1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * super.c contains code to handle: - mount structures
9 * - filesystem drivers list
11 * - umount system call
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
42 static int thaw_super_locked(struct super_block
*sb
, enum freeze_holder who
);
44 static LIST_HEAD(super_blocks
);
45 static DEFINE_SPINLOCK(sb_lock
);
47 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
53 static inline void __super_lock(struct super_block
*sb
, bool excl
)
56 down_write(&sb
->s_umount
);
58 down_read(&sb
->s_umount
);
61 static inline void super_unlock(struct super_block
*sb
, bool excl
)
64 up_write(&sb
->s_umount
);
66 up_read(&sb
->s_umount
);
69 static inline void __super_lock_excl(struct super_block
*sb
)
71 __super_lock(sb
, true);
74 static inline void super_unlock_excl(struct super_block
*sb
)
76 super_unlock(sb
, true);
79 static inline void super_unlock_shared(struct super_block
*sb
)
81 super_unlock(sb
, false);
84 static bool super_flags(const struct super_block
*sb
, unsigned int flags
)
87 * Pairs with smp_store_release() in super_wake() and ensures
88 * that we see @flags after we're woken.
90 return smp_load_acquire(&sb
->s_flags
) & flags
;
94 * super_lock - wait for superblock to become ready and lock it
95 * @sb: superblock to wait for
96 * @excl: whether exclusive access is required
98 * If the superblock has neither passed through vfs_get_tree() or
99 * generic_shutdown_super() yet wait for it to happen. Either superblock
100 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
101 * woken and we'll see SB_DYING.
103 * The caller must have acquired a temporary reference on @sb->s_count.
105 * Return: The function returns true if SB_BORN was set and with
106 * s_umount held. The function returns false if SB_DYING was
107 * set and without s_umount held.
109 static __must_check
bool super_lock(struct super_block
*sb
, bool excl
)
111 lockdep_assert_not_held(&sb
->s_umount
);
113 /* wait until the superblock is ready or dying */
114 wait_var_event(&sb
->s_flags
, super_flags(sb
, SB_BORN
| SB_DYING
));
116 /* Don't pointlessly acquire s_umount. */
117 if (super_flags(sb
, SB_DYING
))
120 __super_lock(sb
, excl
);
123 * Has gone through generic_shutdown_super() in the meantime.
124 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
125 * grab a reference to this. Tell them so.
127 if (sb
->s_flags
& SB_DYING
) {
128 super_unlock(sb
, excl
);
132 WARN_ON_ONCE(!(sb
->s_flags
& SB_BORN
));
136 /* wait and try to acquire read-side of @sb->s_umount */
137 static inline bool super_lock_shared(struct super_block
*sb
)
139 return super_lock(sb
, false);
142 /* wait and try to acquire write-side of @sb->s_umount */
143 static inline bool super_lock_excl(struct super_block
*sb
)
145 return super_lock(sb
, true);
149 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
150 static void super_wake(struct super_block
*sb
, unsigned int flag
)
152 WARN_ON_ONCE((flag
& ~SUPER_WAKE_FLAGS
));
153 WARN_ON_ONCE(hweight32(flag
& SUPER_WAKE_FLAGS
) > 1);
156 * Pairs with smp_load_acquire() in super_lock() to make sure
157 * all initializations in the superblock are seen by the user
158 * seeing SB_BORN sent.
160 smp_store_release(&sb
->s_flags
, sb
->s_flags
| flag
);
162 * Pairs with the barrier in prepare_to_wait_event() to make sure
163 * ___wait_var_event() either sees SB_BORN set or
164 * waitqueue_active() check in wake_up_var() sees the waiter.
167 wake_up_var(&sb
->s_flags
);
171 * One thing we have to be careful of with a per-sb shrinker is that we don't
172 * drop the last active reference to the superblock from within the shrinker.
173 * If that happens we could trigger unregistering the shrinker from within the
174 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
175 * take a passive reference to the superblock to avoid this from occurring.
177 static unsigned long super_cache_scan(struct shrinker
*shrink
,
178 struct shrink_control
*sc
)
180 struct super_block
*sb
;
187 sb
= shrink
->private_data
;
190 * Deadlock avoidance. We may hold various FS locks, and we don't want
191 * to recurse into the FS that called us in clear_inode() and friends..
193 if (!(sc
->gfp_mask
& __GFP_FS
))
196 if (!super_trylock_shared(sb
))
199 if (sb
->s_op
->nr_cached_objects
)
200 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
202 inodes
= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
203 dentries
= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
204 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
208 /* proportion the scan between the caches */
209 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
210 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
211 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
, total_objects
);
214 * prune the dcache first as the icache is pinned by it, then
215 * prune the icache, followed by the filesystem specific caches
217 * Ensure that we always scan at least one object - memcg kmem
218 * accounting uses this to fully empty the caches.
220 sc
->nr_to_scan
= dentries
+ 1;
221 freed
= prune_dcache_sb(sb
, sc
);
222 sc
->nr_to_scan
= inodes
+ 1;
223 freed
+= prune_icache_sb(sb
, sc
);
226 sc
->nr_to_scan
= fs_objects
+ 1;
227 freed
+= sb
->s_op
->free_cached_objects(sb
, sc
);
230 super_unlock_shared(sb
);
234 static unsigned long super_cache_count(struct shrinker
*shrink
,
235 struct shrink_control
*sc
)
237 struct super_block
*sb
;
238 long total_objects
= 0;
240 sb
= shrink
->private_data
;
243 * We don't call super_trylock_shared() here as it is a scalability
244 * bottleneck, so we're exposed to partial setup state. The shrinker
245 * rwsem does not protect filesystem operations backing
246 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
247 * change between super_cache_count and super_cache_scan, so we really
248 * don't need locks here.
250 * However, if we are currently mounting the superblock, the underlying
251 * filesystem might be in a state of partial construction and hence it
252 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check
253 * to avoid this situation, so do the same here. The memory barrier is
254 * matched with the one in mount_fs() as we don't hold locks here.
256 if (!(sb
->s_flags
& SB_BORN
))
260 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
261 total_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
263 total_objects
+= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
264 total_objects
+= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
269 total_objects
= vfs_pressure_ratio(total_objects
);
270 return total_objects
;
273 static void destroy_super_work(struct work_struct
*work
)
275 struct super_block
*s
= container_of(work
, struct super_block
,
279 put_user_ns(s
->s_user_ns
);
281 for (int i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
282 percpu_free_rwsem(&s
->s_writers
.rw_sem
[i
]);
286 static void destroy_super_rcu(struct rcu_head
*head
)
288 struct super_block
*s
= container_of(head
, struct super_block
, rcu
);
289 INIT_WORK(&s
->destroy_work
, destroy_super_work
);
290 schedule_work(&s
->destroy_work
);
293 /* Free a superblock that has never been seen by anyone */
294 static void destroy_unused_super(struct super_block
*s
)
298 super_unlock_excl(s
);
299 list_lru_destroy(&s
->s_dentry_lru
);
300 list_lru_destroy(&s
->s_inode_lru
);
301 shrinker_free(s
->s_shrink
);
302 /* no delays needed */
303 destroy_super_work(&s
->destroy_work
);
307 * alloc_super - create new superblock
308 * @type: filesystem type superblock should belong to
309 * @flags: the mount flags
310 * @user_ns: User namespace for the super_block
312 * Allocates and initializes a new &struct super_block. alloc_super()
313 * returns a pointer new superblock or %NULL if allocation had failed.
315 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
,
316 struct user_namespace
*user_ns
)
318 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_KERNEL
);
319 static const struct super_operations default_op
;
325 INIT_LIST_HEAD(&s
->s_mounts
);
326 s
->s_user_ns
= get_user_ns(user_ns
);
327 init_rwsem(&s
->s_umount
);
328 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
330 * sget() can have s_umount recursion.
