1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
12 #include <linux/unaligned.h>
14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START
15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
18 struct kobject
*dmi_kobj
;
19 EXPORT_SYMBOL_GPL(dmi_kobj
);
22 * DMI stands for "Desktop Management Interface". It is part
23 * of and an antecedent to, SMBIOS, which stands for System
24 * Management BIOS. See further: https://www.dmtf.org/standards
26 static const char dmi_empty_string
[] = "";
28 static u32 dmi_ver __initdata
;
31 static u8 smbios_entry_point
[32];
32 static int smbios_entry_point_size
;
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string
[128] __initdata
;
37 static struct dmi_memdev_info
{
42 u8 type
; /* DDR2, DDR3, DDR4 etc */
44 static int dmi_memdev_nr
;
45 static int dmi_memdev_populated_nr __initdata
;
47 static const char * __init
dmi_string_nosave(const struct dmi_header
*dm
, u8 s
)
49 const u8
*bp
= ((u8
*) dm
) + dm
->length
;
53 while (--s
> 0 && *bp
)
56 /* Strings containing only spaces are considered empty */
64 return dmi_empty_string
;
67 static const char * __init
dmi_string(const struct dmi_header
*dm
, u8 s
)
69 const char *bp
= dmi_string_nosave(dm
, s
);
73 if (bp
== dmi_empty_string
)
74 return dmi_empty_string
;
85 * We have to be cautious here. We have seen BIOSes with DMI pointers
86 * pointing to completely the wrong place for example
88 static void dmi_decode_table(u8
*buf
,
89 void (*decode
)(const struct dmi_header
*, void *),
96 * Stop when we have seen all the items the table claimed to have
97 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
98 * >= 3.0 only) OR we run off the end of the table (should never
99 * happen but sometimes does on bogus implementations.)
101 while ((!dmi_num
|| i
< dmi_num
) &&
102 (data
- buf
+ sizeof(struct dmi_header
)) <= dmi_len
) {
103 const struct dmi_header
*dm
= (const struct dmi_header
*)data
;
106 * If a short entry is found (less than 4 bytes), not only it
107 * is invalid, but we cannot reliably locate the next entry.
109 if (dm
->length
< sizeof(struct dmi_header
)) {
111 "Corrupted DMI table, offset %zd (only %d entries processed)\n",
117 * We want to know the total length (formatted area and
118 * strings) before decoding to make sure we won't run off the
119 * table in dmi_decode or dmi_string
122 while ((data
- buf
< dmi_len
- 1) && (data
[0] || data
[1]))
124 if (data
- buf
< dmi_len
- 1)
125 decode(dm
, private_data
);
131 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
132 * For tables behind a 64-bit entry point, we have no item
133 * count and no exact table length, so stop on end-of-table
134 * marker. For tables behind a 32-bit entry point, we have
135 * seen OEM structures behind the end-of-table marker on
136 * some systems, so don't trust it.
138 if (!dmi_num
&& dm
->type
== DMI_ENTRY_END_OF_TABLE
)
142 /* Trim DMI table length if needed */
143 if (dmi_len
> data
- buf
)
144 dmi_len
= data
- buf
;
147 static phys_addr_t dmi_base
;
149 static int __init
dmi_walk_early(void (*decode
)(const struct dmi_header
*,
153 u32 orig_dmi_len
= dmi_len
;
155 buf
= dmi_early_remap(dmi_base
, orig_dmi_len
);
159 dmi_decode_table(buf
, decode
, NULL
);
161 add_device_randomness(buf
, dmi_len
);
163 dmi_early_unmap(buf
, orig_dmi_len
);
167 static int __init
dmi_checksum(const u8
*buf
, u8 len
)
172 for (a
= 0; a
< len
; a
++)
178 static const char *dmi_ident
[DMI_STRING_MAX
];
179 static LIST_HEAD(dmi_devices
);
181 EXPORT_SYMBOL_GPL(dmi_available
);
186 static void __init
dmi_save_ident(const struct dmi_header
*dm
, int slot
,
189 const char *d
= (const char *) dm
;
192 if (dmi_ident
[slot
] || dm
->length
<= string
)
195 p
= dmi_string(dm
, d
[string
]);
202 static void __init
dmi_save_release(const struct dmi_header
*dm
, int slot
,
205 const u8
*minor
, *major
;
208 /* If the table doesn't have the field, let's return */
209 if (dmi_ident
[slot
] || dm
->length
< index
)
212 minor
= (u8
*) dm
+ index
;
213 major
= (u8
*) dm
+ index
- 1;
215 /* As per the spec, if the system doesn't support this field,
218 if (*major
== 0xFF && *minor
== 0xFF)
225 sprintf(s
, "%u.%u", *major
, *minor
);
230 static void __init
dmi_save_uuid(const struct dmi_header
*dm
, int slot
,
235 int is_ff
= 1, is_00
= 1, i
;
237 if (dmi_ident
[slot
] || dm
->length
< index
+ 16)
240 d
= (u8
*) dm
+ index
;
241 for (i
= 0; i
< 16 && (is_ff
|| is_00
); i
++) {
251 s
= dmi_alloc(16*2+4+1);
256 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
257 * the UUID are supposed to be little-endian encoded. The specification
258 * says that this is the defacto standard.
