1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
12 * This file implements the budgeting sub-system which is responsible for UBIFS
15 * Factors such as compression, wasted space at the ends of LEBs, space in other
16 * journal heads, the effect of updates on the index, and so on, make it
17 * impossible to accurately predict the amount of space needed. Consequently
18 * approximations are used.
22 #include <linux/writeback.h>
23 #include <linux/math64.h>
26 * When pessimistic budget calculations say that there is no enough space,
27 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
28 * or committing. The below constant defines maximum number of times UBIFS
29 * repeats the operations.
31 #define MAX_MKSPC_RETRIES 3
34 * The below constant defines amount of dirty pages which should be written
35 * back at when trying to shrink the liability.
37 #define NR_TO_WRITE 16
40 * shrink_liability - write-back some dirty pages/inodes.
41 * @c: UBIFS file-system description object
42 * @nr_to_write: how many dirty pages to write-back
44 * This function shrinks UBIFS liability by means of writing back some amount
45 * of dirty inodes and their pages.
47 * Note, this function synchronizes even VFS inodes which are locked
48 * (@i_mutex) by the caller of the budgeting function, because write-back does
51 static void shrink_liability(struct ubifs_info
*c
, int nr_to_write
)
53 down_read(&c
->vfs_sb
->s_umount
);
54 writeback_inodes_sb_nr(c
->vfs_sb
, nr_to_write
, WB_REASON_FS_FREE_SPACE
);
55 up_read(&c
->vfs_sb
->s_umount
);
59 * run_gc - run garbage collector.
60 * @c: UBIFS file-system description object
62 * This function runs garbage collector to make some more free space. Returns
63 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
64 * negative error code in case of failure.
66 static int run_gc(struct ubifs_info
*c
)
70 /* Make some free space by garbage-collecting dirty space */
71 down_read(&c
->commit_sem
);
72 lnum
= ubifs_garbage_collect(c
, 1);
73 up_read(&c
->commit_sem
);
77 /* GC freed one LEB, return it to lprops */
78 dbg_budg("GC freed LEB %d", lnum
);
79 return ubifs_return_leb(c
, lnum
);
83 * get_liability - calculate current liability.
84 * @c: UBIFS file-system description object
86 * This function calculates and returns current UBIFS liability, i.e. the
87 * amount of bytes UBIFS has "promised" to write to the media.
89 static long long get_liability(struct ubifs_info
*c
)
93 spin_lock(&c
->space_lock
);
94 liab
= c
->bi
.idx_growth
+ c
->bi
.data_growth
+ c
->bi
.dd_growth
;
95 spin_unlock(&c
->space_lock
);
100 * make_free_space - make more free space on the file-system.
101 * @c: UBIFS file-system description object
103 * This function is called when an operation cannot be budgeted because there
104 * is supposedly no free space. But in most cases there is some free space:
105 * o budgeting is pessimistic, so it always budgets more than it is actually
106 * needed, so shrinking the liability is one way to make free space - the
107 * cached data will take less space then it was budgeted for;
108 * o GC may turn some dark space into free space (budgeting treats dark space
110 * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
112 * So this function tries to do the above. Returns %-EAGAIN if some free space
113 * was presumably made and the caller has to re-try budgeting the operation.
114 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
117 static int make_free_space(struct ubifs_info
*c
)
119 int err
, retries
= 0;
120 long long liab1
, liab2
;
123 liab1
= get_liability(c
);
125 * We probably have some dirty pages or inodes (liability), try
126 * to write them back.