332 * When it cannot find a suitable sb, it allocates a new
333 * one (this one), and tries again to find a suitable old
336 * In case that succeeds, it will acquire the s_umount
337 * lock of the old one. Since these are clearly distrinct
338 * locks, and this object isn't exposed yet, there's no
341 * Annotate this by putting this lock in a different
344 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
346 if (security_sb_alloc(s
))
349 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
350 if (__percpu_init_rwsem(&s
->s_writers
.rw_sem
[i
],
352 &type
->s_writers_key
[i
]))
355 s
->s_bdi
= &noop_backing_dev_info
;
357 if (s
->s_user_ns
!= &init_user_ns
)
358 s
->s_iflags
|= SB_I_NODEV
;
359 INIT_HLIST_NODE(&s
->s_instances
);
360 INIT_HLIST_BL_HEAD(&s
->s_roots
);
361 mutex_init(&s
->s_sync_lock
);
362 INIT_LIST_HEAD(&s
->s_inodes
);
363 spin_lock_init(&s
->s_inode_list_lock
);
364 INIT_LIST_HEAD(&s
->s_inodes_wb
);
365 spin_lock_init(&s
->s_inode_wblist_lock
);
368 atomic_set(&s
->s_active
, 1);
369 mutex_init(&s
->s_vfs_rename_mutex
);
370 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
371 init_rwsem(&s
->s_dquot
.dqio_sem
);
372 s
->s_maxbytes
= MAX_NON_LFS
;
373 s
->s_op
= &default_op
;
374 s
->s_time_gran
= 1000000000;
375 s
->s_time_min
= TIME64_MIN
;
376 s
->s_time_max
= TIME64_MAX
;
378 s
->s_shrink
= shrinker_alloc(SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
,
379 "sb-%s", type
->name
);
383 s
->s_shrink
->scan_objects
= super_cache_scan
;
384 s
->s_shrink
->count_objects
= super_cache_count
;
385 s
->s_shrink
->batch
= 1024;
386 s
->s_shrink
->private_data
= s
;
388 if (list_lru_init_memcg(&s
->s_dentry_lru
, s
->s_shrink
))
390 if (list_lru_init_memcg(&s
->s_inode_lru
, s
->s_shrink
))
395 destroy_unused_super(s
);
399 /* Superblock refcounting */
402 * Drop a superblock's refcount. The caller must hold sb_lock.
404 static void __put_super(struct super_block
*s
)
407 list_del_init(&s
->s_list
);
408 WARN_ON(s
->s_dentry_lru
.node
);
409 WARN_ON(s
->s_inode_lru
.node
);
410 WARN_ON(!list_empty(&s
->s_mounts
));
411 call_rcu(&s
->rcu
, destroy_super_rcu
);
416 * put_super - drop a temporary reference to superblock
417 * @sb: superblock in question
419 * Drops a temporary reference, frees superblock if there's no
422 void put_super(struct super_block
*sb
)
426 spin_unlock(&sb_lock
);
429 static void kill_super_notify(struct super_block
*sb
)
431 lockdep_assert_not_held(&sb
->s_umount
);
433 /* already notified earlier */
434 if (sb
->s_flags
& SB_DEAD
)
438 * Remove it from @fs_supers so it isn't found by new
439 * sget{_fc}() walkers anymore. Any concurrent mounter still
440 * managing to grab a temporary reference is guaranteed to
441 * already see SB_DYING and will wait until we notify them about
445 hlist_del_init(&sb
->s_instances
);
446 spin_unlock(&sb_lock
);
449 * Let concurrent mounts know that this thing is really dead.
450 * We don't need @sb->s_umount here as every concurrent caller
451 * will see SB_DYING and either discard the superblock or wait
454 super_wake(sb
, SB_DEAD
);
458 * deactivate_locked_super - drop an active reference to superblock
459 * @s: superblock to deactivate
461 * Drops an active reference to superblock, converting it into a temporary
462 * one if there is no other active references left. In that case we
463 * tell fs driver to shut it down and drop the temporary reference we
466 * Caller holds exclusive lock on superblock; that lock is released.
468 void deactivate_locked_super(struct super_block
*s
)
470 struct file_system_type
*fs
= s
->s_type
;
471 if (atomic_dec_and_test(&s
->s_active
)) {
472 shrinker_free(s
->s_shrink
);
475 kill_super_notify(s
);
478 * Since list_lru_destroy() may sleep, we cannot call it from
479 * put_super(), where we hold the sb_lock. Therefore we destroy
480 * the lru lists right now.
482 list_lru_destroy(&s
->s_dentry_lru
);
483 list_lru_destroy(&s
->s_inode_lru
);
488 super_unlock_excl(s
);
492 EXPORT_SYMBOL(deactivate_locked_super
);
495 * deactivate_super - drop an active reference to superblock
496 * @s: superblock to deactivate
498 * Variant of deactivate_locked_super(), except that superblock is *not*
499 * locked by caller. If we are going to drop the final active reference,
500 * lock will be acquired prior to that.
502 void deactivate_super(struct super_block
*s
)
504 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
505 __super_lock_excl(s
);
506 deactivate_locked_super(s
);
510 EXPORT_SYMBOL(deactivate_super
);
513 * grab_super - acquire an active reference to a superblock
514 * @sb: superblock to acquire
516 * Acquire a temporary reference on a superblock and try to trade it for
517 * an active reference. This is used in sget{_fc}() to wait for a
518 * superblock to either become SB_BORN or for it to pass through
519 * sb->kill() and be marked as SB_DEAD.
521 * Return: This returns true if an active reference could be acquired,
524 static bool grab_super(struct super_block
*sb
)
529 spin_unlock(&sb_lock
);
530 locked
= super_lock_excl(sb
);
532 if (atomic_inc_not_zero(&sb
->s_active
)) {
536 super_unlock_excl(sb
);
538 wait_var_event(&sb
->s_flags
, super_flags(sb
, SB_DEAD
));
544 * super_trylock_shared - try to grab ->s_umount shared
545 * @sb: reference we are trying to grab
547 * Try to prevent fs shutdown. This is used in places where we
548 * cannot take an active reference but we need to ensure that the
549 * filesystem is not shut down while we are working on it. It returns
550 * false if we cannot acquire s_umount or if we lose the race and
551 * filesystem already got into shutdown, and returns true with the s_umount
552 * lock held in read mode in case of success. On successful return,
553 * the caller must drop the s_umount lock when done.
555 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
556 * The reason why it's safe is that we are OK with doing trylock instead
557 * of down_read(). There's a couple of places that are OK with that, but
558 * it's very much not a general-purpose interface.
560 bool super_trylock_shared(struct super_block
*sb
)
562 if (down_read_trylock(&sb
->s_umount
)) {
563 if (!(sb
->s_flags
& SB_DYING
) && sb
->s_root
&&
564 (sb
->s_flags
& SB_BORN
))
566 super_unlock_shared(sb
);
573 * retire_super - prevents superblock from being reused
574 * @sb: superblock to retire
576 * The function marks superblock to be ignored in superblock test, which
577 * prevents it from being reused for any new mounts. If the superblock has
578 * a private bdi, it also unregisters it, but doesn't reduce the refcount
579 * of the superblock to prevent potential races. The refcount is reduced
580 * by generic_shutdown_super(). The function can not be called
581 * concurrently with generic_shutdown_super(). It is safe to call the
582 * function multiple times, subsequent calls have no effect.
584 * The marker will affect the re-use only for block-device-based
585 * superblocks. Other superblocks will still get marked if this function
586 * is used, but that will not affect their reusability.
