2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
45 static const struct address_space_operations hugetlbfs_aops
;
46 static const struct file_operations hugetlbfs_file_operations
;
47 static const struct inode_operations hugetlbfs_dir_inode_operations
;
48 static const struct inode_operations hugetlbfs_inode_operations
;
50 enum hugetlbfs_size_type
{ NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
52 struct hugetlbfs_fs_context
{
53 struct hstate
*hstate
;
54 unsigned long long max_size_opt
;
55 unsigned long long min_size_opt
;
59 enum hugetlbfs_size_type max_val_type
;
60 enum hugetlbfs_size_type min_val_type
;
66 int sysctl_hugetlb_shm_group
;
78 static const struct fs_parameter_spec hugetlb_fs_parameters
[] = {
79 fsparam_gid ("gid", Opt_gid
),
80 fsparam_string("min_size", Opt_min_size
),
81 fsparam_u32oct("mode", Opt_mode
),
82 fsparam_string("nr_inodes", Opt_nr_inodes
),
83 fsparam_string("pagesize", Opt_pagesize
),
84 fsparam_string("size", Opt_size
),
85 fsparam_uid ("uid", Opt_uid
),
90 * Mask used when checking the page offset value passed in via system
91 * calls. This value will be converted to a loff_t which is signed.
92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93 * value. The extra bit (- 1 in the shift value) is to take the sign
96 #define PGOFF_LOFFT_MAX \
97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
99 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
101 struct inode
*inode
= file_inode(file
);
102 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
105 struct hstate
*h
= hstate_file(file
);
109 * vma address alignment (but not the pgoff alignment) has
110 * already been checked by prepare_hugepage_range. If you add
111 * any error returns here, do so after setting VM_HUGETLB, so
112 * is_vm_hugetlb_page tests below unmap_region go the right
113 * way when do_mmap unwinds (may be important on powerpc
116 vm_flags_set(vma
, VM_HUGETLB
| VM_DONTEXPAND
);
117 vma
->vm_ops
= &hugetlb_vm_ops
;
119 ret
= seal_check_write(info
->seals
, vma
);
124 * page based offset in vm_pgoff could be sufficiently large to
125 * overflow a loff_t when converted to byte offset. This can
126 * only happen on architectures where sizeof(loff_t) ==
127 * sizeof(unsigned long). So, only check in those instances.
129 if (sizeof(unsigned long) == sizeof(loff_t
)) {
130 if (vma
->vm_pgoff
& PGOFF_LOFFT_MAX
)
134 /* must be huge page aligned */
135 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
138 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
139 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
140 /* check for overflow */
149 vm_flags
= vma
->vm_flags
;
151 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
152 * reserving here. Note: only for SHM hugetlbfs file, the inode
153 * flag S_PRIVATE is set.
155 if (inode
->i_flags
& S_PRIVATE
)
156 vm_flags
|= VM_NORESERVE
;
158 if (!hugetlb_reserve_pages(inode
,
159 vma
->vm_pgoff
>> huge_page_order(h
),
160 len
>> huge_page_shift(h
), vma
,
165 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
166 i_size_write(inode
, len
);
174 * Called under mmap_write_lock(mm).
178 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
179 unsigned long len
, unsigned long pgoff
,
182 unsigned long addr0
= 0;
183 struct hstate
*h
= hstate_file(file
);
185 if (len
& ~huge_page_mask(h
))
187 if (flags
& MAP_FIXED
) {
188 if (addr
& ~huge_page_mask(h
))
190 if (prepare_hugepage_range(file
, addr
, len
))
194 addr0
= ALIGN(addr
, huge_page_size(h
));
196 return mm_get_unmapped_area_vmflags(current
->mm
, file
, addr0
, len
, pgoff
,
201 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
202 * Returns the maximum number of bytes one can read without touching the 1st raw
205 * The implementation borrows the iteration logic from copy_page_to_iter*.
207 static size_t adjust_range_hwpoison(struct page
*page
, size_t offset
, size_t bytes
)
212 /* First subpage to start the loop. */
213 page
= nth_page(page
, offset
/ PAGE_SIZE
);
216 if (is_raw_hwpoison_page_in_hugepage(page
))
219 /* Safe to read n bytes without touching HWPOISON subpage. */
220 n
= min(bytes
, (size_t)PAGE_SIZE
- offset
);
226 if (offset
== PAGE_SIZE
) {
227 page
= nth_page(page
, 1);
236 * Support for read() - Find the page attached to f_mapping and copy out the
237 * data. This provides functionality similar to filemap_read().
239 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
241 struct file
*file
= iocb
->ki_filp
;
242 struct hstate
*h
= hstate_file(file
);
243 struct address_space
*mapping
= file
->f_mapping
;
244 struct inode
*inode
= mapping
->host
;
245 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
246 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
247 unsigned long end_index
;
251 while (iov_iter_count(to
)) {
253 size_t nr
, copied
, want
;
255 /* nr is the maximum number of bytes to copy from this page */
256 nr
= huge_page_size(h
);
257 isize
= i_size_read(inode
);
260 end_index
= (isize
- 1) >> huge_page_shift(h
);
261 if (index
> end_index
)
263 if (index
== end_index
) {
264 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
271 folio
= filemap_lock_hugetlb_folio(h
, mapping
, index
);
274 * We have a HOLE, zero out the user-buffer for the
275 * length of the hole or request.
