1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2002 Andi Kleen, SuSE Labs.
4 * Thanks to Ben LaHaise for precious feedback.
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/vmalloc.h>
19 #include <linux/libnvdimm.h>
20 #include <linux/vmstat.h>
21 #include <linux/kernel.h>
22 #include <linux/cc_platform.h>
23 #include <linux/set_memory.h>
24 #include <linux/memregion.h>
26 #include <asm/e820/api.h>
27 #include <asm/processor.h>
28 #include <asm/tlbflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <linux/uaccess.h>
32 #include <asm/pgalloc.h>
33 #include <asm/proto.h>
34 #include <asm/memtype.h>
35 #include <asm/hyperv-tlfs.h>
36 #include <asm/mshyperv.h>
38 #include "../mm_internal.h"
41 * The current flushing context - we pass it instead of 5 arguments:
48 unsigned long numpages
;
49 unsigned long curpage
;
52 unsigned int force_split
: 1,
53 force_static_prot
: 1,
64 static const int cpa_warn_level
= CPA_PROTECT
;
67 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
68 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
69 * entries change the page attribute in parallel to some other cpu
70 * splitting a large page entry along with changing the attribute.
72 static DEFINE_SPINLOCK(cpa_lock
);
74 #define CPA_FLUSHTLB 1
76 #define CPA_PAGES_ARRAY 4
77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
79 static inline pgprot_t
cachemode2pgprot(enum page_cache_mode pcm
)
81 return __pgprot(cachemode2protval(pcm
));
85 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
87 void update_page_count(int level
, unsigned long pages
)
89 /* Protect against CPA */
91 direct_pages_count
[level
] += pages
;
92 spin_unlock(&pgd_lock
);
95 static void split_page_count(int level
)
97 if (direct_pages_count
[level
] == 0)
100 direct_pages_count
[level
]--;
101 if (system_state
== SYSTEM_RUNNING
) {
102 if (level
== PG_LEVEL_2M
)
103 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT
);
104 else if (level
== PG_LEVEL_1G
)
105 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT
);
107 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
110 void arch_report_meminfo(struct seq_file
*m
)
112 seq_printf(m
, "DirectMap4k: %8lu kB\n",
113 direct_pages_count
[PG_LEVEL_4K
] << 2);
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 seq_printf(m
, "DirectMap2M: %8lu kB\n",
116 direct_pages_count
[PG_LEVEL_2M
] << 11);
118 seq_printf(m
, "DirectMap4M: %8lu kB\n",
119 direct_pages_count
[PG_LEVEL_2M
] << 12);
122 seq_printf(m
, "DirectMap1G: %8lu kB\n",
123 direct_pages_count
[PG_LEVEL_1G
] << 20);
126 static inline void split_page_count(int level
) { }
129 #ifdef CONFIG_X86_CPA_STATISTICS
131 static unsigned long cpa_1g_checked
;
132 static unsigned long cpa_1g_sameprot
;
133 static unsigned long cpa_1g_preserved
;
134 static unsigned long cpa_2m_checked
;
135 static unsigned long cpa_2m_sameprot
;
136 static unsigned long cpa_2m_preserved
;
137 static unsigned long cpa_4k_install
;
139 static inline void cpa_inc_1g_checked(void)
144 static inline void cpa_inc_2m_checked(void)
149 static inline void cpa_inc_4k_install(void)
151 data_race(cpa_4k_install
++);
154 static inline void cpa_inc_lp_sameprot(int level
)
156 if (level
== PG_LEVEL_1G
)
162 static inline void cpa_inc_lp_preserved(int level
)
164 if (level
== PG_LEVEL_1G
)
170 static int cpastats_show(struct seq_file
*m
, void *p
)
172 seq_printf(m
, "1G pages checked: %16lu\n", cpa_1g_checked
);
173 seq_printf(m
, "1G pages sameprot: %16lu\n", cpa_1g_sameprot
);
174 seq_printf(m
, "1G pages preserved: %16lu\n", cpa_1g_preserved
);
175 seq_printf(m
, "2M pages checked: %16lu\n", cpa_2m_checked
);
176 seq_printf(m
, "2M pages sameprot: %16lu\n", cpa_2m_sameprot
);
177 seq_printf(m
, "2M pages preserved: %16lu\n", cpa_2m_preserved
);
178 seq_printf(m
, "4K pages set-checked: %16lu\n", cpa_4k_install
);
182 static int cpastats_open(struct inode
*inode
, struct file
*file
)
184 return single_open(file
, cpastats_show
, NULL
);
187 static const struct file_operations cpastats_fops
= {
188 .open
= cpastats_open
,
191 .release
= single_release
,
194 static int __init
cpa_stats_init(void)
196 debugfs_create_file("cpa_stats", S_IRUSR
, arch_debugfs_dir
, NULL
,
200 late_initcall(cpa_stats_init
);
202 static inline void cpa_inc_1g_checked(void) { }
203 static inline void cpa_inc_2m_checked(void) { }
204 static inline void cpa_inc_4k_install(void) { }
205 static inline void cpa_inc_lp_sameprot(int level
) { }
206 static inline void cpa_inc_lp_preserved(int level
) { }
211 within(unsigned long addr
, unsigned long start
, unsigned long end
)
213 return addr
>= start
&& addr
< end
;
217 within_inclusive(unsigned long addr
, unsigned long start
, unsigned long end
)
219 return addr
>= start
&& addr
<= end
;
225 * The kernel image is mapped into two places in the virtual address space
226 * (addresses without KASLR, of course):
228 * 1. The kernel direct map (0xffff880000000000)
229 * 2. The "high kernel map" (0xffffffff81000000)
231 * We actually execute out of #2. If we get the address of a kernel symbol, it
232 * points to #2, but almost all physical-to-virtual translations point to #1.
234 * This is so that we can have both a directmap of all physical memory *and*
235 * take full advantage of the limited (s32) immediate addressing range (2G)
238 * See Documentation/arch/x86/x86_64/mm.rst for more detail.
241 static inline unsigned long highmap_start_pfn(void)
243 return __pa_symbol(_text
) >> PAGE_SHIFT
;
246 static inline unsigned long highmap_end_pfn(void)
248 /* Do not reference physical address outside the kernel. */
249 return __pa_symbol(roundup(_brk_end
, PMD_SIZE
) - 1) >> PAGE_SHIFT
;
252 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
255 * Kernel text has an alias mapping at a high address, known
258 return within_inclusive(pfn
, highmap_start_pfn(), highmap_end_pfn());
263 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
265 /* There is no highmap on 32-bit */
272 * See set_mce_nospec().
274 * Machine check recovery code needs to change cache mode of poisoned pages to
275 * UC to avoid speculative access logging another error. But passing the
276 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
277 * speculative access. So we cheat and flip the top bit of the address. This
278 * works fine for the code that updates the page tables. But at the end of the
279 * process we need to flush the TLB and cache and the non-canonical address
280 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
282 * But in the common case we already have a canonical address. This code
283 * will fix the top bit if needed and is a no-op otherwise.
285 static inline unsigned long fix_addr(unsigned long addr
)
288 return (long)(addr
<< 1) >> 1;
294 static unsigned long __cpa_addr(struct cpa_data
*cpa
, unsigned long idx
)
296 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
297 struct page
*page
= cpa
->pages
[idx
];
299 if (unlikely(PageHighMem(page
)))
302 return (unsigned long)page_address(page
);
305 if (cpa
->flags
& CPA_ARRAY
)
306 return cpa
->vaddr
[idx
];
308 return *cpa
->vaddr
+ idx
* PAGE_SIZE
;
315 static void clflush_cache_range_opt(void *vaddr
, unsigned int size
)
317 const unsigned long clflush_size
= boot_cpu_data
.x86_clflush_size
;
318 void *p
= (void *)((unsigned long)vaddr
& ~(clflush_size
- 1));
319 void *vend
= vaddr
+ size
;
324 for (; p
< vend
; p
+= clflush_size
)
329 * clflush_cache_range - flush a cache range with clflush
330 * @vaddr: virtual start address
331 * @size: number of bytes to flush
333 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
334 * SFENCE to avoid ordering issues.