260 if (dmi_ver
>= 0x020600)
261 sprintf(s
, "%pUl", d
);
263 sprintf(s
, "%pUb", d
);
268 static void __init
dmi_save_type(const struct dmi_header
*dm
, int slot
,
274 if (dmi_ident
[slot
] || dm
->length
<= index
)
281 d
= (u8
*) dm
+ index
;
282 sprintf(s
, "%u", *d
& 0x7F);
286 static void __init
dmi_save_one_device(int type
, const char *name
)
288 struct dmi_device
*dev
;
290 /* No duplicate device */
291 if (dmi_find_device(type
, name
, NULL
))
294 dev
= dmi_alloc(sizeof(*dev
) + strlen(name
) + 1);
299 strcpy((char *)(dev
+ 1), name
);
300 dev
->name
= (char *)(dev
+ 1);
301 dev
->device_data
= NULL
;
302 list_add(&dev
->list
, &dmi_devices
);
305 static void __init
dmi_save_devices(const struct dmi_header
*dm
)
307 int i
, count
= (dm
->length
- sizeof(struct dmi_header
)) / 2;
309 for (i
= 0; i
< count
; i
++) {
310 const char *d
= (char *)(dm
+ 1) + (i
* 2);
312 /* Skip disabled device */
313 if ((*d
& 0x80) == 0)
316 dmi_save_one_device(*d
& 0x7f, dmi_string_nosave(dm
, *(d
+ 1)));
320 static void __init
dmi_save_oem_strings_devices(const struct dmi_header
*dm
)
323 struct dmi_device
*dev
;
325 if (dm
->length
< 0x05)
328 count
= *(u8
*)(dm
+ 1);
329 for (i
= 1; i
<= count
; i
++) {
330 const char *devname
= dmi_string(dm
, i
);
332 if (devname
== dmi_empty_string
)
335 dev
= dmi_alloc(sizeof(*dev
));
339 dev
->type
= DMI_DEV_TYPE_OEM_STRING
;
341 dev
->device_data
= NULL
;
343 list_add(&dev
->list
, &dmi_devices
);
347 static void __init
dmi_save_ipmi_device(const struct dmi_header
*dm
)
349 struct dmi_device
*dev
;
352 data
= dmi_alloc(dm
->length
);
356 memcpy(data
, dm
, dm
->length
);
358 dev
= dmi_alloc(sizeof(*dev
));
362 dev
->type
= DMI_DEV_TYPE_IPMI
;
363 dev
->name
= "IPMI controller";
364 dev
->device_data
= data
;
366 list_add_tail(&dev
->list
, &dmi_devices
);
369 static void __init
dmi_save_dev_pciaddr(int instance
, int segment
, int bus
,
370 int devfn
, const char *name
, int type
)
372 struct dmi_dev_onboard
*dev
;
374 /* Ignore invalid values */
375 if (type
== DMI_DEV_TYPE_DEV_SLOT
&&
376 segment
== 0xFFFF && bus
== 0xFF && devfn
== 0xFF)
379 dev
= dmi_alloc(sizeof(*dev
) + strlen(name
) + 1);
383 dev
->instance
= instance
;
384 dev
->segment
= segment
;
388 strcpy((char *)&dev
[1], name
);
389 dev
->dev
.type
= type
;
390 dev
->dev
.name
= (char *)&dev
[1];
391 dev
->dev
.device_data
= dev
;
393 list_add(&dev
->dev
.list
, &dmi_devices
);
396 static void __init
dmi_save_extended_devices(const struct dmi_header
*dm
)
399 const u8
*d
= (u8
*)dm
;
401 if (dm
