1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 * Ux500 support taken from snippets in the old Ux500 cryp driver
8 #include <crypto/aes.h>
9 #include <crypto/engine.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/internal/skcipher.h>
13 #include <crypto/scatterwalk.h>
14 #include <linux/bottom_half.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/iopoll.h>
21 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/string.h>
30 #define DRIVER_NAME "stm32-cryp"
32 /* Bit [0] encrypt / decrypt */
33 #define FLG_ENCRYPT BIT(0)
34 /* Bit [8..1] algo & operation mode */
35 #define FLG_AES BIT(1)
36 #define FLG_DES BIT(2)
37 #define FLG_TDES BIT(3)
38 #define FLG_ECB BIT(4)
39 #define FLG_CBC BIT(5)
40 #define FLG_CTR BIT(6)
41 #define FLG_GCM BIT(7)
42 #define FLG_CCM BIT(8)
43 /* Mode mask = bits [15..0] */
44 #define FLG_MODE_MASK GENMASK(15, 0)
45 /* Bit [31..16] status */
46 #define FLG_IN_OUT_DMA BIT(16)
47 #define FLG_HEADER_DMA BIT(17)
50 #define CRYP_CR 0x00000000
51 #define CRYP_SR 0x00000004
52 #define CRYP_DIN 0x00000008
53 #define CRYP_DOUT 0x0000000C
54 #define CRYP_DMACR 0x00000010
55 #define CRYP_IMSCR 0x00000014
56 #define CRYP_RISR 0x00000018
57 #define CRYP_MISR 0x0000001C
58 #define CRYP_K0LR 0x00000020
59 #define CRYP_K0RR 0x00000024
60 #define CRYP_K1LR 0x00000028
61 #define CRYP_K1RR 0x0000002C
62 #define CRYP_K2LR 0x00000030
63 #define CRYP_K2RR 0x00000034
64 #define CRYP_K3LR 0x00000038
65 #define CRYP_K3RR 0x0000003C
66 #define CRYP_IV0LR 0x00000040
67 #define CRYP_IV0RR 0x00000044
68 #define CRYP_IV1LR 0x00000048
69 #define CRYP_IV1RR 0x0000004C
70 #define CRYP_CSGCMCCM0R 0x00000050
71 #define CRYP_CSGCM0R 0x00000070
73 #define UX500_CRYP_CR 0x00000000
74 #define UX500_CRYP_SR 0x00000004
75 #define UX500_CRYP_DIN 0x00000008
76 #define UX500_CRYP_DINSIZE 0x0000000C
77 #define UX500_CRYP_DOUT 0x00000010
78 #define UX500_CRYP_DOUSIZE 0x00000014
79 #define UX500_CRYP_DMACR 0x00000018
80 #define UX500_CRYP_IMSC 0x0000001C
81 #define UX500_CRYP_RIS 0x00000020
82 #define UX500_CRYP_MIS 0x00000024
83 #define UX500_CRYP_K1L 0x00000028
84 #define UX500_CRYP_K1R 0x0000002C
85 #define UX500_CRYP_K2L 0x00000030
86 #define UX500_CRYP_K2R 0x00000034
87 #define UX500_CRYP_K3L 0x00000038
88 #define UX500_CRYP_K3R 0x0000003C
89 #define UX500_CRYP_K4L 0x00000040
90 #define UX500_CRYP_K4R 0x00000044
91 #define UX500_CRYP_IV0L 0x00000048
92 #define UX500_CRYP_IV0R 0x0000004C
93 #define UX500_CRYP_IV1L 0x00000050
94 #define UX500_CRYP_IV1R 0x00000054
96 /* Registers values */
97 #define CR_DEC_NOT_ENC 0x00000004
98 #define CR_TDES_ECB 0x00000000
99 #define CR_TDES_CBC 0x00000008
100 #define CR_DES_ECB 0x00000010
101 #define CR_DES_CBC 0x00000018
102 #define CR_AES_ECB 0x00000020
103 #define CR_AES_CBC 0x00000028
104 #define CR_AES_CTR 0x00000030
105 #define CR_AES_KP 0x00000038 /* Not on Ux500 */
106 #define CR_AES_XTS 0x00000038 /* Only on Ux500 */
107 #define CR_AES_GCM 0x00080000
108 #define CR_AES_CCM 0x00080008
109 #define CR_AES_UNKNOWN 0xFFFFFFFF
110 #define CR_ALGO_MASK 0x00080038
111 #define CR_DATA32 0x00000000
112 #define CR_DATA16 0x00000040
113 #define CR_DATA8 0x00000080
114 #define CR_DATA1 0x000000C0
115 #define CR_KEY128 0x00000000
116 #define CR_KEY192 0x00000100
117 #define CR_KEY256 0x00000200
118 #define CR_KEYRDEN 0x00000400 /* Only on Ux500 */
119 #define CR_KSE 0x00000800 /* Only on Ux500 */
120 #define CR_FFLUSH 0x00004000
121 #define CR_CRYPEN 0x00008000
122 #define CR_PH_INIT 0x00000000
123 #define CR_PH_HEADER 0x00010000
124 #define CR_PH_PAYLOAD 0x00020000
125 #define CR_PH_FINAL 0x00030000
126 #define CR_PH_MASK 0x00030000
127 #define CR_NBPBL_SHIFT 20
129 #define SR_IFNF BIT(1)
130 #define SR_OFNE BIT(2)
131 #define SR_BUSY BIT(8)
133 #define DMACR_DIEN BIT(0)
134 #define DMACR_DOEN BIT(1)
136 #define IMSCR_IN BIT(0)
137 #define IMSCR_OUT BIT(1)
139 #define MISR_IN BIT(0)
140 #define MISR_OUT BIT(1)
143 #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
144 #define GCM_CTR_INIT 2
145 #define CRYP_AUTOSUSPEND_DELAY 50
147 #define CRYP_DMA_BURST_REG 4
149 enum stm32_dma_mode
{
155 struct stm32_cryp_caps
{
178 struct stm32_cryp_ctx
{
179 struct stm32_cryp
*cryp
;
181 __be32 key
[AES_KEYSIZE_256
/ sizeof(u32
)];
185 struct stm32_cryp_reqctx
{
190 struct list_head list
;
193 phys_addr_t phys_base
;
197 const struct stm32_cryp_caps
*caps
;
198 struct stm32_cryp_ctx
*ctx
;
200 struct crypto_engine
*engine
;
202 struct skcipher_request
*req
;
203 struct aead_request
*areq
;
212 /* DMA process fields */
213 struct scatterlist
*in_sg
;
214 struct scatterlist
*header_sg
;
215 struct scatterlist
*out_sg
;
217 size_t header_sg_len
;
219 struct completion dma_completion
;
221 struct dma_chan
*dma_lch_in
;
222 struct dma_chan
*dma_lch_out
;
223 enum stm32_dma_mode dma_mode
;
225 /* IT process fields */
226 struct scatter_walk in_walk
;
227 struct scatter_walk out_walk
;
233 struct stm32_cryp_list
{
234 struct list_head dev_list
;
235 spinlock_t lock
; /* protect dev_list */
238 static struct stm32_cryp_list cryp_list
= {
239 .dev_list
= LIST_HEAD_INIT(cryp_list
.dev_list
),
240 .lock
= __SPIN_LOCK_UNLOCKED(cryp_list
.lock
),
243 static inline bool is_aes(struct stm32_cryp
*cryp
)
245 return cryp
->flags
& FLG_AES
;
248 static inline bool is_des(struct stm32_cryp
*cryp
)
250 return cryp
->flags
& FLG_DES
;
253 static inline bool is_tdes(struct stm32_cryp
*cryp
)
255 return cryp
->flags
& FLG_TDES
;
258 static inline bool is_ecb(struct stm32_cryp
*cryp
)
260 return cryp
->flags
& FLG_ECB
;
263 static inline bool is_cbc(struct stm32_cryp
*cryp
)
265 return cryp
->flags
& FLG_CBC
;
268 static inline bool is_ctr(struct stm32_cryp
*cryp
)
270 return cryp
->flags
& FLG_CTR
;
273 static inline bool is_gcm(struct stm32_cryp
*cryp
)
275 return cryp
->flags
& FLG_GCM
;
278 static inline bool is_ccm(struct stm32_cryp
*cryp
)
280 return cryp
->flags
& FLG_CCM
;
283 static inline bool is_encrypt(struct stm32_cryp
*cryp
)
285 return cryp
->flags
& FLG_ENCRYPT
;
288 static inline bool is_decrypt(struct stm32_cryp
*cryp
)
290 return !is_encrypt(cryp
);
293 static inline u32
stm32_cryp_read(struct stm32_cryp
*cryp
, u32 ofst
)
295 return readl_relaxed(cryp
->regs
+ ofst
);
298 static inline void stm32_cryp_write(struct stm32_cryp
*cryp
, u32 ofst
, u32 val
)
300 writel_relaxed(val
, cryp
->regs
+ ofst
);
303 static inline int stm32_cryp_wait_busy(struct stm32_cryp
*cryp
)
307 return readl_relaxed_poll_timeout(cryp
->regs
+ cryp
->caps
->sr
, status
,
308 !(status
& SR_BUSY
), 10, 100000);
311 static inline void stm32_cryp_enable(struct stm32_cryp
*cryp
)
313 writel_relaxed(readl_relaxed(cryp
->regs
+ cryp
->caps
->cr
) | CR_CRYPEN
,
314 cryp
->regs
+ cryp
->caps
->cr
);
317 static inline int stm32_cryp_wait_enable(struct stm32_cryp
*cryp
)
321 return readl_relaxed_poll_timeout(cryp
->regs
+ cryp
->caps
->cr
, status
,
322 !(status
& CR_CRYPEN
), 10, 100000);
325 static inline int stm32_cryp_wait_input(struct stm32_cryp
*cryp
)
329 return readl_relaxed_poll_timeout_atomic(cryp
->regs
+ cryp
->caps
->sr
, status
,
330 status
& SR_IFNF
, 1, 10);
333 static inline int stm32_cryp_wait_output(struct stm32_cryp
*cryp
)
337 return readl_relaxed_poll_timeout_atomic(cryp
->regs
+ cryp
->caps
->sr
, status
,
338 status
& SR_OFNE
, 1, 10);
341 static inline void stm32_cryp_key_read_enable(struct stm32_cryp
*cryp
)
343 writel_relaxed(readl_relaxed(cryp
->regs
+ cryp
->caps
->cr
) | CR_KEYRDEN
,
344 cryp
->regs
+ cryp
->caps
->cr
);
347 static inline void stm32_cryp_key_read_disable(struct stm32_cryp
*cryp
)
349 writel_relaxed(readl_relaxed(cryp
->regs
+ cryp
->caps
->cr
) & ~CR_KEYRDEN
,
350 cryp
->regs
+ cryp
->caps
->cr
);
353 static void stm32_cryp_irq_read_data(struct stm32_cryp
*cryp
);
354 static void stm32_cryp_irq_write_data(struct stm32_cryp
*cryp
);
355 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp
*cryp
);
356 static int stm32_cryp_read_auth_tag(struct stm32_cryp
*cryp
);
357 static void stm32_cryp_finish_req(struct stm32_cryp
*cryp
, int err
);
358 static int stm32_cryp_dma_start(struct stm32_cryp
*cryp
);
359 static int stm32_cryp_it_start(struct stm32_cryp
*cryp
);
361 static struct stm32_cryp
*stm32_cryp_find_dev(struct stm32_cryp_ctx
*ctx
)
363 struct stm32_cryp
*tmp
, *cryp
= NULL
;
365 spin_lock_bh(&cryp_list
.lock
);
367 list_for_each_entry(tmp
, &cryp_list
.dev_list
, list
) {
376 spin_unlock_bh(&cryp_list
.lock
);
381 static void stm32_cryp_hw_write_iv(struct stm32_cryp
*cryp
, __be32
*iv
)
386 stm32_cryp_write(cryp
, cryp
->caps
->iv0l
, be32_to_cpu(*iv
++));
387 stm32_cryp_write(cryp
, cryp
->caps
->iv0r
, be32_to_cpu(*iv
++));
390 stm32_cryp_write(cryp
, cryp
->caps
->iv1l
, be32_to_cpu(*iv
++));
391 stm32_cryp_write(cryp
, cryp
->caps
->iv1r
, be32_to_cpu(*iv
++));
395 static void stm32_cryp_get_iv(struct stm32_cryp
*cryp
)
397 struct skcipher_request
*req
= cryp
->req
;
398 __be32
*tmp
= (void *)req
->iv
;
403 if (cryp
->caps
->iv_protection
)
404 stm32_cryp_key_read_enable(cryp
);
406 *tmp
++ = cpu_to_be32(stm32_cryp_read(cryp
, cryp
->caps
->iv0l
));
407 *tmp
++ = cpu_to_be32(stm32_cryp_read(cryp
, cryp
->caps
->iv0r
));
410 *tmp
++ = cpu_to_be32(stm32_cryp_read(cryp
, cryp
->caps
->iv1l
));
411 *tmp
++ = cpu_to_be32(stm32_cryp_read(cryp
, cryp
->caps
->iv1r
));
414 if (cryp
->caps
->iv_protection
)
415 stm32_cryp_key_read_disable(cryp
);
419 * ux500_swap_bits_in_byte() - mirror the bits in a byte
420 * @b: the byte to be mirrored
422 * The bits are swapped the following way:
423 * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
424 * nibble 2 (n2) bits 4-7.