336 void clflush_cache_range(void *vaddr
, unsigned int size
)
339 clflush_cache_range_opt(vaddr
, size
);
342 EXPORT_SYMBOL_GPL(clflush_cache_range
);
344 #ifdef CONFIG_ARCH_HAS_PMEM_API
345 void arch_invalidate_pmem(void *addr
, size_t size
)
347 clflush_cache_range(addr
, size
);
349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem
);
352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
353 bool cpu_cache_has_invalidate_memregion(void)
355 return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR
);
357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion
, "DEVMEM");
359 int cpu_cache_invalidate_memregion(int res_desc
)
361 if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
363 wbinvd_on_all_cpus();
366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion
, "DEVMEM");
369 static void __cpa_flush_all(void *arg
)
371 unsigned long cache
= (unsigned long)arg
;
374 * Flush all to work around Errata in early athlons regarding
375 * large page flushing.
379 if (cache
&& boot_cpu_data
.x86
>= 4)
383 static void cpa_flush_all(unsigned long cache
)
385 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
387 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
390 static void __cpa_flush_tlb(void *data
)
392 struct cpa_data
*cpa
= data
;
395 for (i
= 0; i
< cpa
->numpages
; i
++)
396 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa
, i
)));
399 static void cpa_flush(struct cpa_data
*data
, int cache
)
401 struct cpa_data
*cpa
= data
;
404 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
406 if (cache
&& !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
407 cpa_flush_all(cache
);
411 if (cpa
->force_flush_all
|| cpa
->numpages
> tlb_single_page_flush_ceiling
)
414 on_each_cpu(__cpa_flush_tlb
, cpa
, 1);
420 for (i
= 0; i
< cpa
->numpages
; i
++) {
421 unsigned long addr
= __cpa_addr(cpa
, i
);
424 pte_t
*pte
= lookup_address(addr
, &level
);
427 * Only flush present addresses:
429 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
430 clflush_cache_range_opt((void *)fix_addr(addr
), PAGE_SIZE
);
435 static bool overlaps(unsigned long r1_start
, unsigned long r1_end
,
436 unsigned long r2_start
, unsigned long r2_end
)
438 return (r1_start
<= r2_end
&& r1_end
>= r2_start
) ||
439 (r2_start
<= r1_end
&& r2_end
>= r1_start
);
442 #ifdef CONFIG_PCI_BIOS
444 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
445 * based config access (CONFIG_PCI_GOBIOS) support.
447 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
448 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
450 static pgprotval_t
protect_pci_bios(unsigned long spfn
, unsigned long epfn
)
452 if (pcibios_enabled
&& overlaps(spfn
, epfn
, BIOS_PFN
, BIOS_PFN_END
))
457 static pgprotval_t
protect_pci_bios(unsigned long spfn
, unsigned long epfn
)
464 * The .rodata section needs to be read-only. Using the pfn catches all
465 * aliases. This also includes __ro_after_init, so do not enforce until
466 * kernel_set_to_readonly is true.
468 static pgprotval_t
protect_rodata(unsigned long spfn
, unsigned long epfn
)
470 unsigned long epfn_ro
, spfn_ro
= PFN_DOWN(__pa_symbol(__start_rodata
));
473 * Note: __end_rodata is at page aligned and not inclusive, so
474 * subtract 1 to get the last enforced PFN in the rodata area.
476 epfn_ro
= PFN_DOWN(__pa_symbol(__end_rodata
)) - 1;
478 if (kernel_set_to_readonly
&& overlaps(spfn
, epfn
, spfn_ro
, epfn_ro
))
484 * Protect kernel text against becoming non executable by forbidding
485 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
486 * out of which the kernel actually executes. Do not protect the low
489 * This does not cover __inittext since that is gone after boot.
491 static pgprotval_t
protect_kernel_text(unsigned long start
, unsigned long end
)
493 unsigned long t_end
= (unsigned long)_etext
- 1;
494 unsigned long t_start
= (unsigned long)_text
;
496 if (overlaps(start
, end
, t_start
, t_end
))
501 #if defined(CONFIG_X86_64)
503 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
504 * kernel text mappings for the large page aligned text, rodata sections
505 * will be always read-only. For the kernel identity mappings covering the
506 * holes caused by this alignment can be anything that user asks.
508 * This will preserve the large page mappings for kernel text/data at no
511 static pgprotval_t
protect_kernel_text_ro(unsigned long start
,
514 unsigned long t_end
= (unsigned long)__end_rodata_hpage_align
- 1;
515 unsigned long t_start
= (unsigned long)_text
;
518 if (!kernel_set_to_readonly
|| !overlaps(start
, end
, t_start
, t_end
))
521 * Don't enforce the !RW mapping for the kernel text mapping, if
522 * the current mapping is already using small page mapping. No
523 * need to work hard to preserve large page mappings in this case.
525 * This also fixes the Linux Xen paravirt guest boot failure caused
526 * by unexpected read-only mappings for kernel identity
527 * mappings. In this paravirt guest case, the kernel text mapping
528 * and the kernel identity mapping share the same page-table pages,
529 * so the protections for kernel text and identity mappings have to
532 if (lookup_address(start
, &level
) && (level
!= PG_LEVEL_4K
))
537 static pgprotval_t
protect_kernel_text_ro(unsigned long start
,
544 static inline bool conflicts(pgprot_t prot
, pgprotval_t val
)
546 return (pgprot_val(prot
) & ~val
) != pgprot_val(prot
);
549 static inline void check_conflict(int warnlvl
, pgprot_t prot
, pgprotval_t val
,
550 unsigned long start
, unsigned long end
,
551 unsigned long pfn
, const char *txt
)
553 static const char *lvltxt
[] = {
554 [CPA_CONFLICT
] = "conflict",
555 [CPA_PROTECT
] = "protect",
556 [CPA_DETECT
] = "detect",
559 if (warnlvl
> cpa_warn_level
|| !conflicts(prot
, val
))
562 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
563 lvltxt
[warnlvl
], txt
, start
, end
, pfn
, (unsigned long long)pgprot_val(prot
),
564 (unsigned long long)val
);
568 * Certain areas of memory on x86 require very specific protection flags,
569 * for example the BIOS area or kernel text. Callers don't always get this
570 * right (again, ioremap() on BIOS memory is not uncommon) so this function
571 * checks and fixes these known static required protection bits.
573 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long start
,
574 unsigned long pfn
, unsigned long npg
,
575 unsigned long lpsize
, int warnlvl
)
577 pgprotval_t forbidden
, res
;
581 * There is no point in checking RW/NX conflicts when the requested
582 * mapping is setting the page !PRESENT.
584 if (!(pgprot_val(prot
) & _PAGE_PRESENT
))
587 /* Operate on the virtual address */
588 end
= start
+ npg
* PAGE_SIZE
- 1;
590 res
= protect_kernel_text(start
, end
);
591 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Text NX");
595 * Special case to preserve a large page. If the change spawns the
596 * full large page mapping then there is no point to split it
597 * up. Happens with ftrace and is going to be removed once ftrace
598 * switched to text_poke().
600 if (lpsize
!= (npg
* PAGE_SIZE
) || (start
& (lpsize
- 1))) {
601 res
= protect_kernel_text_ro(start
, end
);
602 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Text RO");
606 /* Check the PFN directly */
607 res
= protect_pci_bios(pfn
, pfn
+ npg
- 1);
608 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "PCIBIOS NX");
611 res
= protect_rodata(pfn
, pfn
+ npg
- 1);
612 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Rodata RO");
615 return __pgprot(pgprot_val(prot
) & ~forbidden
);
619 * Validate strict W^X semantics.
621 static inline pgprot_t
verify_rwx(pgprot_t old
, pgprot_t
new, unsigned long start
,
622 unsigned long pfn
, unsigned long npg
,
628 * 32-bit has some unfixable W+X issues, like EFI code
629 * and writeable data being in the same page. Disable
630 * detection and enforcement there.
632 if (IS_ENABLED(CONFIG_X86_32
))
635 /* Only verify when NX is supported: */
636 if (!(__supported_pte_mask
& _PAGE_NX
))
639 if (!((pgprot_val(old
) ^ pgprot_val(new)) & (_PAGE_RW
| _PAGE_NX
)))
642 if ((pgprot_val(new) & (_PAGE_RW
| _PAGE_NX
)) != _PAGE_RW
)
645 /* Non-leaf translation entries can disable writing or execution. */
649 end
= start
+ npg
* PAGE_SIZE
- 1;
650 WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
651 (unsigned long long)pgprot_val(old
),
652 (unsigned long long)pgprot_val(new),
656 * For now, allow all permission change attempts by returning the
657 * attempted permissions. This can 'return old' to actively
658 * refuse the permission change at a later time.