->length
< 0x0B)
404 /* Skip disabled device */
405 if ((d
[0x5] & 0x80) == 0)
408 name
= dmi_string_nosave(dm
, d
[0x4]);
409 dmi_save_dev_pciaddr(d
[0x6], *(u16
*)(d
+ 0x7), d
[0x9], d
[0xA], name
,
410 DMI_DEV_TYPE_DEV_ONBOARD
);
411 dmi_save_one_device(d
[0x5] & 0x7f, name
);
414 static void __init
dmi_save_system_slot(const struct dmi_header
*dm
)
416 const u8
*d
= (u8
*)dm
;
418 /* Need SMBIOS 2.6+ structure */
419 if (dm
->length
< 0x11)
421 dmi_save_dev_pciaddr(*(u16
*)(d
+ 0x9), *(u16
*)(d
+ 0xD), d
[0xF],
422 d
[0x10], dmi_string_nosave(dm
, d
[0x4]),
423 DMI_DEV_TYPE_DEV_SLOT
);
426 static void __init
count_mem_devices(const struct dmi_header
*dm
, void *v
)
428 if (dm
->type
!= DMI_ENTRY_MEM_DEVICE
)
433 static void __init
save_mem_devices(const struct dmi_header
*dm
, void *v
)
435 const char *d
= (const char *)dm
;
440 if (dm
->type
!= DMI_ENTRY_MEM_DEVICE
|| dm
->length
< 0x13)
442 if (nr
>= dmi_memdev_nr
) {
443 pr_warn(FW_BUG
"Too many DIMM entries in SMBIOS table\n");
446 dmi_memdev
[nr
].handle
= get_unaligned(&dm
->handle
);
447 dmi_memdev
[nr
].device
= dmi_string(dm
, d
[0x10]);
448 dmi_memdev
[nr
].bank
= dmi_string(dm
, d
[0x11]);
449 dmi_memdev
[nr
].type
= d
[0x12];
451 size
= get_unaligned((u16
*)&d
[0xC]);
454 else if (size
== 0xffff)
456 else if (size
& 0x8000)
457 bytes
= (u64
)(size
& 0x7fff) << 10;
458 else if (size
!= 0x7fff || dm
->length
< 0x20)
459 bytes
= (u64
)size
<< 20;
461 bytes
= (u64
)get_unaligned((u32
*)&d
[0x1C]) << 20;
464 dmi_memdev_populated_nr
++;
466 dmi_memdev
[nr
].size
= bytes
;
470 static void __init
dmi_memdev_walk(void)
472 if (dmi_walk_early(count_mem_devices
) == 0 && dmi_memdev_nr
) {
473 dmi_memdev
= dmi_alloc(sizeof(*dmi_memdev
) * dmi_memdev_nr
);
475 dmi_walk_early(save_mem_devices
);
480 * Process a DMI table entry. Right now all we care about are the BIOS
481 * and machine entries. For 2.5 we should pull the smbus controller info
484 static void __init
dmi_decode(const struct dmi_header
*dm
, void *dummy
)
487 case 0: /* BIOS Information */
488 dmi_save_ident(dm
, DMI_BIOS_VENDOR
, 4);
489 dmi_save_ident(dm
, DMI_BIOS_VERSION
, 5);
490 dmi_save_ident(dm
, DMI_BIOS_DATE
, 8);
491 dmi_save_release(dm
, DMI_BIOS_RELEASE
, 21);
492 dmi_save_release(dm
, DMI_EC_FIRMWARE_RELEASE
, 23);
494 case 1: /* System Information */
495 dmi_save_ident(dm
, DMI_SYS_VENDOR
, 4);
496 dmi_save_ident(dm
, DMI_PRODUCT_NAME
, 5);
497 dmi_save_ident(dm
, DMI_PRODUCT_VERSION
, 6);
498 dmi_save_ident(dm
, DMI_PRODUCT_SERIAL
, 7);
499 dmi_save_uuid(dm