427 * (The "old" (moved) bit is replaced with a zero)
428 * 1. Move bit 6 and 7, 4 positions to the left.
429 * 2. Move bit 3 and 5, 2 positions to the left.
430 * 3. Move bit 1-4, 1 position to the left.
433 * 1. Move bit 0 and 1, 4 positions to the right.
434 * 2. Move bit 2 and 4, 2 positions to the right.
435 * 3. Move bit 3-6, 1 position to the right.
437 * Combine the two nibbles to a complete and swapped byte.
439 static inline u8
ux500_swap_bits_in_byte(u8 b
)
441 #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
442 #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
444 #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
446 #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
447 #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
449 #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
455 /* Swap most significant nibble */
456 /* Right shift 4, bits 6 and 7 */
457 n1
= ((b
& R_SHIFT_4_MASK
) >> 4) | (b
& ~(R_SHIFT_4_MASK
>> 4));
458 /* Right shift 2, bits 3 and 5 */
459 n1
= ((n1
& R_SHIFT_2_MASK
) >> 2) | (n1
& ~(R_SHIFT_2_MASK
>> 2));
460 /* Right shift 1, bits 1-4 */
461 n1
= (n1
& R_SHIFT_1_MASK
) >> 1;
463 /* Swap least significant nibble */
464 /* Left shift 4, bits 0 and 1 */
465 n2
= ((b
& L_SHIFT_4_MASK
) << 4) | (b
& ~(L_SHIFT_4_MASK
<< 4));
466 /* Left shift 2, bits 2 and 4 */
467 n2
= ((n2
& L_SHIFT_2_MASK
) << 2) | (n2
& ~(L_SHIFT_2_MASK
<< 2));
468 /* Left shift 1, bits 3-6 */
469 n2
= (n2
& L_SHIFT_1_MASK
) << 1;
475 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
476 * @in: key to swizzle
478 * @len: length of key, in bytes
480 * This "key swizzling procedure" is described in the examples in the
481 * DB8500 design specification. There is no real description of why
482 * the bits have been arranged like this in the hardware.
484 static inline void ux500_swizzle_key(const u8
*in
, u8
*out
, u32 len
)
487 int bpw
= sizeof(u32
);
493 for (i
= 0; i
< bpw
; i
++) {
494 index
= len
- j
- bpw
+ i
;
496 ux500_swap_bits_in_byte(in
[index
]);
502 static void stm32_cryp_hw_write_key(struct stm32_cryp
*c
)
508 stm32_cryp_write(c
, c
->caps
->k1l
, be32_to_cpu(c
->ctx
->key
[0]));
509 stm32_cryp_write(c
, c
->caps
->k1r
, be32_to_cpu(c
->ctx
->key
[1]));
514 * On the Ux500 the AES key is considered as a single bit sequence
515 * of 128, 192 or 256 bits length. It is written linearly into the
516 * registers from K1L and down, and need to be processed to become
517 * a proper big-endian bit sequence.
519 if (is_aes(c
) && c
->caps
->linear_aes_key
) {
522 ux500_swizzle_key((u8
*)c
->ctx
->key
,
523 (u8
*)tmpkey
, c
->ctx
->keylen
);
526 for (i
= 0; i
< c
->ctx
->keylen
/ sizeof(u32
); i
++, r_id
+= 4)
527 stm32_cryp_write(c
, r_id
, tmpkey
[i
]);
533 for (i
= c
->ctx
->keylen
/ sizeof(u32
); i
> 0; i
--, r_id
-= 4)
534 stm32_cryp_write(c
, r_id
, be32_to_cpu(c
->ctx
->key
[i
- 1]));
537 static u32
stm32_cryp_get_hw_mode(struct stm32_cryp
*cryp
)
539 if (is_aes(cryp
) && is_ecb(cryp
))
542 if (is_aes(cryp
) && is_cbc(cryp
))
545 if (is_aes(cryp
) && is_ctr(cryp
))
548 if (is_aes(cryp
) && is_gcm(cryp
))
551 if (is_aes(cryp
) && is_ccm(cryp
))
554 if (is_des(cryp
) && is_ecb(cryp
))
557 if (is_des(cryp
) && is_cbc(cryp
))
560 if (is_tdes(cryp
) && is_ecb(cryp
))
563 if (is_tdes(cryp
) && is_cbc(cryp
))
566 dev_err(cryp
->dev
, "Unknown mode\n");
567 return CR_AES_UNKNOWN
;
570 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp
*cryp
)
572 return is_encrypt(cryp
) ? cryp
->areq
->cryptlen
:
573 cryp
->areq
->cryptlen
- cryp
->authsize
;
576 static int stm32_cryp_gcm_init(struct stm32_cryp
*cryp
, u32 cfg
)
582 memcpy(iv
, cryp
->areq
->iv
, 12);
583 iv
[3] = cpu_to_be32(GCM_CTR_INIT
);
584 cryp
->gcm_ctr
= GCM_CTR_INIT
;
585 stm32_cryp_hw_write_iv(cryp
, iv
);
587 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
| CR_PH_INIT
| CR_CRYPEN
);
589 /* Wait for end of processing */
590 ret
= stm32_cryp_wait_enable(cryp
);
592 dev_err(cryp
->dev
, "Timeout (gcm init)\n");
596 /* Prepare next phase */
597 if (cryp
->areq
->assoclen
) {
599 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
600 } else if (stm32_cryp_get_input_text_len(cryp
)) {
601 cfg
|= CR_PH_PAYLOAD
;
602 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
608 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp
*cryp
)
613 /* Check if whole header written */
614 if (!cryp
->header_in
) {
615 /* Wait for completion */
616 err
= stm32_cryp_wait_busy(cryp
);
618 dev_err(cryp
->dev
, "Timeout (gcm/ccm header)\n");
619 stm32_cryp_write(cryp
, cryp
->caps
->imsc
, 0);
620 stm32_cryp_finish_req(cryp
, err
);
624 if (stm32_cryp_get_input_text_len(cryp
)) {
625 /* Phase 3 : payload */
626 cfg
= stm32_cryp_read(cryp
, cryp
->caps
->cr
);
628 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
631 cfg
|= CR_PH_PAYLOAD
| CR_CRYPEN
;
632 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
636 * Nothing to read, nothing to write, caller have to
643 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp
*cryp
)
647 u32 alen
= cryp
->areq
->assoclen
;
648 u32 block
[AES_BLOCK_32
] = {0};
649 u8
*b8
= (u8
*)block
;
652 /* Write first u32 of B1 */
653 b8
[0] = (alen
>> 8) & 0xFF;
657 /* Build the two first u32 of B1 */
660 b8
[2] = (alen
& 0xFF000000) >> 24;
661 b8
[3] = (alen
& 0x00FF0000) >> 16;
662 b8
[4] = (alen
& 0x0000FF00) >> 8;
663 b8
[5] = alen
& 0x000000FF;
667 written
= min_t(size_t, AES_BLOCK_SIZE
- len
, alen
);
669 scatterwalk_copychunks((char *)block
+ len
, &cryp
->in_walk
, written
, 0);
671 writesl(cryp
->regs
+ cryp
->caps
->din
, block
, AES_BLOCK_32
);
673 cryp
->header_in
-= written
;
675 stm32_crypt_gcmccm_end_header(cryp
);
678 static int stm32_cryp_ccm_init(struct stm32_cryp
*cryp
, u32 cfg
)
681 u32 iv_32
[AES_BLOCK_32
], b0_32
[AES_BLOCK_32
];
682 u8
*iv
= (u8
*)iv_32
, *b0
= (u8
*)b0_32
;
685 unsigned int i
, textlen
;
687 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
688 memcpy(iv
, cryp
->areq
->iv
, AES_BLOCK_SIZE
);
689 memset(iv
+ AES_BLOCK_SIZE
- 1 - iv
[0], 0, iv
[0] + 1);
690 iv
[AES_BLOCK_SIZE
- 1] = 1;
691 stm32_cryp_hw_write_iv(cryp
, (__be32
*)iv
);
694 memcpy(b0
, iv
, AES_BLOCK_SIZE
);
696 b0
[0] |= (8 * ((cryp
->authsize
- 2) / 2));
698 if (cryp
->areq
->assoclen
)
701 textlen
= stm32_cryp_get_input_text_len(cryp
);
703 b0
[AES_BLOCK_SIZE
- 2] = textlen
>> 8;
704 b0
[AES_BLOCK_SIZE
- 1] = textlen
& 0xFF;
707 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
| CR_PH_INIT
| CR_CRYPEN
);
713 for (i
= 0; i
< AES_BLOCK_32
; i
++) {
716 if (!cryp
->caps
->padding_wa
)
717 xd
= be32_to_cpu(bd
[i
]);
718 stm32_cryp_write(cryp
, cryp
->caps
->din
, xd
);
721 /* Wait for end of processing */
722 ret
= stm32_cryp_wait_enable(cryp
);
724 dev_err(cryp
->dev
, "Timeout (ccm init)\n");
728 /* Prepare next phase */
729 if (cryp
->areq
->assoclen
) {
730 cfg
|= CR_PH_HEADER
| CR_CRYPEN
;
731 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
733 /* Write first (special) block (may move to next phase [payload]) */
734 stm32_cryp_write_ccm_first_header(cryp
);
735 } else if (stm32_cryp_get_input_text_len(cryp
)) {
736 cfg
|= CR_PH_PAYLOAD
;
737 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
743 static int stm32_cryp_hw_init(struct stm32_cryp
*cryp
)
748 pm_runtime_get_sync(cryp
->dev
);
750 /* Disable interrupt */
751 stm32_cryp_write(cryp
, cryp
->caps
->imsc
, 0);
753 /* Set configuration */
754 cfg
= CR_DATA8
| CR_FFLUSH
;
756 switch (cryp
->ctx
->keylen
) {
757 case AES_KEYSIZE_128
:
761 case AES_KEYSIZE_192
:
766 case AES_KEYSIZE_256
:
771 hw_mode
= stm32_cryp_get_hw_mode(cryp
);
772 if (hw_mode
== CR_AES_UNKNOWN
)
775 /* AES ECB/CBC decrypt: run key preparation first */
776 if (is_decrypt(cryp
) &&
777 ((hw_mode
== CR_AES_ECB
) || (hw_mode
== CR_AES_CBC
))) {
778 /* Configure in key preparation mode */
779 if (cryp
->caps
->kp_mode
)
780 stm32_cryp_write(cryp
, cryp
->caps
->cr
,
783 stm32_cryp_write(cryp
,
784 cryp
->caps
->cr
, cfg
| CR_AES_ECB
| CR_KSE
);
786 /* Set key only after full configuration done */
