1 // SPDX-License-Identifier: GPL-2.0
3 * Performance event support framework for SuperH hardware counters.
5 * Copyright (C) 2009 Paul Mundt
7 * Heavily based on the x86 and PowerPC implementations.
10 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
11 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
12 * Copyright (C) 2009 Jaswinder Singh Rajput
13 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
14 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
15 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
18 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
20 #include <linux/kernel.h>
21 #include <linux/init.h>
23 #include <linux/irq.h>
24 #include <linux/perf_event.h>
25 #include <linux/export.h>
26 #include <asm/processor.h>
28 struct cpu_hw_events
{
29 struct perf_event
*events
[MAX_HWEVENTS
];
30 unsigned long used_mask
[BITS_TO_LONGS(MAX_HWEVENTS
)];
31 unsigned long active_mask
[BITS_TO_LONGS(MAX_HWEVENTS
)];
34 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
36 static struct sh_pmu
*sh_pmu __read_mostly
;
38 /* Number of perf_events counting hardware events */
39 static atomic_t num_events
;
40 /* Used to avoid races in calling reserve/release_pmc_hardware */
41 static DEFINE_MUTEX(pmc_reserve_mutex
);
44 * Stub these out for now, do something more profound later.
46 int reserve_pmc_hardware(void)
51 void release_pmc_hardware(void)
55 static inline int sh_pmu_initialized(void)
61 * Release the PMU if this is the last perf_event.
63 static void hw_perf_event_destroy(struct perf_event
*event
)
65 if (!atomic_add_unless(&num_events
, -1, 1)) {
66 mutex_lock(&pmc_reserve_mutex
);
67 if (atomic_dec_return(&num_events
) == 0)
68 release_pmc_hardware();
69 mutex_unlock(&pmc_reserve_mutex
);
73 static int hw_perf_cache_event(int config
, int *evp
)
75 unsigned long type
, op
, result
;
78 if (!sh_pmu
->cache_events
)
83 op
= (config
>> 8) & 0xff;
84 result
= (config
>> 16) & 0xff;
86 if (type
>= PERF_COUNT_HW_CACHE_MAX
||
87 op
>= PERF_COUNT_HW_CACHE_OP_MAX
||
88 result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
91 ev
= (*sh_pmu
->cache_events
)[type
][op
][result
];
100 static int __hw_perf_event_init(struct perf_event
*event
)
102 struct perf_event_attr
*attr
= &event
->attr
;
103 struct hw_perf_event
*hwc
= &event
->hw
;
107 if (!sh_pmu_initialized())
111 * See if we need to reserve the counter.
113 * If no events are currently in use, then we have to take a
114 * mutex to ensure that we don't race with another task doing
115 * reserve_pmc_hardware or release_pmc_hardware.
118 if (!atomic_inc_not_zero(&num_events
)) {
119 mutex_lock(&pmc_reserve_mutex
);
120 if (atomic_read(&num_events
) == 0 &&
121 reserve_pmc_hardware())
124 atomic_inc(&num_events
);
125 mutex_unlock(&pmc_reserve_mutex
);
131 event
->destroy
= hw_perf_event_destroy
;
133 switch (attr
->type
) {
135 config
= attr
->config
& sh_pmu
->raw_event_mask
;
137 case PERF_TYPE_HW_CACHE
:
138 err
= hw_perf_cache_event(attr
->config
, &config
);
142 case PERF_TYPE_HARDWARE
:
143 if (attr
->config
>= sh_pmu
->max_events
)
146 config
= sh_pmu
->event_map(attr
->config
);
153 hwc
->config
|= config
;
158 static void sh_perf_event_update(struct perf_event
*event
,
159 struct hw_perf_event
*hwc
, int idx
)
161 u64 prev_raw_count
, new_raw_count
;
166 * Depending on the counter configuration, they may or may not
167 * be chained, in which case the previous counter value can be
168 * updated underneath us if the lower-half overflows.
170 * Our tactic to handle this is to first atomically read and
171 * exchange a new raw count - then add that new-prev delta
172 * count to the generic counter atomically.
174 * As there is no interrupt associated with the overflow events,
175 * this is the simplest approach for maintaining consistency.