, DMI_PRODUCT_UUID
, 8);
500 dmi_save_ident(dm
, DMI_PRODUCT_SKU
, 25);
501 dmi_save_ident(dm
, DMI_PRODUCT_FAMILY
, 26);
503 case 2: /* Base Board Information */
504 dmi_save_ident(dm
, DMI_BOARD_VENDOR
, 4);
505 dmi_save_ident(dm
, DMI_BOARD_NAME
, 5);
506 dmi_save_ident(dm
, DMI_BOARD_VERSION
, 6);
507 dmi_save_ident(dm
, DMI_BOARD_SERIAL
, 7);
508 dmi_save_ident(dm
, DMI_BOARD_ASSET_TAG
, 8);
510 case 3: /* Chassis Information */
511 dmi_save_ident(dm
, DMI_CHASSIS_VENDOR
, 4);
512 dmi_save_type(dm
, DMI_CHASSIS_TYPE
, 5);
513 dmi_save_ident(dm
, DMI_CHASSIS_VERSION
, 6);
514 dmi_save_ident(dm
, DMI_CHASSIS_SERIAL
, 7);
515 dmi_save_ident(dm
, DMI_CHASSIS_ASSET_TAG
, 8);
517 case 9: /* System Slots */
518 dmi_save_system_slot(dm
);
520 case 10: /* Onboard Devices Information */
521 dmi_save_devices(dm
);
523 case 11: /* OEM Strings */
524 dmi_save_oem_strings_devices(dm
);
526 case 38: /* IPMI Device Information */
527 dmi_save_ipmi_device(dm
);
529 case 41: /* Onboard Devices Extended Information */
530 dmi_save_extended_devices(dm
);
534 static int __init
print_filtered(char *buf
, size_t len
, const char *info
)
542 for (p
= info
; *p
; p
++)
544 c
+= scnprintf(buf
+ c
, len
- c
, "%c", *p
);
546 c
+= scnprintf(buf
+ c
, len
- c
, "\\x%02x", *p
& 0xff);
550 static void __init
dmi_format_ids(char *buf
, size_t len
)
553 const char *board
; /* Board Name is optional */
555 c
+= print_filtered(buf
+ c
, len
- c
,
556 dmi_get_system_info(DMI_SYS_VENDOR
));
557 c
+= scnprintf(buf
+ c
, len
- c
, " ");
558 c
+= print_filtered(buf
+ c
, len
- c
,
559 dmi_get_system_info(DMI_PRODUCT_NAME
));
561 board
= dmi_get_system_info(DMI_BOARD_NAME
);
563 c
+= scnprintf(buf
+ c
, len
- c
, "/");
564 c
+= print_filtered(buf
+ c
, len
- c
, board
);
566 c
+= scnprintf(buf
+ c
, len
- c
, ", BIOS ");
567 c
+= print_filtered(buf
+ c
, len
- c
,
568 dmi_get_system_info(DMI_BIOS_VERSION
));
569 c
+= scnprintf(buf
+ c
, len
- c
, " ");
570 c
+= print_filtered(buf
+ c
, len
- c
,
571 dmi_get_system_info(DMI_BIOS_DATE
));
575 * Check for DMI/SMBIOS headers in the system firmware image. Any
576 * SMBIOS header must start 16 bytes before the DMI header, so take a
577 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
578 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
579 * takes precedence) and return 0. Otherwise return 1.
581 static int __init
dmi_present(const u8
*buf
)
586 * The size of this structure is 31 bytes, but we also accept value
587 * 30 due to a mistake in SMBIOS specification version 2.1.