277 copied
= iov_iter_zero(nr
, to
);
281 if (!folio_test_hwpoison(folio
))
285 * Adjust how many bytes safe to read without
286 * touching the 1st raw HWPOISON subpage after
289 want
= adjust_range_hwpoison(&folio
->page
, offset
, nr
);
298 * We have the folio, copy it to user space buffer.
300 copied
= copy_folio_to_iter(folio
, offset
, want
, to
);
305 if (copied
!= nr
&& iov_iter_count(to
)) {
310 index
+= offset
>> huge_page_shift(h
);
311 offset
&= ~huge_page_mask(h
);
313 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
317 static int hugetlbfs_write_begin(struct file
*file
,
318 struct address_space
*mapping
,
319 loff_t pos
, unsigned len
,
320 struct folio
**foliop
, void **fsdata
)
325 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
326 loff_t pos
, unsigned len
, unsigned copied
,
327 struct folio
*folio
, void *fsdata
)
333 static void hugetlb_delete_from_page_cache(struct folio
*folio
)
335 folio_clear_dirty(folio
);
336 folio_clear_uptodate(folio
);
337 filemap_remove_folio(folio
);
341 * Called with i_mmap_rwsem held for inode based vma maps. This makes
342 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
343 * mutex for the page in the mapping. So, we can not race with page being
344 * faulted into the vma.
346 static bool hugetlb_vma_maps_page(struct vm_area_struct
*vma
,
347 unsigned long addr
, struct page
*page
)
351 ptep
= hugetlb_walk(vma
, addr
, huge_page_size(hstate_vma(vma
)));
355 pte
= huge_ptep_get(vma
->vm_mm
, addr
, ptep
);
356 if (huge_pte_none(pte
) || !pte_present(pte
))
359 if (pte_page(pte
) == page
)
366 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
367 * No, because the interval tree returns us only those vmas
368 * which overlap the truncated area starting at pgoff,
369 * and no vma on a 32-bit arch can span beyond the 4GB.
371 static unsigned long vma_offset_start(struct vm_area_struct
*vma
, pgoff_t start
)
373 unsigned long offset
= 0;
375 if (vma
->vm_pgoff
< start
)
376 offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
378 return vma
->vm_start
+ offset
;
381 static unsigned long vma_offset_end(struct vm_area_struct
*vma
, pgoff_t end
)
388 t_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
) + vma
->vm_start
;
389 if (t_end
> vma
->vm_end
)
395 * Called with hugetlb fault mutex held. Therefore, no more mappings to
396 * this folio can be created while executing the routine.
398 static void hugetlb_unmap_file_folio(struct hstate
*h
,
399 struct address_space
*mapping
,
400 struct folio
*folio
, pgoff_t index
)
402 struct rb_root_cached
*root
= &mapping
->i_mmap
;
403 struct hugetlb_vma_lock
*vma_lock
;
404 struct page
*page
= &folio
->page
;
405 struct vm_area_struct
*vma
;
406 unsigned long v_start
;
410 start
= index
* pages_per_huge_page(h
);
411 end
= (index
+ 1) * pages_per_huge_page(h
);
413 i_mmap_lock_write(mapping
);
416 vma_interval_tree_foreach(vma
, root
, start
, end
- 1) {
417 v_start
= vma_offset_start(vma
, start
);
418 v_end
= vma_offset_end(vma
, end
);
420 if (!hugetlb_vma_maps_page(vma
, v_start
, page
))
423 if (!hugetlb_vma_trylock_write(vma
)) {
424 vma_lock
= vma
->vm_private_data
;
426 * If we can not get vma lock, we need to drop
427 * immap_sema and take locks in order. First,
428 * take a ref on the vma_lock structure so that
429 * we can be guaranteed it will not go away when
430 * dropping immap_sema.
432 kref_get(&vma_lock
->refs
);
436 unmap_hugepage_range(vma
, v_start
, v_end
, NULL
,
437 ZAP_FLAG_DROP_MARKER
);
438 hugetlb_vma_unlock_write(vma
);
441 i_mmap_unlock_write(mapping
);
445 * Wait on vma_lock. We know it is still valid as we have
446 * a reference. We must 'open code' vma locking as we do
447 * not know if vma_lock is still attached to vma.
449 down_write(&vma_lock
->rw_sema
);
450 i_mmap_lock_write(mapping
);
455 * If lock is no longer attached to vma, then just
456 * unlock, drop our reference and retry looking for
459 up_write(&vma_lock
->rw_sema
);
460 kref_put(&vma_lock
->refs
, hugetlb_vma_lock_release
);
465 * vma_lock is still attached to vma. Check to see if vma
466 * still maps page and if so, unmap.
468 v_start
= vma_offset_start(vma
, start
);
469 v_end
= vma_offset_end(vma
, end
);
470 if (hugetlb_vma_maps_page(vma
, v_start
, page
))
471 unmap_hugepage_range(vma
, v_start
, v_end
, NULL
,
472 ZAP_FLAG_DROP_MARKER
);
474 kref_put(&vma_lock
->refs
, hugetlb_vma_lock_release
);
475 hugetlb_vma_unlock_write(vma
);
482 hugetlb_vmdelete_list(struct rb_root_cached
*root
, pgoff_t start
, pgoff_t end
,
483 zap_flags_t zap_flags
)
485 struct vm_area_struct
*vma
;
488 * end == 0 indicates that the entire range after start should be
489 * unmapped. Note, end is exclusive, whereas the interval tree takes
490 * an inclusive "last".