128 dbg_budg("liability %lld, run write-back", liab1
);
129 shrink_liability(c
, NR_TO_WRITE
);
131 liab2
= get_liability(c
);
135 dbg_budg("new liability %lld (not shrunk)", liab2
);
137 /* Liability did not shrink again, try GC */
143 if (err
!= -EAGAIN
&& err
!= -ENOSPC
)
144 /* Some real error happened */
147 dbg_budg("Run commit (retries %d)", retries
);
148 err
= ubifs_run_commit(c
);
151 } while (retries
++ < MAX_MKSPC_RETRIES
);
157 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
158 * @c: UBIFS file-system description object
160 * This function calculates and returns the number of LEBs which should be kept
163 int ubifs_calc_min_idx_lebs(struct ubifs_info
*c
)
168 idx_size
= c
->bi
.old_idx_sz
+ c
->bi
.idx_growth
+ c
->bi
.uncommitted_idx
;
169 /* And make sure we have thrice the index size of space reserved */
170 idx_size
+= idx_size
<< 1;
172 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
173 * pair, nor similarly the two variables for the new index size, so we
174 * have to do this costly 64-bit division on fast-path.
176 idx_lebs
= div_u64(idx_size
+ c
->idx_leb_size
- 1, c
->idx_leb_size
);
178 * The index head is not available for the in-the-gaps method, so add an
179 * extra LEB to compensate.
182 if (idx_lebs
< MIN_INDEX_LEBS
)
183 idx_lebs
= MIN_INDEX_LEBS
;
188 * ubifs_calc_available - calculate available FS space.
189 * @c: UBIFS file-system description object
190 * @min_idx_lebs: minimum number of LEBs reserved for the index
192 * This function calculates and returns amount of FS space available for use.
194 long long ubifs_calc_available(const struct ubifs_info
*c
, int min_idx_lebs
)
199 available
= c
->main_bytes
- c
->lst
.total_used
;
202 * Now 'available' contains theoretically available flash space
203 * assuming there is no index, so we have to subtract the space which
204 * is reserved for the index.
206 subtract_lebs
= min_idx_lebs
;
208 /* Take into account that GC reserves one LEB for its own needs */
212 * Since different write types go to different heads, we should
213 * reserve one leb for each head.
215 subtract_lebs
+= c
->jhead_cnt
;
217 /* We also reserve one LEB for deletions, which bypass budgeting */
220 available
-= (long long)subtract_lebs
* c
->leb_size
;
222 /* Subtract the dead space which is not available for use */
223 available
-= c
->lst
.total_dead
;
226 * Subtract dark space, which might or might not be usable - it depends
227 * on the data which we have on the media and which will be written. If
228 * this is a lot of uncompressed or not-compressible data, the dark
229 * space cannot be used.
231 available
-= c
->lst
.total_dark
;
234 * However, there is more dark space. The index may be bigger than
235 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
236 * their dark space is not included in total_dark, so it is subtracted
239 if (c
->lst
.idx_lebs
> min_idx_lebs
) {
240 subtract_lebs
= c
->lst
.idx_lebs
- min_idx_lebs
;
241 available
-= subtract_lebs
* c
->dark_wm
;
244 /* The calculations are rough and may end up with a negative number */
245 return available
> 0 ? available
: 0;
249 * can_use_rp - check whether the user is allowed to use reserved pool.
250 * @c: UBIFS file-system description object
252 * UBIFS has so-called "reserved pool" which is flash space reserved
253 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
254 * This function checks whether current user is allowed to use reserved pool.
255 * Returns %1 current user is allowed to use reserved pool and %0 otherwise.
257 static int can_use_rp(struct ubifs_info
*c
)
259 if (uid_eq(current_fsuid(), c
->rp_uid
) || capable(CAP_SYS_RESOURCE
) ||
260 (!gid_eq(c
->rp_gid
, GLOBAL_ROOT_GID
) && in_group_p(c
->rp_gid
)))
266 * do_budget_space - reserve flash space for index and data growth.
267 * @c: UBIFS file-system description object
269 * This function makes sure UBIFS has enough free LEBs for index growth and
272 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
273 * would take if it was consolidated and written to the flash. This guarantees
274 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
275 * be able to commit dirty index. So this function basically adds amount of
276 * budgeted index space to the size of the current index, multiplies this by 3,
277 * and makes sure this does not exceed the amount of free LEBs.
279 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
280 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
281 * be large, because UBIFS does not do any index consolidation as long as
282 * there is free space. IOW, the index may take a lot of LEBs, but the LEBs
283 * will contain a lot of dirt.