664 * Lookup the page table entry for a virtual address in a specific pgd.
665 * Return a pointer to the entry (or NULL if the entry does not exist),
666 * the level of the entry, and the effective NX and RW bits of all
669 pte_t
*lookup_address_in_pgd_attr(pgd_t
*pgd
, unsigned long address
,
670 unsigned int *level
, bool *nx
, bool *rw
)
676 *level
= PG_LEVEL_256T
;
683 *level
= PG_LEVEL_512G
;
684 *nx
|= pgd_flags(*pgd
) & _PAGE_NX
;
685 *rw
&= pgd_flags(*pgd
) & _PAGE_RW
;
687 p4d
= p4d_offset(pgd
, address
);
691 if (p4d_leaf(*p4d
) || !p4d_present(*p4d
))
694 *level
= PG_LEVEL_1G
;
695 *nx
|= p4d_flags(*p4d
) & _PAGE_NX
;
696 *rw
&= p4d_flags(*p4d
) & _PAGE_RW
;
698 pud
= pud_offset(p4d
, address
);
702 if (pud_leaf(*pud
) || !pud_present(*pud
))
705 *level
= PG_LEVEL_2M
;
706 *nx
|= pud_flags(*pud
) & _PAGE_NX
;
707 *rw
&= pud_flags(*pud
) & _PAGE_RW
;
709 pmd
= pmd_offset(pud
, address
);
713 if (pmd_leaf(*pmd
) || !pmd_present(*pmd
))
716 *level
= PG_LEVEL_4K
;
717 *nx
|= pmd_flags(*pmd
) & _PAGE_NX
;
718 *rw
&= pmd_flags(*pmd
) & _PAGE_RW
;
720 return pte_offset_kernel(pmd
, address
);
724 * Lookup the page table entry for a virtual address in a specific pgd.
725 * Return a pointer to the entry and the level of the mapping.
727 pte_t
*lookup_address_in_pgd(pgd_t
*pgd
, unsigned long address
,
732 return lookup_address_in_pgd_attr(pgd
, address
, level
, &nx
, &rw
);
736 * Lookup the page table entry for a virtual address. Return a pointer
737 * to the entry and the level of the mapping.
739 * Note: the function returns p4d, pud or pmd either when the entry is marked
740 * large or when the present bit is not set. Otherwise it returns NULL.
742 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
744 return lookup_address_in_pgd(pgd_offset_k(address
), address
, level
);
746 EXPORT_SYMBOL_GPL(lookup_address
);
748 static pte_t
*_lookup_address_cpa(struct cpa_data
*cpa
, unsigned long address
,
749 unsigned int *level
, bool *nx
, bool *rw
)
754 pgd
= pgd_offset_k(address
);
756 pgd
= cpa
->pgd
+ pgd_index(address
);
758 return lookup_address_in_pgd_attr(pgd
, address
, level
, nx
, rw
);
762 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
763 * or NULL if not present.
765 pmd_t
*lookup_pmd_address(unsigned long address
)
771 pgd
= pgd_offset_k(address
);
775 p4d
= p4d_offset(pgd
, address
);
776 if (p4d_none(*p4d
) || p4d_leaf(*p4d
) || !p4d_present(*p4d
))
779 pud
= pud_offset(p4d
, address
);
780 if (pud_none(*pud
) || pud_leaf(*pud
) || !pud_present(*pud
))
783 return pmd_offset(pud
, address
);
787 * This is necessary because __pa() does not work on some
788 * kinds of memory, like vmalloc() or the alloc_remap()
789 * areas on 32-bit NUMA systems. The percpu areas can
790 * end up in this kind of memory, for instance.
792 * Note that as long as the PTEs are well-formed with correct PFNs, this
793 * works without checking the PRESENT bit in the leaf PTE. This is unlike
794 * the similar vmalloc_to_page() and derivatives. Callers may depend on
797 * This could be optimized, but it is only used in paths that are not perf
798 * sensitive, and keeping it unoptimized should increase the testing coverage
799 * for the more obscure platforms.
801 phys_addr_t
slow_virt_to_phys(void *__virt_addr
)
803 unsigned long virt_addr
= (unsigned long)__virt_addr
;
804 phys_addr_t phys_addr
;
805 unsigned long offset
;
809 pte
= lookup_address(virt_addr
, &level
);
813 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
814 * before being left-shifted PAGE_SHIFT bits -- this trick is to
815 * make 32-PAE kernel work correctly.
819 phys_addr
= (phys_addr_t
)pud_pfn(*(pud_t
*)pte
) << PAGE_SHIFT
;
820 offset
= virt_addr
& ~PUD_MASK
;
823 phys_addr
= (phys_addr_t
)pmd_pfn(*(pmd_t
*)pte
) << PAGE_SHIFT
;
824 offset
= virt_addr
& ~PMD_MASK
;
827 phys_addr
= (phys_addr_t
)pte_pfn(*pte
) << PAGE_SHIFT
;
828 offset
= virt_addr
& ~PAGE_MASK
;
831 return (phys_addr_t
)(phys_addr
| offset
);
833 EXPORT_SYMBOL_GPL(slow_virt_to_phys
);
836 * Set the new pmd in all the pgds we know about:
838 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
841 set_pte_atomic(kpte
, pte
);
843 if (!SHARED_KERNEL_PMD
) {
846 list_for_each_entry(page
, &pgd_list
, lru
) {
852 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
853 p4d
= p4d_offset(pgd
, address
);
854 pud
= pud_offset(p4d
, address
);
855 pmd
= pmd_offset(pud
, address
);
856 set_pte_atomic((pte_t
*)pmd
, pte
);
862 static pgprot_t
pgprot_clear_protnone_bits(pgprot_t prot
)
865 * _PAGE_GLOBAL means "global page" for present PTEs.
866 * But, it is also used to indicate _PAGE_PROTNONE
867 * for non-present PTEs.
869 * This ensures that a _PAGE_GLOBAL PTE going from
870 * present to non-present is not confused as
873 if (!(pgprot_val(prot
) & _PAGE_PRESENT
))
874 pgprot_val(prot
) &= ~_PAGE_GLOBAL
;
879 static int __should_split_large_page(pte_t
*kpte
, unsigned long address
,
880 struct cpa_data
*cpa
)
882 unsigned long numpages
, pmask
, psize
, lpaddr
, pfn
, old_pfn
;
883 pgprot_t old_prot
, new_prot
, req_prot
, chk_prot
;
889 * Check for races, another CPU might have split this page
892 tmp
= _lookup_address_cpa(cpa
, address
, &level
, &nx
, &rw
);
898 old_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
899 old_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
900 cpa_inc_2m_checked();
903 old_prot
= pud_pgprot(*(pud_t
*)kpte
);
904 old_pfn
= pud_pfn(*(pud_t
*)kpte
);
905 cpa_inc_1g_checked();
911 psize
= page_level_size(level
);
912 pmask
= page_level_mask(level
);
915 * Calculate the number of pages, which fit into this large
916 * page starting at address:
918 lpaddr
= (address
+ psize
) & pmask
;
919 numpages
= (lpaddr
- address
) >> PAGE_SHIFT
;
920 if (numpages
< cpa
->numpages
)
921 cpa
->numpages
= numpages
;
924 * We are safe now. Check whether the new pgprot is the same:
925 * Convert protection attributes to 4k-format, as cpa->mask* are set
929 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
930 req_prot
= pgprot_large_2_4k(old_prot
);
932 pgprot_val(req_prot
) &= ~pgprot_val(cpa
->mask_clr
);
933 pgprot_val(req_prot
) |= pgprot_val(cpa
->mask_set
);
936 * req_prot is in format of 4k pages. It must be converted to large
937 * page format: the caching mode includes the PAT bit located at
938 * different bit positions in the two formats.