492 vma_interval_tree_foreach(vma
, root
, start
, end
? end
- 1 : ULONG_MAX
) {
493 unsigned long v_start
;
496 if (!hugetlb_vma_trylock_write(vma
))
499 v_start
= vma_offset_start(vma
, start
);
500 v_end
= vma_offset_end(vma
, end
);
502 unmap_hugepage_range(vma
, v_start
, v_end
, NULL
, zap_flags
);
505 * Note that vma lock only exists for shared/non-private
506 * vmas. Therefore, lock is not held when calling
507 * unmap_hugepage_range for private vmas.
509 hugetlb_vma_unlock_write(vma
);
514 * Called with hugetlb fault mutex held.
515 * Returns true if page was actually removed, false otherwise.
517 static bool remove_inode_single_folio(struct hstate
*h
, struct inode
*inode
,
518 struct address_space
*mapping
,
519 struct folio
*folio
, pgoff_t index
,
525 * If folio is mapped, it was faulted in after being
526 * unmapped in caller. Unmap (again) while holding
527 * the fault mutex. The mutex will prevent faults
528 * until we finish removing the folio.
530 if (unlikely(folio_mapped(folio
)))
531 hugetlb_unmap_file_folio(h
, mapping
, folio
, index
);
535 * We must remove the folio from page cache before removing
536 * the region/ reserve map (hugetlb_unreserve_pages). In
537 * rare out of memory conditions, removal of the region/reserve
538 * map could fail. Correspondingly, the subpool and global
539 * reserve usage count can need to be adjusted.
541 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio
), folio
);
542 hugetlb_delete_from_page_cache(folio
);
545 if (unlikely(hugetlb_unreserve_pages(inode
, index
,
547 hugetlb_fix_reserve_counts(inode
);
555 * remove_inode_hugepages handles two distinct cases: truncation and hole
556 * punch. There are subtle differences in operation for each case.
558 * truncation is indicated by end of range being LLONG_MAX
559 * In this case, we first scan the range and release found pages.
560 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
561 * maps and global counts. Page faults can race with truncation.
562 * During faults, hugetlb_no_page() checks i_size before page allocation,
563 * and again after obtaining page table lock. It will 'back out'
564 * allocations in the truncated range.
565 * hole punch is indicated if end is not LLONG_MAX
566 * In the hole punch case we scan the range and release found pages.
567 * Only when releasing a page is the associated region/reserve map
568 * deleted. The region/reserve map for ranges without associated
569 * pages are not modified. Page faults can race with hole punch.
570 * This is indicated if we find a mapped page.
571 * Note: If the passed end of range value is beyond the end of file, but
572 * not LLONG_MAX this routine still performs a hole punch operation.
574 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
577 struct hstate
*h
= hstate_inode(inode
);
578 struct address_space
*mapping
= &inode
->i_data
;
579 const pgoff_t end
= lend
>> PAGE_SHIFT
;
580 struct folio_batch fbatch
;
583 bool truncate_op
= (lend
== LLONG_MAX
);
585 folio_batch_init(&fbatch
);
586 next
= lstart
>> PAGE_SHIFT
;
587 while (filemap_get_folios(mapping
, &next
, end
- 1, &fbatch
)) {
588 for (i
= 0; i
< folio_batch_count(&fbatch
); ++i
) {
589 struct folio
*folio
= fbatch
.folios
[i
];
592 index
= folio
->index
>> huge_page_order(h
);
593 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
594 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
597 * Remove folio that was part of folio_batch.
599 if (remove_inode_single_folio(h
, inode
, mapping
, folio
,
603 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
605 folio_batch_release(&fbatch
);
610 (void)hugetlb_unreserve_pages(inode
,
611 lstart
>> huge_page_shift(h
),
615 static void hugetlbfs_evict_inode(struct inode
*inode
)
617 struct resv_map
*resv_map
;
619 trace_hugetlbfs_evict_inode(inode
);
620 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
623 * Get the resv_map from the address space embedded in the inode.
624 * This is the address space which points to any resv_map allocated
625 * at inode creation time. If this is a device special inode,
626 * i_mapping may not point to the original address space.
628 resv_map
= (struct resv_map
*)(&inode
->i_data
)->i_private_data
;
629 /* Only regular and link inodes have associated reserve maps */
631 resv_map_release(&resv_map
->refs
);
635 static void hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
638 struct address_space
*mapping
= inode
->i_mapping
;
639 struct hstate
*h
= hstate_inode(inode
);
641 BUG_ON(offset
& ~huge_page_mask(h
));
642 pgoff
= offset
>> PAGE_SHIFT
;
644 i_size_write(inode
, offset
);
645 i_mmap_lock_write(mapping
);
646 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
647 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0,
648 ZAP_FLAG_DROP_MARKER
);
649 i_mmap_unlock_write(mapping
);
650 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
653 static void hugetlbfs_zero_partial_page(struct hstate
*h
,
654 struct address_space
*mapping
,
658 pgoff_t idx
= start
>> huge_page_shift(h
);
661 folio
= filemap_lock_hugetlb_folio(h
, mapping
, idx
);
665 start
= start
& ~huge_page_mask(h
);
666 end
= end
& ~huge_page_mask(h
);
668 end
= huge_page_size(h
);
670 folio_zero_segment(folio
, (size_t)start
, (size_t)end
);
676 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
678 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
679 struct address_space
*mapping
= inode
->i_mapping
;
680 struct hstate
*h
= hstate_inode(inode
);
681 loff_t hpage_size
= huge_page_size(h
);
682 loff_t hole_start
, hole_end
;
685 * hole_start and hole_end indicate the full pages within the hole.