284 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
285 * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
287 * This function returns zero in case of success, and %-ENOSPC in case of
290 static int do_budget_space(struct ubifs_info
*c
)
292 long long outstanding
, available
;
293 int lebs
, rsvd_idx_lebs
, min_idx_lebs
;
295 /* First budget index space */
296 min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
298 /* Now 'min_idx_lebs' contains number of LEBs to reserve */
299 if (min_idx_lebs
> c
->lst
.idx_lebs
)
300 rsvd_idx_lebs
= min_idx_lebs
- c
->lst
.idx_lebs
;
305 * The number of LEBs that are available to be used by the index is:
307 * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
308 * @c->lst.taken_empty_lebs
310 * @c->lst.empty_lebs are available because they are empty.
311 * @c->freeable_cnt are available because they contain only free and
312 * dirty space, @c->idx_gc_cnt are available because they are index
313 * LEBs that have been garbage collected and are awaiting the commit
314 * before they can be used. And the in-the-gaps method will grab these
315 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
316 * already been allocated for some purpose.
318 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
319 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
320 * are taken until after the commit).
322 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
323 * because of the way we serialize LEB allocations and budgeting. See a
324 * comment in 'ubifs_find_free_space()'.
326 lebs
= c
->lst
.empty_lebs
+ c
->freeable_cnt
+ c
->idx_gc_cnt
-
327 c
->lst
.taken_empty_lebs
;
328 if (unlikely(rsvd_idx_lebs
> lebs
)) {
329 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
330 min_idx_lebs
, c
->bi
.min_idx_lebs
, rsvd_idx_lebs
);
334 available
= ubifs_calc_available(c
, min_idx_lebs
);
335 outstanding
= c
->bi
.data_growth
+ c
->bi
.dd_growth
;
337 if (unlikely(available
< outstanding
)) {
338 dbg_budg("out of data space: available %lld, outstanding %lld",
339 available
, outstanding
);
343 if (available
- outstanding
<= c
->rp_size
&& !can_use_rp(c
))
346 c
->bi
.min_idx_lebs
= min_idx_lebs
;
351 * calc_idx_growth - calculate approximate index growth from budgeting request.
352 * @c: UBIFS file-system description object
353 * @req: budgeting request
355 * For now we assume each new node adds one znode. But this is rather poor
356 * approximation, though.
358 static int calc_idx_growth(const struct ubifs_info
*c
,
359 const struct ubifs_budget_req
*req
)
363 znodes
= req
->new_ino
+ (req
->new_page
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
) +
365 return znodes
* c
->max_idx_node_sz
;
369 * calc_data_growth - calculate approximate amount of new data from budgeting
371 * @c: UBIFS file-system description object
372 * @req: budgeting request
374 static int calc_data_growth(const struct ubifs_info
*c
,
375 const struct ubifs_budget_req
*req
)
379 data_growth
= req
->new_ino
? c
->bi
.inode_budget
: 0;
381 data_growth
+= c
->bi
.page_budget
;
383 data_growth
+= c
->bi
.dent_budget
;
384 data_growth
+= req
->new_ino_d
;
389 * calc_dd_growth - calculate approximate amount of data which makes other data
390 * dirty from budgeting request.
391 * @c: UBIFS file-system description object
392 * @req: budgeting request
394 static int calc_dd_growth(const struct ubifs_info
*c
,
395 const struct ubifs_budget_req
*req
)
399 dd_growth
= req
->dirtied_page
? c
->bi
.page_budget
: 0;
401 if (req
->dirtied_ino
)
402 dd_growth
+= c
->bi
.inode_budget
* req
->dirtied_ino
;
404 dd_growth
+= c
->bi
.dent_budget
;
405 dd_growth
+= req
->dirtied_ino_d
;
410 * ubifs_budget_space - ensure there is enough space to complete an operation.
