined VMA flags @vm_flags and page offset @pgoff.
2491 * This is an internal memory management function, and should not be used
2492 * directly.
2494 * The caller must write-lock current->mm->mmap_lock.
2496 * @file: If a file-backed mapping, a pointer to the struct file describing the
2497 * file to be mapped, otherwise NULL.
2498 * @addr: The page-aligned address at which to perform the mapping.
2499 * @len: The page-aligned, non-zero, length of the mapping.
2500 * @vm_flags: The VMA flags which should be applied to the mapping.
2501 * @pgoff: If @file is specified, the page offset into the file, if not then
2502 * the virtual page offset in memory of the anonymous mapping.
2503 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2504 * events.
2506 * Returns: Either an error, or the address at which the requested mapping has
2507 * been performed.
2509 unsigned long mmap_region(struct file *file, unsigned long addr,
2510 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2511 struct list_head *uf)
2513 unsigned long ret;
2514 bool writable_file_mapping = false;
2516 mmap_assert_write_locked(current->mm);
2518 /* Check to see if MDWE is applicable. */
2519 if (map_deny_write_exec(vm_flags, vm_flags))
2520 return -EACCES;
2522 /* Allow architectures to sanity-check the vm_flags. */
2523 if (!arch_validate_flags(vm_flags))
2524 return -EINVAL;
2526 /* Map writable and ensure this isn't a sealed memfd. */
2527 if (file && is_shared_maywrite(vm_flags)) {
2528 int error = mapping_map_writable(file->f_mapping);
2530 if (error)
2531 return error;
2532 writable_file_mapping = true;
2535 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2537 /* Clear our write mapping regardless of error. */
2538 if (writable_file_mapping)
2539 mapping_unmap_writable(file->f_mapping);
2541 validate_mm(current->mm);
2542 return ret;
2546 * do_brk_flags() - Increase the brk vma if the flags match.
2547 * @vmi: The vma iterator
2548 * @addr: The start address
2549 * @len: The length of the increase
2550 * @vma: The vma,
2551 * @flags: The VMA Flags
2553 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2554 * do not match then create a new anonymous VMA. Eventually we may be able to
2555 * do some brk-specific accounting here.
2557 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2558 unsigned long addr, unsigned long len, unsigned long flags)
2560 struct mm_struct *mm = current->mm;
2563 * Check against address space limits by the changed size
2564 * Note: This happens *after* clearing old mappings in some code paths.
2566 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2567 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2568 return -ENOMEM;
2570 if (mm->map_count > sysctl_max_map_count)
2571 return -ENOMEM;
2573 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2574 return -ENOMEM;
2577 * Expand the existing vma if possible; Note that singular lists do not
2578 * occur after forking, so the expand will only happen on new VMAs.
2580 if (vma && vma->vm_end == addr) {
2581 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
2583 vmg.prev = vma;
2584 /* vmi is positioned at prev, which this mode expects. */
2585 vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
2587 if (vma_merge_new_range(&vmg))
2588 goto out;
2589 else if (vmg_nomem(&vmg))
2590 goto unacct_fail;
2593 if (vma)
2594 vma_iter_next_range(vmi);
2595 /* create a vma struct for an anonymous mapping */
2596 vma = vm_area_alloc(mm);
2597 if (!vma)
2598 goto unacct_fail;
2600 vma_set_anonymous(vma);
2601 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
2602 vm_flags_init(vma, flags);
2603 vma->vm_page_prot = vm_get_page_prot(flags);
2604 vma_start_write(vma);
2605 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2606 goto mas_store_fail;
2608 mm->map_count++;
2609 validate_mm(mm);
2610 ksm_add_vma(vma);
2611 out:
2612 perf_event_mmap(vma);
2613 mm->total_vm += len >> PAGE_SHIFT;
2614 mm->data_vm += len >> PAGE_SHIFT;
2615 if (flags & VM_LOCKED)
2616 mm->locked_vm += (len >> PAGE_SHIFT);
2617 vm_flags_set(vma, VM_SOFTDIRTY);
2618 return 0;
2620 mas_store_fail:
2621 vm_area_free(vma);
2622 unacct_fail:
2623 vm_unacct_memory(len >> PAGE_SHIFT);
2624 return -ENOMEM;
2628 * unmapped_area() - Find an area between the low_limit and the high_limit with
2629 * the correct alignment and offset, all from @info. Note: current->mm is used
2630 * for the search.
2632 * @info: The unmapped area information including the range [low_limit -
2633 * high_limit), the alignment offset and mask.
2635 * Return: A memory address or -ENOMEM.