687 hole_start
= round_up(offset
, hpage_size
);
688 hole_end
= round_down(offset
+ len
, hpage_size
);
692 /* protected by i_rwsem */
693 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
698 i_mmap_lock_write(mapping
);
700 /* If range starts before first full page, zero partial page. */
701 if (offset
< hole_start
)
702 hugetlbfs_zero_partial_page(h
, mapping
,
703 offset
, min(offset
+ len
, hole_start
));
705 /* Unmap users of full pages in the hole. */
706 if (hole_end
> hole_start
) {
707 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
708 hugetlb_vmdelete_list(&mapping
->i_mmap
,
709 hole_start
>> PAGE_SHIFT
,
710 hole_end
>> PAGE_SHIFT
, 0);
713 /* If range extends beyond last full page, zero partial page. */
714 if ((offset
+ len
) > hole_end
&& (offset
+ len
) > hole_start
)
715 hugetlbfs_zero_partial_page(h
, mapping
,
716 hole_end
, offset
+ len
);
718 i_mmap_unlock_write(mapping
);
720 /* Remove full pages from the file. */
721 if (hole_end
> hole_start
)
722 remove_inode_hugepages(inode
, hole_start
, hole_end
);
729 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
732 struct inode
*inode
= file_inode(file
);
733 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
734 struct address_space
*mapping
= inode
->i_mapping
;
735 struct hstate
*h
= hstate_inode(inode
);
736 struct vm_area_struct pseudo_vma
;
737 struct mm_struct
*mm
= current
->mm
;
738 loff_t hpage_size
= huge_page_size(h
);
739 unsigned long hpage_shift
= huge_page_shift(h
);
740 pgoff_t start
, index
, end
;
744 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
747 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
748 error
= hugetlbfs_punch_hole(inode
, offset
, len
);
753 * Default preallocate case.
754 * For this range, start is rounded down and end is rounded up
755 * as well as being converted to page offsets.
757 start
= offset
>> hpage_shift
;
758 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
762 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
763 error
= inode_newsize_ok(inode
, offset
+ len
);
767 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
773 * Initialize a pseudo vma as this is required by the huge page
774 * allocation routines.
776 vma_init(&pseudo_vma
, mm
);
777 vm_flags_init(&pseudo_vma
, VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
778 pseudo_vma
.vm_file
= file
;
780 for (index
= start
; index
< end
; index
++) {
782 * This is supposed to be the vaddr where the page is being
783 * faulted in, but we have no vaddr here.
791 * fallocate(2) manpage permits EINTR; we may have been
792 * interrupted because we are using up too much memory.
794 if (signal_pending(current
)) {
799 /* addr is the offset within the file (zero based) */
800 addr
= index
* hpage_size
;
802 /* mutex taken here, fault path and hole punch */
803 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
804 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
806 /* See if already present in mapping to avoid alloc/free */
807 folio
= filemap_get_folio(mapping
, index
<< huge_page_order(h
));
808 if (!IS_ERR(folio
)) {
810 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
815 * Allocate folio without setting the avoid_reserve argument.
816 * There certainly are no reserves associated with the
817 * pseudo_vma. However, there could be shared mappings with
818 * reserves for the file at the inode level. If we fallocate
819 * folios in these areas, we need to consume the reserves
820 * to keep reservation accounting consistent.
822 folio
= alloc_hugetlb_folio(&pseudo_vma
, addr
, 0);
824 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
825 error
= PTR_ERR(folio
);
828 folio_zero_user(folio
, addr
);
829 __folio_mark_uptodate(folio
);
830 error
= hugetlb_add_to_page_cache(folio
, mapping
, index
);
831 if (unlikely(error
)) {
832 restore_reserve_on_error(h
, &pseudo_vma
, addr
, folio
);
834 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
838 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
840 folio_set_hugetlb_migratable(folio
);
842 * folio_unlock because locked by hugetlb_add_to_page_cache()
843 * folio_put() due to reference from alloc_hugetlb_folio()
849 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
850 i_size_write(inode
, offset
+ len
);
851 inode_set_ctime_current(inode
);
856 trace_hugetlbfs_fallocate(inode
, mode
, offset
, len
, error
);
860 static int hugetlbfs_setattr(struct mnt_idmap
*idmap
,
861 struct dentry
*dentry
, struct iattr
*attr
)
863 struct inode
*inode
= d_inode(dentry
);
864 struct hstate
*h
= hstate_inode(inode
);
866 unsigned int ia_valid
= attr
->ia_valid
;
867 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
869 error
= setattr_prepare(idmap
, dentry
, attr
);
873 trace_hugetlbfs_setattr(inode
, dentry
, attr
);
875 if (ia_valid
& ATTR_SIZE
) {
876 loff_t oldsize