589 if (memcmp(buf
, "_SM_", 4) == 0 &&
590 buf
[5] >= 30 && buf
[5] <= 32 &&
591 dmi_checksum(buf
, buf
[5])) {
592 smbios_ver
= get_unaligned_be16(buf
+ 6);
593 smbios_entry_point_size
= buf
[5];
594 memcpy(smbios_entry_point
, buf
, smbios_entry_point_size
);
596 /* Some BIOS report weird SMBIOS version, fix that up */
597 switch (smbios_ver
) {
600 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
601 smbios_ver
& 0xFF, 3);
605 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
615 if (memcmp(buf
, "_DMI_", 5) == 0 && dmi_checksum(buf
, 15)) {
617 dmi_ver
= smbios_ver
;
619 dmi_ver
= (buf
[14] & 0xF0) << 4 | (buf
[14] & 0x0F);
621 dmi_num
= get_unaligned_le16(buf
+ 12);
622 dmi_len
= get_unaligned_le16(buf
+ 6);
623 dmi_base
= get_unaligned_le32(buf
+ 8);
625 if (dmi_walk_early(dmi_decode
) == 0) {
627 pr_info("SMBIOS %d.%d present.\n",
628 dmi_ver
>> 16, (dmi_ver
>> 8) & 0xFF);
630 smbios_entry_point_size
= 15;
631 memcpy(smbios_entry_point
, buf
,
632 smbios_entry_point_size
);
633 pr_info("Legacy DMI %d.%d present.\n",
634 dmi_ver
>> 16, (dmi_ver
>> 8) & 0xFF);
636 dmi_format_ids(dmi_ids_string
, sizeof(dmi_ids_string
));
637 pr_info("DMI: %s\n", dmi_ids_string
);
646 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
647 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
649 static int __init
dmi_smbios3_present(const u8
*buf
)
651 if (memcmp(buf
, "_SM3_", 5) == 0 &&
652 buf
[6] >= 24 && buf
[6] <= 32 &&
653 dmi_checksum(buf
, buf
[6])) {
654 dmi_ver
= get_unaligned_be24(buf
+ 7);
655 dmi_num
= 0; /* No longer specified */
656 dmi_len
= get_unaligned_le32(buf
+ 12);
657 dmi_base
= get_unaligned_le64(buf
+ 16);
658 smbios_entry_point_size
= buf
[6];
659 memcpy(smbios_entry_point
, buf
, smbios_entry_point_size
);
661 if (dmi_walk_early(dmi_decode
) == 0) {
662 pr_info("SMBIOS %d.%d.%d present.\n",
663 dmi_ver
>> 16, (dmi_ver
>> 8) & 0xFF,
665 dmi_format_ids(dmi_ids_string
, sizeof(dmi_ids_string
));
666 pr_info("DMI: %s\n", dmi_ids_string
);
673 static void __init
dmi_scan_machine(void)
678 if (efi_enabled(EFI_CONFIG_TABLES
)) {
680 * According to the DMTF SMBIOS reference spec v3.0.0, it is
681 * allowed to define both the 64-bit entry point (smbios3) and
682 * the 32-bit entry point (smbios), in which case they should
683 * either both point to the same SMBIOS structure table, or the
684 * table pointed to by the 64-bit entry point should contain a
685 * superset of the table contents pointed to by the 32-bit entry
686 * point (section 5.2)
687 * This implies that the 64-bit entry point should have
688 * precedence if it is defined and supported by the OS. If we
689 * have the 64-bit entry point, but fail to decode it, fall
690 * back to the legacy one (if available)
692 if (efi
.smbios3
!= EFI_INVALID_TABLE_ADDR
) {
693 p
= dmi_early_remap(efi
.smbios3
, 32);
696 memcpy_fromio(buf
, p
, 32);
697 dmi_early_unmap(p
, 32);
699 if (!dmi_smbios3_present(buf
)) {
704 if (efi
.smbios
== EFI_INVALID_TABLE_ADDR
)
707 /* This is called as a core_initcall() because it isn't
708 * needed during early boot. This also means we can
709 * iounmap the space when we're done with it.
711 p
= dmi_early_remap(efi
.smbios
, 32);
714 memcpy_fromio(buf
, p
, 32);
715 dmi_early_unmap(p
, 32);
717 if (!dmi_present(buf
)) {
721 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK
)) {
722 p
= dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START
, 0x10000);
727 * Same logic as above, look for a 64-bit entry point
728 * first, and if not found, fall back to 32-bit entry point.
730 memcpy_fromio(buf
, p
, 16);
731 for (q
= p
+ 16; q
< p
+ 0x10000; q
+= 16) {
732 memcpy_fromio(buf
+ 16, q
, 16);
733 if (!dmi_smbios3_present(buf
)) {
735 dmi_early_unmap(p
, 0x10000);
738 memcpy(buf
, buf
+ 16, 16);
742 * Iterate over all possible DMI header addresses q.