588 void retire_super(struct super_block
*sb
)
590 WARN_ON(!sb
->s_bdev
);
591 __super_lock_excl(sb
);
592 if (sb
->s_iflags
& SB_I_PERSB_BDI
) {
593 bdi_unregister(sb
->s_bdi
);
594 sb
->s_iflags
&= ~SB_I_PERSB_BDI
;
596 sb
->s_iflags
|= SB_I_RETIRED
;
597 super_unlock_excl(sb
);
599 EXPORT_SYMBOL(retire_super
);
602 * generic_shutdown_super - common helper for ->kill_sb()
603 * @sb: superblock to kill
605 * generic_shutdown_super() does all fs-independent work on superblock
606 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
607 * that need destruction out of superblock, call generic_shutdown_super()
608 * and release aforementioned objects. Note: dentries and inodes _are_
609 * taken care of and do not need specific handling.
611 * Upon calling this function, the filesystem may no longer alter or
612 * rearrange the set of dentries belonging to this super_block, nor may it
613 * change the attachments of dentries to inodes.
615 void generic_shutdown_super(struct super_block
*sb
)
617 const struct super_operations
*sop
= sb
->s_op
;
620 shrink_dcache_for_umount(sb
);
622 sb
->s_flags
&= ~SB_ACTIVE
;
624 cgroup_writeback_umount(sb
);
626 /* Evict all inodes with zero refcount. */
630 * Clean up and evict any inodes that still have references due
631 * to fsnotify or the security policy.
633 fsnotify_sb_delete(sb
);
634 security_sb_delete(sb
);
636 if (sb
->s_dio_done_wq
) {
637 destroy_workqueue(sb
->s_dio_done_wq
);
638 sb
->s_dio_done_wq
= NULL
;
645 * Now that all potentially-encrypted inodes have been evicted,
646 * the fscrypt keyring can be destroyed.
648 fscrypt_destroy_keyring(sb
);
650 if (CHECK_DATA_CORRUPTION(!list_empty(&sb
->s_inodes
),
651 "VFS: Busy inodes after unmount of %s (%s)",
652 sb
->s_id
, sb
->s_type
->name
)) {
654 * Adding a proper bailout path here would be hard, but
655 * we can at least make it more likely that a later
656 * iput_final() or such crashes cleanly.
660 spin_lock(&sb
->s_inode_list_lock
);
661 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
662 inode
->i_op
= VFS_PTR_POISON
;
663 inode
->i_sb
= VFS_PTR_POISON
;
664 inode
->i_mapping
= VFS_PTR_POISON
;
666 spin_unlock(&sb
->s_inode_list_lock
);
670 * Broadcast to everyone that grabbed a temporary reference to this
671 * superblock before we removed it from @fs_supers that the superblock
672 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
673 * discard this superblock and treat it as dead.
675 * We leave the superblock on @fs_supers so it can be found by
676 * sget{_fc}() until we passed sb->kill_sb().
678 super_wake(sb
, SB_DYING
);
679 super_unlock_excl(sb
);
680 if (sb
->s_bdi
!= &noop_backing_dev_info
) {
681 if (sb
->s_iflags
& SB_I_PERSB_BDI
)
682 bdi_unregister(sb
->s_bdi
);
684 sb
->s_bdi
= &noop_backing_dev_info
;
688 EXPORT_SYMBOL(generic_shutdown_super
);
690 bool mount_capable(struct fs_context
*fc
)
692 if (!(fc
->fs_type
->fs_flags
& FS_USERNS_MOUNT
))
693 return capable(CAP_SYS_ADMIN
);
695 return ns_capable(fc
->user_ns
, CAP_SYS_ADMIN
);
699 * sget_fc - Find or create a superblock
700 * @fc: Filesystem context.
701 * @test: Comparison callback
702 * @set: Setup callback
704 * Create a new superblock or find an existing one.
706 * The @test callback is used to find a matching existing superblock.
707 * Whether or not the requested parameters in @fc are taken into account
708 * is specific to the @test callback that is used. They may even be
709 * completely ignored.
711 * If an extant superblock is matched, it will be returned unless:
713 * (1) the namespace the filesystem context @fc and the extant
714 * superblock's namespace differ
716 * (2) the filesystem context @fc has requested that reusing an extant
717 * superblock is not allowed
719 * In both cases EBUSY will be returned.
721 * If no match is made, a new superblock will be allocated and basic
722 * initialisation will be performed (s_type, s_fs_info and s_id will be
723 * set and the @set callback will be invoked), the superblock will be
724 * published and it will be returned in a partially constructed state
725 * with SB_BORN and SB_ACTIVE as yet unset.
727 * Return: On success, an extant or newly created superblock is
728 * returned. On failure an error pointer is returned.
730 struct super_block
*sget_fc(struct fs_context
*fc
,
731 int (*test
)(struct super_block
*, struct fs_context
*),
732 int (*set
)(struct super_block
*, struct fs_context
*))
734 struct super_block
*s
= NULL
;
735 struct super_block
*old
;
736 struct user_namespace
*user_ns
= fc
->global
? &init_user_ns
: fc
->user_ns
;
740 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
741 * not set, as the filesystem is likely unprepared to handle it.
742 * This can happen when fsconfig() is called from init_user_ns with
743 * an fs_fd opened in another user namespace.
745 if (user_ns
!= &init_user_ns
&& !(fc
->fs_type
->fs_flags
& FS_USERNS_MOUNT
)) {
746 errorfc(fc
, "VFS: Mounting from non-initial user namespace is not allowed");
747 return ERR_PTR(-EPERM
);
753 hlist_for_each_entry(old
, &fc
->fs_type
->fs_supers
, s_instances
) {
755 goto share_extant_sb
;
759 spin_unlock(&sb_lock
);
760 s
= alloc_super(fc
->fs_type
, fc
->sb_flags
, user_ns
);
762 return ERR_PTR(-ENOMEM
);
766 s
->s_fs_info
= fc
->s_fs_info
;
770 spin_unlock(&sb_lock
);
771 destroy_unused_super(s
);
774 fc
->s_fs_info
= NULL
;
775 s
->s_type
= fc
->fs_type
;
776 s
->s_iflags
|= fc
->s_iflags
;
777 strscpy(s
->s_id
, s
->s_type
->name
, sizeof(s
->s_id
));
779 * Make the superblock visible on @super_blocks and @fs_supers.
780 * It's in a nascent state and users should wait on SB_BORN or
781 * SB_DYING to be set.
783 list_add_tail(&s
->s_list
, &super_blocks
);
784 hlist_add_head(&s
->s_instances
, &s
->s_type
->fs_supers
);
785 spin_unlock(&sb_lock
);
786 get_filesystem(s
->s_type
);
787 shrinker_register(s
->s_shrink
);
791 if (user_ns
!= old
->s_user_ns
|| fc
->exclusive
) {
792 spin_unlock(&sb_lock
);
793 destroy_unused_super(s
);
795 warnfc(fc
, "reusing existing filesystem not allowed");
797 warnfc(fc
, "reusing existing filesystem in another namespace not allowed");
798 return ERR_PTR(-EBUSY
);
800 if (!grab_super(old
))
802 destroy_unused_super(s
);
805 EXPORT_SYMBOL(sget_fc
);
808 * sget - find or create a superblock
809 * @type: filesystem type superblock should belong to
810 * @test: comparison callback
811 * @set: setup callback
812 * @flags: mount flags
813 * @data: argument to each of them
815 struct super_block
*sget(struct file_system_type
*type
,
816 int (*test
)(struct super_block
*,void *),
817 int (*set
)(struct super_block
*,void *),
821 struct user_namespace
*user_ns
= current_user_ns();
822 struct super_block
*s
= NULL
;
823 struct super_block
*old
;
826 /* We don't yet pass the user namespace of the parent
827 * mount through to here so always use &init_user_ns
828 * until that changes.
