Linux 6.13
[linux.git] / drivers / iio / magnetometer / ak8975.c
blob18077fb463a9127c35eb1d8ab9654c69ec285c4a
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * A sensor driver for the magnetometer AK8975.
5 * Magnetic compass sensor driver for monitoring magnetic flux information.
7 * Copyright (c) 2010, NVIDIA Corporation.
8 */
10 #include <linux/module.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/pm_runtime.h>
24 #include <linux/iio/iio.h>
25 #include <linux/iio/sysfs.h>
26 #include <linux/iio/buffer.h>
27 #include <linux/iio/trigger.h>
28 #include <linux/iio/trigger_consumer.h>
29 #include <linux/iio/triggered_buffer.h>
32 * Register definitions, as well as various shifts and masks to get at the
33 * individual fields of the registers.
35 #define AK8975_REG_WIA 0x00
36 #define AK8975_DEVICE_ID 0x48
38 #define AK8975_REG_INFO 0x01
40 #define AK8975_REG_ST1 0x02
41 #define AK8975_REG_ST1_DRDY_SHIFT 0
42 #define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT)
44 #define AK8975_REG_HXL 0x03
45 #define AK8975_REG_HXH 0x04
46 #define AK8975_REG_HYL 0x05
47 #define AK8975_REG_HYH 0x06
48 #define AK8975_REG_HZL 0x07
49 #define AK8975_REG_HZH 0x08
50 #define AK8975_REG_ST2 0x09
51 #define AK8975_REG_ST2_DERR_SHIFT 2
52 #define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT)
54 #define AK8975_REG_ST2_HOFL_SHIFT 3
55 #define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT)
57 #define AK8975_REG_CNTL 0x0A
58 #define AK8975_REG_CNTL_MODE_SHIFT 0
59 #define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT)
60 #define AK8975_REG_CNTL_MODE_POWER_DOWN 0x00
61 #define AK8975_REG_CNTL_MODE_ONCE 0x01
62 #define AK8975_REG_CNTL_MODE_SELF_TEST 0x08
63 #define AK8975_REG_CNTL_MODE_FUSE_ROM 0x0F
65 #define AK8975_REG_RSVC 0x0B
66 #define AK8975_REG_ASTC 0x0C
67 #define AK8975_REG_TS1 0x0D
68 #define AK8975_REG_TS2 0x0E
69 #define AK8975_REG_I2CDIS 0x0F
70 #define AK8975_REG_ASAX 0x10
71 #define AK8975_REG_ASAY 0x11
72 #define AK8975_REG_ASAZ 0x12
74 #define AK8975_MAX_REGS AK8975_REG_ASAZ
77 * AK09912 Register definitions
79 #define AK09912_REG_WIA1 0x00
80 #define AK09912_REG_WIA2 0x01
81 #define AK09918_DEVICE_ID 0x0C
82 #define AK09916_DEVICE_ID 0x09
83 #define AK09912_DEVICE_ID 0x04
84 #define AK09911_DEVICE_ID 0x05
86 #define AK09911_REG_INFO1 0x02
87 #define AK09911_REG_INFO2 0x03
89 #define AK09912_REG_ST1 0x10
91 #define AK09912_REG_ST1_DRDY_SHIFT 0
92 #define AK09912_REG_ST1_DRDY_MASK (1 << AK09912_REG_ST1_DRDY_SHIFT)
94 #define AK09912_REG_HXL 0x11
95 #define AK09912_REG_HXH 0x12
96 #define AK09912_REG_HYL 0x13
97 #define AK09912_REG_HYH 0x14
98 #define AK09912_REG_HZL 0x15
99 #define AK09912_REG_HZH 0x16
100 #define AK09912_REG_TMPS 0x17
102 #define AK09912_REG_ST2 0x18
103 #define AK09912_REG_ST2_HOFL_SHIFT 3
104 #define AK09912_REG_ST2_HOFL_MASK (1 << AK09912_REG_ST2_HOFL_SHIFT)
106 #define AK09912_REG_CNTL1 0x30
108 #define AK09912_REG_CNTL2 0x31
109 #define AK09912_REG_CNTL_MODE_POWER_DOWN 0x00
110 #define AK09912_REG_CNTL_MODE_ONCE 0x01
111 #define AK09912_REG_CNTL_MODE_SELF_TEST 0x10
112 #define AK09912_REG_CNTL_MODE_FUSE_ROM 0x1F
113 #define AK09912_REG_CNTL2_MODE_SHIFT 0
114 #define AK09912_REG_CNTL2_MODE_MASK (0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
116 #define AK09912_REG_CNTL3 0x32
118 #define AK09912_REG_TS1 0x33
119 #define AK09912_REG_TS2 0x34
120 #define AK09912_REG_TS3 0x35
121 #define AK09912_REG_I2CDIS 0x36
122 #define AK09912_REG_TS4 0x37
124 #define AK09912_REG_ASAX 0x60
125 #define AK09912_REG_ASAY 0x61
126 #define AK09912_REG_ASAZ 0x62
128 #define AK09912_MAX_REGS AK09912_REG_ASAZ
131 * Miscellaneous values.