= inode
->i_size
;
877 loff_t newsize
= attr
->ia_size
;
879 if (newsize
& ~huge_page_mask(h
))
881 /* protected by i_rwsem */
882 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
883 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
885 hugetlb_vmtruncate(inode
, newsize
);
888 setattr_copy(idmap
, inode
, attr
);
889 mark_inode_dirty(inode
);
893 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
894 struct hugetlbfs_fs_context
*ctx
)
898 inode
= new_inode(sb
);
900 inode
->i_ino
= get_next_ino();
901 inode
->i_mode
= S_IFDIR
| ctx
->mode
;
902 inode
->i_uid
= ctx
->uid
;
903 inode
->i_gid
= ctx
->gid
;
904 simple_inode_init_ts(inode
);
905 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
906 inode
->i_fop
= &simple_dir_operations
;
907 /* directory inodes start off with i_nlink == 2 (for "." entry) */
909 lockdep_annotate_inode_mutex_key(inode
);
915 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
916 * be taken from reclaim -- unlike regular filesystems. This needs an
917 * annotation because huge_pmd_share() does an allocation under hugetlb's
920 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
922 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
923 struct mnt_idmap
*idmap
,
925 umode_t mode
, dev_t dev
)
928 struct resv_map
*resv_map
= NULL
;
931 * Reserve maps are only needed for inodes that can have associated
934 if (S_ISREG(mode
) || S_ISLNK(mode
)) {
935 resv_map
= resv_map_alloc();
940 inode
= new_inode(sb
);
942 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
944 inode
->i_ino
= get_next_ino();
945 inode_init_owner(idmap
, inode
, dir
, mode
);
946 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
947 &hugetlbfs_i_mmap_rwsem_key
);
948 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
949 simple_inode_init_ts(inode
);
950 inode
->i_mapping
->i_private_data
= resv_map
;
951 info
->seals
= F_SEAL_SEAL
;
952 switch (mode
& S_IFMT
) {
954 init_special_inode(inode
, mode
, dev
);
957 inode
->i_op
= &hugetlbfs_inode_operations
;
958 inode
->i_fop
= &hugetlbfs_file_operations
;
961 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
962 inode
->i_fop
= &simple_dir_operations
;
964 /* directory inodes start off with i_nlink == 2 (for "." entry) */
968 inode
->i_op
= &page_symlink_inode_operations
;
969 inode_nohighmem(inode
);
972 lockdep_annotate_inode_mutex_key(inode
);
973 trace_hugetlbfs_alloc_inode(inode
, dir
, mode
);
976 kref_put(&resv_map
->refs
, resv_map_release
);
983 * File creation. Allocate an inode, and we're done..
985 static int hugetlbfs_mknod(struct mnt_idmap
*idmap
, struct inode
*dir
,
986 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
990 inode
= hugetlbfs_get_inode(dir
->i_sb
, idmap
, dir
, mode
, dev
);
993 inode_set_mtime_to_ts(dir
, inode_set_ctime_current(dir
));
994 d_instantiate(dentry
, inode
);
995 dget(dentry
);/* Extra count - pin the dentry in core */
999 static int hugetlbfs_mkdir(struct mnt_idmap
*idmap
, struct inode
*dir
,
1000 struct dentry
*dentry
, umode_t mode
)
1002 int retval
= hugetlbfs_mknod(idmap
, dir
, dentry
,
1009 static int hugetlbfs_create(struct mnt_idmap
*idmap
,
1010 struct inode
*dir
, struct dentry
*dentry
,
1011 umode_t mode
, bool excl
)
1013 return hugetlbfs_mknod(idmap
, dir
, dentry
, mode
| S_IFREG
, 0);
1016 static int hugetlbfs_tmpfile(struct mnt_idmap
*idmap
,
1017 struct inode
*dir
, struct file
*file
,
1020 struct inode
*inode
;
1022 inode
= hugetlbfs_get_inode(dir
->i_sb
, idmap
, dir
, mode
| S_IFREG
, 0);
1025 inode_set_mtime_to_ts(dir
, inode_set_ctime_current(dir
));
1026 d_tmpfile(file
, inode
);
1027 return finish_open_simple(file
, 0);
1030 static int hugetlbfs_symlink(struct mnt_idmap
*idmap
,
1031 struct inode
*dir
, struct dentry
*dentry
,
1032 const char *symname
)
1034 const umode_t mode
= S_IFLNK
|S_IRWXUGO
;
1035 struct inode
*inode
;
1036 int error
= -ENOSPC
;
1038 inode
= hugetlbfs_get_inode(dir
->i_sb
, idmap
, dir
, mode
, 0);
1040 int l
= strlen(symname
)+1;
1041 error
= page_symlink(inode
, symname
, l
);
1043 d_instantiate(dentry
, inode
);
1048 inode_set_mtime_to_ts(dir
, inode_set_ctime_current(dir
));
1053 #ifdef CONFIG_MIGRATION
1054 static int hugetlbfs_migrate_folio(struct address_space
*mapping
,
1055 struct folio
*dst
, struct folio
*src
,
1056 enum migrate_mode mode
)
1060 rc
= migrate_huge_page_move_mapping(mapping
, dst
, src
);
1061 if (rc
!= MIGRATEPAGE_SUCCESS
)
1064 if (hugetlb_folio_subpool(src
)) {
1065 hugetlb_set_folio_subpool(dst
,
1066 hugetlb_folio_subpool(src
));
1067 hugetlb_set_folio_subpool(src
, NULL
);
1070 folio_migrate_flags(dst
, src
);
1072 return MIGRATEPAGE_SUCCESS
;
1075 #define hugetlbfs_migrate_folio NULL
1078 static int hugetlbfs_error_remove_folio(struct address_space
*mapping
,
1079 struct folio
*folio
)
1085 * Display the mount options in /proc/mounts.