830 if (flags
& SB_SUBMOUNT
)
831 user_ns
= &init_user_ns
;
836 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
837 if (!test(old
, data
))
839 if (user_ns
!= old
->s_user_ns
) {
840 spin_unlock(&sb_lock
);
841 destroy_unused_super(s
);
842 return ERR_PTR(-EBUSY
);
844 if (!grab_super(old
))
846 destroy_unused_super(s
);
851 spin_unlock(&sb_lock
);
852 s
= alloc_super(type
, (flags
& ~SB_SUBMOUNT
), user_ns
);
854 return ERR_PTR(-ENOMEM
);
860 spin_unlock(&sb_lock
);
861 destroy_unused_super(s
);
865 strscpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
866 list_add_tail(&s
->s_list
, &super_blocks
);
867 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
868 spin_unlock(&sb_lock
);
869 get_filesystem(type
);
870 shrinker_register(s
->s_shrink
);
875 void drop_super(struct super_block
*sb
)
877 super_unlock_shared(sb
);
881 EXPORT_SYMBOL(drop_super
);
883 void drop_super_exclusive(struct super_block
*sb
)
885 super_unlock_excl(sb
);
888 EXPORT_SYMBOL(drop_super_exclusive
);
890 static void __iterate_supers(void (*f
)(struct super_block
*))
892 struct super_block
*sb
, *p
= NULL
;
895 list_for_each_entry(sb
, &super_blocks
, s_list
) {
896 if (super_flags(sb
, SB_DYING
))
899 spin_unlock(&sb_lock
);
910 spin_unlock(&sb_lock
);
913 * iterate_supers - call function for all active superblocks
914 * @f: function to call
915 * @arg: argument to pass to it
917 * Scans the superblock list and calls given function, passing it
918 * locked superblock and given argument.
920 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
922 struct super_block
*sb
, *p
= NULL
;
925 list_for_each_entry(sb
, &super_blocks
, s_list
) {
929 spin_unlock(&sb_lock
);
931 locked
= super_lock_shared(sb
);
935 super_unlock_shared(sb
);
945 spin_unlock(&sb_lock
);
949 * iterate_supers_type - call function for superblocks of given type
951 * @f: function to call
952 * @arg: argument to pass to it
954 * Scans the superblock list and calls given function, passing it
955 * locked superblock and given argument.
957 void iterate_supers_type(struct file_system_type
*type
,
958 void (*f
)(struct super_block
*, void *), void *arg
)
960 struct super_block
*sb
, *p
= NULL
;
963 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
967 spin_unlock(&sb_lock
);
969 locked
= super_lock_shared(sb
);
973 super_unlock_shared(sb
);
983 spin_unlock(&sb_lock
);
986 EXPORT_SYMBOL(iterate_supers_type
);
988 struct super_block
*user_get_super(dev_t dev
, bool excl
)
990 struct super_block
*sb
;
993 list_for_each_entry(sb
, &super_blocks
, s_list
) {
994 if (sb
->s_dev
== dev
) {
998 spin_unlock(&sb_lock
);
1000 locked
= super_lock(sb
, excl
);
1004 super_unlock(sb
, excl
);
1006 /* nope, got unmounted */
1007 spin_lock(&sb_lock
);
1012 spin_unlock(&sb_lock
);
1017 * reconfigure_super - asks filesystem to change superblock parameters
1018 * @fc: The superblock and configuration
1020 * Alters the configuration parameters of a live superblock.
1022 int reconfigure_super(struct fs_context
*fc
)
1024 struct super_block
*sb
= fc
->root
->d_sb
;
1026 bool remount_ro
= false;
1027 bool remount_rw
= false;
1028 bool force
= fc
->sb_flags
& SB_FORCE
;
1030 if (fc
->sb_flags_mask
& ~MS_RMT_MASK
)
1032 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
1035 retval
= security_sb_remount(sb
, fc
->security
);
1039 if (fc
->sb_flags_mask
& SB_RDONLY
) {
1041 if (!(fc
->sb_flags
& SB_RDONLY
) && sb
->s_bdev
&&
1042 bdev_read_only(sb
->s_bdev
))
1045 remount_rw
= !(fc
->sb_flags
& SB_RDONLY
) && sb_rdonly(sb
);
1046 remount_ro
= (fc
->sb_flags
& SB_RDONLY
) && !sb_rdonly(sb
);
1050 if (!hlist_empty(&sb
->s_pins
)) {
1051 super_unlock_excl(sb
);
1052 group_pin_kill(&sb
->s_pins
);
1053 __super_lock_excl(sb
);
1056 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
1058 remount_ro
= !sb_rdonly(sb
);
1061 shrink_dcache_sb(sb
);
1063 /* If we are reconfiguring to RDONLY and current sb is read/write,
1064 * make sure there are no files open for writing.
1068 sb_start_ro_state_change(sb
);
1070 retval
= sb_prepare_remount_readonly(sb
);
1074 } else if (remount_rw
) {
1076 * Protect filesystem's reconfigure code from writes from
1077 * userspace until reconfigure finishes.
1079 sb_start_ro_state_change(sb
);
1082 if (fc
->ops
->reconfigure
) {
1083 retval
= fc
->ops
->reconfigure(fc
);
1086 goto cancel_readonly
;
1087 /* If forced remount, go ahead despite any errors */
1088 WARN(1, "forced remount of a %s fs returned %i\n",
1089 sb
->s_type
->name
, retval
);
1093 WRITE_ONCE(sb
->s_flags
, ((sb
->s_flags
& ~fc
->sb_flags_mask
) |
1094 (fc
->sb_flags
& fc
->sb_flags_mask
)));
1095 sb_end_ro_state_change(sb
);
1098 * Some filesystems modify their metadata via some other path than the
1099 * bdev buffer cache (eg. use a private mapping, or directories in
1100 * pagecache, etc). Also file data modifications go via their own
1101 * mappings. So If we try to mount readonly then copy the filesystem
1102 * from bdev, we could get stale data, so invalidate it to give a best
1103 * effort at coherency.
1105 if (remount_ro
&& sb
->s_bdev
)
1106 invalidate_bdev(sb
->s_bdev
);
1110 sb_end_ro_state_change(sb
);
1114 static void do_emergency_remount_callback(struct super_block
*sb
)
1116 bool locked
= super_lock_excl(sb
);
1118 if (locked
&& sb
->s_root
&& sb
->s_bdev
&& !sb_rdonly(sb
)) {
1119 struct fs_context
*fc
;
1121 fc
= fs_context_for_reconfigure(sb
->s_root
,
1122 SB_RDONLY
| SB_FORCE
, SB_RDONLY
);
1124 if (parse_monolithic_mount_data(fc
, NULL
) == 0)
1125 (void)reconfigure_super(fc
);
1130 super_unlock_excl(sb
);
1133 static void do_emergency_remount(struct work_struct
*work
)
1135 __iterate_supers(do_emergency_remount_callback
);
1137 printk("Emergency Remount complete\n");
1140 void emergency_remount(void)
1142 struct work_struct
*work
;
1144 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
1146 INIT_WORK(work
, do_emergency_remount
);
1147 schedule_work(work
);
1151 static void do_thaw_all_callback(struct super_block
*sb
)
1153 bool locked
= super_lock_excl(sb
);
1155 if (locked
&& sb
->s_root
) {
1156 if (IS_ENABLED(CONFIG_BLOCK
))
1157 while (sb
->s_bdev
&& !bdev_thaw(sb
->s_bdev
))
1158 pr_warn("Emergency Thaw on %pg\n", sb
->s_bdev
);
1159 thaw_super_locked(sb
, FREEZE_HOLDER_USERSPACE
);
1163 super_unlock_excl(sb
);
1166 static void do_thaw_all(struct work_struct
*work
)
1168 __iterate_supers(do_thaw_all_callback
);
1170 printk(KERN_WARNING
"Emergency Thaw complete\n");
1174 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1176 * Used for emergency unfreeze of all filesystems via SysRq
1178 void emergency_thaw_all(void)
1180 struct work_struct
*work
;
1182 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
1184 INIT_WORK(work
, do_thaw_all
);
1185 schedule_work(work
);
1189 static DEFINE_IDA(unnamed_dev_ida
);
1192 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1193 * @p: Pointer to a dev_t.