178 prev_raw_count
= local64_read(&hwc
->prev_count
);
179 new_raw_count
= sh_pmu
->read(idx
);
181 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
182 new_raw_count
) != prev_raw_count
)
186 * Now we have the new raw value and have updated the prev
187 * timestamp already. We can now calculate the elapsed delta
188 * (counter-)time and add that to the generic counter.
190 * Careful, not all hw sign-extends above the physical width
193 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
196 local64_add(delta
, &event
->count
);
199 static void sh_pmu_stop(struct perf_event
*event
, int flags
)
201 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
202 struct hw_perf_event
*hwc
= &event
->hw
;
205 if (!(event
->hw
.state
& PERF_HES_STOPPED
)) {
206 sh_pmu
->disable(hwc
, idx
);
207 cpuc
->events
[idx
] = NULL
;
208 event
->hw
.state
|= PERF_HES_STOPPED
;
211 if ((flags
& PERF_EF_UPDATE
) && !(event
->hw
.state
& PERF_HES_UPTODATE
)) {
212 sh_perf_event_update(event
, &event
->hw
, idx
);
213 event
->hw
.state
|= PERF_HES_UPTODATE
;
217 static void sh_pmu_start(struct perf_event
*event
, int flags
)
219 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
220 struct hw_perf_event
*hwc
= &event
->hw
;
223 if (WARN_ON_ONCE(idx
== -1))
226 if (flags
& PERF_EF_RELOAD
)
227 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
229 cpuc
->events
[idx
] = event
;
231 sh_pmu
->enable(hwc
, idx
);
234 static void sh_pmu_del(struct perf_event
*event
, int flags
)
236 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
238 sh_pmu_stop(event
, PERF_EF_UPDATE
);
239 __clear_bit(event
->hw
.idx
, cpuc
->used_mask
);
241 perf_event_update_userpage(event
);
244 static int sh_pmu_add(struct perf_event
*event
, int flags
)
246 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
247 struct hw_perf_event
*hwc
= &event
->hw
;
251 perf_pmu_disable(event
->pmu
);
253 if (__test_and_set_bit(idx
, cpuc
->used_mask
)) {
254 idx
= find_first_zero_bit(cpuc
->used_mask
, sh_pmu
->num_events
);
255 if (idx
== sh_pmu
->num_events
)
258 __set_bit(idx
, cpuc
->used_mask
);
262 sh_pmu
->disable(hwc
, idx
);
264 event
->hw
.state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
265 if (flags
& PERF_EF_START
)
266 sh_pmu_start(event
, PERF_EF_RELOAD
);
268 perf_event_update_userpage(event
);
271 perf_pmu_enable(event
->pmu
);
275 static void sh_pmu_read(struct perf_event
*event
)
277 sh_perf_event_update(event
, &event
->hw
, event
->hw
.idx
);
280 static int sh_pmu_event_init(struct perf_event
*event
)
284 /* does not support taken branch sampling */
285 if (has_branch_stack(event
))
288 switch (event
->attr
.type
) {
290 case PERF_TYPE_HW_CACHE
:
291 case PERF_TYPE_HARDWARE
:
292 err
= __hw_perf_event_init(event
);
301 event
->destroy(event
);
307 static void sh_pmu_enable(struct pmu
*pmu
)
309 if (!sh_pmu_initialized())
312 sh_pmu
->enable_all();
315 static void sh_pmu_disable(struct pmu
*pmu
)
317 if (!sh_pmu_initialized())
320 sh_pmu
->disable_all();
323 static struct pmu pmu
= {
324 .pmu_enable
= sh_pmu_enable
,
325 .pmu_disable
= sh_pmu_disable
,
326 .event_init
= sh_pmu_event_init
,
329 .start
= sh_pmu_start
,
334 static int sh_pmu_prepare_cpu(unsigned int cpu
)
336 struct cpu_hw_events
*cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
338 memset(cpuhw
, 0, sizeof(struct cpu_hw_events
));
342 int register_sh_pmu(struct sh_pmu
*_pmu
)
348 pr_info("Performance Events: %s support registered\n", _pmu
->name
);
351 * All of the on-chip counters are "limited", in that they have
352 * no interrupts, and are therefore unable to do sampling without
353 * further work and timer assistance.
355 pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
357 WARN_ON(_pmu
->num_events
> MAX_HWEVENTS
);
359 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
360 cpuhp_setup_state(CPUHP_PERF_SUPERH
, "PERF_SUPERH", sh_pmu_prepare_cpu
,