787 stm32_cryp_hw_write_key(cryp
);
789 /* Start prepare key */
790 stm32_cryp_enable(cryp
);
791 /* Wait for end of processing */
792 ret
= stm32_cryp_wait_busy(cryp
);
794 dev_err(cryp
->dev
, "Timeout (key preparation)\n");
798 cfg
|= hw_mode
| CR_DEC_NOT_ENC
;
800 /* Apply updated config (Decrypt + algo) and flush */
801 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
804 if (is_decrypt(cryp
))
805 cfg
|= CR_DEC_NOT_ENC
;
807 /* Apply config and flush */
808 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
810 /* Set key only after configuration done */
811 stm32_cryp_hw_write_key(cryp
);
818 if (hw_mode
== CR_AES_CCM
)
819 ret
= stm32_cryp_ccm_init(cryp
, cfg
);
821 ret
= stm32_cryp_gcm_init(cryp
, cfg
);
832 stm32_cryp_hw_write_iv(cryp
, (__be32
*)cryp
->req
->iv
);
840 stm32_cryp_enable(cryp
);
845 static void stm32_cryp_finish_req(struct stm32_cryp
*cryp
, int err
)
847 if (!err
&& (is_gcm(cryp
) || is_ccm(cryp
)))
848 /* Phase 4 : output tag */
849 err
= stm32_cryp_read_auth_tag(cryp
);
851 if (!err
&& (!(is_gcm(cryp
) || is_ccm(cryp
) || is_ecb(cryp
))))
852 stm32_cryp_get_iv(cryp
);
854 pm_runtime_mark_last_busy(cryp
->dev
);
855 pm_runtime_put_autosuspend(cryp
->dev
);
857 if (is_gcm(cryp
) || is_ccm(cryp
))
858 crypto_finalize_aead_request(cryp
->engine
, cryp
->areq
, err
);
860 crypto_finalize_skcipher_request(cryp
->engine
, cryp
->req
, err
);
863 static void stm32_cryp_header_dma_callback(void *param
)
865 struct stm32_cryp
*cryp
= (struct stm32_cryp
*)param
;
869 dma_unmap_sg(cryp
->dev
, cryp
->header_sg
, cryp
->header_sg_len
, DMA_TO_DEVICE
);
871 reg
= stm32_cryp_read(cryp
, cryp
->caps
->dmacr
);
872 stm32_cryp_write(cryp
, cryp
->caps
->dmacr
, reg
& ~(DMACR_DOEN
| DMACR_DIEN
));
874 kfree(cryp
->header_sg
);
876 reg
= stm32_cryp_read(cryp
, cryp
->caps
->cr
);
878 if (cryp
->header_in
) {
879 stm32_cryp_write(cryp
, cryp
->caps
->cr
, reg
| CR_CRYPEN
);
881 ret
= stm32_cryp_wait_input(cryp
);
883 dev_err(cryp
->dev
, "input header ready timeout after dma\n");
884 stm32_cryp_finish_req(cryp
, ret
);
887 stm32_cryp_irq_write_gcmccm_header(cryp
);
888 WARN_ON(cryp
->header_in
);
891 if (stm32_cryp_get_input_text_len(cryp
)) {
892 /* Phase 3 : payload */
893 reg
= stm32_cryp_read(cryp
, cryp
->caps
->cr
);
894 stm32_cryp_write(cryp
, cryp
->caps
->cr
, reg
& ~CR_CRYPEN
);
897 reg
|= CR_PH_PAYLOAD
| CR_CRYPEN
;
898 stm32_cryp_write(cryp
, cryp
->caps
->cr
, reg
);
900 if (cryp
->flags
& FLG_IN_OUT_DMA
) {
901 ret
= stm32_cryp_dma_start(cryp
);
903 stm32_cryp_finish_req(cryp
, ret
);
905 stm32_cryp_it_start(cryp
);
910 * Nothing to read, nothing to write => end request
912 stm32_cryp_finish_req(cryp
, 0);
916 static void stm32_cryp_dma_callback(void *param
)
918 struct stm32_cryp
*cryp
= (struct stm32_cryp
*)param
;
922 complete(&cryp
->dma_completion
); /* completion to indicate no timeout */
924 dma_sync_sg_for_device(cryp
->dev
, cryp
->out_sg
, cryp
->out_sg_len
, DMA_FROM_DEVICE
);
926 if (cryp
->in_sg
!= cryp
->out_sg
)
927 dma_unmap_sg(cryp
->dev
, cryp
->in_sg
, cryp
->in_sg_len
, DMA_TO_DEVICE
);
929 dma_unmap_sg(cryp
->dev
, cryp
->out_sg
, cryp
->out_sg_len
, DMA_FROM_DEVICE
);
931 reg
= stm32_cryp_read(cryp
, cryp
->caps
->dmacr
);
932 stm32_cryp_write(cryp
, cryp
->caps
->dmacr
, reg
& ~(DMACR_DOEN
| DMACR_DIEN
));
934 reg
= stm32_cryp_read(cryp
, cryp
->caps
->cr
);
936 if (is_gcm(cryp
) || is_ccm(cryp
)) {
940 if (cryp
->in_sg
!= cryp
->req
->src
)
942 if (cryp
->out_sg
!= cryp
->req
->dst
)
946 if (cryp
->payload_in
) {
947 stm32_cryp_write(cryp
, cryp
->caps
->cr
, reg
| CR_CRYPEN
);
949 ret
= stm32_cryp_wait_input(cryp
);
951 dev_err(cryp
->dev
, "input ready timeout after dma\n");
952 stm32_cryp_finish_req(cryp
, ret
);
955 stm32_cryp_irq_write_data(cryp
);
957 ret
= stm32_cryp_wait_output(cryp
);
959 dev_err(cryp
->dev
, "output ready timeout after dma\n");
960 stm32_cryp_finish_req(cryp
, ret
);
963 stm32_cryp_irq_read_data(cryp
);
966 stm32_cryp_finish_req(cryp
, 0);
969 static int stm32_cryp_header_dma_start(struct stm32_cryp
*cryp
)
972 struct dma_async_tx_descriptor
*tx_in
;
976 ret
= dma_map_sg(cryp
->dev
, cryp
->header_sg
, cryp
->header_sg_len
, DMA_TO_DEVICE
);
978 dev_err(cryp
->dev
, "dma_map_sg() error\n");
982 dma_sync_sg_for_device(cryp
->dev
, cryp
->header_sg
, cryp
->header_sg_len
, DMA_TO_DEVICE
);
984 tx_in
= dmaengine_prep_slave_sg(cryp
->dma_lch_in
, cryp
->header_sg
, cryp
->header_sg_len
,
985 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
987 dev_err(cryp
->dev
, "IN prep_slave_sg() failed\n");
991 tx_in
->callback_param
= cryp
;
992 tx_in
->callback
= stm32_cryp_header_dma_callback
;
994 /* Advance scatterwalk to not DMA'ed data */
995 align_size
= ALIGN_DOWN(cryp
->header_in
, cryp
->hw_blocksize
);
996 scatterwalk_copychunks(NULL
, &cryp
->in_walk
, align_size
, 2);
997 cryp
->header_in
-= align_size
;
999 ret
= dma_submit_error(dmaengine_submit(tx_in
));
1001 dev_err(cryp
->dev
, "DMA in submit failed\n");
1004 dma_async_issue_pending(cryp
->dma_lch_in
);
1006 reg
= stm32_cryp_read(cryp
, cryp
->caps
->dmacr
);
1007 stm32_cryp_write(cryp
, cryp
->caps
->dmacr
, reg
| DMACR_DIEN
);
1012 static int stm32_cryp_dma_start(struct stm32_cryp
*cryp
)
1016 struct dma_async_tx_descriptor
*tx_in
, *tx_out
;
1019 if (cryp
->in_sg
!= cryp
->out_sg
) {
1020 ret
= dma_map_sg(cryp
->dev
, cryp
->in_sg
, cryp
->in_sg_len
, DMA_TO_DEVICE
);
1022 dev_err(cryp
->dev
, "dma_map_sg() error\n");
1027 ret
= dma_map_sg(cryp
->dev
, cryp
->out_sg
, cryp
->out_sg_len
, DMA_FROM_DEVICE
);
1029 dev_err(cryp
->dev
, "dma_map_sg() error\n");
1033 dma_sync_sg_for_device(cryp
->dev
, cryp
->in_sg
, cryp
->in_sg_len
, DMA_TO_DEVICE
);
1035 tx_in
= dmaengine_prep_slave_sg(cryp
->dma_lch_in
, cryp
->in_sg
, cryp
->in_sg_len
,
1036 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1038 dev_err(cryp
->dev
, "IN prep_slave_sg() failed\n");
1042 /* No callback necessary */
1043 tx_in
->callback_param
= cryp
;
1044 tx_in
->callback
= NULL
;
1046 tx_out
= dmaengine_prep_slave_sg(cryp
->dma_lch_out
, cryp
->out_sg
, cryp
->out_sg_len
,
1047 DMA_DEV_TO_MEM
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1049 dev_err(cryp
->dev
, "OUT prep_slave_sg() failed\n");
1053 reinit_completion(&cryp
->dma_completion
);
1054 tx_out
->callback
= stm32_cryp_dma_callback
;
1055 tx_out
->callback_param
= cryp
;
1057 /* Advance scatterwalk to not DMA'ed data */
1058 align_size
= ALIGN_DOWN(cryp
->payload_in
, cryp
->hw_blocksize
);
1059 scatterwalk_copychunks(NULL
, &cryp
->in_walk
, align_size
, 2);
1060 cryp
->payload_in
-= align_size
;
1062 ret
= dma_submit_error(dmaengine_submit(tx_in
));
1064 dev_err(cryp
->dev
, "DMA in submit failed\n");
1067 dma_async_issue_pending(cryp
->dma_lch_in
);
1069 /* Advance scatterwalk to not DMA'ed data */
1070 scatterwalk_copychunks(NULL
, &cryp
->out_walk
, align_size
, 2);
1071 cryp
->payload_out
-= align_size
;
1072 ret
= dma_submit_error(dmaengine_submit(tx_out
));
1074 dev_err(cryp
->dev
, "DMA out submit failed\n");
1077 dma_async_issue_pending(cryp
->dma_lch_out
);
1079 reg
= stm32_cryp_read(cryp
, cryp
->caps
->dmacr
);
1080 stm32_cryp_write(cryp
, cryp
->caps
->dmacr
, reg
| DMACR_DOEN
| DMACR_DIEN
);
1082 if (!wait_for_completion_timeout(&cryp
->dma_completion
, msecs_to_jiffies(1000))) {
1083 dev_err(cryp
->dev
, "DMA out timed out\n");
1084 dmaengine_terminate_sync(cryp
->dma_lch_out
);
1091 static int stm32_cryp_it_start(struct stm32_cryp
*cryp
)
1093 /* Enable interrupt and let the IRQ handler do everything */
1094 stm32_cryp_write(cryp
, cryp
->caps
->imsc
, IMSCR_IN
| IMSCR_OUT
);
1099 static int stm32_cryp_cipher_one_req(struct crypto_engine
*engine
, void *areq
);
1101 static int stm32_cryp_init_tfm(struct crypto_skcipher
*tfm
)
1103 crypto_skcipher_set_reqsize(tfm
, sizeof(struct stm32_cryp_reqctx
));
1108 static int stm32_cryp_aead_one_req(struct crypto_engine
*engine
, void *areq
);
1110 static int stm32_cryp_aes_aead_init(struct crypto_aead