940 req_prot
= pgprot_4k_2_large(req_prot
);
941 req_prot
= pgprot_clear_protnone_bits(req_prot
);
942 if (pgprot_val(req_prot
) & _PAGE_PRESENT
)
943 pgprot_val(req_prot
) |= _PAGE_PSE
;
946 * old_pfn points to the large page base pfn. So we need to add the
947 * offset of the virtual address:
949 pfn
= old_pfn
+ ((address
& (psize
- 1)) >> PAGE_SHIFT
);
953 * Calculate the large page base address and the number of 4K pages
956 lpaddr
= address
& pmask
;
957 numpages
= psize
>> PAGE_SHIFT
;
960 * Sanity check that the existing mapping is correct versus the static
961 * protections. static_protections() guards against !PRESENT, so no
962 * extra conditional required here.
964 chk_prot
= static_protections(old_prot
, lpaddr
, old_pfn
, numpages
,
965 psize
, CPA_CONFLICT
);
967 if (WARN_ON_ONCE(pgprot_val(chk_prot
) != pgprot_val(old_prot
))) {
969 * Split the large page and tell the split code to
970 * enforce static protections.
972 cpa
->force_static_prot
= 1;
977 * Optimization: If the requested pgprot is the same as the current
978 * pgprot, then the large page can be preserved and no updates are
979 * required independent of alignment and length of the requested
980 * range. The above already established that the current pgprot is
981 * correct, which in consequence makes the requested pgprot correct
982 * as well if it is the same. The static protection scan below will
983 * not come to a different conclusion.
985 if (pgprot_val(req_prot
) == pgprot_val(old_prot
)) {
986 cpa_inc_lp_sameprot(level
);
991 * If the requested range does not cover the full page, split it up
993 if (address
!= lpaddr
|| cpa
->numpages
!= numpages
)
997 * Check whether the requested pgprot is conflicting with a static
998 * protection requirement in the large page.
1000 new_prot
= static_protections(req_prot
, lpaddr
, old_pfn
, numpages
,
1003 new_prot
= verify_rwx(old_prot
, new_prot
, lpaddr
, old_pfn
, numpages
,
1007 * If there is a conflict, split the large page.
1009 * There used to be a 4k wise evaluation trying really hard to
1010 * preserve the large pages, but experimentation has shown, that this
1011 * does not help at all. There might be corner cases which would
1012 * preserve one large page occasionally, but it's really not worth the
1013 * extra code and cycles for the common case.
1015 if (pgprot_val(req_prot
) != pgprot_val(new_prot
))
1018 /* All checks passed. Update the large page mapping. */
1019 new_pte
= pfn_pte(old_pfn
, new_prot
);
1020 __set_pmd_pte(kpte
, address
, new_pte
);
1021 cpa
->flags
|= CPA_FLUSHTLB
;
1022 cpa_inc_lp_preserved(level
);
1026 static int should_split_large_page(pte_t
*kpte
, unsigned long address
,
1027 struct cpa_data
*cpa
)
1031 if (cpa
->force_split
)
1034 spin_lock(&pgd_lock
);
1035 do_split
= __should_split_large_page(kpte
, address
, cpa
);
1036 spin_unlock(&pgd_lock
);
1041 static void split_set_pte(struct cpa_data
*cpa
, pte_t
*pte
, unsigned long pfn
,
1042 pgprot_t ref_prot
, unsigned long address
,
1045 unsigned int npg
= PFN_DOWN(size
);
1049 * If should_split_large_page() discovered an inconsistent mapping,
1050 * remove the invalid protection in the split mapping.
1052 if (!cpa
->force_static_prot
)
1055 /* Hand in lpsize = 0 to enforce the protection mechanism */
1056 prot
= static_protections(ref_prot
, address
, pfn
, npg
, 0, CPA_PROTECT
);
1058 if (pgprot_val(prot
) == pgprot_val(ref_prot
))
1062 * If this is splitting a PMD, fix it up. PUD splits cannot be
1063 * fixed trivially as that would require to rescan the newly
1064 * installed PMD mappings after returning from split_large_page()
1065 * so an eventual further split can allocate the necessary PTE
1066 * pages. Warn for now and revisit it in case this actually
1069 if (size
== PAGE_SIZE
)
1072 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1074 set_pte(pte
, pfn_pte(pfn
, ref_prot
));
1078 __split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
, unsigned long address
,
1081 unsigned long lpaddr
, lpinc
, ref_pfn
, pfn
, pfninc
= 1;
1082 pte_t
*pbase
= (pte_t
*)page_address(base
);
1083 unsigned int i
, level
;
1088 spin_lock(&pgd_lock
);
1090 * Check for races, another CPU might have split this page
1091 * up for us already:
1093 tmp
= _lookup_address_cpa(cpa
, address
, &level
, &nx
, &rw
);
1095 spin_unlock(&pgd_lock
);
1099 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
1103 ref_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
1105 * Clear PSE (aka _PAGE_PAT) and move
1106 * PAT bit to correct position.
1108 ref_prot
= pgprot_large_2_4k(ref_prot
);
1109 ref_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
1110 lpaddr
= address
& PMD_MASK
;
1115 ref_prot
= pud_pgprot(*(pud_t
*)kpte
);
1116 ref_pfn
= pud_pfn(*(pud_t
*)kpte
);
1117 pfninc
= PMD_SIZE
>> PAGE_SHIFT
;
1118 lpaddr
= address
& PUD_MASK
;
1121 * Clear the PSE flags if the PRESENT flag is not set
1122 * otherwise pmd_present() will return true even on a non
1125 if (!(pgprot_val(ref_prot
) & _PAGE_PRESENT
))
1126 pgprot_val(ref_prot
) &= ~_PAGE_PSE
;
1130 spin_unlock(&pgd_lock
);
1134 ref_prot
= pgprot_clear_protnone_bits(ref_prot
);
1137 * Get the target pfn from the original entry:
1140 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
, lpaddr
+= lpinc
)
1141 split_set_pte(cpa
, pbase
+ i
, pfn
, ref_prot
, lpaddr
, lpinc
);
1143 if (virt_addr_valid(address
)) {
1144 unsigned long pfn
= PFN_DOWN(__pa(address
));
1146 if (pfn_range_is_mapped(pfn
, pfn
+ 1))
1147 split_page_count(level
);
1151 * Install the new, split up pagetable.
1153 * We use the standard kernel pagetable protections for the new
1154 * pagetable protections, the actual ptes set above control the
1155 * primary protection behavior:
1157 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
1160 * Do a global flush tlb after splitting the large page
1161 * and before we do the actual change page attribute in the PTE.
1163 * Without this, we violate the TLB application note, that says:
1164 * "The TLBs may contain both ordinary and large-page
1165 * translations for a 4-KByte range of linear addresses. This
1166 * may occur if software modifies the paging structures so that
1167 * the page size used for the address range changes. If the two
1168 * translations differ with respect to page frame or attributes
1169 * (e.g., permissions), processor behavior is undefined and may
1170 * be implementation-specific."
1172 * We do this global tlb flush inside the cpa_lock, so that we
1173 * don't allow any other cpu, with stale tlb entries change the
1174 * page attribute in parallel, that also falls into the
1175 * just split large page entry.
1178 spin_unlock(&pgd_lock
);
1183 static int split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
,
1184 unsigned long address
)
1188 if (!debug_pagealloc_enabled())
1189 spin_unlock(&cpa_lock
);
1190 base
= alloc_pages(GFP_KERNEL
, 0);
1191 if (!debug_pagealloc_enabled())
1192 spin_lock(&cpa_lock
);
1196 if (__split_large_page(cpa
, kpte
, address
, base
))
1202 static bool try_to_free_pte_page(pte_t
*pte
)
1206 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1207 if (!pte_none(pte
[i
]))
1210 free_page((unsigned long)pte
);
1214 static bool try_to_free_pmd_page(pmd_t
*pmd
)
1218 for (i
= 0; i
< PTRS_PER_PMD
; i
++)
1219 if (!pmd_none(pmd
[i
]))
1222 free_page((unsigned long)pmd
);
1226 static bool unmap_pte_range(pmd_t
*pmd
, unsigned long start
, unsigned long end
)
1228 pte_t
*pte
= pte_offset_kernel(pmd
, start
);
1230 while (start
< end
) {
1231 set_pte(pte
, __pte(0));
1237 if (try_to_free_pte_page((pte_t
*)pmd_page_vaddr(*pmd
))) {
1244 static void __unmap_pmd_range(pud_t
*pud
, pmd_t
*pmd
,
1245 unsigned long start
, unsigned long end
)
1247 if (unmap_pte_range(pmd
, start
, end
))
1248 if (try_to_free_pmd_page(pud_pgtable(*pud
)))
1252 static void unmap_pmd_range(pud_t
*pud
, unsigned long start
, unsigned long end
)
1254 pmd_t
*pmd
= pmd_offset(pud
, start
);
1257 * Not on a 2MB page boundary?