2637 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2639 unsigned long length, gap;
2640 unsigned long low_limit, high_limit;
2641 struct vm_area_struct *tmp;
2642 VMA_ITERATOR(vmi, current->mm, 0);
2644 /* Adjust search length to account for worst case alignment overhead */
2645 length = info->length + info->align_mask + info->start_gap;
2646 if (length < info->length)
2647 return -ENOMEM;
2649 low_limit = info->low_limit;
2650 if (low_limit < mmap_min_addr)
2651 low_limit = mmap_min_addr;
2652 high_limit = info->high_limit;
2653 retry:
2654 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
2655 return -ENOMEM;
2658 * Adjust for the gap first so it doesn't interfere with the
2659 * later alignment. The first step is the minimum needed to
2660 * fulill the start gap, the next steps is the minimum to align
2661 * that. It is the minimum needed to fulill both.
2663 gap = vma_iter_addr(&vmi) + info->start_gap;
2664 gap += (info->align_offset - gap) & info->align_mask;
2665 tmp = vma_next(&vmi);
2666 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2667 if (vm_start_gap(tmp) < gap + length - 1) {
2668 low_limit = tmp->vm_end;
2669 vma_iter_reset(&vmi);
2670 goto retry;
2672 } else {
2673 tmp = vma_prev(&vmi);
2674 if (tmp && vm_end_gap(tmp) > gap) {
2675 low_limit = vm_end_gap(tmp);
2676 vma_iter_reset(&vmi);
2677 goto retry;
2681 return gap;
2685 * unmapped_area_topdown() - Find an area between the low_limit and the
2686 * high_limit with the correct alignment and offset at the highest available
2687 * address, all from @info. Note: current->mm is used for the search.
2689 * @info: The unmapped area information including the range [low_limit -
2690 * high_limit), the alignment offset and mask.
2692 * Return: A memory address or -ENOMEM.
2694 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2696 unsigned long length, gap, gap_end;
2697 unsigned long low_limit, high_limit;
2698 struct vm_area_struct *tmp;
2699 VMA_ITERATOR(vmi, current->mm, 0);
2701 /* Adjust search length to account for worst case alignment overhead */
2702 length = info->length + info->align_mask + info->start_gap;
2703 if (length < info->length)
2704 return -ENOMEM;
2706 low_limit = info->low_limit;
2707 if (low_limit < mmap_min_addr)
2708 low_limit = mmap_min_addr;
2709 high_limit = info->high_limit;
2710 retry:
2711 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
2712 return -ENOMEM;
2714 gap = vma_iter_end(&vmi) - info->length;
2715 gap -= (gap - info->align_offset) & info->align_mask;
2716 gap_end = vma_iter_end(&vmi);
2717 tmp = vma_next(&vmi);
2718 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2719 if (vm_start_gap(tmp) < gap_end) {
2720 high_limit = vm_start_gap(tmp);
2721 vma_iter_reset(&vmi);
2722 goto retry;
2724 } else {
2725 tmp = vma_prev(&vmi);
2726 if (tmp && vm_end_gap(tmp) > gap) {
2727 high_limit = tmp->vm_start;
2728 vma_iter_reset(&vmi);
2729 goto retry;
2733 return gap;
2737 * Verify that the stack growth is acceptable and
2738 * update accounting. This is shared with both the
2739 * grow-up and grow-down cases.
2741 static int acct_stack_growth(struct vm_area_struct *vma,
2742 unsigned long size, unsigned long grow)
2744 struct mm_struct *mm = vma->vm_mm;
2745 unsigned long new_start;
2747 /* address space limit tests */
2748 if (!may_expand_vm(mm, vma->vm_flags, grow))
2749 return -ENOMEM;
2751 /* Stack limit test */
2752 if (size > rlimit(RLIMIT_STACK))
2753 return -ENOMEM;
2755 /* mlock limit tests */
2756 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2757 return -ENOMEM;
2759 /* Check to ensure the stack will not grow into a hugetlb-only region */
2760 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2761 vma->vm_end - size;
2762 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2763 return -EFAULT;
2766 * Overcommit.. This must be the final test, as it will
2767 * update security statistics.
2769 if (security_vm_enough_memory_mm(mm, grow))
2770 return -ENOMEM;
2772 return 0;
2775 #if defined(CONFIG_STACK_GROWSUP)
2777 * PA-RISC uses this for its stack.
2778 * vma is the last one with address > vma->vm_end. Have to extend vma.