*tfm
)
1112 crypto_aead_set_reqsize(tfm
, sizeof(struct stm32_cryp_reqctx
));
1117 static int stm32_cryp_crypt(struct skcipher_request
*req
, unsigned long mode
)
1119 struct stm32_cryp_ctx
*ctx
= crypto_skcipher_ctx(
1120 crypto_skcipher_reqtfm(req
));
1121 struct stm32_cryp_reqctx
*rctx
= skcipher_request_ctx(req
);
1122 struct stm32_cryp
*cryp
= stm32_cryp_find_dev(ctx
);
1129 return crypto_transfer_skcipher_request_to_engine(cryp
->engine
, req
);
1132 static int stm32_cryp_aead_crypt(struct aead_request
*req
, unsigned long mode
)
1134 struct stm32_cryp_ctx
*ctx
= crypto_aead_ctx(crypto_aead_reqtfm(req
));
1135 struct stm32_cryp_reqctx
*rctx
= aead_request_ctx(req
);
1136 struct stm32_cryp
*cryp
= stm32_cryp_find_dev(ctx
);
1143 return crypto_transfer_aead_request_to_engine(cryp
->engine
, req
);
1146 static int stm32_cryp_setkey(struct crypto_skcipher
*tfm
, const u8
*key
,
1147 unsigned int keylen
)
1149 struct stm32_cryp_ctx
*ctx
= crypto_skcipher_ctx(tfm
);
1151 memcpy(ctx
->key
, key
, keylen
);
1152 ctx
->keylen
= keylen
;
1157 static int stm32_cryp_aes_setkey(struct crypto_skcipher
*tfm
, const u8
*key
,
1158 unsigned int keylen
)
1160 if (keylen
!= AES_KEYSIZE_128
&& keylen
!= AES_KEYSIZE_192
&&
1161 keylen
!= AES_KEYSIZE_256
)
1164 return stm32_cryp_setkey(tfm
, key
, keylen
);
1167 static int stm32_cryp_des_setkey(struct crypto_skcipher
*tfm
, const u8
*key
,
1168 unsigned int keylen
)
1170 return verify_skcipher_des_key(tfm
, key
) ?:
1171 stm32_cryp_setkey(tfm
, key
, keylen
);
1174 static int stm32_cryp_tdes_setkey(struct crypto_skcipher
*tfm
, const u8
*key
,
1175 unsigned int keylen
)
1177 return verify_skcipher_des3_key(tfm
, key
) ?:
1178 stm32_cryp_setkey(tfm
, key
, keylen
);
1181 static int stm32_cryp_aes_aead_setkey(struct crypto_aead
*tfm
, const u8
*key
,
1182 unsigned int keylen
)
1184 struct stm32_cryp_ctx
*ctx
= crypto_aead_ctx(tfm
);
1186 if (keylen
!= AES_KEYSIZE_128
&& keylen
!= AES_KEYSIZE_192
&&
1187 keylen
!= AES_KEYSIZE_256
)
1190 memcpy(ctx
->key
, key
, keylen
);
1191 ctx
->keylen
= keylen
;
1196 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead
*tfm
,
1197 unsigned int authsize
)
1215 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead
*tfm
,
1216 unsigned int authsize
)
1234 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request
*req
)
1236 if (req
->cryptlen
% AES_BLOCK_SIZE
)
1239 if (req
->cryptlen
== 0)
1242 return stm32_cryp_crypt(req
, FLG_AES
| FLG_ECB
| FLG_ENCRYPT
);
1245 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request
*req
)
1247 if (req
->cryptlen
% AES_BLOCK_SIZE
)
1250 if (req
->cryptlen
== 0)
1253 return stm32_cryp_crypt(req
, FLG_AES
| FLG_ECB
);
1256 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request
*req
)
1258 if (req
->cryptlen
% AES_BLOCK_SIZE
)
1261 if (req
->cryptlen
== 0)
1264 return stm32_cryp_crypt(req
, FLG_AES
| FLG_CBC
| FLG_ENCRYPT
);
1267 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request
*req
)
1269 if (req
->cryptlen
% AES_BLOCK_SIZE
)
1272 if (req
->cryptlen
== 0)
1275 return stm32_cryp_crypt(req
, FLG_AES
| FLG_CBC
);
1278 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request
*req
)
1280 if (req
->cryptlen
== 0)
1283 return stm32_cryp_crypt(req
, FLG_AES
| FLG_CTR
| FLG_ENCRYPT
);
1286 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request
*req
)
1288 if (req
->cryptlen
== 0)
1291 return stm32_cryp_crypt(req
, FLG_AES
| FLG_CTR
);
1294 static int stm32_cryp_aes_gcm_encrypt(struct aead_request
*req
)
1296 return stm32_cryp_aead_crypt(req
, FLG_AES
| FLG_GCM
| FLG_ENCRYPT
);
1299 static int stm32_cryp_aes_gcm_decrypt(struct aead_request
*req
)
1301 return stm32_cryp_aead_crypt(req
, FLG_AES
| FLG_GCM
);
1304 static inline int crypto_ccm_check_iv(const u8
*iv
)
1306 /* 2 <= L <= 8, so 1 <= L' <= 7. */
1307 if (iv
[0] < 1 || iv
[0] > 7)
1313 static int stm32_cryp_aes_ccm_encrypt(struct aead_request
*req
)
1317 err
= crypto_ccm_check_iv(req
->iv
);
1321 return stm32_cryp_aead_crypt(req
, FLG_AES
| FLG_CCM
| FLG_ENCRYPT
);
1324 static int stm32_cryp_aes_ccm_decrypt(struct aead_request
*req
)
1328 err
= crypto_ccm_check_iv(req
->iv
);
1332 return stm32_cryp_aead_crypt(req
, FLG_AES
| FLG_CCM
);
1335 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request
*req
)
1337 if (req
->cryptlen
% DES_BLOCK_SIZE
)
1340 if (req
->cryptlen
== 0)
1343 return stm32_cryp_crypt(req
, FLG_DES
| FLG_ECB
| FLG_ENCRYPT
);
1346 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request
*req
)
1348 if (req
->cryptlen
% DES_BLOCK_SIZE
)
1351 if (req
->cryptlen
== 0)
1354 return stm32_cryp_crypt(req
, FLG_DES
| FLG_ECB
);
1357 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request
*req
)
1359 if (req
->cryptlen
% DES_BLOCK_SIZE
)
1362 if (req
->cryptlen
== 0)
1365 return stm32_cryp_crypt(req
, FLG_DES
| FLG_CBC
| FLG_ENCRYPT
);
1368 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request
*req
)
1370 if (req
->cryptlen
% DES_BLOCK_SIZE
)
1373 if (req
->cryptlen
== 0)
1376 return stm32_cryp_crypt(req
, FLG_DES
| FLG_CBC
);
1379 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request
*req
)
1381 if (req
->cryptlen
% DES_BLOCK_SIZE
)
1384 if (req
->cryptlen
== 0)
1387 return stm32_cryp_crypt(req
, FLG_TDES
| FLG_ECB
| FLG_ENCRYPT
);
1390 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request
*req
)
1392 if (req
->cryptlen
% DES_BLOCK_SIZE
)
1395 if (req
->cryptlen
== 0)
1398 return stm32_cryp_crypt(req
, FLG_TDES
| FLG_ECB
);
1401 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request
*req
)
1403 if (req
->cryptlen
% DES_BLOCK_SIZE
)
1406 if (req
->cryptlen
== 0)
1409 return stm32_cryp_crypt(req
, FLG_TDES
| FLG_CBC
| FLG_ENCRYPT
);
1412 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request
*req
)
1414 if (req
->cryptlen
% DES_BLOCK_SIZE
)
1417 if (req
->cryptlen
== 0)
1420 return stm32_cryp_crypt(req
, FLG_TDES
| FLG_CBC
);
1423 static enum stm32_dma_mode
stm32_cryp_dma_check_sg(struct scatterlist
*test_sg
, size_t len
,
1426 struct scatterlist
*sg
;
1430 return NO_DMA
; /* Faster */
1432 for_each_sg(test_sg
, sg
, sg_nents(test_sg
), i
) {
1433 if (!IS_ALIGNED(sg
->length
, block_size
) && !sg_is_last(sg
))
1436 if (sg
->offset
% sizeof(u32
))
1439 if (sg_is_last(sg
) && !IS_ALIGNED(sg
->length
, AES_BLOCK_SIZE
))
1440 return DMA_NEED_SG_TRUNC
;
1443 return DMA_PLAIN_SG
;
1446 static enum stm32_dma_mode
stm32_cryp_dma_check(struct stm32_cryp
*cryp
, struct scatterlist
*in_sg
,
1447 struct scatterlist
*out_sg
)
1449 enum stm32_dma_mode ret
= DMA_PLAIN_SG
;
1454 if (!cryp
->dma_lch_in
|| !cryp
->dma_lch_out
)
1457 ret
= stm32_cryp_dma_check_sg(in_sg
, cryp
->payload_in
, AES_BLOCK_SIZE
);
1461 ret
= stm32_cryp_dma_check_sg(out_sg
, cryp
->payload_out
, AES_BLOCK_SIZE
);
1465 /* Check CTR counter overflow */
1466 if (is_aes(cryp
) && is_ctr(cryp
)) {
1470 memcpy(&iv3
, &cryp
->req
->iv
[3 * sizeof(u32
)], sizeof(iv3
));
1471 c
= be32_to_cpu(iv3
);
1472 if ((c
+ cryp
->payload_in
) < cryp
->payload_in
)
1477 if (is_aes(cryp
) && is_ctr(cryp
) && ret
== DMA_NEED_SG_TRUNC
)
1483 static int stm32_cryp_truncate_sg(struct scatterlist
**new_sg
, size_t *new_sg_len
,
1484 struct scatterlist
*sg
, off_t skip
, size_t size
)
1486 struct scatterlist
*cur
;
1496 alloc_sg_len
= sg_nents_for_len(sg
, skip
+ size
);
1497 if (alloc_sg_len
< 0)
1498 return alloc_sg_len
;
1500 /* We allocate to much sg entry, but it is easier */
1501 *new_sg
= kmalloc_array((size_t)alloc_sg_len
, sizeof(struct scatterlist
), GFP_KERNEL
);
1505 sg_init_table(*new_sg
, (unsigned int)alloc_sg_len
);
1508 while (sg
&& size
) {
1509 unsigned int len
= sg
->length
;
1510 unsigned int offset
= sg
->offset
;
1530 sg_set_page(cur
, sg_page(sg
), len
, offset
);
1542 static int stm32_cryp_cipher_prepare(struct stm32_cryp
*cryp
, struct scatterlist
*in_sg
,
1543 struct scatterlist
*out_sg
)
1548 cryp
->dma_mode
= stm32_cryp_dma_check(cryp
, in_sg
, out_sg
);
1550 scatterwalk_start(&cryp
->in_walk
, in_sg
);
1551 scatterwalk_start(&cryp
->out_walk
