1 // SPDX-License-Identifier: GPL-2.0
3 * EDAC driver for Intel(R) Xeon(R) Skylake processors
4 * Copyright (c) 2016, Intel Corporation.
7 #include <linux/kernel.h>
8 #include <linux/processor.h>
9 #include <asm/cpu_device_id.h>
10 #include <asm/intel-family.h>
13 #include "edac_module.h"
14 #include "skx_common.h"
16 #define EDAC_MOD_STR "skx_edac"
21 #define skx_printk(level, fmt, arg...) \
22 edac_printk(level, "skx", fmt, ##arg)
24 #define skx_mc_printk(mci, level, fmt, arg...) \
25 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
27 static struct list_head
*skx_edac_list
;
29 static u64 skx_tolm
, skx_tohm
;
30 static int skx_num_sockets
;
31 static unsigned int nvdimm_count
;
33 #define MASK26 0x3FFFFFF /* Mask for 2^26 */
34 #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
36 static struct skx_dev
*get_skx_dev(struct pci_bus
*bus
, u8 idx
)
40 list_for_each_entry(d
, skx_edac_list
, list
) {
41 if (d
->seg
== pci_domain_nr(bus
) && d
->bus
[idx
] == bus
->number
)
49 CHAN0
, CHAN1
, CHAN2
, SAD_ALL
, UTIL_ALL
, SAD
,
50 ERRCHAN0
, ERRCHAN1
, ERRCHAN2
,
55 u16 devfn
[SKX_NUM_IMC
];
62 * List of PCI device ids that we need together with some device
63 * number and function numbers to tell which memory controller the
66 static const struct munit skx_all_munits
[] = {
67 { 0x2054, { }, 1, 1, SAD_ALL
},
68 { 0x2055, { }, 1, 1, UTIL_ALL
},
69 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0
},
70 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1
},
71 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2
},
72 { 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0
},
73 { 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1
},
74 { 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2
},
75 { 0x208e, { }, 1, 0, SAD
},
79 static int get_all_munits(const struct munit
*m
)
81 struct pci_dev
*pdev
, *prev
;
88 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, m
->did
, prev
);
92 if (m
->per_socket
== SKX_NUM_IMC
) {
93 for (i
= 0; i
< SKX_NUM_IMC
; i
++)
94 if (m
->devfn
[i
] == pdev
->devfn
)
99 d
= get_skx_dev(pdev
->bus
, m
->busidx
);
103 /* Be sure that the device is enabled */
104 if (unlikely(pci_enable_device(pdev
) < 0)) {
105 skx_printk(KERN_ERR
, "Couldn't enable device %04x:%04x\n",
106 PCI_VENDOR_ID_INTEL
, m
->did
);
115 d
->imc
[i
].chan
[m
->mtype
].cdev
= pdev
;
121 d
->imc
[i
].chan
[m
->mtype
- ERRCHAN0
].edev
= pdev
;
133 * one of these devices per core, including cores
134 * that don't exist on this SKU. Ignore any that
135 * read a route table of zero, make sure all the
136 * non-zero values match.