133 #define AK8975_MAX_CONVERSION_TIMEOUT 500
134 #define AK8975_CONVERSION_DONE_POLL_TIME 10
135 #define AK8975_DATA_READY_TIMEOUT ((100*HZ)/1000)
138 * Precalculate scale factor (in Gauss units) for each axis and
139 * store in the device data.
141 * This scale factor is axis-dependent, and is derived from 3 calibration
142 * factors ASA(x), ASA(y), and ASA(z).
144 * These ASA values are read from the sensor device at start of day, and
145 * cached in the device context struct.
147 * Adjusting the flux value with the sensitivity adjustment value should be
148 * done via the following formula:
150 * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
151 * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
152 * is the resultant adjusted value.
154 * We reduce the formula to:
156 * Hadj = H * (ASA + 128) / 256
158 * H is in the range of -4096 to 4095. The magnetometer has a range of
159 * +-1229uT. To go from the raw value to uT is:
161 * HuT = H * 1229/4096, or roughly, 3/10.
163 * Since 1uT = 0.01 gauss, our final scale factor becomes:
165 * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
166 * Hadj = H * ((ASA + 128) * 0.003) / 256
168 * Since ASA doesn't change, we cache the resultant scale factor into the
169 * device context in ak8975_setup().
171 * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
172 * multiply the stored scale value by 1e6.
174 static long ak8975_raw_to_gauss(u16 data)
176 return (((long)data + 128) * 3000) / 256;
180 * For AK8963 and AK09911, same calculation, but the device is less sensitive:
182 * H is in the range of +-8190. The magnetometer has a range of
183 * +-4912uT. To go from the raw value to uT is:
185 * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
188 static long ak8963_09911_raw_to_gauss(u16 data)
190 return (((long)data + 128) * 6000) / 256;
194 * For AK09912, same calculation, except the device is more sensitive:
196 * H is in the range of -32752 to 32752. The magnetometer has a range of
197 * +-4912uT. To go from the raw value to uT is:
199 * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
201 static long ak09912_raw_to_gauss(u16 data)
203 return (((long)data + 128) * 1500) / 256;
206 /* Compatible Asahi Kasei Compass parts */
207 enum asahi_compass_chipset {
208 AK8975,
209 AK8963,
210 AK09911,
211 AK09912,
212 AK09916,
213 AK09918,
216 enum ak_ctrl_reg_addr {
217 ST1,
218 ST2,
219 CNTL,
220 ASA_BASE,
221 MAX_REGS,
222 REGS_END,
225 enum ak_ctrl_reg_mask {
226 ST1_DRDY,
227 ST2_HOFL,
228 ST2_DERR,
229 CNTL_MODE,
230 MASK_END,
233 enum ak_ctrl_mode {
234 POWER_DOWN,
235 MODE_ONCE,
236 SELF_TEST,
237 FUSE_ROM,
238 MODE_END,
241 struct ak_def {
242 enum asahi_compass_chipset type;
243 long (*raw_to_gauss)(u16 data);
244 u16 range;
245 u8 ctrl_regs[REGS_END];
246 u8 ctrl_masks[MASK_END];
247 u8 ctrl_modes[MODE_END];
248 u8 data_regs[3];
251 static const struct ak_def ak_def_array[] = {
252 [AK8975] = {
253 .type = AK8975,
254 .raw_to_gauss = ak8975_raw_to_gauss,