1195 * Filesystems which don't use real block devices can call this function
1196 * to allocate a virtual block device.
1198 * Context: Any context. Frequently called while holding sb_lock.
1199 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1200 * or -ENOMEM if memory allocation failed.
1202 int get_anon_bdev(dev_t
*p
)
1207 * Many userspace utilities consider an FSID of 0 invalid.
1208 * Always return at least 1 from get_anon_bdev.
1210 dev
= ida_alloc_range(&unnamed_dev_ida
, 1, (1 << MINORBITS
) - 1,
1220 EXPORT_SYMBOL(get_anon_bdev
);
1222 void free_anon_bdev(dev_t dev
)
1224 ida_free(&unnamed_dev_ida
, MINOR(dev
));
1226 EXPORT_SYMBOL(free_anon_bdev
);
1228 int set_anon_super(struct super_block
*s
, void *data
)
1230 return get_anon_bdev(&s
->s_dev
);
1232 EXPORT_SYMBOL(set_anon_super
);
1234 void kill_anon_super(struct super_block
*sb
)
1236 dev_t dev
= sb
->s_dev
;
1237 generic_shutdown_super(sb
);
1238 kill_super_notify(sb
);
1239 free_anon_bdev(dev
);
1241 EXPORT_SYMBOL(kill_anon_super
);
1243 void kill_litter_super(struct super_block
*sb
)
1246 d_genocide(sb
->s_root
);
1247 kill_anon_super(sb
);
1249 EXPORT_SYMBOL(kill_litter_super
);
1251 int set_anon_super_fc(struct super_block
*sb
, struct fs_context
*fc
)
1253 return set_anon_super(sb
, NULL
);
1255 EXPORT_SYMBOL(set_anon_super_fc
);
1257 static int test_keyed_super(struct super_block
*sb
, struct fs_context
*fc
)
1259 return sb
->s_fs_info
== fc
->s_fs_info
;
1262 static int test_single_super(struct super_block
*s
, struct fs_context
*fc
)
1267 static int vfs_get_super(struct fs_context
*fc
,
1268 int (*test
)(struct super_block
*, struct fs_context
*),
1269 int (*fill_super
)(struct super_block
*sb
,
1270 struct fs_context
*fc
))
1272 struct super_block
*sb
;
1275 sb
= sget_fc(fc
, test
, set_anon_super_fc
);
1280 err
= fill_super(sb
, fc
);
1284 sb
->s_flags
|= SB_ACTIVE
;
1287 fc
->root
= dget(sb
->s_root
);
1291 deactivate_locked_super(sb
);
1295 int get_tree_nodev(struct fs_context
*fc
,
1296 int (*fill_super
)(struct super_block
*sb
,
1297 struct fs_context
*fc
))
1299 return vfs_get_super(fc
, NULL
, fill_super
);
1301 EXPORT_SYMBOL(get_tree_nodev
);
1303 int get_tree_single(struct fs_context
*fc
,
1304 int (*fill_super
)(struct super_block
*sb
,
1305 struct fs_context
*fc
))
1307 return vfs_get_super(fc
, test_single_super
, fill_super
);
1309 EXPORT_SYMBOL(get_tree_single
);
1311 int get_tree_keyed(struct fs_context
*fc
,
1312 int (*fill_super
)(struct super_block
*sb
,
1313 struct fs_context
*fc
),
1316 fc
->s_fs_info
= key
;
1317 return vfs_get_super(fc
, test_keyed_super
, fill_super
);
1319 EXPORT_SYMBOL(get_tree_keyed
);
1321 static int set_bdev_super(struct super_block
*s
, void *data
)
1323 s
->s_dev
= *(dev_t
*)data
;
1327 static int super_s_dev_set(struct super_block
*s
, struct fs_context
*fc
)
1329 return set_bdev_super(s
, fc
->sget_key
);
1332 static int super_s_dev_test(struct super_block
*s
, struct fs_context
*fc
)
1334 return !(s
->s_iflags
& SB_I_RETIRED
) &&
1335 s
->s_dev
== *(dev_t
*)fc
->sget_key
;
1339 * sget_dev - Find or create a superblock by device number
1340 * @fc: Filesystem context.
1341 * @dev: device number
1343 * Find or create a superblock using the provided device number that
1344 * will be stored in fc->sget_key.
1346 * If an extant superblock is matched, then that will be returned with
1347 * an elevated reference count that the caller must transfer or discard.
1349 * If no match is made, a new superblock will be allocated and basic
1350 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1351 * be set). The superblock will be published and it will be returned in
1352 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1355 * Return: an existing or newly created superblock on success, an error
1356 * pointer on failure.
1358 struct super_block
*sget_dev(struct fs_context
*fc
, dev_t dev
)
1360 fc
->sget_key
= &dev
;
1361 return sget_fc(fc
, super_s_dev_test
, super_s_dev_set
);
1363 EXPORT_SYMBOL(sget_dev
);
1367 * Lock the superblock that is holder of the bdev. Returns the superblock
1368 * pointer if we successfully locked the superblock and it is alive. Otherwise
1369 * we return NULL and just unlock bdev->bd_holder_lock.
1371 * The function must be called with bdev->bd_holder_lock and releases it.
1373 static struct super_block
*bdev_super_lock(struct block_device
*bdev
, bool excl
)
1374 __releases(&bdev
->bd_holder_lock
)
1376 struct super_block
*sb
= bdev
->bd_holder
;
1379 lockdep_assert_held(&bdev
->bd_holder_lock
);
1380 lockdep_assert_not_held(&sb
->s_umount
);
1381 lockdep_assert_not_held(&bdev
->bd_disk
->open_mutex
);
1383 /* Make sure sb doesn't go away from under us */
1384 spin_lock(&sb_lock
);
1386 spin_unlock(&sb_lock
);
1388 mutex_unlock(&bdev
->bd_holder_lock
);
1390 locked
= super_lock(sb
, excl
);
1393 * If the superblock wasn't already SB_DYING then we hold
1394 * s_umount and can safely drop our temporary reference.
1401 if (!sb
->s_root
|| !(sb
->s_flags
& SB_ACTIVE
)) {
1402 super_unlock(sb
, excl
);
1409 static void fs_bdev_mark_dead(struct block_device
*bdev
, bool surprise
)
1411 struct super_block
*sb
;
1413 sb
= bdev_super_lock(bdev
, false);
1418 sync_filesystem(sb
);
1419 shrink_dcache_sb(sb
);
1420 invalidate_inodes(sb
);
1421 if (sb
->s_op
->shutdown
)
1422 sb
->s_op
->shutdown(sb
);
1424 super_unlock_shared(sb
);
1427 static void fs_bdev_sync(struct block_device
*bdev
)
1429 struct super_block
*sb
;
1431 sb
= bdev_super_lock(bdev
, false);
1435 sync_filesystem(sb
);
1436 super_unlock_shared(sb
);
1439 static struct super_block
*get_bdev_super(struct block_device
*bdev
)
1441 bool active
= false;
1442 struct super_block
*sb
;
1444 sb
= bdev_super_lock(bdev
, true);
1446 active
= atomic_inc_not_zero(&sb
->s_active
);
1447 super_unlock_excl(sb
);
1455 * fs_bdev_freeze - freeze owning filesystem of block device
1456 * @bdev: block device
1458 * Freeze the filesystem that owns this block device if it is still
1461 * A filesystem that owns multiple block devices may be frozen from each
1462 * block device and won't be unfrozen until all block devices are
1463 * unfrozen. Each block device can only freeze the filesystem once as we
1464 * nest freezes for block devices in the block layer.
1466 * Return: If the freeze was successful zero is returned. If the freeze
1467 * failed a negative error code is returned.