411 * @c: UBIFS file-system description object
412 * @req: budget request
414 * This function allocates budget for an operation. It uses pessimistic
415 * approximation of how much flash space the operation needs. The goal of this
416 * function is to make sure UBIFS always has flash space to flush all dirty
417 * pages, dirty inodes, and dirty znodes (liability). This function may force
418 * commit, garbage-collection or write-back. Returns zero in case of success,
419 * %-ENOSPC if there is no free space and other negative error codes in case of
422 int ubifs_budget_space(struct ubifs_info
*c
, struct ubifs_budget_req
*req
)
424 int err
, idx_growth
, data_growth
, dd_growth
, retried
= 0;
426 ubifs_assert(c
, req
->new_page
<= 1);
427 ubifs_assert(c
, req
->dirtied_page
<= 1);
428 ubifs_assert(c
, req
->new_dent
<= 1);
429 ubifs_assert(c
, req
->mod_dent
<= 1);
430 ubifs_assert(c
, req
->new_ino
<= 1);
431 ubifs_assert(c
, req
->new_ino_d
<= UBIFS_MAX_INO_DATA
);
432 ubifs_assert(c
, req
->dirtied_ino
<= 4);
433 ubifs_assert(c
, req
->dirtied_ino_d
<= UBIFS_MAX_INO_DATA
* 4);
434 ubifs_assert(c
, !(req
->new_ino_d
& 7));
435 ubifs_assert(c
, !(req
->dirtied_ino_d
& 7));
437 data_growth
= calc_data_growth(c
, req
);
438 dd_growth
= calc_dd_growth(c
, req
);
439 if (!data_growth
&& !dd_growth
)
441 idx_growth
= calc_idx_growth(c
, req
);
444 spin_lock(&c
->space_lock
);
445 ubifs_assert(c
, c
->bi
.idx_growth
>= 0);
446 ubifs_assert(c
, c
->bi
.data_growth
>= 0);
447 ubifs_assert(c
, c
->bi
.dd_growth
>= 0);
449 if (unlikely(c
->bi
.nospace
) && (c
->bi
.nospace_rp
|| !can_use_rp(c
))) {
450 dbg_budg("no space");
451 spin_unlock(&c
->space_lock
);
455 c
->bi
.idx_growth
+= idx_growth
;
456 c
->bi
.data_growth
+= data_growth
;
457 c
->bi
.dd_growth
+= dd_growth
;
459 err
= do_budget_space(c
);
461 req
->idx_growth
= idx_growth
;
462 req
->data_growth
= data_growth
;
463 req
->dd_growth
= dd_growth
;
464 spin_unlock(&c
->space_lock
);
468 /* Restore the old values */
469 c
->bi
.idx_growth
-= idx_growth
;
470 c
->bi
.data_growth
-= data_growth
;
471 c
->bi
.dd_growth
-= dd_growth
;
472 spin_unlock(&c
->space_lock
);
475 dbg_budg("no space for fast budgeting");
479 err
= make_free_space(c
);
481 if (err
== -EAGAIN
) {
482 dbg_budg("try again");
484 } else if (err
== -ENOSPC
) {
487 dbg_budg("-ENOSPC, but anyway try once again");
490 dbg_budg("FS is full, -ENOSPC");
492 if (can_use_rp(c
) || c
->rp_size
== 0)
493 c
->bi
.nospace_rp
= 1;
496 ubifs_err(c
, "cannot budget space, error %d", err
);
501 * ubifs_release_budget - release budgeted free space.
502 * @c: UBIFS file-system description object
503 * @req: budget request
505 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
506 * since the index changes (which were budgeted for in @req->idx_growth) will
507 * only be written to the media on commit, this function moves the index budget
508 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
509 * by the commit operation.