, out_sg
);
1553 if (cryp
->dma_mode
== NO_DMA
) {
1554 cryp
->flags
&= ~FLG_IN_OUT_DMA
;
1557 memset(cryp
->last_ctr
, 0, sizeof(cryp
->last_ctr
));
1559 } else if (cryp
->dma_mode
== DMA_NEED_SG_TRUNC
) {
1561 cryp
->flags
|= FLG_IN_OUT_DMA
;
1563 align_size
= ALIGN_DOWN(cryp
->payload_in
, cryp
->hw_blocksize
);
1564 ret
= stm32_cryp_truncate_sg(&cryp
->in_sg
, &cryp
->in_sg_len
, in_sg
, 0, align_size
);
1568 ret
= stm32_cryp_truncate_sg(&cryp
->out_sg
, &cryp
->out_sg_len
, out_sg
, 0,
1575 cryp
->flags
|= FLG_IN_OUT_DMA
;
1577 cryp
->in_sg
= in_sg
;
1578 cryp
->out_sg
= out_sg
;
1580 ret
= sg_nents_for_len(cryp
->in_sg
, cryp
->payload_in
);
1583 cryp
->in_sg_len
= (size_t)ret
;
1585 ret
= sg_nents_for_len(out_sg
, cryp
->payload_out
);
1588 cryp
->out_sg_len
= (size_t)ret
;
1594 static int stm32_cryp_aead_prepare(struct stm32_cryp
*cryp
, struct scatterlist
*in_sg
,
1595 struct scatterlist
*out_sg
)
1601 cryp
->header_sg
= NULL
;
1603 cryp
->out_sg
= NULL
;
1605 if (!cryp
->dma_lch_in
|| !cryp
->dma_lch_out
) {
1606 cryp
->dma_mode
= NO_DMA
;
1607 cryp
->flags
&= ~(FLG_IN_OUT_DMA
| FLG_HEADER_DMA
);
1612 /* CCM hw_init may have advanced in header */
1613 skip
= cryp
->areq
->assoclen
- cryp
->header_in
;
1615 align_size
= ALIGN_DOWN(cryp
->header_in
, cryp
->hw_blocksize
);
1616 ret
= stm32_cryp_truncate_sg(&cryp
->header_sg
, &cryp
->header_sg_len
, in_sg
, skip
,
1621 ret
= stm32_cryp_dma_check_sg(cryp
->header_sg
, align_size
, AES_BLOCK_SIZE
);
1622 if (ret
== NO_DMA
) {
1623 /* We cannot DMA the header */
1624 kfree(cryp
->header_sg
);
1625 cryp
->header_sg
= NULL
;
1627 cryp
->flags
&= ~FLG_HEADER_DMA
;
1629 cryp
->flags
|= FLG_HEADER_DMA
;
1632 /* Now skip all header to be at payload start */
1633 skip
= cryp
->areq
->assoclen
;
1634 align_size
= ALIGN_DOWN(cryp
->payload_in
, cryp
->hw_blocksize
);
1635 ret
= stm32_cryp_truncate_sg(&cryp
->in_sg
, &cryp
->in_sg_len
, in_sg
, skip
, align_size
);
1637 kfree(cryp
->header_sg
);
1641 /* For out buffer align_size is same as in buffer */
1642 ret
= stm32_cryp_truncate_sg(&cryp
->out_sg
, &cryp
->out_sg_len
, out_sg
, skip
, align_size
);
1644 kfree(cryp
->header_sg
);
1649 ret
= stm32_cryp_dma_check_sg(cryp
->in_sg
, align_size
, AES_BLOCK_SIZE
);
1650 ret2
= stm32_cryp_dma_check_sg(cryp
->out_sg
, align_size
, AES_BLOCK_SIZE
);
1651 if (ret
== NO_DMA
|| ret2
== NO_DMA
) {
1655 kfree(cryp
->out_sg
);
1656 cryp
->out_sg
= NULL
;
1658 cryp
->flags
&= ~FLG_IN_OUT_DMA
;
1660 cryp
->flags
|= FLG_IN_OUT_DMA
;
1666 static int stm32_cryp_prepare_req(struct skcipher_request
*req
,
1667 struct aead_request
*areq
)
1669 struct stm32_cryp_ctx
*ctx
;
1670 struct stm32_cryp
*cryp
;
1671 struct stm32_cryp_reqctx
*rctx
;
1672 struct scatterlist
*in_sg
, *out_sg
;
1678 ctx
= req
? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req
)) :
1679 crypto_aead_ctx(crypto_aead_reqtfm(areq
));
1683 rctx
= req
? skcipher_request_ctx(req
) : aead_request_ctx(areq
);
1684 rctx
->mode
&= FLG_MODE_MASK
;
1686 cryp
->flags
= (cryp
->flags
& ~FLG_MODE_MASK
) | rctx
->mode
;
1687 cryp
->hw_blocksize
= is_aes(cryp
) ? AES_BLOCK_SIZE
: DES_BLOCK_SIZE
;
1693 cryp
->header_in
= 0;
1694 cryp
->payload_in
= req
->cryptlen
;
1695 cryp
->payload_out
= req
->cryptlen
;
1701 ret
= stm32_cryp_cipher_prepare(cryp
, in_sg
, out_sg
);
1705 ret
= stm32_cryp_hw_init(cryp
);
1708 * Length of input and output data:
1710 * INPUT = AssocData || PlainText
1711 * <- assoclen -> <- cryptlen ->
1713 * OUTPUT = AssocData || CipherText || AuthTag
1714 * <- assoclen -> <-- cryptlen --> <- authsize ->
1717 * INPUT = AssocData || CipherTex || AuthTag
1718 * <- assoclen ---> <---------- cryptlen ---------->
1720 * OUTPUT = AssocData || PlainText
1721 * <- assoclen -> <- cryptlen - authsize ->
1725 cryp
->authsize
= crypto_aead_authsize(crypto_aead_reqtfm(areq
));
1726 if (is_encrypt(cryp
)) {
1727 cryp
->payload_in
= areq
->cryptlen
;
1728 cryp
->header_in
= areq
->assoclen
;
1729 cryp
->payload_out
= areq
->cryptlen
;
1731 cryp
->payload_in
= areq
->cryptlen
- cryp
->authsize
;
1732 cryp
->header_in
= areq
->assoclen
;
1733 cryp
->payload_out
= cryp
->payload_in
;
1739 scatterwalk_start(&cryp
->in_walk
, in_sg
);
1740 scatterwalk_start(&cryp
->out_walk
, out_sg
);
1741 /* In output, jump after assoc data */
1742 scatterwalk_copychunks(NULL
, &cryp
->out_walk
, cryp
->areq
->assoclen
, 2);
1744 ret
= stm32_cryp_hw_init(cryp
);
1748 ret
= stm32_cryp_aead_prepare(cryp
, in_sg
, out_sg
);
1754 static int stm32_cryp_cipher_one_req(struct crypto_engine
*engine
, void *areq
)
1756 struct skcipher_request
*req
= container_of(areq
,
1757 struct skcipher_request
,
1759 struct stm32_cryp_ctx
*ctx
= crypto_skcipher_ctx(
1760 crypto_skcipher_reqtfm(req
));
1761 struct stm32_cryp
*cryp
= ctx
->cryp
;
1767 ret
= stm32_cryp_prepare_req(req
, NULL
);
1771 if (cryp
->flags
& FLG_IN_OUT_DMA
)
1772 ret
= stm32_cryp_dma_start(cryp
);
1774 ret
= stm32_cryp_it_start(cryp
);
1776 if (ret
== -ETIMEDOUT
)
1777 stm32_cryp_finish_req(cryp
, ret
);
1782 static int stm32_cryp_aead_one_req(struct crypto_engine
*engine
, void *areq
)
1784 struct aead_request
*req
= container_of(areq
, struct aead_request
,
1786 struct stm32_cryp_ctx
*ctx
= crypto_aead_ctx(crypto_aead_reqtfm(req
));
1787 struct stm32_cryp
*cryp
= ctx
->cryp
;
1793 err
= stm32_cryp_prepare_req(NULL
, req
);
1797 if (!stm32_cryp_get_input_text_len(cryp
) && !cryp
->header_in
&&
1798 !(cryp
->flags
& FLG_HEADER_DMA
)) {
1799 /* No input data to process: get tag and finish */
1800 stm32_cryp_finish_req(cryp
, 0);
1804 if (cryp
->flags
& FLG_HEADER_DMA
)
1805 return stm32_cryp_header_dma_start(cryp
);
1807 if (!cryp
->header_in
&& cryp
->flags
& FLG_IN_OUT_DMA
)
1808 return stm32_cryp_dma_start(cryp
);
1810 return stm32_cryp_it_start(cryp
);
1813 static int stm32_cryp_read_auth_tag(struct stm32_cryp
*cryp
)
1820 cfg
= stm32_cryp_read(cryp
, cryp
->caps
->cr
);
1824 cfg
&= ~CR_DEC_NOT_ENC
;
1827 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
1830 /* GCM: write aad and payload size (in bits) */
1831 size_bit
= cryp
->areq
->assoclen
* 8;
1832 if (cryp
->caps
->swap_final
)
1833 size_bit
= (__force u32
)cpu_to_be32(size_bit
);
1835 stm32_cryp_write(cryp
, cryp
->caps
->din
, 0);
1836 stm32_cryp_write(cryp
, cryp
->caps
->din
, size_bit
);
1838 size_bit
= is_encrypt(cryp
) ? cryp
->areq
->cryptlen
:
1839 cryp
->areq
->cryptlen
- cryp
->authsize
;
1841 if (cryp
->caps
->swap_final
)
1842 size_bit
= (__force u32
)cpu_to_be32(size_bit
);
1844 stm32_cryp_write(cryp
, cryp
->caps
->din
, 0);
1845 stm32_cryp_write(cryp
, cryp
->caps
->din
, size_bit
);
1847 /* CCM: write CTR0 */
1848 u32 iv32
[AES_BLOCK_32
];
1849 u8
*iv
= (u8
*)iv32
;
1850 __be32
*biv
= (__be32
*)iv32
;
1852 memcpy(iv
, cryp
->areq
->iv
, AES_BLOCK_SIZE
);
1853 memset(iv
+ AES_BLOCK_SIZE
- 1 - iv
[0], 0, iv
[0] + 1);
1855 for (i
= 0; i
< AES_BLOCK_32
; i
++) {
1858 if (!cryp
->caps
->padding_wa
)
1859 xiv
= be32_to_cpu(biv
[i
]);
1860 stm32_cryp_write(cryp
, cryp
->caps
->din
, xiv
);
1864 /* Wait for output data */
1865 ret
= stm32_cryp_wait_output(cryp
);
1867 dev_err(cryp
->dev
, "Timeout (read tag)\n");
1871 if (is_encrypt(cryp
)) {
1872 u32 out_tag
[AES_BLOCK_32
];
1874 /* Get and write tag */
1875 readsl(cryp
->regs
+ cryp
->caps
->dout
, out_tag
, AES_BLOCK_32
);
1876 scatterwalk_copychunks(out_tag
, &cryp
->out_walk
, cryp
->authsize
, 1);
1878 /* Get and check tag */
1879 u32 in_tag
[AES_BLOCK_32
], out_tag
[AES_BLOCK_32
];
1881 scatterwalk_copychunks(in_tag
, &cryp
->in_walk
, cryp
->authsize
, 0);
1882 readsl(cryp
->regs
+ cryp
->caps
->dout
, out_tag
, AES_BLOCK_32
);
1884 if (crypto_memneq(in_tag
, out_tag
, cryp
->authsize
))
1890 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
1895 static void stm32_cryp_check_ctr_counter(struct stm32_cryp
*cryp
)
1899 if (unlikely(cryp
->last_ctr
[3] == cpu_to_be32(0xFFFFFFFF))) {
1901 * In this case, we need to increment manually the ctr counter,
1902 * as HW doesn't handle the U32 carry.