255 .range = 4096,
256 .ctrl_regs = {
257 AK8975_REG_ST1,
258 AK8975_REG_ST2,
259 AK8975_REG_CNTL,
260 AK8975_REG_ASAX,
261 AK8975_MAX_REGS},
262 .ctrl_masks = {
263 AK8975_REG_ST1_DRDY_MASK,
264 AK8975_REG_ST2_HOFL_MASK,
265 AK8975_REG_ST2_DERR_MASK,
266 AK8975_REG_CNTL_MODE_MASK},
267 .ctrl_modes = {
268 AK8975_REG_CNTL_MODE_POWER_DOWN,
269 AK8975_REG_CNTL_MODE_ONCE,
270 AK8975_REG_CNTL_MODE_SELF_TEST,
271 AK8975_REG_CNTL_MODE_FUSE_ROM},
272 .data_regs = {
273 AK8975_REG_HXL,
274 AK8975_REG_HYL,
275 AK8975_REG_HZL},
277 [AK8963] = {
278 .type = AK8963,
279 .raw_to_gauss = ak8963_09911_raw_to_gauss,
280 .range = 8190,
281 .ctrl_regs = {
282 AK8975_REG_ST1,
283 AK8975_REG_ST2,
284 AK8975_REG_CNTL,
285 AK8975_REG_ASAX,
286 AK8975_MAX_REGS},
287 .ctrl_masks = {
288 AK8975_REG_ST1_DRDY_MASK,
289 AK8975_REG_ST2_HOFL_MASK,
291 AK8975_REG_CNTL_MODE_MASK},
292 .ctrl_modes = {
293 AK8975_REG_CNTL_MODE_POWER_DOWN,
294 AK8975_REG_CNTL_MODE_ONCE,
295 AK8975_REG_CNTL_MODE_SELF_TEST,
296 AK8975_REG_CNTL_MODE_FUSE_ROM},
297 .data_regs = {
298 AK8975_REG_HXL,
299 AK8975_REG_HYL,
300 AK8975_REG_HZL},
302 [AK09911] = {
303 .type = AK09911,
304 .raw_to_gauss = ak8963_09911_raw_to_gauss,
305 .range = 8192,
306 .ctrl_regs = {
307 AK09912_REG_ST1,
308 AK09912_REG_ST2,
309 AK09912_REG_CNTL2,
310 AK09912_REG_ASAX,
311 AK09912_MAX_REGS},
312 .ctrl_masks = {
313 AK09912_REG_ST1_DRDY_MASK,
314 AK09912_REG_ST2_HOFL_MASK,
316 AK09912_REG_CNTL2_MODE_MASK},
317 .ctrl_modes = {
318 AK09912_REG_CNTL_MODE_POWER_DOWN,
319 AK09912_REG_CNTL_MODE_ONCE,
320 AK09912_REG_CNTL_MODE_SELF_TEST,
321 AK09912_REG_CNTL_MODE_FUSE_ROM},
322 .data_regs = {
323 AK09912_REG_HXL,
324 AK09912_REG_HYL,
325 AK09912_REG_HZL},
327 [AK09912] = {
328 .type = AK09912,
329 .raw_to_gauss = ak09912_raw_to_gauss,
330 .range = 32752,
331 .ctrl_regs = {
332 AK09912_REG_ST1,
333 AK09912_REG_ST2,
334 AK09912_REG_CNTL2,
335 AK09912_REG_ASAX,
336 AK09912_MAX_REGS},
337 .ctrl_masks = {
338 AK09912_REG_ST1_DRDY_MASK,
339 AK09912_REG_ST2_HOFL_MASK,
341 AK09912_REG_CNTL2_MODE_MASK},
342 .ctrl_modes = {
343 AK09912_REG_CNTL_MODE_POWER_DOWN,
344 AK09912_REG_CNTL_MODE_ONCE,
345 AK09912_REG_CNTL_MODE_SELF_TEST,
346 AK09912_REG_CNTL_MODE_FUSE_ROM},
347 .data_regs = {
348 AK09912_REG_HXL,
349 AK09912_REG_HYL,
350 AK09912_REG_HZL},
352 [AK09916] = {
353 .type = AK09916,
354 .raw_to_gauss = ak09912_raw_to_gauss,
355 .range = 32752,
356 .ctrl_regs = {
357 AK09912_REG_ST1,
358 AK09912_REG_ST2,
359 AK09912_REG_CNTL2,
360 AK09912_REG_ASAX,
361 AK09912_MAX_REGS},
362 .ctrl_masks = {
363 AK09912_REG_ST1_DRDY_MASK,
364 AK09912_REG_ST2_HOFL_MASK,
366 AK09912_REG_CNTL2_MODE_MASK},
367 .ctrl_modes = {
368 AK09912_REG_CNTL_MODE_POWER_DOWN,
369 AK09912_REG_CNTL_MODE_ONCE,
370 AK09912_REG_CNTL_MODE_SELF_TEST,
371 AK09912_REG_CNTL_MODE_FUSE_ROM},
372 .data_regs = {
373 AK09912_REG_HXL,
374 AK09912_REG_HYL,
375 AK09912_REG_HZL},
377 [AK09918] = {
378 /* ak09918 is register compatible with ak09912 this is for avoid
379 * unknown id messages.