511 void ubifs_release_budget(struct ubifs_info
*c
, struct ubifs_budget_req
*req
)
513 ubifs_assert(c
, req
->new_page
<= 1);
514 ubifs_assert(c
, req
->dirtied_page
<= 1);
515 ubifs_assert(c
, req
->new_dent
<= 1);
516 ubifs_assert(c
, req
->mod_dent
<= 1);
517 ubifs_assert(c
, req
->new_ino
<= 1);
518 ubifs_assert(c
, req
->new_ino_d
<= UBIFS_MAX_INO_DATA
);
519 ubifs_assert(c
, req
->dirtied_ino
<= 4);
520 ubifs_assert(c
, req
->dirtied_ino_d
<= UBIFS_MAX_INO_DATA
* 4);
521 ubifs_assert(c
, !(req
->new_ino_d
& 7));
522 ubifs_assert(c
, !(req
->dirtied_ino_d
& 7));
523 if (!req
->recalculate
) {
524 ubifs_assert(c
, req
->idx_growth
>= 0);
525 ubifs_assert(c
, req
->data_growth
>= 0);
526 ubifs_assert(c
, req
->dd_growth
>= 0);
529 if (req
->recalculate
) {
530 req
->data_growth
= calc_data_growth(c
, req
);
531 req
->dd_growth
= calc_dd_growth(c
, req
);
532 req
->idx_growth
= calc_idx_growth(c
, req
);
535 if (!req
->data_growth
&& !req
->dd_growth
)
538 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
541 spin_lock(&c
->space_lock
);
542 c
->bi
.idx_growth
-= req
->idx_growth
;
543 c
->bi
.uncommitted_idx
+= req
->idx_growth
;
544 c
->bi
.data_growth
-= req
->data_growth
;
545 c
->bi
.dd_growth
-= req
->dd_growth
;
546 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
548 ubifs_assert(c
, c
->bi
.idx_growth
>= 0);
549 ubifs_assert(c
, c
->bi
.data_growth
>= 0);
550 ubifs_assert(c
, c
->bi
.dd_growth
>= 0);
551 ubifs_assert(c
, c
->bi
.min_idx_lebs
< c
->main_lebs
);
552 ubifs_assert(c
, !(c
->bi
.idx_growth
& 7));
553 ubifs_assert(c
, !(c
->bi
.data_growth
& 7));
554 ubifs_assert(c
, !(c
->bi
.dd_growth
& 7));
555 spin_unlock(&c
->space_lock
);
559 * ubifs_convert_page_budget - convert budget of a new page.
560 * @c: UBIFS file-system description object
562 * This function converts budget which was allocated for a new page of data to
563 * the budget of changing an existing page of data. The latter is smaller than
564 * the former, so this function only does simple re-calculation and does not
565 * involve any write-back.
567 void ubifs_convert_page_budget(struct ubifs_info
*c
)
569 spin_lock(&c
->space_lock
);
570 /* Release the index growth reservation */
571 c
->bi
.idx_growth
-= c
->max_idx_node_sz
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
572 /* Release the data growth reservation */
573 c
->bi
.data_growth
-= c
->bi
.page_budget
;
574 /* Increase the dirty data growth reservation instead */
575 c
->bi
.dd_growth
+= c
->bi
.page_budget
;
576 /* And re-calculate the indexing space reservation */
577 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
578 spin_unlock(&c
->space_lock
);
582 * ubifs_release_dirty_inode_budget - release dirty inode budget.
583 * @c: UBIFS file-system description object
584 * @ui: UBIFS inode to release the budget for
586 * This function releases budget corresponding to a dirty inode. It is usually
587 * called when after the inode has been written to the media and marked as
588 * clean. It also causes the "no space" flags to be cleared.
590 void ubifs_release_dirty_inode_budget(struct ubifs_info
*c
,
591 struct ubifs_inode
*ui
)
593 struct ubifs_budget_req req
;
595 memset(&req
, 0, sizeof(struct ubifs_budget_req
));
596 /* The "no space" flags will be cleared because dd_growth is > 0 */
597 req
.dd_growth
= c
->bi
.inode_budget
+ ALIGN(ui
->data_len
, 8);
598 ubifs_release_budget(c
, &req
);
602 * ubifs_reported_space - calculate reported free space.