1087 static int hugetlbfs_show_options(struct seq_file
*m
, struct dentry
*root
)
1089 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(root
->d_sb
);
1090 struct hugepage_subpool
*spool
= sbinfo
->spool
;
1091 unsigned long hpage_size
= huge_page_size(sbinfo
->hstate
);
1092 unsigned hpage_shift
= huge_page_shift(sbinfo
->hstate
);
1095 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
1096 seq_printf(m
, ",uid=%u",
1097 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
1098 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
1099 seq_printf(m
, ",gid=%u",
1100 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
1101 if (sbinfo
->mode
!= 0755)
1102 seq_printf(m
, ",mode=%o", sbinfo
->mode
);
1103 if (sbinfo
->max_inodes
!= -1)
1104 seq_printf(m
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
1108 if (hpage_size
>= 1024) {
1112 seq_printf(m
, ",pagesize=%lu%c", hpage_size
, mod
);
1114 if (spool
->max_hpages
!= -1)
1115 seq_printf(m
, ",size=%llu",
1116 (unsigned long long)spool
->max_hpages
<< hpage_shift
);
1117 if (spool
->min_hpages
!= -1)
1118 seq_printf(m
, ",min_size=%llu",
1119 (unsigned long long)spool
->min_hpages
<< hpage_shift
);
1124 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1126 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
1127 struct hstate
*h
= hstate_inode(d_inode(dentry
));
1128 u64 id
= huge_encode_dev(dentry
->d_sb
->s_dev
);
1130 buf
->f_fsid
= u64_to_fsid(id
);
1131 buf
->f_type
= HUGETLBFS_MAGIC
;
1132 buf
->f_bsize
= huge_page_size(h
);
1134 spin_lock(&sbinfo
->stat_lock
);
1135 /* If no limits set, just report 0 or -1 for max/free/used
1136 * blocks, like simple_statfs() */
1137 if (sbinfo
->spool
) {
1140 spin_lock_irq(&sbinfo
->spool
->lock
);
1141 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
1142 free_pages
= sbinfo
->spool
->max_hpages
1143 - sbinfo
->spool
->used_hpages
;
1144 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
1145 spin_unlock_irq(&sbinfo
->spool
->lock
);
1146 buf
->f_files
= sbinfo
->max_inodes
;
1147 buf
->f_ffree
= sbinfo
->free_inodes
;
1149 spin_unlock(&sbinfo
->stat_lock
);
1151 buf
->f_namelen
= NAME_MAX
;
1155 static void hugetlbfs_put_super(struct super_block
*sb
)
1157 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
1160 sb
->s_fs_info
= NULL
;
1163 hugepage_put_subpool(sbi
->spool
);
1169 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1171 if (sbinfo
->free_inodes
>= 0) {
1172 spin_lock(&sbinfo
->stat_lock
);
1173 if (unlikely(!sbinfo
->free_inodes
)) {
1174 spin_unlock(&sbinfo
->stat_lock
);
1177 sbinfo
->free_inodes
--;
1178 spin_unlock(&sbinfo
->stat_lock
);
1184 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1186 if (sbinfo
->free_inodes
>= 0) {
1187 spin_lock(&sbinfo
->stat_lock
);
1188 sbinfo
->free_inodes
++;
1189 spin_unlock(&sbinfo
->stat_lock
);
1194 static struct kmem_cache
*hugetlbfs_inode_cachep
;
1196 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
1198 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
1199 struct hugetlbfs_inode_info
*p
;
1201 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
1203 p
= alloc_inode_sb(sb
, hugetlbfs_inode_cachep
, GFP_KERNEL
);
1205 hugetlbfs_inc_free_inodes(sbinfo
);
1208 return &p
->vfs_inode
;
1211 static void hugetlbfs_free_inode(struct inode
*inode
)
1213 trace_hugetlbfs_free_inode(inode
);
1214 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
1217 static void hugetlbfs_destroy_inode(struct inode
*inode
)
1219 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
1222 static const struct address_space_operations hugetlbfs_aops
= {
1223 .write_begin
= hugetlbfs_write_begin
,
1224 .write_end
= hugetlbfs_write_end
,
1225 .dirty_folio
= noop_dirty_folio
,
1226 .migrate_folio
= hugetlbfs_migrate_folio
,
1227 .error_remove_folio
= hugetlbfs_error_remove_folio
,
1231 static void init_once(void *foo
)
1233 struct hugetlbfs_inode_info
*ei
= foo
;
1235 inode_init_once(&ei
->vfs_inode
);
1238 static const struct file_operations hugetlbfs_file_operations
= {
1239 .read_iter
= hugetlbfs_read_iter
,
1240 .mmap
= hugetlbfs_file_mmap
,
1241 .fsync
= noop_fsync
,
1242 .get_unmapped_area
= hugetlb_get_unmapped_area
,
1243 .llseek
= default_llseek
,
1244 .fallocate
= hugetlbfs_fallocate
,
1245 .fop_flags
= FOP_HUGE_PAGES
,
1248 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
1249 .create
= hugetlbfs_create
,
1250 .lookup
= simple_lookup
,
1251 .link
= simple_link
,
