1 .. SPDX-License-Identifier: GPL-2.0
3 ==========================
4 Fprobe-based Event Tracing
5 ==========================
7 .. Author: Masami Hiramatsu <mhiramat@kernel.org>
12 Fprobe event is similar to the kprobe event, but limited to probe on
13 the function entry and exit only. It is good enough for many use cases
14 which only traces some specific functions.
16 This document also covers tracepoint probe events (tprobe) since this
17 is also works only on the tracepoint entry. User can trace a part of
18 tracepoint argument, or the tracepoint without trace-event, which is
19 not exposed on tracefs.
21 As same as other dynamic events, fprobe events and tracepoint probe
22 events are defined via `dynamic_events` interface file on tracefs.
24 Synopsis of fprobe-events
25 -------------------------
28 f[:[GRP1/][EVENT1]] SYM [FETCHARGS] : Probe on function entry
29 f[MAXACTIVE][:[GRP1/][EVENT1]] SYM%return [FETCHARGS] : Probe on function exit
30 t[:[GRP2/][EVENT2]] TRACEPOINT [FETCHARGS] : Probe on tracepoint
32 GRP1 : Group name for fprobe. If omitted, use "fprobes" for it.
33 GRP2 : Group name for tprobe. If omitted, use "tracepoints" for it.
34 EVENT1 : Event name for fprobe. If omitted, the event name is
35 "SYM__entry" or "SYM__exit".
36 EVENT2 : Event name for tprobe. If omitted, the event name is
37 the same as "TRACEPOINT", but if the "TRACEPOINT" starts
38 with a digit character, "_TRACEPOINT" is used.
39 MAXACTIVE : Maximum number of instances of the specified function that
40 can be probed simultaneously, or 0 for the default value
41 as defined in Documentation/trace/fprobe.rst
43 FETCHARGS : Arguments. Each probe can have up to 128 args.
44 ARG : Fetch "ARG" function argument using BTF (only for function
45 entry or tracepoint.) (\*1)
46 @ADDR : Fetch memory at ADDR (ADDR should be in kernel)
47 @SYM[+|-offs] : Fetch memory at SYM +|- offs (SYM should be a data symbol)
48 $stackN : Fetch Nth entry of stack (N >= 0)
49 $stack : Fetch stack address.
50 $argN : Fetch the Nth function argument. (N >= 1) (\*2)
51 $retval : Fetch return value.(\*3)
52 $comm : Fetch current task comm.
53 +|-[u]OFFS(FETCHARG) : Fetch memory at FETCHARG +|- OFFS address.(\*4)(\*5)
54 \IMM : Store an immediate value to the argument.
55 NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
56 FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
57 (u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types
58 (x8/x16/x32/x64), "char", "string", "ustring", "symbol", "symstr"
59 and bitfield are supported.
61 (\*1) This is available only when BTF is enabled.
62 (\*2) only for the probe on function entry (offs == 0). Note, this argument access
63 is best effort, because depending on the argument type, it may be passed on
64 the stack. But this only support the arguments via registers.
65 (\*3) only for return probe. Note that this is also best effort. Depending on the
66 return value type, it might be passed via a pair of registers. But this only
67 accesses one register.
68 (\*4) this is useful for fetching a field of data structures.
69 (\*5) "u" means user-space dereference.
71 For the details of TYPE, see :ref:`kprobetrace documentation <kprobetrace_types>`.
73 Function arguments at exit
74 --------------------------
75 Function arguments can be accessed at exit probe using $arg<N> fetcharg. This
76 is useful to record the function parameter and return value at once, and
77 trace the difference of structure fields (for debugging a function whether it
78 correctly updates the given data structure or not)
79 See the :ref:`sample<fprobetrace_exit_args_sample>` below for how it works.
83 BTF (BPF Type Format) argument allows user to trace function and tracepoint
84 parameters by its name instead of ``$argN``. This feature is available if the
85 kernel is configured with CONFIG_BPF_SYSCALL and CONFIG_DEBUG_INFO_BTF.
86 If user only specify the BTF argument, the event's argument name is also
87 automatically set by the given name. ::
89 # echo 'f:myprobe vfs_read count pos' >> dynamic_events
91 f:fprobes/myprobe vfs_read count=count pos=pos
93 It also chooses the fetch type from BTF information. For example, in the above
94 example, the ``count`` is unsigned long, and the ``pos`` is a pointer. Thus,
95 both are converted to 64bit unsigned long, but only ``pos`` has "%Lx"
96 print-format as below ::
98 # cat events/fprobes/myprobe/format
102 field:unsigned short common_type; offset:0; size:2; signed:0;
103 field:unsigned char common_flags; offset:2; size:1; signed:0;
104 field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
105 field:int common_pid; offset:4; size:4; signed:1;
107 field:unsigned long __probe_ip; offset:8; size:8; signed:0;
108 field:u64 count; offset:16; size:8; signed:0;
109 field:u64 pos; offset:24; size:8; signed:0;
111 print fmt: "(%lx) count=%Lu pos=0x%Lx", REC->__probe_ip, REC->count, REC->pos
113 If user unsures the name of arguments, ``$arg*`` will be helpful. The ``$arg*``
114 is expanded to all function arguments of the function or the tracepoint. ::
116 # echo 'f:myprobe vfs_read $arg*' >> dynamic_events
118 f:fprobes/myprobe vfs_read file=file buf=buf count=count pos=pos
120 BTF also affects the ``$retval``. If user doesn't set any type, the retval
121 type is automatically picked from the BTF. If the function returns ``void``,
122 ``$retval`` is rejected.