1259 if (start
& (PMD_SIZE
- 1)) {
1260 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
1261 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
1263 __unmap_pmd_range(pud
, pmd
, start
, pre_end
);
1270 * Try to unmap in 2M chunks.
1272 while (end
- start
>= PMD_SIZE
) {
1276 __unmap_pmd_range(pud
, pmd
, start
, start
+ PMD_SIZE
);
1286 return __unmap_pmd_range(pud
, pmd
, start
, end
);
1289 * Try again to free the PMD page if haven't succeeded above.
1291 if (!pud_none(*pud
))
1292 if (try_to_free_pmd_page(pud_pgtable(*pud
)))
1296 static void unmap_pud_range(p4d_t
*p4d
, unsigned long start
, unsigned long end
)
1298 pud_t
*pud
= pud_offset(p4d
, start
);
1301 * Not on a GB page boundary?
1303 if (start
& (PUD_SIZE
- 1)) {
1304 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1305 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
1307 unmap_pmd_range(pud
, start
, pre_end
);
1314 * Try to unmap in 1G chunks?
1316 while (end
- start
>= PUD_SIZE
) {
1321 unmap_pmd_range(pud
, start
, start
+ PUD_SIZE
);
1331 unmap_pmd_range(pud
, start
, end
);
1334 * No need to try to free the PUD page because we'll free it in
1335 * populate_pgd's error path
1339 static int alloc_pte_page(pmd_t
*pmd
)
1341 pte_t
*pte
= (pte_t
*)get_zeroed_page(GFP_KERNEL
);
1345 set_pmd(pmd
, __pmd(__pa(pte
) | _KERNPG_TABLE
));
1349 static int alloc_pmd_page(pud_t
*pud
)
1351 pmd_t
*pmd
= (pmd_t
*)get_zeroed_page(GFP_KERNEL
);
1355 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
));
1359 static void populate_pte(struct cpa_data
*cpa
,
1360 unsigned long start
, unsigned long end
,
1361 unsigned num_pages
, pmd_t
*pmd
, pgprot_t pgprot
)
1365 pte
= pte_offset_kernel(pmd
, start
);
1367 pgprot
= pgprot_clear_protnone_bits(pgprot
);
1369 while (num_pages
-- && start
< end
) {
1370 set_pte(pte
, pfn_pte(cpa
->pfn
, pgprot
));
1378 static long populate_pmd(struct cpa_data
*cpa
,
1379 unsigned long start
, unsigned long end
,
1380 unsigned num_pages
, pud_t
*pud
, pgprot_t pgprot
)
1384 pgprot_t pmd_pgprot
;
1387 * Not on a 2M boundary?
1389 if (start
& (PMD_SIZE
- 1)) {
1390 unsigned long pre_end
= start
+ (num_pages
<< PAGE_SHIFT
);
1391 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
1393 pre_end
= min_t(unsigned long, pre_end
, next_page
);
1394 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1395 cur_pages
= min_t(unsigned int, num_pages
, cur_pages
);
1400 pmd
= pmd_offset(pud
, start
);
1402 if (alloc_pte_page(pmd
))
1405 populate_pte(cpa
, start
, pre_end
, cur_pages
, pmd
, pgprot
);
1411 * We mapped them all?
1413 if (num_pages
== cur_pages
)
1416 pmd_pgprot
= pgprot_4k_2_large(pgprot
);
1418 while (end
- start
>= PMD_SIZE
) {
1421 * We cannot use a 1G page so allocate a PMD page if needed.
1424 if (alloc_pmd_page(pud
))
1427 pmd
= pmd_offset(pud
, start
);
1429 set_pmd(pmd
, pmd_mkhuge(pfn_pmd(cpa
->pfn
,
1430 canon_pgprot(pmd_pgprot
))));
1433 cpa
->pfn
+= PMD_SIZE
>> PAGE_SHIFT
;
1434 cur_pages
+= PMD_SIZE
>> PAGE_SHIFT
;
1438 * Map trailing 4K pages.
1441 pmd
= pmd_offset(pud
, start
);
1443 if (alloc_pte_page(pmd
))
1446 populate_pte(cpa
, start
, end
, num_pages
- cur_pages
,
1452 static int populate_pud(struct cpa_data
*cpa
, unsigned long start
, p4d_t
*p4d
,
1458 pgprot_t pud_pgprot
;
1460 end
= start
+ (cpa
->numpages
<< PAGE_SHIFT
);
1463 * Not on a Gb page boundary? => map everything up to it with
1466 if (start
& (PUD_SIZE
- 1)) {
1467 unsigned long pre_end
;
1468 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1470 pre_end
= min_t(unsigned long, end
, next_page
);
1471 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1472 cur_pages
= min_t(int, (int)cpa
->numpages
, cur_pages
);
1474 pud
= pud_offset(p4d
, start
);
1480 if (alloc_pmd_page(pud
))
1483 cur_pages
= populate_pmd(cpa
, start
, pre_end
, cur_pages
,
1491 /* We mapped them all? */
1492 if (cpa
->numpages
== cur_pages
)
1495 pud
= pud_offset(p4d
, start
);
1496 pud_pgprot
= pgprot_4k_2_large(pgprot
);
1499 * Map everything starting from the Gb boundary, possibly with 1G pages
1501 while (boot_cpu_has(X86_FEATURE_GBPAGES
) && end
- start
>= PUD_SIZE
) {
1502 set_pud(pud
, pud_mkhuge(pfn_pud(cpa
->pfn
,
1503 canon_pgprot(pud_pgprot
))));
1506 cpa
->pfn
+= PUD_SIZE
>> PAGE_SHIFT
;
1507 cur_pages
+= PUD_SIZE
>> PAGE_SHIFT
;
1511 /* Map trailing leftover */
1515 pud
= pud_offset(p4d
, start
);
1517 if (alloc_pmd_page(pud
))
1520 tmp
= populate_pmd(cpa
, start
, end
, cpa
->numpages
- cur_pages
,
1531 * Restrictions for kernel page table do not necessarily apply when mapping in
1534 static int populate_pgd(struct cpa_data
*cpa
, unsigned long addr
)
1536 pgprot_t pgprot
= __pgprot(_KERNPG_TABLE
);
1537 pud_t
*pud
= NULL
; /* shut up gcc */
1542 pgd_entry
= cpa
->pgd
+ pgd_index(addr
);
1544 if (pgd_none(*pgd_entry
)) {
1545 p4d
= (p4d_t
*)get_zeroed_page(GFP_KERNEL
);
1549 set_pgd(pgd_entry
, __pgd(__pa(p4d
) | _KERNPG_TABLE
));
1553 * Allocate a PUD page and hand it down for mapping.
1555 p4d
= p4d_offset(pgd_entry
, addr
);
1556 if (p4d_none(*p4d
)) {
1557 pud
= (pud_t
*)get_zeroed_page(GFP_KERNEL
);
1561 set_p4d(p4d
, __p4d(__pa(pud
) | _KERNPG_TABLE
));
1564 pgprot_val(pgprot
) &= ~pgprot_val(cpa
->mask_clr
);
1565 pgprot_val(pgprot
) |= pgprot_val(cpa
->mask_set
);
1567 ret
= populate_pud(cpa
, addr
, p4d
, pgprot
);
1570 * Leave the PUD page in place in case some other CPU or thread
1571 * already found it, but remove any useless entries we just
1574 unmap_pud_range(p4d
, addr
,
1575 addr
+ (cpa
->numpages
<< PAGE_SHIFT
));
1579 cpa
->numpages
= ret
;
1583 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
1588 * Right now, we only execute this code path when mapping
1589 * the EFI virtual memory map regions, no other users
1590 * provide a ->pgd value. This may change in the future.
1592 return populate_pgd(cpa
, vaddr
);
1596 * Ignore all non primary paths.
1604 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1606 * Also set numpages to '1' indicating that we processed cpa req for
1607 * one virtual address page and its pfn. TBD: numpages can be set based
1608 * on the initial value and the level returned by lookup_address().