1469 static int fs_bdev_freeze(struct block_device
*bdev
)
1471 struct super_block
*sb
;
1474 lockdep_assert_held(&bdev
->bd_fsfreeze_mutex
);
1476 sb
= get_bdev_super(bdev
);
1480 if (sb
->s_op
->freeze_super
)
1481 error
= sb
->s_op
->freeze_super(sb
,
1482 FREEZE_MAY_NEST
| FREEZE_HOLDER_USERSPACE
);
1484 error
= freeze_super(sb
,
1485 FREEZE_MAY_NEST
| FREEZE_HOLDER_USERSPACE
);
1487 error
= sync_blockdev(bdev
);
1488 deactivate_super(sb
);
1493 * fs_bdev_thaw - thaw owning filesystem of block device
1494 * @bdev: block device
1496 * Thaw the filesystem that owns this block device.
1498 * A filesystem that owns multiple block devices may be frozen from each
1499 * block device and won't be unfrozen until all block devices are
1500 * unfrozen. Each block device can only freeze the filesystem once as we
1501 * nest freezes for block devices in the block layer.
1503 * Return: If the thaw was successful zero is returned. If the thaw
1504 * failed a negative error code is returned. If this function
1505 * returns zero it doesn't mean that the filesystem is unfrozen
1506 * as it may have been frozen multiple times (kernel may hold a
1507 * freeze or might be frozen from other block devices).
1509 static int fs_bdev_thaw(struct block_device
*bdev
)
1511 struct super_block
*sb
;
1514 lockdep_assert_held(&bdev
->bd_fsfreeze_mutex
);
1517 * The block device may have been frozen before it was claimed by a
1518 * filesystem. Concurrently another process might try to mount that
1519 * frozen block device and has temporarily claimed the block device for
1520 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
1521 * mounter is already about to abort mounting because they still saw an
1522 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
1523 * NULL in that case.
1525 sb
= get_bdev_super(bdev
);
1529 if (sb
->s_op
->thaw_super
)
1530 error
= sb
->s_op
->thaw_super(sb
,
1531 FREEZE_MAY_NEST
| FREEZE_HOLDER_USERSPACE
);
1533 error
= thaw_super(sb
,
1534 FREEZE_MAY_NEST
| FREEZE_HOLDER_USERSPACE
);
1535 deactivate_super(sb
);
1539 const struct blk_holder_ops fs_holder_ops
= {
1540 .mark_dead
= fs_bdev_mark_dead
,
1541 .sync
= fs_bdev_sync
,
1542 .freeze
= fs_bdev_freeze
,
1543 .thaw
= fs_bdev_thaw
,
1545 EXPORT_SYMBOL_GPL(fs_holder_ops
);
1547 int setup_bdev_super(struct super_block
*sb
, int sb_flags
,
1548 struct fs_context
*fc
)
1550 blk_mode_t mode
= sb_open_mode(sb_flags
);
1551 struct file
*bdev_file
;
1552 struct block_device
*bdev
;
1554 bdev_file
= bdev_file_open_by_dev(sb
->s_dev
, mode
, sb
, &fs_holder_ops
);
1555 if (IS_ERR(bdev_file
)) {
1557 errorf(fc
, "%s: Can't open blockdev", fc
->source
);
1558 return PTR_ERR(bdev_file
);
1560 bdev
= file_bdev(bdev_file
);
1563 * This really should be in blkdev_get_by_dev, but right now can't due
1564 * to legacy issues that require us to allow opening a block device node
1565 * writable from userspace even for a read-only block device.
1567 if ((mode
& BLK_OPEN_WRITE
) && bdev_read_only(bdev
)) {
1568 bdev_fput(bdev_file
);
1573 * It is enough to check bdev was not frozen before we set
1574 * s_bdev as freezing will wait until SB_BORN is set.
1576 if (atomic_read(&bdev
->bd_fsfreeze_count
) > 0) {
1578 warnf(fc
, "%pg: Can't mount, blockdev is frozen", bdev
);
1579 bdev_fput(bdev_file
);
1582 spin_lock(&sb_lock
);
1583 sb
->s_bdev_file
= bdev_file
;
1585 sb
->s_bdi
= bdi_get(bdev
->bd_disk
->bdi
);
1586 if (bdev_stable_writes(bdev
))
1587 sb
->s_iflags
|= SB_I_STABLE_WRITES
;
1588 spin_unlock(&sb_lock
);
1590 snprintf(sb
->s_id
, sizeof(sb
->s_id
), "%pg", bdev
);
1591 shrinker_debugfs_rename(sb
->s_shrink
, "sb-%s:%s", sb
->s_type
->name
,
1593 sb_set_blocksize(sb
, block_size(bdev
));
1596 EXPORT_SYMBOL_GPL(setup_bdev_super
);
1599 * get_tree_bdev_flags - Get a superblock based on a single block device
1600 * @fc: The filesystem context holding the parameters
1601 * @fill_super: Helper to initialise a new superblock
1602 * @flags: GET_TREE_BDEV_* flags
1604 int get_tree_bdev_flags(struct fs_context
*fc
,
1605 int (*fill_super
)(struct super_block
*sb
,
1606 struct fs_context
*fc
), unsigned int flags
)
1608 struct super_block
*s
;
1613 return invalf(fc
, "No source specified");
1615 error
= lookup_bdev(fc
->source
, &dev
);
1617 if (!(flags
& GET_TREE_BDEV_QUIET_LOOKUP
))
1618 errorf(fc
, "%s: Can't lookup blockdev", fc
->source
);
1621 fc
->sb_flags
|= SB_NOSEC
;
1622 s
= sget_dev(fc
, dev
);
1627 /* Don't summarily change the RO/RW state. */
1628 if ((fc
->sb_flags
^ s
->s_flags
) & SB_RDONLY
) {
1629 warnf(fc
, "%pg: Can't mount, would change RO state", s
->s_bdev
);
1630 deactivate_locked_super(s
);
1634 error
= setup_bdev_super(s
, fc
->sb_flags
, fc
);
1636 error
= fill_super(s
, fc
);
1638 deactivate_locked_super(s
);
1641 s
->s_flags
|= SB_ACTIVE
;
1645 fc
->root
= dget(s
->s_root
);
1648 EXPORT_SYMBOL_GPL(get_tree_bdev_flags
);
1651 * get_tree_bdev - Get a superblock based on a single block device
1652 * @fc: The filesystem context holding the parameters
1653 * @fill_super: Helper to initialise a new superblock
1655 int get_tree_bdev(struct fs_context
*fc
,
1656 int (*fill_super
)(struct super_block
*,
1657 struct fs_context
*))
1659 return get_tree_bdev_flags(fc
, fill_super
, 0);
1661 EXPORT_SYMBOL(get_tree_bdev
);
1663 static int test_bdev_super(struct super_block
*s
, void *data
)
1665 return !(s
->s_iflags
& SB_I_RETIRED
) && s
->s_dev
== *(dev_t
*)data
;
1668 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
1669 int flags
, const char *dev_name
, void *data
,
1670 int (*fill_super
)(struct super_block
*, void *, int))
1672 struct super_block
*s
;
1676 error
= lookup_bdev(dev_name
, &dev
);
1678 return ERR_PTR(error
);
1681 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
, &dev
);
1686 if ((flags
^ s
->s_flags
) & SB_RDONLY
) {
1687 deactivate_locked_super(s
);
1688 return ERR_PTR(-EBUSY
);
1691 error
= setup_bdev_super(s
, flags
, NULL
);
1693 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1695 deactivate_locked_super(s
);
1696 return ERR_PTR(error
);
1699 s
->s_flags
|= SB_ACTIVE
;
1702 return dget(s
->s_root
);
1704 EXPORT_SYMBOL(mount_bdev
);
1706 void kill_block_super(struct super_block
*sb
)
1708 struct block_device
*bdev
= sb
->s_bdev
;
1710 generic_shutdown_super(sb
);
1712 sync_blockdev(bdev
);
1713 bdev_fput(sb
->s_bdev_file
);
1717 EXPORT_SYMBOL(kill_block_super
);
1720 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1721 int flags
, void *data
,
1722 int (*fill_super
)(struct super_block
*, void *, int))
1725 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1730 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1732 deactivate_locked_super(s
);
1733 return ERR_PTR(error
);
1735 s
->s_flags
|= SB_ACTIVE
;
1736 return dget(s
->s_root
);
1738 EXPORT_SYMBOL(mount_nodev
);
1740 int reconfigure_single(struct super_block
*s
,
1741 int flags
, void *data
)
1743 struct fs_context
*fc
;
1746 /* The caller really need to be passing fc down into mount_single(),
1747 * then a chunk of this can be removed. [Bollocks -- AV]
1748 * Better yet, reconfiguration shouldn't happen, but rather the second
1749 * mount should be rejected if the parameters are not compatible.