138 pci_read_config_dword(pdev
, 0xB4, ®
);
140 if (d
->mcroute
== 0) {
142 } else if (d
->mcroute
!= reg
) {
143 skx_printk(KERN_ERR
, "mcroute mismatch\n");
160 static struct res_config skx_cfg
= {
163 .busno_cfg_offset
= 0xcc,
166 static const struct x86_cpu_id skx_cpuids
[] = {
167 X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X
, X86_STEPPINGS(0x0, 0xf), &skx_cfg
),
170 MODULE_DEVICE_TABLE(x86cpu
, skx_cpuids
);
172 static bool skx_check_ecc(u32 mcmtr
)
174 return !!GET_BITFIELD(mcmtr
, 2, 2);
177 static int skx_get_dimm_config(struct mem_ctl_info
*mci
, struct res_config
*cfg
)
179 struct skx_pvt
*pvt
= mci
->pvt_info
;
180 u32 mtr
, mcmtr
, amap
, mcddrtcfg
;
181 struct skx_imc
*imc
= pvt
->imc
;
182 struct dimm_info
*dimm
;
186 /* Only the mcmtr on the first channel is effective */
187 pci_read_config_dword(imc
->chan
[0].cdev
, 0x87c, &mcmtr
);
189 for (i
= 0; i
< SKX_NUM_CHANNELS
; i
++) {
191 pci_read_config_dword(imc
->chan
[i
].cdev
, 0x8C, &amap
);
192 pci_read_config_dword(imc
->chan
[i
].cdev
, 0x400, &mcddrtcfg
);
193 for (j
= 0; j
< SKX_NUM_DIMMS
; j
++) {
194 dimm
= edac_get_dimm(mci
, i
, j
, 0);
195 pci_read_config_dword(imc
->chan
[i
].cdev
,
197 if (IS_DIMM_PRESENT(mtr
)) {
198 ndimms
+= skx_get_dimm_info(mtr
, mcmtr
, amap
, dimm
, imc
, i
, j
, cfg
);
199 } else if (IS_NVDIMM_PRESENT(mcddrtcfg
, j
)) {
200 ndimms
+= skx_get_nvdimm_info(dimm
, imc
, i
, j
,
205 if (ndimms
&& !skx_check_ecc(mcmtr
)) {
206 skx_printk(KERN_ERR
, "ECC is disabled on imc %d\n", imc
->mc
);
214 #define SKX_MAX_SAD 24
216 #define SKX_GET_SAD(d, i, reg) \
217 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
218 #define SKX_GET_ILV(d, i, reg) \
219 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
221 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
222 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
223 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
224 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
225 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
226 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
227 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
229 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
230 #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
232 static void skx_show_retry_rd_err_log(struct decoded_addr
*res
,
236 u32 log0
, log1
, log2
, log3
, log4
;
237 u32 corr0
, corr1
, corr2
, corr3
;
238 struct pci_dev
*edev
;
241 edev
= res
->dev
->imc
[res
->imc
].chan
[res
->channel
].edev
;
243 pci_read_config_dword(edev
, 0x154, &log0
);
244 pci_read_config_dword(edev
, 0x148, &log1
);
245 pci_read_config_dword(edev
, 0x150, &log2
);
246 pci_read_config_dword(edev
, 0x15c, &log3
);
247 pci_read_config_dword(edev
, 0x114, &log4
);
249 n
= snprintf(msg
, len
, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
250 log0
, log1
, log2
, log3
, log4
);
252 pci_read_config_dword(edev
, 0x104, &corr0
);
253 pci_read_config_dword(edev
, 0x108, &corr1
);
254 pci_read_config_dword(edev
, 0x10c, &corr2
);
255 pci_read_config_dword(edev
, 0x110, &corr3
);
258 snprintf(msg
+ n
, len
- n
,
259 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
260 corr0
& 0xffff, corr0
>> 16,
261 corr1
& 0xffff, corr1
>> 16,
262 corr2
& 0xffff, corr2
>> 16,
263 corr3
& 0xffff, corr3
>> 16);
266 static bool skx_sad_decode(struct decoded_addr
*res
)
268 struct skx_dev
*d
= list_first_entry(skx_edac_list
, typeof(*d
), list
);
269 u64 addr
= res
->addr
;
270 int i
, idx
, tgt
, lchan
, shift
;
272 u64 limit
, prev_limit
;
275 /* Simple sanity check for I/O space or out of range */
276 if (addr
>= skx_tohm