1610 if (within(vaddr
, PAGE_OFFSET
,
1611 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
1613 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
1616 } else if (__cpa_pfn_in_highmap(cpa
->pfn
)) {
1617 /* Faults in the highmap are OK, so do not warn: */
1620 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
1621 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
1628 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
1630 unsigned long address
;
1633 pte_t
*kpte
, old_pte
;
1636 address
= __cpa_addr(cpa
, cpa
->curpage
);
1638 kpte
= _lookup_address_cpa(cpa
, address
, &level
, &nx
, &rw
);
1640 return __cpa_process_fault(cpa
, address
, primary
);
1643 if (pte_none(old_pte
))
1644 return __cpa_process_fault(cpa
, address
, primary
);
1646 if (level
== PG_LEVEL_4K
) {
1648 pgprot_t old_prot
= pte_pgprot(old_pte
);
1649 pgprot_t new_prot
= pte_pgprot(old_pte
);
1650 unsigned long pfn
= pte_pfn(old_pte
);
1652 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
1653 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
1655 cpa_inc_4k_install();
1656 /* Hand in lpsize = 0 to enforce the protection mechanism */
1657 new_prot
= static_protections(new_prot
, address
, pfn
, 1, 0,
1660 new_prot
= verify_rwx(old_prot
, new_prot
, address
, pfn
, 1,
1663 new_prot
= pgprot_clear_protnone_bits(new_prot
);
1666 * We need to keep the pfn from the existing PTE,
1667 * after all we're only going to change its attributes
1668 * not the memory it points to
1670 new_pte
= pfn_pte(pfn
, new_prot
);
1673 * Do we really change anything ?
1675 if (pte_val(old_pte
) != pte_val(new_pte
)) {
1676 set_pte_atomic(kpte
, new_pte
);
1677 cpa
->flags
|= CPA_FLUSHTLB
;
1684 * Check, whether we can keep the large page intact
1685 * and just change the pte:
1687 do_split
= should_split_large_page(kpte
, address
, cpa
);
1689 * When the range fits into the existing large page,
1690 * return. cp->numpages and cpa->tlbflush have been updated in
1697 * We have to split the large page:
1699 err
= split_large_page(cpa
, kpte
, address
);
1706 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int primary
);
1709 * Check the directmap and "high kernel map" 'aliases'.
1711 static int cpa_process_alias(struct cpa_data
*cpa
)
1713 struct cpa_data alias_cpa
;
1714 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
1715 unsigned long vaddr
;
1718 if (!pfn_range_is_mapped(cpa
->pfn
, cpa
->pfn
+ 1))
1722 * No need to redo, when the primary call touched the direct
1725 vaddr
= __cpa_addr(cpa
, cpa
->curpage
);
1726 if (!(within(vaddr
, PAGE_OFFSET
,
1727 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
1730 alias_cpa
.vaddr
= &laddr
;
1731 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1732 alias_cpa
.curpage
= 0;
1734 /* Directmap always has NX set, do not modify. */
1735 if (__supported_pte_mask
& _PAGE_NX
) {
1736 alias_cpa
.mask_clr
.pgprot
&= ~_PAGE_NX
;
1737 alias_cpa
.mask_set
.pgprot
&= ~_PAGE_NX
;
1740 cpa
->force_flush_all
= 1;
1742 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
1747 #ifdef CONFIG_X86_64
1749 * If the primary call didn't touch the high mapping already
1750 * and the physical address is inside the kernel map, we need
1751 * to touch the high mapped kernel as well:
1753 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
1754 __cpa_pfn_in_highmap(cpa
->pfn
)) {
1755 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
1756 __START_KERNEL_map
- phys_base
;
1758 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
1759 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1760 alias_cpa
.curpage
= 0;
1763 * [_text, _brk_end) also covers data, do not modify NX except
1764 * in cases where the highmap is the primary target.
1766 if (__supported_pte_mask
& _PAGE_NX
) {
1767 alias_cpa
.mask_clr
.pgprot
&= ~_PAGE_NX
;
1768 alias_cpa
.mask_set
.pgprot
&= ~_PAGE_NX
;
1771 cpa
->force_flush_all
= 1;
1773 * The high mapping range is imprecise, so ignore the
1776 __change_page_attr_set_clr(&alias_cpa
, 0);
1783 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int primary
)
1785 unsigned long numpages
= cpa
->numpages
;
1786 unsigned long rempages
= numpages
;
1792 if (!(pgprot_val(cpa
->mask_set
) | pgprot_val(cpa
->mask_clr
)) &&
1798 * Store the remaining nr of pages for the large page
1799 * preservation check.
1801 cpa
->numpages
= rempages
;
1802 /* for array changes, we can't use large page */
1803 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1806 if (!debug_pagealloc_enabled())
1807 spin_lock(&cpa_lock
);
1808 ret
= __change_page_attr(cpa
, primary
);
1809 if (!debug_pagealloc_enabled())
1810 spin_unlock(&cpa_lock
);
1814 if (primary
&& !(cpa
->flags
& CPA_NO_CHECK_ALIAS
)) {
1815 ret
= cpa_process_alias(cpa
);
1821 * Adjust the number of pages with the result of the
1822 * CPA operation. Either a large page has been
1823 * preserved or a single page update happened.
1825 BUG_ON(cpa
->numpages
> rempages
|| !cpa
->numpages
);
1826 rempages
-= cpa
->numpages
;
1827 cpa
->curpage
+= cpa
->numpages
;
1831 /* Restore the original numpages */
1832 cpa
->numpages
= numpages
;
1836 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
1837 pgprot_t mask_set
, pgprot_t mask_clr
,
1838 int force_split
, int in_flag
,
1839 struct page
**pages
)
1841 struct cpa_data cpa
;
1844 memset(&cpa
, 0, sizeof(cpa
));
1847 * Check, if we are requested to set a not supported
1848 * feature. Clearing non-supported features is OK.
1850 mask_set
= canon_pgprot(mask_set
);
1852 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
1855 /* Ensure we are PAGE_SIZE aligned */
1856 if (in_flag
& CPA_ARRAY
) {
1858 for (i
= 0; i
< numpages
; i
++) {
1859 if (addr
[i
] & ~PAGE_MASK
) {
1860 addr
[i
] &= PAGE_MASK
;
1864 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
1866 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1867 * No need to check in that case
1869 if (*addr
& ~PAGE_MASK
) {
1872 * People should not be passing in unaligned addresses:
1878 /* Must avoid aliasing mappings in the highmem code */
1879 kmap_flush_unused();
1885 cpa
.numpages
= numpages
;
1886 cpa
.mask_set
= mask_set
;
1887 cpa
.mask_clr
= mask_clr
;
1888 cpa
.flags
= in_flag
;
1890 cpa
.force_split
= force_split
;
1892 ret
= __change_page_attr_set_clr(&cpa
, 1);
1895 * Check whether we really changed something:
1897 if (!(cpa
.flags
& CPA_FLUSHTLB
))
1901 * No need to flush, when we did not set any of the caching
1904 cache
= !!pgprot2cachemode(mask_set
);
1907 * On error; flush everything to be sure.
1910 cpa_flush_all(cache
);
1914 cpa_flush(&cpa
, cache
);
1919 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
1920 pgprot_t mask
, int array
)
1922 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
1923 (array
? CPA_ARRAY
: 0), NULL
);
1926 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
1927 pgprot_t mask
, int array
)
1929 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
1930 (array
? CPA_ARRAY
: 0), NULL
);
1933 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
1936 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
1937 CPA_PAGES_ARRAY
, pages
);
1940 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
1943 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
1944 CPA_PAGES_ARRAY
, pages
);
1948 * __set_memory_prot is an internal helper for callers that have been passed
1949 * a pgprot_t value from upper layers and a reservation has already been taken.
1950 * If you want to set the pgprot to a specific page protocol, use the
1951 * set_memory_xx() functions.
1953 int __set_memory_prot(unsigned long addr
, int numpages
, pgprot_t prot
)
1955 return change_page_attr_set_clr(&addr
, numpages
, prot
,
1956 __pgprot(~pgprot_val(prot
)), 0, 0,
1960 int _set_memory_uc(unsigned long addr
, int numpages
)
1963 * for now UC MINUS. see comments in ioremap()
1964 * If you really need strong UC use ioremap_uc(), but note
1965 * that you cannot override IO areas with set_memory_*() as
1966 * these helpers cannot work with IO memory.