1751 fc
= fs_context_for_reconfigure(s
->s_root
, flags
, MS_RMT_MASK
);
1755 ret
= parse_monolithic_mount_data(fc
, data
);
1759 ret
= reconfigure_super(fc
);
1765 static int compare_single(struct super_block
*s
, void *p
)
1770 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1771 int flags
, void *data
,
1772 int (*fill_super
)(struct super_block
*, void *, int))
1774 struct super_block
*s
;
1777 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1781 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1783 s
->s_flags
|= SB_ACTIVE
;
1785 error
= reconfigure_single(s
, flags
, data
);
1787 if (unlikely(error
)) {
1788 deactivate_locked_super(s
);
1789 return ERR_PTR(error
);
1791 return dget(s
->s_root
);
1793 EXPORT_SYMBOL(mount_single
);
1796 * vfs_get_tree - Get the mountable root
1797 * @fc: The superblock configuration context.
1799 * The filesystem is invoked to get or create a superblock which can then later
1800 * be used for mounting. The filesystem places a pointer to the root to be
1801 * used for mounting in @fc->root.
1803 int vfs_get_tree(struct fs_context
*fc
)
1805 struct super_block
*sb
;
1811 /* Get the mountable root in fc->root, with a ref on the root and a ref
1812 * on the superblock.
1814 error
= fc
->ops
->get_tree(fc
);
1819 pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n",
1820 fc
->fs_type
->name
, error
);
1821 /* We don't know what the locking state of the superblock is -
1822 * if there is a superblock.
1827 sb
= fc
->root
->d_sb
;
1828 WARN_ON(!sb
->s_bdi
);
1831 * super_wake() contains a memory barrier which also care of
1832 * ordering for super_cache_count(). We place it before setting
1833 * SB_BORN as the data dependency between the two functions is
1834 * the superblock structure contents that we just set up, not
1837 super_wake(sb
, SB_BORN
);
1839 error
= security_sb_set_mnt_opts(sb
, fc
->security
, 0, NULL
);
1840 if (unlikely(error
)) {
1846 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1847 * but s_maxbytes was an unsigned long long for many releases. Throw
1848 * this warning for a little while to try and catch filesystems that
1849 * violate this rule.
1851 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1852 "negative value (%lld)\n", fc
->fs_type
->name
, sb
->s_maxbytes
);
1856 EXPORT_SYMBOL(vfs_get_tree
);
1859 * Setup private BDI for given superblock. It gets automatically cleaned up
1860 * in generic_shutdown_super().
1862 int super_setup_bdi_name(struct super_block
*sb
, char *fmt
, ...)
1864 struct backing_dev_info
*bdi
;
1868 bdi
= bdi_alloc(NUMA_NO_NODE
);
1872 va_start(args
, fmt
);
1873 err
= bdi_register_va(bdi
, fmt
, args
);
1879 WARN_ON(sb
->s_bdi
!= &noop_backing_dev_info
);
1881 sb
->s_iflags
|= SB_I_PERSB_BDI
;
1885 EXPORT_SYMBOL(super_setup_bdi_name
);
1888 * Setup private BDI for given superblock. I gets automatically cleaned up
1889 * in generic_shutdown_super().
1891 int super_setup_bdi(struct super_block
*sb
)
1893 static atomic_long_t bdi_seq
= ATOMIC_LONG_INIT(0);
1895 return super_setup_bdi_name(sb
, "%.28s-%ld", sb
->s_type
->name
,
1896 atomic_long_inc_return(&bdi_seq
));
1898 EXPORT_SYMBOL(super_setup_bdi
);
1901 * sb_wait_write - wait until all writers to given file system finish
1902 * @sb: the super for which we wait
1903 * @level: type of writers we wait for (normal vs page fault)
1905 * This function waits until there are no writers of given type to given file
1908 static void sb_wait_write(struct super_block
*sb
, int level
)
1910 percpu_down_write(sb
->s_writers
.rw_sem
+ level
-1);
1914 * We are going to return to userspace and forget about these locks, the
1915 * ownership goes to the caller of thaw_super() which does unlock().
1917 static void lockdep_sb_freeze_release(struct super_block
*sb
)
1921 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1922 percpu_rwsem_release(sb
->s_writers
.rw_sem
+ level
, _THIS_IP_
);
1926 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1928 static void lockdep_sb_freeze_acquire(struct super_block
*sb
)
1932 for (level
= 0; level
< SB_FREEZE_LEVELS
; ++level
)
1933 percpu_rwsem_acquire(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1936 static void sb_freeze_unlock(struct super_block
*sb
, int level
)
1938 for (level
--; level
>= 0; level
--)
1939 percpu_up_write(sb
->s_writers
.rw_sem
+ level
);
1942 static int wait_for_partially_frozen(struct super_block
*sb
)
1947 unsigned short old
= sb
->s_writers
.frozen
;
1949 up_write(&sb
->s_umount
);
1950 ret
= wait_var_event_killable(&sb
->s_writers
.frozen
,
1951 sb
->s_writers
.frozen
!= old
);
1952 down_write(&sb
->s_umount
);
1953 } while (ret
== 0 &&
1954 sb
->s_writers
.frozen
!= SB_UNFROZEN
&&
1955 sb
->s_writers
.frozen
!= SB_FREEZE_COMPLETE
);
1960 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1961 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)
1963 static inline int freeze_inc(struct super_block
*sb
, enum freeze_holder who
)
1965 WARN_ON_ONCE((who
& ~FREEZE_FLAGS
));
1966 WARN_ON_ONCE(hweight32(who
& FREEZE_HOLDERS
) > 1);
1968 if (who
& FREEZE_HOLDER_KERNEL
)
1969 ++sb
->s_writers
.freeze_kcount
;
1970 if (who
& FREEZE_HOLDER_USERSPACE
)
1971 ++sb
->s_writers
.freeze_ucount
;
1972 return sb
->s_writers
.freeze_kcount
+ sb
->s_writers
.freeze_ucount
;
1975 static inline int freeze_dec(struct super_block
*sb
, enum freeze_holder who
)
1977 WARN_ON_ONCE((who
& ~FREEZE_FLAGS
));
1978 WARN_ON_ONCE(hweight32(who
& FREEZE_HOLDERS
) > 1);
1980 if ((who
& FREEZE_HOLDER_KERNEL
) && sb
->s_writers
.freeze_kcount
)
1981 --sb
->s_writers
.freeze_kcount
;
1982 if ((who
& FREEZE_HOLDER_USERSPACE
) && sb
->s_writers
.freeze_ucount
)
1983 --sb
->s_writers
.freeze_ucount
;
1984 return sb
->s_writers
.freeze_kcount
+ sb
->s_writers
.freeze_ucount
;
1987 static inline bool may_freeze(struct super_block
*sb
, enum freeze_holder who
)
1989 WARN_ON_ONCE((who
& ~FREEZE_FLAGS
));
1990 WARN_ON_ONCE(hweight32(who
& FREEZE_HOLDERS
) > 1);
1992 if (who
& FREEZE_HOLDER_KERNEL
)
1993 return (who
& FREEZE_MAY_NEST
) ||
1994 sb
->s_writers
.freeze_kcount
== 0;
1995 if (who
& FREEZE_HOLDER_USERSPACE
)
1996 return (who
& FREEZE_MAY_NEST
) ||
1997 sb
->s_writers
.freeze_ucount
== 0;
2002 * freeze_super - lock the filesystem and force it into a consistent state
2003 * @sb: the super to lock
2004 * @who: context that wants to freeze
2006 * Syncs the super to make sure the filesystem is consistent and calls the fs's
2007 * freeze_fs. Subsequent calls to this without first thawing the fs may return
2011 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
2012 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
2013 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
2015 * The @who argument distinguishes between the kernel and userspace trying to
2016 * freeze the filesystem. Although there cannot be multiple kernel freezes or
2017 * multiple userspace freezes in effect at any given time, the kernel and
2018 * userspace can both hold a filesystem frozen. The filesystem remains frozen
2019 * until there are no kernel or userspace freezes in effect.