743 * Maintain the 32 bytes around q in buf. On the
744 * first iteration, substitute zero for the
745 * out-of-range bytes so there is no chance of falsely
746 * detecting an SMBIOS header.
749 for (q
= p
; q
< p
+ 0x10000; q
+= 16) {
750 memcpy_fromio(buf
+ 16, q
, 16);
751 if (!dmi_present(buf
)) {
753 dmi_early_unmap(p
, 0x10000);
756 memcpy(buf
, buf
+ 16, 16);
758 dmi_early_unmap(p
, 0x10000);
761 pr_info("DMI not present or invalid.\n");
764 static BIN_ATTR_SIMPLE_ADMIN_RO(smbios_entry_point
);
765 static BIN_ATTR_SIMPLE_ADMIN_RO(DMI
);
767 static int __init
dmi_init(void)
769 struct kobject
*tables_kobj
;
777 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
778 * even after farther error, as it can be used by other modules like
781 dmi_kobj
= kobject_create_and_add("dmi", firmware_kobj
);
785 tables_kobj
= kobject_create_and_add("tables", dmi_kobj
);
789 dmi_table
= dmi_remap(dmi_base
, dmi_len
);
793 bin_attr_smbios_entry_point
.size
= smbios_entry_point_size
;
794 bin_attr_smbios_entry_point
.private = smbios_entry_point
;
795 ret
= sysfs_create_bin_file(tables_kobj
, &bin_attr_smbios_entry_point
);
799 bin_attr_DMI
.size
= dmi_len
;
800 bin_attr_DMI
.private = dmi_table
;
801 ret
= sysfs_create_bin_file(tables_kobj
, &bin_attr_DMI
);
805 sysfs_remove_bin_file(tables_kobj
,
806 &bin_attr_smbios_entry_point
);
808 dmi_unmap(dmi_table
);
810 kobject_del(tables_kobj
);
811 kobject_put(tables_kobj
);
813 pr_err("dmi: Firmware registration failed.\n");
817 subsys_initcall(dmi_init
);
820 * dmi_setup - scan and setup DMI system information
822 * Scan the DMI system information. This setups DMI identifiers
823 * (dmi_system_id) for printing it out on task dumps and prepares
824 * DIMM entry information (dmi_memdev_info) from the SMBIOS table
825 * for using this when reporting memory errors.
827 void __init
dmi_setup(void)
834 pr_info("DMI: Memory slots populated: %d/%d\n",
835 dmi_memdev_populated_nr
, dmi_memdev_nr
);
836 dump_stack_set_arch_desc("%s", dmi_ids_string
);
840 * dmi_matches - check if dmi_system_id structure matches system DMI data
841 * @dmi: pointer to the dmi_system_id structure to check
843 static bool dmi_matches(const struct dmi_system_id
*dmi
)
847 for (i
= 0; i
< ARRAY_SIZE(dmi
->matches
); i
++) {
848 int s
= dmi
->matches
[i
].slot
;
851 if (s
== DMI_OEM_STRING
) {
852 /* DMI_OEM_STRING must be exact match */
853 const struct dmi_device
*valid
;
855 valid
= dmi_find_device(DMI_DEV_TYPE_OEM_STRING
,
856 dmi
->matches
[i
].substr
, NULL
);
859 } else if (dmi_ident
[s
]) {
860 if (dmi
->matches
[i
].exact_match
) {
861 if (!strcmp(dmi_ident
[s
],
862 dmi
->matches
[i
].substr
))
865 if (strstr(dmi_ident
[s
],
866 dmi
->matches
[i
].substr
))
878 * dmi_is_end_of_table - check for end-of-table marker
879 * @dmi: pointer to the dmi_system_id structure to check
881 static bool dmi_is_end_of_table(const struct dmi_system_id
*dmi
)
883 return dmi
->matches
[0].slot
== DMI_NONE
;
887 * dmi_check_system - check system DMI data
888 * @list: array of dmi_system_id structures to match against
889 * All non-null elements of the list must match
890 * their slot's (field index's) data (i.e., each
891 * list string must be a substring of the specified
892 * DMI slot's string data) to be considered a
895 * Walk the blacklist table running matching functions until someone
896 * returns non zero or we hit the end. Callback function is called for
897 * each successful match. Returns the number of matches.
899 * dmi_setup must be called before this function is called.