|| (addr
>= skx_tolm
&& addr
< BIT_ULL(32))) {
277 edac_dbg(0, "Address 0x%llx out of range\n", addr
);
283 for (i
= 0; i
< SKX_MAX_SAD
; i
++) {
284 SKX_GET_SAD(d
, i
, sad
);
285 limit
= SKX_SAD_LIMIT(sad
);
286 if (SKX_SAD_ENABLE(sad
)) {
287 if (addr
>= prev_limit
&& addr
<= limit
)
290 prev_limit
= limit
+ 1;
292 edac_dbg(0, "No SAD entry for 0x%llx\n", addr
);
296 SKX_GET_ILV(d
, i
, ilv
);
298 switch (SKX_SAD_INTERLEAVE(sad
)) {
300 idx
= GET_BITFIELD(addr
, 6, 8);
303 idx
= GET_BITFIELD(addr
, 8, 10);
306 idx
= GET_BITFIELD(addr
, 12, 14);
309 idx
= GET_BITFIELD(addr
, 30, 32);
313 tgt
= GET_BITFIELD(ilv
, 4 * idx
, 4 * idx
+ 3);
315 /* If point to another node, find it and start over */
316 if (SKX_ILV_REMOTE(tgt
)) {
318 edac_dbg(0, "Double remote!\n");
322 list_for_each_entry(d
, skx_edac_list
, list
) {
323 if (d
->imc
[0].src_id
== SKX_ILV_TARGET(tgt
))
326 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt
));
330 if (SKX_SAD_MOD3(sad
) == 0) {
331 lchan
= SKX_ILV_TARGET(tgt
);
333 switch (SKX_SAD_MOD3MODE(sad
)) {
344 edac_dbg(0, "illegal mod3mode\n");
347 switch (SKX_SAD_MOD3ASMOD2(sad
)) {
349 lchan
= (addr
>> shift
) % 3;
352 lchan
= (addr
>> shift
) % 2;
355 lchan
= (addr
>> shift
) % 2;
356 lchan
= (lchan
<< 1) | !lchan
;
359 lchan
= ((addr
>> shift
) % 2) << 1;
362 lchan
= (lchan
<< 1) | (SKX_ILV_TARGET(tgt
) & 1);
366 res
->socket
= d
->imc
[0].src_id
;
367 res
->imc
= GET_BITFIELD(d
->mcroute
, lchan
* 3, lchan
* 3 + 2);
368 res
->channel
= GET_BITFIELD(d
->mcroute
, lchan
* 2 + 18, lchan
* 2 + 19);
370 edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
371 res
->addr
, res
->socket
, res
->imc
, res
->channel
);
375 #define SKX_MAX_TAD 8
377 #define SKX_GET_TADBASE(d, mc, i, reg) \
378 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
379 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
380 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
381 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
382 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
384 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
385 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
386 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
387 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
388 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
389 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
390 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
392 /* which bit used for both socket and channel interleave */
393 static int skx_granularity
[] = { 6, 8, 12, 30 };
395 static u64
skx_do_interleave(u64 addr
, int shift
, int ways
, u64 lowbits
)
401 return addr
| (lowbits
& ((1ull << shift
) - 1));
404 static bool skx_tad_decode(struct decoded_addr
*res
)
407 u32 base
, wayness
, chnilvoffset
;
408 int skt_interleave_bit
, chn_interleave_bit
;
411 for (i
= 0; i
< SKX_MAX_TAD
; i
++) {
412 SKX_GET_TADBASE(res
->dev
, res
->imc
, i
, base
);
413 SKX_GET_TADWAYNESS(res
->dev
, res
->imc
, i
, wayness
);
414 if (SKX_TAD_BASE(base
) <= res
->addr
&& res
->addr
<= SKX_TAD_LIMIT(wayness
))
417 edac_dbg(0, "No TAD entry for 0x%llx\n", res
->addr
);
421 res
->sktways
= SKX_TAD_SKTWAYS(wayness
);
422 res
->chanways
= SKX_TAD_CHNWAYS(wayness
);
423 skt_interleave_bit
= skx_granularity
[SKX_TAD_SKT_GRAN(base
)];
424 chn_interleave_bit
= skx_granularity
[SKX_TAD_CHN_GRAN(base
)];
426 SKX_GET_TADCHNILVOFFSET(res
->dev
, res
->imc
, res
->channel
, i
, chnilvoffset
);
427 channel_addr
= res
->addr
- SKX_TAD_OFFSET(chnilvoffset
);
429 if (res
->chanways
== 3 && skt_interleave_bit
> chn_interleave_bit
) {
430 /* Must handle channel first, then socket */