603 * @c: the UBIFS file-system description object
604 * @free: amount of free space
606 * This function calculates amount of free space which will be reported to
607 * user-space. User-space application tend to expect that if the file-system
608 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
609 * are able to write a file of size N. UBIFS attaches node headers to each data
610 * node and it has to write indexing nodes as well. This introduces additional
611 * overhead, and UBIFS has to report slightly less free space to meet the above
614 * This function assumes free space is made up of uncompressed data nodes and
615 * full index nodes (one per data node, tripled because we always allow enough
616 * space to write the index thrice).
618 * Note, the calculation is pessimistic, which means that most of the time
619 * UBIFS reports less space than it actually has.
621 long long ubifs_reported_space(const struct ubifs_info
*c
, long long free
)
623 int divisor
, factor
, f
;
626 * Reported space size is @free * X, where X is UBIFS block size
627 * divided by UBIFS block size + all overhead one data block
628 * introduces. The overhead is the node header + indexing overhead.
630 * Indexing overhead calculations are based on the following formula:
631 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
632 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
633 * as less than maximum fanout, we assume that each data node
634 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
635 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
638 f
= c
->fanout
> 3 ? c
->fanout
>> 1 : 2;
639 factor
= UBIFS_BLOCK_SIZE
;
640 divisor
= UBIFS_MAX_DATA_NODE_SZ
;
641 divisor
+= (c
->max_idx_node_sz
* 3) / (f
- 1);
643 return div_u64(free
, divisor
);
647 * ubifs_get_free_space_nolock - return amount of free space.
648 * @c: UBIFS file-system description object
650 * This function calculates amount of free space to report to user-space.
652 * Because UBIFS may introduce substantial overhead (the index, node headers,
653 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
654 * free flash space it has (well, because not all dirty space is reclaimable,
655 * UBIFS does not actually know the real amount). If UBIFS did so, it would
656 * bread user expectations about what free space is. Users seem to accustomed
657 * to assume that if the file-system reports N bytes of free space, they would
658 * be able to fit a file of N bytes to the FS. This almost works for
659 * traditional file-systems, because they have way less overhead than UBIFS.
660 * So, to keep users happy, UBIFS tries to take the overhead into account.
662 long long ubifs_get_free_space_nolock(struct ubifs_info
*c
)
664 int rsvd_idx_lebs
, lebs
;
665 long long available
, outstanding
, free
;
667 ubifs_assert(c
, c
->bi
.min_idx_lebs
== ubifs_calc_min_idx_lebs(c
));
668 outstanding
= c
->bi
.data_growth
+ c
->bi
.dd_growth
;
669 available
= ubifs_calc_available(c
, c
->bi
.min_idx_lebs
);
672 * When reporting free space to user-space, UBIFS guarantees that it is
673 * possible to write a file of free space size. This means that for
674 * empty LEBs we may use more precise calculations than
675 * 'ubifs_calc_available()' is using. Namely, we know that in empty
676 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
677 * Thus, amend the available space.
679 * Note, the calculations below are similar to what we have in
680 * 'do_budget_space()', so refer there for comments.
682 if (c
->bi
.min_idx_lebs
> c
->lst
.idx_lebs
)
683 rsvd_idx_lebs
= c
->bi
.min_idx_lebs
- c
->lst
.idx_lebs
;
686 lebs
= c
->lst
.empty_lebs
+ c
->freeable_cnt
+ c
->idx_gc_cnt
-
687 c
->lst
.taken_empty_lebs
;
688 lebs
-= rsvd_idx_lebs
;
689 available
+= lebs
* (c
->dark_wm
- c
->leb_overhead
);
691 if (available
> outstanding
)
692 free
= ubifs_reported_space(c
, available
- outstanding
);
699 * ubifs_get_free_space - return amount of free space.
700 * @c: UBIFS file-system description object
702 * This function calculates and returns amount of free space to report to
705 long long ubifs_get_free_space(struct ubifs_info
*c
)
709 spin_lock(&c
->space_lock
);
710 free
= ubifs_get_free_space_nolock(c
);
711 spin_unlock(&c
->space_lock
);