901 int dmi_check_system(const struct dmi_system_id
*list
)
904 const struct dmi_system_id
*d
;
906 for (d
= list
; !dmi_is_end_of_table(d
); d
++)
907 if (dmi_matches(d
)) {
909 if (d
->callback
&& d
->callback(d
))
915 EXPORT_SYMBOL(dmi_check_system
);
918 * dmi_first_match - find dmi_system_id structure matching system DMI data
919 * @list: array of dmi_system_id structures to match against
920 * All non-null elements of the list must match
921 * their slot's (field index's) data (i.e., each
922 * list string must be a substring of the specified
923 * DMI slot's string data) to be considered a
926 * Walk the blacklist table until the first match is found. Return the
927 * pointer to the matching entry or NULL if there's no match.
929 * dmi_setup must be called before this function is called.
931 const struct dmi_system_id
*dmi_first_match(const struct dmi_system_id
*list
)
933 const struct dmi_system_id
*d
;
935 for (d
= list
; !dmi_is_end_of_table(d
); d
++)
941 EXPORT_SYMBOL(dmi_first_match
);
944 * dmi_get_system_info - return DMI data value
945 * @field: data index (see enum dmi_field)
947 * Returns one DMI data value, can be used to perform
948 * complex DMI data checks.
950 const char *dmi_get_system_info(int field
)
952 return dmi_ident
[field
];
954 EXPORT_SYMBOL(dmi_get_system_info
);
957 * dmi_name_in_serial - Check if string is in the DMI product serial information
958 * @str: string to check for
960 int dmi_name_in_serial(const char *str
)
962 int f
= DMI_PRODUCT_SERIAL
;
963 if (dmi_ident
[f
] && strstr(dmi_ident
[f
], str
))
969 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
970 * @str: Case sensitive Name
972 int dmi_name_in_vendors(const char *str
)
974 static int fields
[] = { DMI_SYS_VENDOR
, DMI_BOARD_VENDOR
, DMI_NONE
};
976 for (i
= 0; fields
[i
] != DMI_NONE
; i
++) {
978 if (dmi_ident
[f
] && strstr(dmi_ident
[f
], str
))
983 EXPORT_SYMBOL(dmi_name_in_vendors
);
986 * dmi_find_device - find onboard device by type/name
987 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
988 * @name: device name string or %NULL to match all
989 * @from: previous device found in search, or %NULL for new search.
991 * Iterates through the list of known onboard devices. If a device is
992 * found with a matching @type and @name, a pointer to its device
993 * structure is returned. Otherwise, %NULL is returned.
994 * A new search is initiated by passing %NULL as the @from argument.
995 * If @from is not %NULL, searches continue from next device.
997 const struct dmi_device
*dmi_find_device(int type
, const char *name
,
998 const struct dmi_device
*from
)
1000 const struct list_head
*head
= from
? &from
->list
: &dmi_devices
;
1001 struct list_head
*d
;
1003 for (d
= head
->next
; d
!= &dmi_devices
; d
= d
->next
) {
1004 const struct dmi_device
*dev
=
1005 list_entry(d
, struct dmi_device
, list
);
1007 if (((type
== DMI_DEV_TYPE_ANY
) || (dev
->type
== type
)) &&
1008 ((name
== NULL
) || (strcmp(dev
->name
, name
) == 0)))
1014 EXPORT_SYMBOL(dmi_find_device
);
1017 * dmi_get_date - parse a DMI date
1018 * @field: data index (see enum dmi_field)
1019 * @yearp: optional out parameter for the year
1020 * @monthp: optional out parameter for the month
1021 * @dayp: optional out parameter for the day
1023 * The date field is assumed to be in the form resembling
1024 * [mm[/dd]]/yy[yy] and the result is stored in the out
1025 * parameters any or all of which can be omitted.
1027 * If the field doesn't exist, all out parameters are set to zero
1028 * and false is returned. Otherwise, true is returned with any
1029 * invalid part of date set to zero.
1031 * On return, year, month and day are guaranteed to be in the
1032 * range of [0,9999], [0,12] and [0,31] respectively.