431 channel_addr
= skx_do_interleave(channel_addr
, chn_interleave_bit
,
432 res
->chanways
, channel_addr
);
433 channel_addr
= skx_do_interleave(channel_addr
, skt_interleave_bit
,
434 res
->sktways
, channel_addr
);
436 /* Handle socket then channel. Preserve low bits from original address */
437 channel_addr
= skx_do_interleave(channel_addr
, skt_interleave_bit
,
438 res
->sktways
, res
->addr
);
439 channel_addr
= skx_do_interleave(channel_addr
, chn_interleave_bit
,
440 res
->chanways
, res
->addr
);
443 res
->chan_addr
= channel_addr
;
445 edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
446 res
->addr
, res
->chan_addr
, res
->sktways
, res
->chanways
);
450 #define SKX_MAX_RIR 4
452 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
453 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
454 0x108 + 4 * (i), &(reg))
455 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
456 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
457 0x120 + 16 * (idx) + 4 * (i), &(reg))
459 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
460 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
461 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
462 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
463 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
465 static bool skx_rir_decode(struct decoded_addr
*res
)
467 int i
, idx
, chan_rank
;
470 u64 rank_addr
, prev_limit
= 0, limit
;
472 if (res
->dev
->imc
[res
->imc
].chan
[res
->channel
].dimms
[0].close_pg
)
477 for (i
= 0; i
< SKX_MAX_RIR
; i
++) {
478 SKX_GET_RIRWAYNESS(res
->dev
, res
->imc
, res
->channel
, i
, rirway
);
479 limit
= SKX_RIR_LIMIT(rirway
);
480 if (SKX_RIR_VALID(rirway
)) {
481 if (prev_limit
<= res
->chan_addr
&&
482 res
->chan_addr
<= limit
)
487 edac_dbg(0, "No RIR entry for 0x%llx\n", res
->addr
);
491 rank_addr
= res
->chan_addr
>> shift
;
492 rank_addr
/= SKX_RIR_WAYS(rirway
);
494 rank_addr
|= res
->chan_addr
& GENMASK_ULL(shift
- 1, 0);
496 res
->rank_address
= rank_addr
;
497 idx
= (res
->chan_addr
>> shift
) % SKX_RIR_WAYS(rirway
);
499 SKX_GET_RIRILV(res
->dev
, res
->imc
, res
->channel
, idx
, i
, rirlv
);
500 res
->rank_address
= rank_addr
- SKX_RIR_OFFSET(rirlv
);
501 chan_rank
= SKX_RIR_CHAN_RANK(rirlv
);
502 res
->channel_rank
= chan_rank
;
503 res
->dimm
= chan_rank
/ 4;
504 res
->rank
= chan_rank
% 4;
506 edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
507 res
->addr
, res
->dimm
, res
->rank
,
508 res
->channel_rank
, res
->rank_address
);
512 static u8 skx_close_row
[] = {
513 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33, 34
516 static u8 skx_close_column
[] = {
517 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
520 static u8 skx_open_row
[] = {
521 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34
524 static u8 skx_open_column
[] = {
525 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
528 static u8 skx_open_fine_column
[] = {
529 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
532 static int skx_bits(u64 addr
, int nbits
, u8
*bits
)
536 for (i
= 0; i
< nbits
; i
++)
537 res
|= ((addr
>> bits
[i
]) & 1) << i
;
541 static int skx_bank_bits(u64 addr
, int b0
, int b1
, int do_xor
, int x0
, int x1
)
543 int ret
= GET_BITFIELD(addr
, b0
, b0
) | (GET_BITFIELD(addr
, b1
, b1
) << 1);
546 ret
^= GET_BITFIELD(addr
, x0
, x0
) | (GET_BITFIELD(addr
, x1
, x1
) << 1);
551 static bool skx_mad_decode(struct decoded_addr
*r
)
553 struct skx_dimm
*dimm
= &r
->dev
->imc
[r
->imc
].chan
[r
->channel
].dimms
[r
->dimm
];
554 int bg0
= dimm
->fine_grain_bank
? 6 : 13;
556 if (dimm
->close_pg
) {