1252 .unlink
= simple_unlink
,
1253 .symlink
= hugetlbfs_symlink
,
1254 .mkdir
= hugetlbfs_mkdir
,
1255 .rmdir
= simple_rmdir
,
1256 .mknod
= hugetlbfs_mknod
,
1257 .rename
= simple_rename
,
1258 .setattr
= hugetlbfs_setattr
,
1259 .tmpfile
= hugetlbfs_tmpfile
,
1262 static const struct inode_operations hugetlbfs_inode_operations
= {
1263 .setattr
= hugetlbfs_setattr
,
1266 static const struct super_operations hugetlbfs_ops
= {
1267 .alloc_inode
= hugetlbfs_alloc_inode
,
1268 .free_inode
= hugetlbfs_free_inode
,
1269 .destroy_inode
= hugetlbfs_destroy_inode
,
1270 .evict_inode
= hugetlbfs_evict_inode
,
1271 .statfs
= hugetlbfs_statfs
,
1272 .put_super
= hugetlbfs_put_super
,
1273 .show_options
= hugetlbfs_show_options
,
1277 * Convert size option passed from command line to number of huge pages
1278 * in the pool specified by hstate. Size option could be in bytes
1279 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1282 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1283 enum hugetlbfs_size_type val_type
)
1285 if (val_type
== NO_SIZE
)
1288 if (val_type
== SIZE_PERCENT
) {
1289 size_opt
<<= huge_page_shift(h
);
1290 size_opt
*= h
->max_huge_pages
;
1291 do_div(size_opt
, 100);
1294 size_opt
>>= huge_page_shift(h
);
1299 * Parse one mount parameter.
1301 static int hugetlbfs_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1303 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1304 struct fs_parse_result result
;
1310 opt
= fs_parse(fc
, hugetlb_fs_parameters
, param
, &result
);
1316 ctx
->uid
= result
.uid
;
1320 ctx
->gid
= result
.gid
;
1324 ctx
->mode
= result
.uint_32
& 01777U;
1328 /* memparse() will accept a K/M/G without a digit */
1329 if (!param
->string
|| !isdigit(param
->string
[0]))
1331 ctx
->max_size_opt
= memparse(param
->string
, &rest
);
1332 ctx
->max_val_type
= SIZE_STD
;
1334 ctx
->max_val_type
= SIZE_PERCENT
;
1338 /* memparse() will accept a K/M/G without a digit */
1339 if (!param
->string
|| !isdigit(param
->string
[0]))
1341 ctx
->nr_inodes
= memparse(param
->string
, &rest
);
1345 ps
= memparse(param
->string
, &rest
);
1346 h
= size_to_hstate(ps
);
1348 pr_err("Unsupported page size %lu MB\n", ps
/ SZ_1M
);
1355 /* memparse() will accept a K/M/G without a digit */
1356 if (!param
->string
|| !isdigit(param
->string
[0]))
1358 ctx
->min_size_opt
= memparse(param
->string
, &rest
);
1359 ctx
->min_val_type
= SIZE_STD
;
1361 ctx
->min_val_type
= SIZE_PERCENT
;
1369 return invalfc(fc
, "Bad value '%s' for mount option '%s'\n",
1370 param
->string
, param
->key
);
1374 * Validate the parsed options.
1376 static int hugetlbfs_validate(struct fs_context
*fc
)
1378 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1381 * Use huge page pool size (in hstate) to convert the size
1382 * options to number of huge pages. If NO_SIZE, -1 is returned.
1384 ctx
->max_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1387 ctx
->min_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1392 * If max_size was specified, then min_size must be smaller
1394 if (ctx
->max_val_type
> NO_SIZE
&&
1395 ctx
->min_hpages
> ctx
->max_hpages
) {
1396 pr_err("Minimum size can not be greater than maximum size\n");
1404 hugetlbfs_fill_super(struct super_block
*sb
, struct fs_context
*fc
)
1406 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1407 struct hugetlbfs_sb_info
*sbinfo
;
1409 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1412 sb
->s_fs_info
= sbinfo
;
1413 spin_lock_init(&sbinfo
->stat_lock
);
1414 sbinfo
->hstate
= ctx
->hstate
;
1415 sbinfo
->max_inodes
= ctx
->nr_inodes
;
1416 sbinfo
->free_inodes
= ctx
->nr_inodes
;
1417 sbinfo
->spool
= NULL
;
1418 sbinfo
->uid
= ctx
->uid
;
1419 sbinfo
->gid
= ctx
->gid
;
1420 sbinfo
->mode
= ctx
->mode
;
1423 * Allocate and initialize subpool if maximum or minimum size is
1424 * specified. Any needed reservations (for minimum size) are taken
1425 * when the subpool is created.
1427 if (ctx
->max_hpages
!= -1 || ctx
->min_hpages
!= -1) {
1428 sbinfo
->spool
= hugepage_new_subpool(ctx
->hstate
,
1434 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1435 sb
->s_blocksize
= huge_page_size(ctx
->hstate
);
1436 sb
->s_blocksize_bits
= huge_page_shift(ctx
->hstate
);
1437 sb
->s_magic
= HUGETLBFS_MAGIC
;
1438 sb
->s_op
= &hugetlbfs_ops
;
1439 sb
->s_time_gran
= 1;
1442 * Due to the special and limited functionality of hugetlbfs, it does
1443 * not work well as a stacking filesystem.