1968 return change_page_attr_set(&addr
, numpages
,
1969 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1973 int set_memory_uc(unsigned long addr
, int numpages
)
1978 * for now UC MINUS. see comments in ioremap()
1980 ret
= memtype_reserve(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1981 _PAGE_CACHE_MODE_UC_MINUS
, NULL
);
1985 ret
= _set_memory_uc(addr
, numpages
);
1992 memtype_free(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1996 EXPORT_SYMBOL(set_memory_uc
);
1998 int _set_memory_wc(unsigned long addr
, int numpages
)
2002 ret
= change_page_attr_set(&addr
, numpages
,
2003 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
2006 ret
= change_page_attr_set_clr(&addr
, numpages
,
2007 cachemode2pgprot(_PAGE_CACHE_MODE_WC
),
2008 __pgprot(_PAGE_CACHE_MASK
),
2014 int set_memory_wc(unsigned long addr
, int numpages
)
2018 ret
= memtype_reserve(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
2019 _PAGE_CACHE_MODE_WC
, NULL
);
2023 ret
= _set_memory_wc(addr
, numpages
);
2025 memtype_free(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
2029 EXPORT_SYMBOL(set_memory_wc
);
2031 int _set_memory_wt(unsigned long addr
, int numpages
)
2033 return change_page_attr_set(&addr
, numpages
,
2034 cachemode2pgprot(_PAGE_CACHE_MODE_WT
), 0);
2037 int _set_memory_wb(unsigned long addr
, int numpages
)
2039 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2040 return change_page_attr_clear(&addr
, numpages
,
2041 __pgprot(_PAGE_CACHE_MASK
), 0);
2044 int set_memory_wb(unsigned long addr
, int numpages
)
2048 ret
= _set_memory_wb(addr
, numpages
);
2052 memtype_free(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
2055 EXPORT_SYMBOL(set_memory_wb
);
2057 /* Prevent speculative access to a page by marking it not-present */
2058 #ifdef CONFIG_X86_64
2059 int set_mce_nospec(unsigned long pfn
)
2061 unsigned long decoy_addr
;
2064 /* SGX pages are not in the 1:1 map */
2065 if (arch_is_platform_page(pfn
<< PAGE_SHIFT
))
2068 * We would like to just call:
2069 * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2070 * but doing that would radically increase the odds of a
2071 * speculative access to the poison page because we'd have
2072 * the virtual address of the kernel 1:1 mapping sitting
2073 * around in registers.
2074 * Instead we get tricky. We create a non-canonical address
2075 * that looks just like the one we want, but has bit 63 flipped.
2076 * This relies on set_memory_XX() properly sanitizing any __pa()
2077 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2079 decoy_addr
= (pfn
<< PAGE_SHIFT
) + (PAGE_OFFSET
^ BIT(63));
2081 rc
= set_memory_np(decoy_addr
, 1);
2083 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn
);
2087 /* Restore full speculative operation to the pfn. */
2088 int clear_mce_nospec(unsigned long pfn
)
2090 unsigned long addr
= (unsigned long) pfn_to_kaddr(pfn
);
2092 return set_memory_p(addr
, 1);
2094 EXPORT_SYMBOL_GPL(clear_mce_nospec
);
2095 #endif /* CONFIG_X86_64 */
2097 int set_memory_x(unsigned long addr
, int numpages
)
2099 if (!(__supported_pte_mask
& _PAGE_NX
))
2102 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
2105 int set_memory_nx(unsigned long addr
, int numpages
)
2107 if (!(__supported_pte_mask
& _PAGE_NX
))
2110 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
2113 int set_memory_ro(unsigned long addr
, int numpages
)
2115 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
| _PAGE_DIRTY
), 0);
2118 int set_memory_rox(unsigned long addr
, int numpages
)
2120 pgprot_t clr
= __pgprot(_PAGE_RW
| _PAGE_DIRTY
);
2122 if (__supported_pte_mask
& _PAGE_NX
)
2123 clr
.pgprot
|= _PAGE_NX
;
2125 return change_page_attr_clear(&addr
, numpages
, clr
, 0);
2128 int set_memory_rw(unsigned long addr
, int numpages
)
2130 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
2133 int set_memory_np(unsigned long addr
, int numpages
)
2135 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
2138 int set_memory_np_noalias(unsigned long addr
, int numpages
)
2140 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
2141 __pgprot(_PAGE_PRESENT
), 0,
2142 CPA_NO_CHECK_ALIAS
, NULL
);
2145 int set_memory_p(unsigned long addr
, int numpages
)
2147 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
2150 int set_memory_4k(unsigned long addr
, int numpages
)
2152 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
2153 __pgprot(0), 1, 0, NULL
);
2156 int set_memory_nonglobal(unsigned long addr
, int numpages
)
2158 return change_page_attr_clear(&addr
, numpages
,
2159 __pgprot(_PAGE_GLOBAL
), 0);
2162 int set_memory_global(unsigned long addr
, int numpages
)
2164 return change_page_attr_set(&addr
, numpages
,
2165 __pgprot(_PAGE_GLOBAL
), 0);
2169 * __set_memory_enc_pgtable() is used for the hypervisors that get
2170 * informed about "encryption" status via page tables.
2172 static int __set_memory_enc_pgtable(unsigned long addr
, int numpages
, bool enc
)
2174 pgprot_t empty
= __pgprot(0);
2175 struct cpa_data cpa
;
2178 /* Should not be working on unaligned addresses */
2179 if (WARN_ONCE(addr
& ~PAGE_MASK
, "misaligned address: %#lx\n", addr
))
2182 memset(&cpa
, 0, sizeof(cpa
));
2184 cpa
.numpages
= numpages
;
2185 cpa
.mask_set
= enc
? pgprot_encrypted(empty
) : pgprot_decrypted(empty
);
2186 cpa
.mask_clr
= enc
? pgprot_decrypted(empty
) : pgprot_encrypted(empty
);
2187 cpa
.pgd
= init_mm
.pgd
;
2189 /* Must avoid aliasing mappings in the highmem code */
2190 kmap_flush_unused();
2193 /* Flush the caches as needed before changing the encryption attribute. */
2194 if (x86_platform
.guest
.enc_tlb_flush_required(enc
))
2195 cpa_flush(&cpa
, x86_platform
.guest
.enc_cache_flush_required());
2197 /* Notify hypervisor that we are about to set/clr encryption attribute. */
2198 ret
= x86_platform
.guest
.enc_status_change_prepare(addr
, numpages
, enc
);
2202 ret
= __change_page_attr_set_clr(&cpa
, 1);
2205 * After changing the encryption attribute, we need to flush TLBs again
2206 * in case any speculative TLB caching occurred (but no need to flush
2207 * caches again). We could just use cpa_flush_all(), but in case TLB
2208 * flushing gets optimized in the cpa_flush() path use the same logic
2216 /* Notify hypervisor that we have successfully set/clr encryption attribute. */
2217 ret
= x86_platform
.guest
.enc_status_change_finish(addr
, numpages
, enc
);
2224 WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s: %d\n",
2225 (void *)addr
, numpages
, enc
? "private" : "shared", ret
);
2231 * The lock serializes conversions between private and shared memory.
2233 * It is taken for read on conversion. A write lock guarantees that no
2234 * concurrent conversions are in progress.
2236 static DECLARE_RWSEM(mem_enc_lock
);
2239 * Stop new private<->shared conversions.
2241 * Taking the exclusive mem_enc_lock waits for in-flight conversions to complete.
2242 * The lock is not released to prevent new conversions from being started.
2244 bool set_memory_enc_stop_conversion(void)
2247 * In a crash scenario, sleep is not allowed. Try to take the lock.
2248 * Failure indicates that there is a race with the conversion.