1904 crypto_inc((u8
*)cryp
->last_ctr
, sizeof(cryp
->last_ctr
));
1906 cr
= stm32_cryp_read(cryp
, cryp
->caps
->cr
);
1907 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cr
& ~CR_CRYPEN
);
1909 stm32_cryp_hw_write_iv(cryp
, cryp
->last_ctr
);
1911 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cr
);
1914 /* The IV registers are BE */
1915 cryp
->last_ctr
[0] = cpu_to_be32(stm32_cryp_read(cryp
, cryp
->caps
->iv0l
));
1916 cryp
->last_ctr
[1] = cpu_to_be32(stm32_cryp_read(cryp
, cryp
->caps
->iv0r
));
1917 cryp
->last_ctr
[2] = cpu_to_be32(stm32_cryp_read(cryp
, cryp
->caps
->iv1l
));
1918 cryp
->last_ctr
[3] = cpu_to_be32(stm32_cryp_read(cryp
, cryp
->caps
->iv1r
));
1921 static void stm32_cryp_irq_read_data(struct stm32_cryp
*cryp
)
1923 u32 block
[AES_BLOCK_32
];
1925 readsl(cryp
->regs
+ cryp
->caps
->dout
, block
, cryp
->hw_blocksize
/ sizeof(u32
));
1926 scatterwalk_copychunks(block
, &cryp
->out_walk
, min_t(size_t, cryp
->hw_blocksize
,
1927 cryp
->payload_out
), 1);
1928 cryp
->payload_out
-= min_t(size_t, cryp
->hw_blocksize
,
1932 static void stm32_cryp_irq_write_block(struct stm32_cryp
*cryp
)
1934 u32 block
[AES_BLOCK_32
] = {0};
1936 scatterwalk_copychunks(block
, &cryp
->in_walk
, min_t(size_t, cryp
->hw_blocksize
,
1937 cryp
->payload_in
), 0);
1938 writesl(cryp
->regs
+ cryp
->caps
->din
, block
, cryp
->hw_blocksize
/ sizeof(u32
));
1939 cryp
->payload_in
-= min_t(size_t, cryp
->hw_blocksize
, cryp
->payload_in
);
1942 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp
*cryp
)
1945 u32 cfg
, block
[AES_BLOCK_32
] = {0};
1948 /* 'Special workaround' procedure described in the datasheet */
1951 stm32_cryp_write(cryp
, cryp
->caps
->imsc
, 0);
1952 cfg
= stm32_cryp_read(cryp
, cryp
->caps
->cr
);
1954 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
1956 /* b) Update IV1R */
1957 stm32_cryp_write(cryp
, cryp
->caps
->iv1r
, cryp
->gcm_ctr
- 2);
1959 /* c) change mode to CTR */
1960 cfg
&= ~CR_ALGO_MASK
;
1962 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
1966 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
1968 /* b) pad and write the last block */
1969 stm32_cryp_irq_write_block(cryp
);
1970 /* wait end of process */
1971 err
= stm32_cryp_wait_output(cryp
);
1973 dev_err(cryp
->dev
, "Timeout (write gcm last data)\n");
1974 return stm32_cryp_finish_req(cryp
, err
);
1977 /* c) get and store encrypted data */
1979 * Same code as stm32_cryp_irq_read_data(), but we want to store
1982 readsl(cryp
->regs
+ cryp
->caps
->dout
, block
, cryp
->hw_blocksize
/ sizeof(u32
));
1984 scatterwalk_copychunks(block
, &cryp
->out_walk
, min_t(size_t, cryp
->hw_blocksize
,
1985 cryp
->payload_out
), 1);
1986 cryp
->payload_out
-= min_t(size_t, cryp
->hw_blocksize
,
1989 /* d) change mode back to AES GCM */
1990 cfg
&= ~CR_ALGO_MASK
;
1992 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
1994 /* e) change phase to Final */
1997 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
1999 /* f) write padded data */
2000 writesl(cryp
->regs
+ cryp
->caps
->din
, block
, AES_BLOCK_32
);
2002 /* g) Empty fifo out */
2003 err
= stm32_cryp_wait_output(cryp
);
2005 dev_err(cryp
->dev
, "Timeout (write gcm padded data)\n");
2006 return stm32_cryp_finish_req(cryp
, err
);
2009 for (i
= 0; i
< AES_BLOCK_32
; i
++)
2010 stm32_cryp_read(cryp
, cryp
->caps
->dout
);
2012 /* h) run the he normal Final phase */
2013 stm32_cryp_finish_req(cryp
, 0);
2016 static void stm32_cryp_irq_set_npblb(struct stm32_cryp
*cryp
)
2020 /* disable ip, set NPBLB and reneable ip */
2021 cfg
= stm32_cryp_read(cryp
, cryp
->caps
->cr
);
2023 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
2025 cfg
|= (cryp
->hw_blocksize
- cryp
->payload_in
) << CR_NBPBL_SHIFT
;
2027 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
2030 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp
*cryp
)
2034 u32 cstmp1
[AES_BLOCK_32
], cstmp2
[AES_BLOCK_32
];
2035 u32 block
[AES_BLOCK_32
] = {0};
2038 /* 'Special workaround' procedure described in the datasheet */
2041 stm32_cryp_write(cryp
, cryp
->caps
->imsc
, 0);
2043 cfg
= stm32_cryp_read(cryp
, cryp
->caps
->cr
);
2045 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
2047 /* b) get IV1 from CRYP_CSGCMCCM7 */
2048 iv1tmp
= stm32_cryp_read(cryp
, CRYP_CSGCMCCM0R
+ 7 * 4);
2050 /* c) Load CRYP_CSGCMCCMxR */
2051 for (i
= 0; i
< ARRAY_SIZE(cstmp1
); i
++)
2052 cstmp1
[i
] = stm32_cryp_read(cryp
, CRYP_CSGCMCCM0R
+ i
* 4);
2055 stm32_cryp_write(cryp
, cryp
->caps
->iv1r
, iv1tmp
);
2057 /* e) change mode to CTR */
2058 cfg
&= ~CR_ALGO_MASK
;
2060 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
2064 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
2066 /* b) pad and write the last block */
2067 stm32_cryp_irq_write_block(cryp
);
2068 /* wait end of process */
2069 err
= stm32_cryp_wait_output(cryp
);
2071 dev_err(cryp
->dev
, "Timeout (write ccm padded data)\n");
2072 return stm32_cryp_finish_req(cryp
, err
);
2075 /* c) get and store decrypted data */
2077 * Same code as stm32_cryp_irq_read_data(), but we want to store
2080 readsl(cryp
->regs
+ cryp
->caps
->dout
, block
, cryp
->hw_blocksize
/ sizeof(u32
));
2082 scatterwalk_copychunks(block
, &cryp
->out_walk
, min_t(size_t, cryp
->hw_blocksize
,
2083 cryp
->payload_out
), 1);
2084 cryp
->payload_out
-= min_t(size_t, cryp
->hw_blocksize
, cryp
->payload_out
);
2086 /* d) Load again CRYP_CSGCMCCMxR */
2087 for (i
= 0; i
< ARRAY_SIZE(cstmp2
); i
++)
2088 cstmp2
[i
] = stm32_cryp_read(cryp
, CRYP_CSGCMCCM0R
+ i
* 4);
2090 /* e) change mode back to AES CCM */
2091 cfg
&= ~CR_ALGO_MASK
;
2093 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
2095 /* f) change phase to header */
2097 cfg
|= CR_PH_HEADER
;
2098 stm32_cryp_write(cryp
, cryp
->caps
->cr
, cfg
);
2100 /* g) XOR and write padded data */
2101 for (i
= 0; i
< ARRAY_SIZE(block
); i
++) {
2102 block
[i
] ^= cstmp1
[i
];
2103 block
[i
] ^= cstmp2
[i
];
2104 stm32_cryp_write(cryp
, cryp
->caps
->din
, block
[i
]);
2107 /* h) wait for completion */
2108 err
= stm32_cryp_wait_busy(cryp
);
2110 dev_err(cryp
->dev
, "Timeout (write ccm padded data)\n");
2112 /* i) run the he normal Final phase */
2113 stm32_cryp_finish_req(cryp
, err
);
2116 static void stm32_cryp_irq_write_data(struct stm32_cryp
*cryp
)
2118 if (unlikely(!cryp
->payload_in
)) {
2119 dev_warn(cryp
->dev
, "No more data to process\n");
2123 if (unlikely(cryp
->payload_in
< AES_BLOCK_SIZE
&&
2124 (stm32_cryp_get_hw_mode(cryp
) == CR_AES_GCM
) &&
2125 is_encrypt(cryp
))) {
2126 /* Padding for AES GCM encryption */
2127 if (cryp
->caps
->padding_wa
) {
2128 /* Special case 1 */
2129 stm32_cryp_irq_write_gcm_padded_data(cryp
);
2133 /* Setting padding bytes (NBBLB) */
2134 stm32_cryp_irq_set_npblb(cryp
);
2137 if (unlikely((cryp
->payload_in
< AES_BLOCK_SIZE
) &&
2138 (stm32_cryp_get_hw_mode(cryp
) == CR_AES_CCM
) &&
2139 is_decrypt(cryp
))) {
2140 /* Padding for AES CCM decryption */
2141 if (cryp
->caps
->padding_wa
) {
2142 /* Special case 2 */
2143 stm32_cryp_irq_write_ccm_padded_data(cryp
);
2147 /* Setting padding bytes (NBBLB) */
2148 stm32_cryp_irq_set_npblb(cryp
);
2151 if (is_aes(cryp
) && is_ctr(cryp
))
2152 stm32_cryp_check_ctr_counter(cryp
);
2154 stm32_cryp_irq_write_block(cryp
);
2157 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp
*cryp
)
2159 u32 block
[AES_BLOCK_32
] = {0};
2162 written
= min_t(size_t, AES_BLOCK_SIZE
, cryp
->header_in
);