124 You can access the data fields of a data structure using allow operator ``->``
125 (for pointer type) and dot operator ``.`` (for data structure type.)::
127 # echo 't sched_switch preempt prev_pid=prev->pid next_pid=next->pid' >> dynamic_events
129 The field access operators, ``->`` and ``.`` can be combined for accessing deeper
130 members and other structure members pointed by the member. e.g. ``foo->bar.baz->qux``
131 If there is non-name union member, you can directly access it as the C code does.
141 To access ``a`` and ``b``, use ``foo->a`` and ``foo->b`` in this case.
143 This data field access is available for the return value via ``$retval``,
144 e.g. ``$retval->name``.
146 For these BTF arguments and fields, ``:string`` and ``:ustring`` change the
147 behavior. If these are used for BTF argument or field, it checks whether
148 the BTF type of the argument or the data field is ``char *`` or ``char []``,
149 or not. If not, it rejects applying the string types. Also, with the BTF
150 support, you don't need a memory dereference operator (``+0(PTR)``) for
151 accessing the string pointed by a ``PTR``. It automatically adds the memory
152 dereference operator according to the BTF type. e.g. ::
154 # echo 't sched_switch prev->comm:string' >> dynamic_events
155 # echo 'f getname_flags%return $retval->name:string' >> dynamic_events
157 The ``prev->comm`` is an embedded char array in the data structure, and
158 ``$retval->name`` is a char pointer in the data structure. But in both
159 cases, you can use ``:string`` type to get the string.
164 Here is an example to add fprobe events on ``vfs_read()`` function entry
165 and exit, with BTF arguments.
168 # echo 'f vfs_read $arg*' >> dynamic_events
169 # echo 'f vfs_read%return $retval' >> dynamic_events
171 f:fprobes/vfs_read__entry vfs_read file=file buf=buf count=count pos=pos
172 f:fprobes/vfs_read__exit vfs_read%return arg1=$retval
173 # echo 1 > events/fprobes/enable
174 # head -n 20 trace | tail
175 # TASK-PID CPU# ||||| TIMESTAMP FUNCTION
177 sh-70 [000] ...1. 335.883195: vfs_read__entry: (vfs_read+0x4/0x340) file=0xffff888005cf9a80 buf=0x7ffef36c6879 count=1 pos=0xffffc900005aff08
178 sh-70 [000] ..... 335.883208: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=1
179 sh-70 [000] ...1. 335.883220: vfs_read__entry: (vfs_read+0x4/0x340) file=0xffff888005cf9a80 buf=0x7ffef36c6879 count=1 pos=0xffffc900005aff08
180 sh-70 [000] ..... 335.883224: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=1
181 sh-70 [000] ...1. 335.883232: vfs_read__entry: (vfs_read+0x4/0x340) file=0xffff888005cf9a80 buf=0x7ffef36c687a count=1 pos=0xffffc900005aff08
182 sh-70 [000] ..... 335.883237: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=1
183 sh-70 [000] ...1. 336.050329: vfs_read__entry: (vfs_read+0x4/0x340) file=0xffff888005cf9a80 buf=0x7ffef36c6879 count=1 pos=0xffffc900005aff08
184 sh-70 [000] ..... 336.050343: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=1