2250 if (oops_in_progress
)
2251 return down_write_trylock(&mem_enc_lock
);
2253 down_write(&mem_enc_lock
);
2258 static int __set_memory_enc_dec(unsigned long addr
, int numpages
, bool enc
)
2262 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT
)) {
2263 if (!down_read_trylock(&mem_enc_lock
))
2266 ret
= __set_memory_enc_pgtable(addr
, numpages
, enc
);
2268 up_read(&mem_enc_lock
);
2274 int set_memory_encrypted(unsigned long addr
, int numpages
)
2276 return __set_memory_enc_dec(addr
, numpages
, true);
2278 EXPORT_SYMBOL_GPL(set_memory_encrypted
);
2280 int set_memory_decrypted(unsigned long addr
, int numpages
)
2282 return __set_memory_enc_dec(addr
, numpages
, false);
2284 EXPORT_SYMBOL_GPL(set_memory_decrypted
);
2286 int set_pages_uc(struct page
*page
, int numpages
)
2288 unsigned long addr
= (unsigned long)page_address(page
);
2290 return set_memory_uc(addr
, numpages
);
2292 EXPORT_SYMBOL(set_pages_uc
);
2294 static int _set_pages_array(struct page
**pages
, int numpages
,
2295 enum page_cache_mode new_type
)
2297 unsigned long start
;
2299 enum page_cache_mode set_type
;
2304 for (i
= 0; i
< numpages
; i
++) {
2305 if (PageHighMem(pages
[i
]))
2307 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2308 end
= start
+ PAGE_SIZE
;
2309 if (memtype_reserve(start
, end
, new_type
, NULL
))
2313 /* If WC, set to UC- first and then WC */
2314 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
2315 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
2317 ret
= cpa_set_pages_array(pages
, numpages
,
2318 cachemode2pgprot(set_type
));
2319 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
2320 ret
= change_page_attr_set_clr(NULL
, numpages
,
2322 _PAGE_CACHE_MODE_WC
),
2323 __pgprot(_PAGE_CACHE_MASK
),
2324 0, CPA_PAGES_ARRAY
, pages
);
2327 return 0; /* Success */
2330 for (i
= 0; i
< free_idx
; i
++) {
2331 if (PageHighMem(pages
[i
]))
2333 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2334 end
= start
+ PAGE_SIZE
;
2335 memtype_free(start
, end
);
2340 int set_pages_array_uc(struct page
**pages
, int numpages
)
2342 return _set_pages_array(pages
, numpages
, _PAGE_CACHE_MODE_UC_MINUS
);
2344 EXPORT_SYMBOL(set_pages_array_uc
);
2346 int set_pages_array_wc(struct page
**pages
, int numpages
)
2348 return _set_pages_array(pages
, numpages
, _PAGE_CACHE_MODE_WC
);
2350 EXPORT_SYMBOL(set_pages_array_wc
);
2352 int set_pages_wb(struct page
*page
, int numpages
)
2354 unsigned long addr
= (unsigned long)page_address(page
);
2356 return set_memory_wb(addr
, numpages
);
2358 EXPORT_SYMBOL(set_pages_wb
);
2360 int set_pages_array_wb(struct page
**pages
, int numpages
)
2363 unsigned long start
;
2367 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2368 retval
= cpa_clear_pages_array(pages
, numpages
,
2369 __pgprot(_PAGE_CACHE_MASK
));
2373 for (i
= 0; i
< numpages
; i
++) {
2374 if (PageHighMem(pages
[i
]))
2376 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2377 end
= start
+ PAGE_SIZE
;
2378 memtype_free(start
, end
);
2383 EXPORT_SYMBOL(set_pages_array_wb
);
2385 int set_pages_ro(struct page
*page
, int numpages
)
2387 unsigned long addr
= (unsigned long)page_address(page
);
2389 return set_memory_ro(addr
, numpages
);
2392 int set_pages_rw(struct page
*page
, int numpages
)
2394 unsigned long addr
= (unsigned long)page_address(page
);
2396 return set_memory_rw(addr
, numpages
);
2399 static int __set_pages_p(struct page
*page
, int numpages
)
2401 unsigned long tempaddr
= (unsigned long) page_address(page
);
2402 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2404 .numpages
= numpages
,
2405 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2406 .mask_clr
= __pgprot(0),
2407 .flags
= CPA_NO_CHECK_ALIAS
};
2410 * No alias checking needed for setting present flag. otherwise,
2411 * we may need to break large pages for 64-bit kernel text
2412 * mappings (this adds to complexity if we want to do this from
2413 * atomic context especially). Let's keep it simple!
2415 return __change_page_attr_set_clr(&cpa
, 1);
2418 static int __set_pages_np(struct page
*page
, int numpages
)
2420 unsigned long tempaddr
= (unsigned long) page_address(page
);
2421 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2423 .numpages
= numpages
,
2424 .mask_set
= __pgprot(0),
2425 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2426 .flags
= CPA_NO_CHECK_ALIAS
};
2429 * No alias checking needed for setting not present flag. otherwise,
2430 * we may need to break large pages for 64-bit kernel text
2431 * mappings (this adds to complexity if we want to do this from
2432 * atomic context especially). Let's keep it simple!
2434 return __change_page_attr_set_clr(&cpa
, 1);
2437 int set_direct_map_invalid_noflush(struct page
*page
)
2439 return __set_pages_np(page
, 1);
2442 int set_direct_map_default_noflush(struct page
*page
)
2444 return __set_pages_p(page
, 1);
2447 int set_direct_map_valid_noflush(struct page
*page
, unsigned nr
, bool valid
)
2450 return __set_pages_p(page
, nr
);
2452 return __set_pages_np(page
, nr
);
2455 #ifdef CONFIG_DEBUG_PAGEALLOC
2456 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
2458 if (PageHighMem(page
))
2461 debug_check_no_locks_freed(page_address(page
),
2462 numpages
* PAGE_SIZE
);
2466 * The return value is ignored as the calls cannot fail.
2467 * Large pages for identity mappings are not used at boot time
2468 * and hence no memory allocations during large page split.
2471 __set_pages_p(page
, numpages
);
2473 __set_pages_np(page
, numpages
);
2476 * We should perform an IPI and flush all tlbs,
2477 * but that can deadlock->flush only current cpu.
2478 * Preemption needs to be disabled around __flush_tlb_all() due to
2479 * CR3 reload in __native_flush_tlb().
2485 arch_flush_lazy_mmu_mode();
2487 #endif /* CONFIG_DEBUG_PAGEALLOC */
2489 bool kernel_page_present(struct page
*page
)
2494 if (PageHighMem(page
))
2497 pte
= lookup_address((unsigned long)page_address(page
), &level
);
2498 return (pte_val(*pte
) & _PAGE_PRESENT
);
2501 int __init
kernel_map_pages_in_pgd(pgd_t
*pgd
, u64 pfn
, unsigned long address
,
2502 unsigned numpages
, unsigned long page_flags
)
2504 int retval
= -EINVAL
;
2506 struct cpa_data cpa
= {
2510 .numpages
= numpages
,
2511 .mask_set
= __pgprot(0),
2512 .mask_clr
= __pgprot(~page_flags
& (_PAGE_NX
|_PAGE_RW
)),
2513 .flags
= CPA_NO_CHECK_ALIAS
,
2516 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2518 if (!(__supported_pte_mask
& _PAGE_NX
))
2521 if (!(page_flags
& _PAGE_ENC
))
2522 cpa
.mask_clr
= pgprot_encrypted(cpa
.mask_clr
);
2524 cpa
.mask_set
= __pgprot(_PAGE_PRESENT
| page_flags
);
2526 retval
= __change_page_attr_set_clr(&cpa
, 1);
2534 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2535 * function shouldn't be used in an SMP environment. Presently, it's used only
2536 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2538 int __init
kernel_unmap_pages_in_pgd(pgd_t
*pgd
, unsigned long address
,
2539 unsigned long numpages
)
2544 * The typical sequence for unmapping is to find a pte through
2545 * lookup_address_in_pgd() (ideally, it should never return NULL because
2546 * the address is already mapped) and change its protections. As pfn is
2547 * the *target* of a mapping, it's not useful while unmapping.
2549 struct cpa_data cpa
= {
2553 .numpages
= numpages
,
2554 .mask_set
= __pgprot(0),
2555 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2556 .flags
= CPA_NO_CHECK_ALIAS
,
2559 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2561 retval
= __change_page_attr_set_clr(&cpa
, 1);
2568 * The testcases use internal knowledge of the implementation that shouldn't
2569 * be exposed to the rest of the kernel. Include these directly here.
2571 #ifdef CONFIG_CPA_DEBUG
2572 #include "cpa-test.c"