2164 scatterwalk_copychunks(block
, &cryp
->in_walk
, written
, 0);
2166 writesl(cryp
->regs
+ cryp
->caps
->din
, block
, AES_BLOCK_32
);
2168 cryp
->header_in
-= written
;
2170 stm32_crypt_gcmccm_end_header(cryp
);
2173 static irqreturn_t
stm32_cryp_irq_thread(int irq
, void *arg
)
2175 struct stm32_cryp
*cryp
= arg
;
2177 u32 it_mask
= stm32_cryp_read(cryp
, cryp
->caps
->imsc
);
2179 if (cryp
->irq_status
& MISR_OUT
)
2180 /* Output FIFO IRQ: read data */
2181 stm32_cryp_irq_read_data(cryp
);
2183 if (cryp
->irq_status
& MISR_IN
) {
2184 if (is_gcm(cryp
) || is_ccm(cryp
)) {
2185 ph
= stm32_cryp_read(cryp
, cryp
->caps
->cr
) & CR_PH_MASK
;
2186 if (unlikely(ph
== CR_PH_HEADER
))
2188 stm32_cryp_irq_write_gcmccm_header(cryp
);
2190 /* Input FIFO IRQ: write data */
2191 stm32_cryp_irq_write_data(cryp
);
2195 /* Input FIFO IRQ: write data */
2196 stm32_cryp_irq_write_data(cryp
);
2200 /* Mask useless interrupts */
2201 if (!cryp
->payload_in
&& !cryp
->header_in
)
2202 it_mask
&= ~IMSCR_IN
;
2203 if (!cryp
->payload_out
)
2204 it_mask
&= ~IMSCR_OUT
;
2205 stm32_cryp_write(cryp
, cryp
->caps
->imsc
, it_mask
);
2207 if (!cryp
->payload_in
&& !cryp
->header_in
&& !cryp
->payload_out
) {
2209 stm32_cryp_finish_req(cryp
, 0);
2216 static irqreturn_t
stm32_cryp_irq(int irq
, void *arg
)
2218 struct stm32_cryp
*cryp
= arg
;
2220 cryp
->irq_status
= stm32_cryp_read(cryp
, cryp
->caps
->mis
);
2222 return IRQ_WAKE_THREAD
;
2225 static int stm32_cryp_dma_init(struct stm32_cryp
*cryp
)
2227 struct dma_slave_config dma_conf
;
2228 struct dma_chan
*chan
;
2231 memset(&dma_conf
, 0, sizeof(dma_conf
));
2233 dma_conf
.direction
= DMA_MEM_TO_DEV
;
2234 dma_conf
.dst_addr
= cryp
->phys_base
+ cryp
->caps
->din
;
2235 dma_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
2236 dma_conf
.dst_maxburst
= CRYP_DMA_BURST_REG
;
2237 dma_conf
.device_fc
= false;
2239 chan
= dma_request_chan(cryp
->dev
, "in");
2241 return PTR_ERR(chan
);
2243 cryp
->dma_lch_in
= chan
;
2244 ret
= dmaengine_slave_config(cryp
->dma_lch_in
, &dma_conf
);
2246 dma_release_channel(cryp
->dma_lch_in
);
2247 cryp
->dma_lch_in
= NULL
;
2248 dev_err(cryp
->dev
, "Couldn't configure DMA in slave.\n");
2252 memset(&dma_conf
, 0, sizeof(dma_conf
));
2254 dma_conf
.direction
= DMA_DEV_TO_MEM
;
2255 dma_conf
.src_addr
= cryp
->phys_base
+ cryp
->caps
->dout
;
2256 dma_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
2257 dma_conf
.src_maxburst
= CRYP_DMA_BURST_REG
;
2258 dma_conf
.device_fc
= false;
2260 chan
= dma_request_chan(cryp
->dev
, "out");
2262 dma_release_channel(cryp
->dma_lch_in
);
2263 cryp
->dma_lch_in
= NULL
;
2264 return PTR_ERR(chan
);
2267 cryp
->dma_lch_out
= chan
;
2269 ret
= dmaengine_slave_config(cryp
->dma_lch_out
, &dma_conf
);
2271 dma_release_channel(cryp
->dma_lch_out
);
2272 cryp
->dma_lch_out
= NULL
;
2273 dev_err(cryp
->dev
, "Couldn't configure DMA out slave.\n");
2274 dma_release_channel(cryp
->dma_lch_in
);
2275 cryp
->dma_lch_in
= NULL
;
2279 init_completion(&cryp
->dma_completion
);
2284 static struct skcipher_engine_alg crypto_algs
[] = {
2287 .base
.cra_name
= "ecb(aes)",
2288 .base
.cra_driver_name
= "stm32-ecb-aes",
2289 .base
.cra_priority
= 300,
2290 .base
.cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
,
2291 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
2292 .base
.cra_ctxsize
= sizeof(struct stm32_cryp_ctx
),
2293 .base
.cra_alignmask
= 0,
2294 .base
.cra_module
= THIS_MODULE
,
2296 .init
= stm32_cryp_init_tfm
,
2297 .min_keysize
= AES_MIN_KEY_SIZE
,
2298 .max_keysize
= AES_MAX_KEY_SIZE
,
2299 .setkey
= stm32_cryp_aes_setkey
,
2300 .encrypt
= stm32_cryp_aes_ecb_encrypt
,
2301 .decrypt
= stm32_cryp_aes_ecb_decrypt
,
2304 .do_one_request
= stm32_cryp_cipher_one_req
,
2309 .base
.cra_name
= "cbc(aes)",
2310 .base
.cra_driver_name
= "stm32-cbc-aes",
2311 .base
.cra_priority
= 300,
2312 .base
.cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
,
2313 .base
.cra_blocksize
= AES_BLOCK_SIZE
,
2314 .base
.cra_ctxsize
= sizeof(struct stm32_cryp_ctx
),
2315 .base
.cra_alignmask
= 0,
2316 .base
.cra_module
= THIS_MODULE
,
2318 .init
= stm32_cryp_init_tfm
,
2319 .min_keysize
= AES_MIN_KEY_SIZE
,
2320 .max_keysize
= AES_MAX_KEY_SIZE
,
2321 .ivsize
= AES_BLOCK_SIZE
,
2322 .setkey
= stm32_cryp_aes_setkey
,
2323 .encrypt
= stm32_cryp_aes_cbc_encrypt
,
2324 .decrypt
= stm32_cryp_aes_cbc_decrypt
,
2327 .do_one_request
= stm32_cryp_cipher_one_req
,
2332 .base
.cra_name
= "ctr(aes)",
2333 .base
.cra_driver_name
= "stm32-ctr-aes",
2334 .base
.cra_priority
= 300,
2335 .base
.cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
,
2336 .base
.cra_blocksize
= 1,
2337 .base
.cra_ctxsize
= sizeof(struct stm32_cryp_ctx
),
2338 .base
.cra_alignmask
= 0,
2339 .base
.cra_module
= THIS_MODULE
,
2341 .init
= stm32_cryp_init_tfm
,
2342 .min_keysize
= AES_MIN_KEY_SIZE
,
2343 .max_keysize
= AES_MAX_KEY_SIZE
,
2344 .ivsize
= AES_BLOCK_SIZE
,
2345 .setkey
= stm32_cryp_aes_setkey
,
2346 .encrypt
= stm32_cryp_aes_ctr_encrypt
,
2347 .decrypt
= stm32_cryp_aes_ctr_decrypt
,
2350 .do_one_request
= stm32_cryp_cipher_one_req
,
2355 .base
.cra_name
= "ecb(des)",
2356 .base
.cra_driver_name
= "stm32-ecb-des",
2357 .base
.cra_priority
= 300,
2358 .base
.cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
,
2359 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
2360 .base
.cra_ctxsize
= sizeof(struct stm32_cryp_ctx
),
2361 .base
.cra_alignmask
= 0,
2362 .base
.cra_module
= THIS_MODULE
,
2364 .init
= stm32_cryp_init_tfm
,
2365 .min_keysize
= DES_BLOCK_SIZE
,
2366 .max_keysize
= DES_BLOCK_SIZE
,
2367 .setkey
= stm32_cryp_des_setkey
,
2368 .encrypt
= stm32_cryp_des_ecb_encrypt
,
2369 .decrypt
= stm32_cryp_des_ecb_decrypt
,
2372 .do_one_request
= stm32_cryp_cipher_one_req
,
2377 .base
.cra_name
= "cbc(des)",
2378 .base
.cra_driver_name
= "stm32-cbc-des",
2379 .base
.cra_priority
= 300,
2380 .base
.cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
,
2381 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
2382 .base
.cra_ctxsize
= sizeof(struct stm32_cryp_ctx
),
2383 .base
.cra_alignmask
= 0,
2384 .base
.cra_module
= THIS_MODULE
,
2386 .init
= stm32_cryp_init_tfm
,
2387 .min_keysize
= DES_BLOCK_SIZE
,
2388 .max_keysize
= DES_BLOCK_SIZE
,
2389 .ivsize
= DES_BLOCK_SIZE
,
2390 .setkey
= stm32_cryp_des_setkey
,
2391 .encrypt
= stm32_cryp_des_cbc_encrypt
,
2392 .decrypt
= stm32_cryp_des_cbc_decrypt
,
2395 .do_one_request
= stm32_cryp_cipher_one_req
,
2400 .base
.cra_name
= "ecb(des3_ede)",
2401 .base
.cra_driver_name
= "stm32-ecb-des3",
2402 .base
.cra_priority
= 300,
2403 .base
.cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
,
2404 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
2405 .base
.cra_ctxsize
= sizeof(struct stm32_cryp_ctx
),
2406 .base
.cra_alignmask
= 0,
2407 .base
.cra_module
= THIS_MODULE
,
2409 .init
= stm32_cryp_init_tfm
,
2410 .min_keysize
= 3 * DES_BLOCK_SIZE
,
2411 .max_keysize
= 3 * DES_BLOCK_SIZE
,
2412 .setkey
= stm32_cryp_tdes_setkey
,
2413 .encrypt
= stm32_cryp_tdes_ecb_encrypt
,
2414 .decrypt
= stm32_cryp_tdes_ecb_decrypt
,
2417 .do_one_request
= stm32_cryp_cipher_one_req
,
2422 .base
.cra_name
= "cbc(des3_ede)",
2423 .base
.cra_driver_name
= "stm32-cbc-des3",
2424 .base
.cra_priority
= 300,
2425 .base
.cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
,
2426 .base
.cra_blocksize
= DES_BLOCK_SIZE
,
2427 .base
.cra_ctxsize
= sizeof(struct stm32_cryp_ctx
),
2428 .base