186 You can see all function arguments and return values are recorded as signed int.
188 Also, here is an example of tracepoint events on ``sched_switch`` tracepoint.
189 To compare the result, this also enables the ``sched_switch`` traceevent too.
192 # echo 't sched_switch $arg*' >> dynamic_events
193 # echo 1 > events/sched/sched_switch/enable
194 # echo 1 > events/tracepoints/sched_switch/enable
196 # head -n 20 trace | tail
197 # TASK-PID CPU# ||||| TIMESTAMP FUNCTION
199 sh-70 [000] d..2. 3912.083993: sched_switch: prev_comm=sh prev_pid=70 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
200 sh-70 [000] d..3. 3912.083995: sched_switch: (__probestub_sched_switch+0x4/0x10) preempt=0 prev=0xffff88800664e100 next=0xffffffff828229c0 prev_state=1
201 <idle>-0 [000] d..2. 3912.084183: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=16 next_prio=120
202 <idle>-0 [000] d..3. 3912.084184: sched_switch: (__probestub_sched_switch+0x4/0x10) preempt=0 prev=0xffffffff828229c0 next=0xffff888004208000 prev_state=0
203 rcu_preempt-16 [000] d..2. 3912.084196: sched_switch: prev_comm=rcu_preempt prev_pid=16 prev_prio=120 prev_state=I ==> next_comm=swapper/0 next_pid=0 next_prio=120
204 rcu_preempt-16 [000] d..3. 3912.084196: sched_switch: (__probestub_sched_switch+0x4/0x10) preempt=0 prev=0xffff888004208000 next=0xffffffff828229c0 prev_state=1026
205 <idle>-0 [000] d..2. 3912.085191: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=16 next_prio=120
206 <idle>-0 [000] d..3. 3912.085191: sched_switch: (__probestub_sched_switch+0x4/0x10) preempt=0 prev=0xffffffff828229c0 next=0xffff888004208000 prev_state=0
208 As you can see, the ``sched_switch`` trace-event shows *cooked* parameters, on
209 the other hand, the ``sched_switch`` tracepoint probe event shows *raw*
210 parameters. This means you can access any field values in the task
211 structure pointed by the ``prev`` and ``next`` arguments.
213 For example, usually ``task_struct::start_time`` is not traced, but with this
214 traceprobe event, you can trace that field as below.
217 # echo 't sched_switch comm=next->comm:string next->start_time' > dynamic_events
218 # head -n 20 trace | tail
219 # TASK-PID CPU# ||||| TIMESTAMP FUNCTION
221 sh-70 [000] d..3. 5606.686577: sched_switch: (__probestub_sched_switch+0x4/0x10) comm="rcu_preempt" usage=1 start_time=245000000
222 rcu_preempt-16 [000] d..3. 5606.686602: sched_switch: (__probestub_sched_switch+0x4/0x10) comm="sh" usage=1 start_time=1596095526
223 sh-70 [000] d..3. 5606.686637: sched_switch: (__probestub_sched_switch+0x4/0x10) comm="swapper/0" usage=2 start_time=0
224 <idle>-0 [000] d..3. 5606.687190: sched_switch: (__probestub_sched_switch+0x4/0x10) comm="rcu_preempt" usage=1 start_time=245000000
225 rcu_preempt-16 [000] d..3. 5606.687202: sched_switch: (__probestub_sched_switch+0x4/0x10) comm="swapper/0" usage=2 start_time=0
226 <idle>-0 [000] d..3. 5606.690317: sched_switch: (__probestub_sched_switch+0x4/0x10) comm="kworker/0:1" usage=1 start_time=137000000
227 kworker/0:1-14 [000] d..3. 5606.690339: sched_switch: (__probestub_sched_switch+0x4/0x10) comm="swapper/0" usage=2 start_time=0
228 <idle>-0 [000] d..3. 5606.692368: sched_switch: (__probestub_sched_switch+0x4/0x10) comm="kworker/0:1" usage=1 start_time=137000000
230 .. _fprobetrace_exit_args_sample:
232 The return probe allows us to access the results of some functions, which returns
233 the error code and its results are passed via function parameter, such as an
234 structure-initialization function.
236 For example, vfs_open() will link the file structure to the inode and update
237 mode. You can trace that changes with return probe.
240 # echo 'f vfs_open mode=file->f_mode:x32 inode=file->f_inode:x64' >> dynamic_events
241 # echo 'f vfs_open%%return mode=file->f_mode:x32 inode=file->f_inode:x64' >> dynamic_events
242 # echo 1 > events/fprobes/enable
244 sh-131 [006] ...1. 1945.714346: vfs_open__entry: (vfs_open+0x4/0x40) mode=0x2 inode=0x0
245 sh-131 [006] ...1. 1945.714358: vfs_open__exit: (do_open+0x274/0x3d0 <- vfs_open) mode=0x4d801e inode=0xffff888008470168
246 cat-143 [007] ...1. 1945.717949: vfs_open__entry: (vfs_open+0x4/0x40) mode=0x1 inode=0x0
247 cat-143 [007] ...1. 1945.717956: vfs_open__exit: (do_open+0x274/0x3d0 <- vfs_open) mode=0x4a801d inode=0xffff888005f78d28
248 cat-143 [007] ...1. 1945.720616: vfs_open__entry: (vfs_open+0x4/0x40) mode=0x1 inode=0x0
249 cat-143 [007] ...1. 1945.728263: vfs_open__exit: (do_open+0x274/0x3d0 <- vfs_open) mode=0xa800d inode=0xffff888004ada8d8
251 You can see the `file::f_mode` and `file::f_inode` are updated in `vfs_open()`.