1034 bool dmi_get_date(int field
, int *yearp
, int *monthp
, int *dayp
)
1036 int year
= 0, month
= 0, day
= 0;
1041 s
= dmi_get_system_info(field
);
1047 * Determine year first. We assume the date string resembles
1048 * mm/dd/yy[yy] but the original code extracted only the year
1049 * from the end. Keep the behavior in the spirit of no
1052 y
= strrchr(s
, '/');
1057 year
= simple_strtoul(y
, &e
, 10);
1058 if (y
!= e
&& year
< 100) { /* 2-digit year */
1060 if (year
< 1996) /* no dates < spec 1.0 */
1063 if (year
> 9999) /* year should fit in %04d */
1066 /* parse the mm and dd */
1067 month
= simple_strtoul(s
, &e
, 10);
1068 if (s
== e
|| *e
!= '/' || !month
|| month
> 12) {
1074 day
= simple_strtoul(s
, &e
, 10);
1075 if (s
== y
|| s
== e
|| *e
!= '/' || day
> 31)
1086 EXPORT_SYMBOL(dmi_get_date
);
1089 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1091 * Returns year on success, -ENXIO if DMI is not selected,
1092 * or a different negative error code if DMI field is not present
1095 int dmi_get_bios_year(void)
1100 exists
= dmi_get_date(DMI_BIOS_DATE
, &year
, NULL
, NULL
);
1104 return year
? year
: -ERANGE
;
1106 EXPORT_SYMBOL(dmi_get_bios_year
);
1109 * dmi_walk - Walk the DMI table and get called back for every record
1110 * @decode: Callback function
1111 * @private_data: Private data to be passed to the callback function
1113 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1114 * or a different negative error code if DMI walking fails.
1116 int dmi_walk(void (*decode
)(const struct dmi_header
*, void *),
1124 buf
= dmi_remap(dmi_base
, dmi_len
);
1128 dmi_decode_table(buf
, decode
, private_data
);
1133 EXPORT_SYMBOL_GPL(dmi_walk
);
1136 * dmi_match - compare a string to the dmi field (if exists)
1137 * @f: DMI field identifier
1138 * @str: string to compare the DMI field to
1140 * Returns true if the requested field equals to the str (including NULL).
1142 bool dmi_match(enum dmi_field f
, const char *str
)
1144 const char *info
= dmi_get_system_info(f
);
1146 if (info
== NULL
|| str
== NULL
)
1149 return !strcmp(info
, str
);
1151 EXPORT_SYMBOL_GPL(dmi_match
);
1153 void dmi_memdev_name(u16 handle
, const char **bank
, const char **device
)
1157 if (dmi_memdev
== NULL
)
1160 for (n
= 0; n
< dmi_memdev_nr
; n
++) {
1161 if (handle
== dmi_memdev
[n
].handle
) {
1162 *bank
= dmi_memdev
[n
].bank
;
1163 *device
= dmi_memdev
[n
].device
;
1168 EXPORT_SYMBOL_GPL(dmi_memdev_name
);
1170 u64
dmi_memdev_size(u16 handle
)
1175 for (n
= 0; n
< dmi_memdev_nr
; n
++) {
1176 if (handle
== dmi_memdev
[n
].handle
)
1177 return dmi_memdev
[n
].size
;
1182 EXPORT_SYMBOL_GPL(dmi_memdev_size
);
1185 * dmi_memdev_type - get the memory type
1186 * @handle: DMI structure handle
1188 * Return the DMI memory type of the module in the slot associated with the
1189 * given DMI handle, or 0x0 if no such DMI handle exists.
1191 u8
dmi_memdev_type(u16 handle
)
1196 for (n
= 0; n
< dmi_memdev_nr
; n
++) {
1197 if (handle
== dmi_memdev
[n
].handle
)
1198 return dmi_memdev
[n
].type
;
1201 return 0x0; /* Not a valid value */
1203 EXPORT_SYMBOL_GPL(dmi_memdev_type
);
1206 * dmi_memdev_handle - get the DMI handle of a memory slot
1207 * @slot: slot number
1209 * Return the DMI handle associated with a given memory slot, or %0xFFFF
1210 * if there is no such slot.
1212 u16
dmi_memdev_handle(int slot
)
1214 if (dmi_memdev
&& slot
>= 0 && slot
< dmi_memdev_nr
)
1215 return dmi_memdev
[slot
].handle
;
1217 return 0xffff; /* Not a valid value */
1219 EXPORT_SYMBOL_GPL(dmi_memdev_handle
);