.cra_alignmask
= 0,
2429 .base
.cra_module
= THIS_MODULE
,
2431 .init
= stm32_cryp_init_tfm
,
2432 .min_keysize
= 3 * DES_BLOCK_SIZE
,
2433 .max_keysize
= 3 * DES_BLOCK_SIZE
,
2434 .ivsize
= DES_BLOCK_SIZE
,
2435 .setkey
= stm32_cryp_tdes_setkey
,
2436 .encrypt
= stm32_cryp_tdes_cbc_encrypt
,
2437 .decrypt
= stm32_cryp_tdes_cbc_decrypt
,
2440 .do_one_request
= stm32_cryp_cipher_one_req
,
2445 static struct aead_engine_alg aead_algs
[] = {
2447 .base
.setkey
= stm32_cryp_aes_aead_setkey
,
2448 .base
.setauthsize
= stm32_cryp_aes_gcm_setauthsize
,
2449 .base
.encrypt
= stm32_cryp_aes_gcm_encrypt
,
2450 .base
.decrypt
= stm32_cryp_aes_gcm_decrypt
,
2451 .base
.init
= stm32_cryp_aes_aead_init
,
2453 .base
.maxauthsize
= AES_BLOCK_SIZE
,
2456 .cra_name
= "gcm(aes)",
2457 .cra_driver_name
= "stm32-gcm-aes",
2458 .cra_priority
= 300,
2459 .cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
,
2461 .cra_ctxsize
= sizeof(struct stm32_cryp_ctx
),
2463 .cra_module
= THIS_MODULE
,
2466 .do_one_request
= stm32_cryp_aead_one_req
,
2470 .base
.setkey
= stm32_cryp_aes_aead_setkey
,
2471 .base
.setauthsize
= stm32_cryp_aes_ccm_setauthsize
,
2472 .base
.encrypt
= stm32_cryp_aes_ccm_encrypt
,
2473 .base
.decrypt
= stm32_cryp_aes_ccm_decrypt
,
2474 .base
.init
= stm32_cryp_aes_aead_init
,
2475 .base
.ivsize
= AES_BLOCK_SIZE
,
2476 .base
.maxauthsize
= AES_BLOCK_SIZE
,
2479 .cra_name
= "ccm(aes)",
2480 .cra_driver_name
= "stm32-ccm-aes",
2481 .cra_priority
= 300,
2482 .cra_flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
,
2484 .cra_ctxsize
= sizeof(struct stm32_cryp_ctx
),
2486 .cra_module
= THIS_MODULE
,
2489 .do_one_request
= stm32_cryp_aead_one_req
,
2494 static const struct stm32_cryp_caps ux500_data
= {
2495 .aeads_support
= false,
2496 .linear_aes_key
= true,
2498 .iv_protection
= true,
2501 .cr
= UX500_CRYP_CR
,
2502 .sr
= UX500_CRYP_SR
,
2503 .din
= UX500_CRYP_DIN
,
2504 .dout
= UX500_CRYP_DOUT
,
2505 .dmacr
= UX500_CRYP_DMACR
,
2506 .imsc
= UX500_CRYP_IMSC
,
2507 .mis
= UX500_CRYP_MIS
,
2508 .k1l
= UX500_CRYP_K1L
,
2509 .k1r
= UX500_CRYP_K1R
,
2510 .k3r
= UX500_CRYP_K3R
,
2511 .iv0l
= UX500_CRYP_IV0L
,
2512 .iv0r
= UX500_CRYP_IV0R
,
2513 .iv1l
= UX500_CRYP_IV1L
,
2514 .iv1r
= UX500_CRYP_IV1R
,
2517 static const struct stm32_cryp_caps f7_data
= {
2518 .aeads_support
= true,
2519 .linear_aes_key
= false,
2521 .iv_protection
= false,
2528 .dmacr
= CRYP_DMACR
,
2540 static const struct stm32_cryp_caps mp1_data
= {
2541 .aeads_support
= true,
2542 .linear_aes_key
= false,
2544 .iv_protection
= false,
2545 .swap_final
= false,
2546 .padding_wa
= false,
2551 .dmacr
= CRYP_DMACR
,
2563 static const struct of_device_id stm32_dt_ids
[] = {
2564 { .compatible
= "stericsson,ux500-cryp", .data
= &ux500_data
},
2565 { .compatible
= "st,stm32f756-cryp", .data
= &f7_data
},
2566 { .compatible
= "st,stm32mp1-cryp", .data
= &mp1_data
},
2569 MODULE_DEVICE_TABLE(of
, stm32_dt_ids
);
2571 static int stm32_cryp_probe(struct platform_device
*pdev
)
2573 struct device
*dev
= &pdev
->dev
;
2574 struct stm32_cryp
*cryp
;
2575 struct reset_control
*rst
;
2578 cryp
= devm_kzalloc(dev
, sizeof(*cryp
), GFP_KERNEL
);
2582 cryp
->caps
= of_device_get_match_data(dev
);
2588 cryp
->regs
= devm_platform_ioremap_resource(pdev
, 0);
2589 if (IS_ERR(cryp
->regs
))
2590 return PTR_ERR(cryp
->regs
);
2592 cryp
->phys_base
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0)->start
;
2594 irq
= platform_get_irq(pdev
, 0);
2598 ret
= devm_request_threaded_irq(dev
, irq
, stm32_cryp_irq
,
2599 stm32_cryp_irq_thread
, IRQF_ONESHOT
,
2600 dev_name(dev
), cryp
);
2602 dev_err(dev
, "Cannot grab IRQ\n");
2606 cryp
->clk
= devm_clk_get(dev
, NULL
);
2607 if (IS_ERR(cryp
->clk
)) {
2608 dev_err_probe(dev
, PTR_ERR(cryp
->clk
), "Could not get clock\n");
2610 return PTR_ERR(cryp
->clk
);
2613 ret
= clk_prepare_enable(cryp
->clk
);
2615 dev_err(cryp
->dev
, "Failed to enable clock\n");
2619 pm_runtime_set_autosuspend_delay(dev
, CRYP_AUTOSUSPEND_DELAY
);
2620 pm_runtime_use_autosuspend(dev
);
2622 pm_runtime_get_noresume(dev
);
2623 pm_runtime_set_active(dev
);
2624 pm_runtime_enable(dev
);
2626 rst
= devm_reset_control_get(dev
, NULL
);
2629 if (ret
== -EPROBE_DEFER
)
2632 reset_control_assert(rst
);
2634 reset_control_deassert(rst
);
2637 platform_set_drvdata(pdev
, cryp
);
2639 ret
= stm32_cryp_dma_init(cryp
);
2644 dev_dbg(dev
, "DMA mode not available\n");
2650 spin_lock(&cryp_list
.lock
);
2651 list_add(&cryp
->list
, &cryp_list
.dev_list
);
2652 spin_unlock(&cryp_list
.lock
);
2654 /* Initialize crypto engine */
2655 cryp
->engine
= crypto_engine_alloc_init(dev
, 1);
2656 if (!cryp
->engine
) {
2657 dev_err(dev
, "Could not init crypto engine\n");
2662 ret
= crypto_engine_start(cryp
->engine
);
2664 dev_err(dev
, "Could not start crypto engine\n");
2668 ret
= crypto_engine_register_skciphers(crypto_algs
, ARRAY_SIZE(crypto_algs
));
2670 dev_err(dev
, "Could not register algs\n");
2674 if (cryp
->caps
->aeads_support
) {
2675 ret
= crypto_engine_register_aeads(aead_algs
, ARRAY_SIZE(aead_algs
));
2680 dev_info(dev
, "Initialized\n");
2682 pm_runtime_put_sync(dev
);
2687 crypto_engine_unregister_skciphers(crypto_algs
, ARRAY_SIZE(crypto_algs
));
2690 crypto_engine_exit(cryp
->engine
);
2692 spin_lock(&cryp_list
.lock
);
2693 list_del(&cryp
->list
);
2694 spin_unlock(&cryp_list
.lock
);
2696 if (cryp
->dma_lch_in
)
2697 dma_release_channel(cryp
->dma_lch_in
);
2698 if (cryp
->dma_lch_out
)
2699 dma_release_channel(cryp
->dma_lch_out
);
2702 pm_runtime_disable(dev
);
2703 pm_runtime_put_noidle(dev
);
2705 clk_disable_unprepare(cryp
->clk
);
2710 static void stm32_cryp_remove(struct platform_device
*pdev
)
2712 struct stm32_cryp
*cryp
= platform_get_drvdata(pdev
);
2715 ret
= pm_runtime_get_sync(cryp
->dev
);
2717 if (cryp
->caps
->aeads_support
)
2718 crypto_engine_unregister_aeads(aead_algs
, ARRAY_SIZE(aead_algs
));
2719 crypto_engine_unregister_skciphers(crypto_algs
, ARRAY_SIZE(crypto_algs
));
2721 crypto_engine_exit(cryp
->engine
);
2723 spin_lock(&cryp_list
.lock
);
2724 list_del(&cryp
->list
);
2725 spin_unlock(&cryp_list
.lock
);
2727 if (cryp
->dma_lch_in
)
2728 dma_release_channel(cryp
->dma_lch_in
);
2730 if (cryp
->dma_lch_out
)
2731 dma_release_channel(cryp
->dma_lch_out
);
2733 pm_runtime_disable(cryp
->dev
);
2734 pm_runtime_put_noidle(cryp
->dev
);
2737 clk_disable_unprepare(cryp
->clk
);
2741 static int stm32_cryp_runtime_suspend(struct device
*dev
)
2743 struct stm32_cryp
*cryp
= dev_get_drvdata(dev
);
2745 clk_disable_unprepare(cryp
->clk
);
2750 static int stm32_cryp_runtime_resume(struct device
*dev
)
2752 struct stm32_cryp
*cryp
= dev_get_drvdata(dev
);
2755 ret
= clk_prepare_enable(cryp
->clk
);
2757 dev_err(cryp
->dev
, "Failed to prepare_enable clock\n");
2765 static const struct dev_pm_ops stm32_cryp_pm_ops
= {
2766 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
2767 pm_runtime_force_resume
)
2768 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend
,
2769 stm32_cryp_runtime_resume
, NULL
)
2772 static struct platform_driver stm32_cryp_driver
= {
2773 .probe
= stm32_cryp_probe
,
2774 .remove
= stm32_cryp_remove
,
2776 .name
= DRIVER_NAME
,
2777 .pm
= &stm32_cryp_pm_ops
,
2778 .of_match_table
= stm32_dt_ids
,
2782 module_platform_driver(stm32_cryp_driver
);
2784 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2785 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2786 MODULE_LICENSE("GPL");