1445 sb
->s_stack_depth
= FILESYSTEM_MAX_STACK_DEPTH
;
1446 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, ctx
));
1451 kfree(sbinfo
->spool
);
1456 static int hugetlbfs_get_tree(struct fs_context
*fc
)
1458 int err
= hugetlbfs_validate(fc
);
1461 return get_tree_nodev(fc
, hugetlbfs_fill_super
);
1464 static void hugetlbfs_fs_context_free(struct fs_context
*fc
)
1466 kfree(fc
->fs_private
);
1469 static const struct fs_context_operations hugetlbfs_fs_context_ops
= {
1470 .free
= hugetlbfs_fs_context_free
,
1471 .parse_param
= hugetlbfs_parse_param
,
1472 .get_tree
= hugetlbfs_get_tree
,
1475 static int hugetlbfs_init_fs_context(struct fs_context
*fc
)
1477 struct hugetlbfs_fs_context
*ctx
;
1479 ctx
= kzalloc(sizeof(struct hugetlbfs_fs_context
), GFP_KERNEL
);
1483 ctx
->max_hpages
= -1; /* No limit on size by default */
1484 ctx
->nr_inodes
= -1; /* No limit on number of inodes by default */
1485 ctx
->uid
= current_fsuid();
1486 ctx
->gid
= current_fsgid();
1488 ctx
->hstate
= &default_hstate
;
1489 ctx
->min_hpages
= -1; /* No default minimum size */
1490 ctx
->max_val_type
= NO_SIZE
;
1491 ctx
->min_val_type
= NO_SIZE
;
1492 fc
->fs_private
= ctx
;
1493 fc
->ops
= &hugetlbfs_fs_context_ops
;
1497 static struct file_system_type hugetlbfs_fs_type
= {
1498 .name
= "hugetlbfs",
1499 .init_fs_context
= hugetlbfs_init_fs_context
,
1500 .parameters
= hugetlb_fs_parameters
,
1501 .kill_sb
= kill_litter_super
,
1502 .fs_flags
= FS_ALLOW_IDMAP
,
1505 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1507 static int can_do_hugetlb_shm(void)
1510 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1511 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1514 static int get_hstate_idx(int page_size_log
)
1516 struct hstate
*h
= hstate_sizelog(page_size_log
);
1520 return hstate_index(h
);
1524 * Note that size should be aligned to proper hugepage size in caller side,
1525 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1527 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1528 vm_flags_t acctflag
, int creat_flags
,
1531 struct inode
*inode
;
1532 struct vfsmount
*mnt
;
1536 hstate_idx
= get_hstate_idx(page_size_log
);
1538 return ERR_PTR(-ENODEV
);
1540 mnt
= hugetlbfs_vfsmount
[hstate_idx
];
1542 return ERR_PTR(-ENOENT
);
1544 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1545 struct ucounts
*ucounts
= current_ucounts();
1547 if (user_shm_lock(size
, ucounts
)) {
1548 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1549 current
->comm
, current
->pid
);
1550 user_shm_unlock(size
, ucounts
);
1552 return ERR_PTR(-EPERM
);
1555 file
= ERR_PTR(-ENOSPC
);
1556 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */
1557 inode
= hugetlbfs_get_inode(mnt
->mnt_sb
, &nop_mnt_idmap
, NULL
,
1558 S_IFREG
| S_IRWXUGO
, 0);
1561 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1562 inode
->i_flags
|= S_PRIVATE
;
1564 inode
->i_size
= size
;
1567 if (!hugetlb_reserve_pages(inode
, 0,
1568 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1570 file
= ERR_PTR(-ENOMEM
);
1572 file
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
1573 &hugetlbfs_file_operations
);
1582 static struct vfsmount
*__init
mount_one_hugetlbfs(struct hstate
*h
)
1584 struct fs_context
*fc
;
1585 struct vfsmount
*mnt
;
1587 fc
= fs_context_for_mount(&hugetlbfs_fs_type
, SB_KERNMOUNT
);
1591 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1597 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1598 huge_page_size(h
) / SZ_1K
);
1602 static int __init
init_hugetlbfs_fs(void)
1604 struct vfsmount
*mnt
;
1609 if (!hugepages_supported()) {
1610 pr_info("disabling because there are no supported hugepage sizes\n");
1615 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1616 sizeof(struct hugetlbfs_inode_info
),
1617 0, SLAB_ACCOUNT
, init_once
);
1618 if (hugetlbfs_inode_cachep
== NULL
)
1621 error
= register_filesystem(&hugetlbfs_fs_type
);
1625 /* default hstate mount is required */
1626 mnt
= mount_one_hugetlbfs(&default_hstate
);
1628 error
= PTR_ERR(mnt
);
1631 hugetlbfs_vfsmount
[default_hstate_idx
] = mnt
;
1633 /* other hstates are optional */
1635 for_each_hstate(h
) {
1636 if (i
== default_hstate_idx
) {
1641 mnt
= mount_one_hugetlbfs(h
);
1643 hugetlbfs_vfsmount
[i
] = NULL
;
1645 hugetlbfs_vfsmount
[i
] = mnt
;
1652 (void)unregister_filesystem(&hugetlbfs_fs_type
);
1654 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1658 fs_initcall(init_hugetlbfs_fs
)