2780 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2782 struct mm_struct *mm = vma->vm_mm;
2783 struct vm_area_struct *next;
2784 unsigned long gap_addr;
2785 int error = 0;
2786 VMA_ITERATOR(vmi, mm, vma->vm_start);
2788 if (!(vma->vm_flags & VM_GROWSUP))
2789 return -EFAULT;
2791 mmap_assert_write_locked(mm);
2793 /* Guard against exceeding limits of the address space. */
2794 address &= PAGE_MASK;
2795 if (address >= (TASK_SIZE & PAGE_MASK))
2796 return -ENOMEM;
2797 address += PAGE_SIZE;
2799 /* Enforce stack_guard_gap */
2800 gap_addr = address + stack_guard_gap;
2802 /* Guard against overflow */
2803 if (gap_addr < address || gap_addr > TASK_SIZE)
2804 gap_addr = TASK_SIZE;
2806 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2807 if (next && vma_is_accessible(next)) {
2808 if (!(next->vm_flags & VM_GROWSUP))
2809 return -ENOMEM;
2810 /* Check that both stack segments have the same anon_vma? */
2813 if (next)
2814 vma_iter_prev_range_limit(&vmi, address);
2816 vma_iter_config(&vmi, vma->vm_start, address);
2817 if (vma_iter_prealloc(&vmi, vma))
2818 return -ENOMEM;
2820 /* We must make sure the anon_vma is allocated. */
2821 if (unlikely(anon_vma_prepare(vma))) {
2822 vma_iter_free(&vmi);
2823 return -ENOMEM;
2826 /* Lock the VMA before expanding to prevent concurrent page faults */
2827 vma_start_write(vma);
2828 /* We update the anon VMA tree. */
2829 anon_vma_lock_write(vma->anon_vma);
2831 /* Somebody else might have raced and expanded it already */
2832 if (address > vma->vm_end) {
2833 unsigned long size, grow;
2835 size = address - vma->vm_start;
2836 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2838 error = -ENOMEM;
2839 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2840 error = acct_stack_growth(vma, size, grow);
2841 if (!error) {
2842 if (vma->vm_flags & VM_LOCKED)
2843 mm->locked_vm += grow;
2844 vm_stat_account(mm, vma->vm_flags, grow);
2845 anon_vma_interval_tree_pre_update_vma(vma);
2846 vma->vm_end = address;
2847 /* Overwrite old entry in mtree. */
2848 vma_iter_store(&vmi, vma);
2849 anon_vma_interval_tree_post_update_vma(vma);
2851 perf_event_mmap(vma);
2855 anon_vma_unlock_write(vma->anon_vma);
2856 vma_iter_free(&vmi);
2857 validate_mm(mm);
2858 return error;
2860 #endif /* CONFIG_STACK_GROWSUP */
2863 * vma is the first one with address < vma->vm_start. Have to extend vma.
2864 * mmap_lock held for writing.
2866 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2868 struct mm_struct *mm = vma->vm_mm;
2869 struct vm_area_struct *prev;
2870 int error = 0;
2871 VMA_ITERATOR(vmi, mm, vma->vm_start);
2873 if (!(vma->vm_flags & VM_GROWSDOWN))
2874 return -EFAULT;
2876 mmap_assert_write_locked(mm);
2878 address &= PAGE_MASK;
2879 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2880 return -EPERM;
2882 /* Enforce stack_guard_gap */
2883 prev = vma_prev(&vmi);
2884 /* Check that both stack segments have the same anon_vma? */
2885 if (prev) {
2886 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2887 vma_is_accessible(prev) &&
2888 (address - prev->vm_end < stack_guard_gap))
2889 return -ENOMEM;
2892 if (prev)
2893 vma_iter_next_range_limit(&vmi, vma->vm_start);
2895 vma_iter_config(&vmi, address, vma->vm_end);
2896 if (vma_iter_prealloc(&vmi, vma))
2897 return -ENOMEM;
2899 /* We must make sure the anon_vma is allocated. */
2900 if (unlikely(anon_vma_prepare(vma))) {
2901 vma_iter_free(&vmi);
2902 return -ENOMEM;
2905 /* Lock the VMA before expanding to prevent concurrent page faults */
2906 vma_start_write(vma);
2907 /* We update the anon VMA tree. */
2908 anon_vma_lock_write(vma->anon_vma);
2910 /* Somebody else might have raced and expanded it already */
2911 if (address < vma->vm_start) {
2912 unsigned long size, grow;
2914 size = vma->vm_end - address;
2915 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2917 error = -ENOMEM;
2918 if (grow <= vma->vm_pgoff) {
2919 error = acct_stack_growth(vma, size, grow);
2920 if (!error) {
2921 if (vma->vm_flags & VM_LOCKED)
2922 mm->locked_vm += grow;
2923 vm_stat_account(mm, vma->vm_flags, grow);
2924 anon_vma_interval_tree_pre_update_vma(vma);
2925 vma->vm_start = address;
2926 vma->vm_pgoff -= grow;
2927 /* Overwrite old entry in mtree. */
2928 vma_iter_store(&vmi, vma);
2929 anon_vma_interval_tree_post_update_vma(vma);
2931 perf_event_mmap(vma);
2935 anon_vma_unlock_write(vma->anon_vma);
2936 vma_iter_free(&vmi);
2937 validate_mm(mm);
2938 return error;
2941 int __vm_munmap(unsigned long start, size_t len, bool unlock)
2943 int ret;
2944 struct mm_struct *mm = current->mm;
2945 LIST_HEAD(uf);
2946 VMA_ITERATOR(vmi, mm, start);
2948 if (mmap_write_lock_killable(mm))
2949 return -EINTR;
2951 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2952 if (ret || !unlock)
2953 mmap_write_unlock(mm);
2955 userfaultfd_unmap_complete(mm, &uf);
2956 return ret;