557 r
->row
= skx_bits(r
->rank_address
, dimm
->rowbits
, skx_close_row
);
558 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_close_column
);
559 r
->column
|= 0x400; /* C10 is autoprecharge, always set */
560 r
->bank_address
= skx_bank_bits(r
->rank_address
, 8, 9, dimm
->bank_xor_enable
, 22, 28);
561 r
->bank_group
= skx_bank_bits(r
->rank_address
, 6, 7, dimm
->bank_xor_enable
, 20, 21);
563 r
->row
= skx_bits(r
->rank_address
, dimm
->rowbits
, skx_open_row
);
564 if (dimm
->fine_grain_bank
)
565 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_open_fine_column
);
567 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_open_column
);
568 r
->bank_address
= skx_bank_bits(r
->rank_address
, 18, 19, dimm
->bank_xor_enable
, 22, 23);
569 r
->bank_group
= skx_bank_bits(r
->rank_address
, bg0
, 17, dimm
->bank_xor_enable
, 20, 21);
571 r
->row
&= (1u << dimm
->rowbits
) - 1;
573 edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
574 r
->addr
, r
->row
, r
->column
, r
->bank_address
,
579 static bool skx_decode(struct decoded_addr
*res
)
581 return skx_sad_decode(res
) && skx_tad_decode(res
) &&
582 skx_rir_decode(res
) && skx_mad_decode(res
);
585 static struct notifier_block skx_mce_dec
= {
586 .notifier_call
= skx_mce_check_error
,
587 .priority
= MCE_PRIO_EDAC
,
592 * make sure we are running on the correct cpu model
593 * search for all the devices we need
594 * check which DIMMs are present.
596 static int __init
skx_init(void)
598 const struct x86_cpu_id
*id
;
599 struct res_config
*cfg
;
600 const struct munit
*m
;
602 int rc
= 0, i
, off
[3] = {0xd0, 0xd4, 0xd8};
603 u8 mc
= 0, src_id
, node_id
;
608 if (ghes_get_devices())
611 owner
= edac_get_owner();
612 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
615 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR
))
618 id
= x86_match_cpu(skx_cpuids
);
622 cfg
= (struct res_config
*)id
->driver_data
;
624 rc
= skx_get_hi_lo(0x2034, off
, &skx_tolm
, &skx_tohm
);
628 rc
= skx_get_all_bus_mappings(cfg
, &skx_edac_list
);
632 edac_dbg(2, "No memory controllers found\n");
635 skx_num_sockets
= rc
;
637 for (m
= skx_all_munits
; m
->did
; m
++) {
638 rc
= get_all_munits(m
);
641 if (rc
!= m
->per_socket
* skx_num_sockets
) {
642 edac_dbg(2, "Expected %d, got %d of 0x%x\n",
643 m
->per_socket
* skx_num_sockets
, rc
, m
->did
);
649 list_for_each_entry(d
, skx_edac_list
, list
) {
650 rc
= skx_get_src_id(d
, 0xf0, &src_id
);
653 rc
= skx_get_node_id(d
, &node_id
);
656 edac_dbg(2, "src_id=%d node_id=%d\n", src_id
, node_id
);
657 for (i
= 0; i
< SKX_NUM_IMC
; i
++) {
660 d
->imc
[i
].src_id
= src_id
;
661 d
->imc
[i
].node_id
= node_id
;
662 rc
= skx_register_mci(&d
->imc
[i
], d
->imc
[i
].chan
[0].cdev
,
663 "Skylake Socket", EDAC_MOD_STR
,
664 skx_get_dimm_config
, cfg
);
670 skx_set_decode(skx_decode
, skx_show_retry_rd_err_log
);
672 if (nvdimm_count
&& skx_adxl_get() != -ENODEV
) {
673 skx_set_decode(NULL
, skx_show_retry_rd_err_log
);
676 skx_printk(KERN_NOTICE
, "Only decoding DDR4 address!\n");
677 skx_set_decode(skx_decode
, skx_show_retry_rd_err_log
);
680 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
683 skx_setup_debug("skx_test");
685 mce_register_decode_chain(&skx_mce_dec
);
693 static void __exit
skx_exit(void)
696 mce_unregister_decode_chain(&skx_mce_dec
);
697 skx_teardown_debug();
703 module_init(skx_init
);
704 module_exit(skx_exit
);
706 module_param(edac_op_state
, int, 0444);
707 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
709 MODULE_LICENSE("GPL v2");
710 MODULE_AUTHOR("Tony Luck");
711 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");