2021 * A filesystem may hold multiple devices and thus a filesystems may be
2022 * frozen through the block layer via multiple block devices. In this
2023 * case the request is marked as being allowed to nest by passing
2024 * FREEZE_MAY_NEST. The filesystem remains frozen until all block
2025 * devices are unfrozen. If multiple freezes are attempted without
2026 * FREEZE_MAY_NEST -EBUSY will be returned.
2028 * During this function, sb->s_writers.frozen goes through these values:
2030 * SB_UNFROZEN: File system is normal, all writes progress as usual.
2032 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
2033 * writes should be blocked, though page faults are still allowed. We wait for
2034 * all writes to complete and then proceed to the next stage.
2036 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2037 * but internal fs threads can still modify the filesystem (although they
2038 * should not dirty new pages or inodes), writeback can run etc. After waiting
2039 * for all running page faults we sync the filesystem which will clean all
2040 * dirty pages and inodes (no new dirty pages or inodes can be created when
2043 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2044 * modification are blocked (e.g. XFS preallocation truncation on inode
2045 * reclaim). This is usually implemented by blocking new transactions for
2046 * filesystems that have them and need this additional guard. After all
2047 * internal writers are finished we call ->freeze_fs() to finish filesystem
2048 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2049 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2051 * sb->s_writers.frozen is protected by sb->s_umount.
2053 * Return: If the freeze was successful zero is returned. If the freeze
2054 * failed a negative error code is returned.
2056 int freeze_super(struct super_block
*sb
, enum freeze_holder who
)
2060 if (!super_lock_excl(sb
)) {
2061 WARN_ON_ONCE("Dying superblock while freezing!");
2064 atomic_inc(&sb
->s_active
);
2067 if (sb
->s_writers
.frozen
== SB_FREEZE_COMPLETE
) {
2068 if (may_freeze(sb
, who
))
2069 ret
= !!WARN_ON_ONCE(freeze_inc(sb
, who
) == 1);
2072 /* All freezers share a single active reference. */
2073 deactivate_locked_super(sb
);
2077 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
2078 ret
= wait_for_partially_frozen(sb
);
2080 deactivate_locked_super(sb
);
2087 if (sb_rdonly(sb
)) {
2088 /* Nothing to do really... */
2089 WARN_ON_ONCE(freeze_inc(sb
, who
) > 1);
2090 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
2091 wake_up_var(&sb
->s_writers
.frozen
);
2092 super_unlock_excl(sb
);
2096 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
2097 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
2098 super_unlock_excl(sb
);
2099 sb_wait_write(sb
, SB_FREEZE_WRITE
);
2100 __super_lock_excl(sb
);
2102 /* Now we go and block page faults... */
2103 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
2104 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
2106 /* All writers are done so after syncing there won't be dirty data */
2107 ret
= sync_filesystem(sb
);
2109 sb
->s_writers
.frozen
= SB_UNFROZEN
;
2110 sb_freeze_unlock(sb
, SB_FREEZE_PAGEFAULT
);
2111 wake_up_var(&sb
->s_writers
.frozen
);
2112 deactivate_locked_super(sb
);
2116 /* Now wait for internal filesystem counter */
2117 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
2118 sb_wait_write(sb
, SB_FREEZE_FS
);
2120 if (sb
->s_op
->freeze_fs
) {
2121 ret
= sb
->s_op
->freeze_fs(sb
);
2124 "VFS:Filesystem freeze failed\n");
2125 sb
->s_writers
.frozen
= SB_UNFROZEN
;
2126 sb_freeze_unlock(sb
, SB_FREEZE_FS
);
2127 wake_up_var(&sb
->s_writers
.frozen
);
2128 deactivate_locked_super(sb
);
2133 * For debugging purposes so that fs can warn if it sees write activity
2134 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2136 WARN_ON_ONCE(freeze_inc(sb
, who
) > 1);
2137 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
2138 wake_up_var(&sb
->s_writers
.frozen
);
2139 lockdep_sb_freeze_release(sb
);
2140 super_unlock_excl(sb
);
2143 EXPORT_SYMBOL(freeze_super
);
2146 * Undoes the effect of a freeze_super_locked call. If the filesystem is
2147 * frozen both by userspace and the kernel, a thaw call from either source
2148 * removes that state without releasing the other state or unlocking the
2151 static int thaw_super_locked(struct super_block
*sb
, enum freeze_holder who
)
2153 int error
= -EINVAL
;
2155 if (sb
->s_writers
.frozen
!= SB_FREEZE_COMPLETE
)
2159 * All freezers share a single active reference.
2160 * So just unlock in case there are any left.
2162 if (freeze_dec(sb
, who
))
2165 if (sb_rdonly(sb
)) {
2166 sb
->s_writers
.frozen
= SB_UNFROZEN
;
2167 wake_up_var(&sb
->s_writers
.frozen
);
2168 goto out_deactivate
;
2171 lockdep_sb_freeze_acquire(sb
);
2173 if (sb
->s_op
->unfreeze_fs
) {
2174 error
= sb
->s_op
->unfreeze_fs(sb
);
2176 pr_err("VFS: Filesystem thaw failed\n");
2177 freeze_inc(sb
, who
);
2178 lockdep_sb_freeze_release(sb
);
2183 sb
->s_writers
.frozen
= SB_UNFROZEN
;
2184 wake_up_var(&sb
->s_writers
.frozen
);
2185 sb_freeze_unlock(sb
, SB_FREEZE_FS
);
2187 deactivate_locked_super(sb
);
2191 super_unlock_excl(sb
);
2196 * thaw_super -- unlock filesystem
2197 * @sb: the super to thaw
2198 * @who: context that wants to freeze
2200 * Unlocks the filesystem and marks it writeable again after freeze_super()
2201 * if there are no remaining freezes on the filesystem.
2204 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2205 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2206 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2208 * A filesystem may hold multiple devices and thus a filesystems may
2209 * have been frozen through the block layer via multiple block devices.
2210 * The filesystem remains frozen until all block devices are unfrozen.
2212 int thaw_super(struct super_block
*sb
, enum freeze_holder who
)
2214 if (!super_lock_excl(sb
)) {
2215 WARN_ON_ONCE("Dying superblock while thawing!");
2218 return thaw_super_locked(sb
, who
);
2220 EXPORT_SYMBOL(thaw_super
);
2223 * Create workqueue for deferred direct IO completions. We allocate the
2224 * workqueue when it's first needed. This avoids creating workqueue for
2225 * filesystems that don't need it and also allows us to create the workqueue
2226 * late enough so the we can include s_id in the name of the workqueue.
2228 int sb_init_dio_done_wq(struct super_block
*sb
)
2230 struct workqueue_struct
*old
;
2231 struct workqueue_struct
*wq
= alloc_workqueue("dio/%s",
2237 * This has to be atomic as more DIOs can race to create the workqueue
2239 old
= cmpxchg(&sb
->s_dio_done_wq
, NULL
, wq
);
2240 /* Someone created workqueue before us? Free ours... */
2242 destroy_workqueue(wq
);
2245 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq
);