381 .type = AK09918,
382 .raw_to_gauss = ak09912_raw_to_gauss,
383 .range = 32752,
384 .ctrl_regs = {
385 AK09912_REG_ST1,
386 AK09912_REG_ST2,
387 AK09912_REG_CNTL2,
388 AK09912_REG_ASAX,
389 AK09912_MAX_REGS},
390 .ctrl_masks = {
391 AK09912_REG_ST1_DRDY_MASK,
392 AK09912_REG_ST2_HOFL_MASK,
394 AK09912_REG_CNTL2_MODE_MASK},
395 .ctrl_modes = {
396 AK09912_REG_CNTL_MODE_POWER_DOWN,
397 AK09912_REG_CNTL_MODE_ONCE,
398 AK09912_REG_CNTL_MODE_SELF_TEST,
399 AK09912_REG_CNTL_MODE_FUSE_ROM},
400 .data_regs = {
401 AK09912_REG_HXL,
402 AK09912_REG_HYL,
403 AK09912_REG_HZL},
408 * Per-instance context data for the device.
410 struct ak8975_data {
411 struct i2c_client *client;
412 const struct ak_def *def;
413 struct mutex lock;
414 u8 asa[3];
415 long raw_to_gauss[3];
416 struct gpio_desc *eoc_gpiod;
417 struct gpio_desc *reset_gpiod;
418 int eoc_irq;
419 wait_queue_head_t data_ready_queue;
420 unsigned long flags;
421 u8 cntl_cache;
422 struct iio_mount_matrix orientation;
423 struct regulator *vdd;
424 struct regulator *vid;
426 /* Ensure natural alignment of timestamp */
427 struct {
428 s16 channels[3];
429 s64 ts __aligned(8);
430 } scan;
433 /* Enable attached power regulator if any. */
434 static int ak8975_power_on(const struct ak8975_data *data)
436 int ret;
438 ret = regulator_enable(data->vdd);
439 if (ret) {
440 dev_warn(&data->client->dev,
441 "Failed to enable specified Vdd supply\n");
442 return ret;
444 ret = regulator_enable(data->vid);
445 if (ret) {
446 dev_warn(&data->client->dev,
447 "Failed to enable specified Vid supply\n");
448 regulator_disable(data->vdd);
449 return ret;
452 gpiod_set_value_cansleep(data->reset_gpiod, 0);
455 * According to the datasheet the power supply rise time is 200us
456 * and the minimum wait time before mode setting is 100us, in
457 * total 300us. Add some margin and say minimum 500us here.
459 usleep_range(500, 1000);
460 return 0;
463 /* Disable attached power regulator if any. */
464 static void ak8975_power_off(const struct ak8975_data *data)
466 gpiod_set_value_cansleep(data->reset_gpiod, 1);
468 regulator_disable(data->vid);
469 regulator_disable(data->vdd);
473 * Return 0 if the i2c device is the one we expect.
474 * return a negative error number otherwise
476 static int ak8975_who_i_am(struct i2c_client *client,
477 enum asahi_compass_chipset type)
479 u8 wia_val[2];
480 int ret;
483 * Signature for each device:
484 * Device | WIA1 | WIA2
485 * AK09918 | DEVICE_ID_| AK09918_DEVICE_ID
486 * AK09916 | DEVICE_ID_| AK09916_DEVICE_ID
487 * AK09912 | DEVICE_ID | AK09912_DEVICE_ID
488 * AK09911 | DEVICE_ID | AK09911_DEVICE_ID
489 * AK8975 | DEVICE_ID | NA
490 * AK8963 | DEVICE_ID | NA
492 ret = i2c_smbus_read_i2c_block_data_or_emulated(
493 client, AK09912_REG_WIA1, 2, wia_val);
494 if (ret < 0) {
495 dev_err(&client->dev, "Error reading WIA\n");
496 return ret;
499 if (wia_val[0] != AK8975_DEVICE_ID)
500 return -ENODEV;
502 switch (type) {
503 case AK8975:
504 case AK8963:
505 return 0;
506 case AK09911:
507 if (wia_val[1] == AK09911_DEVICE_ID)
508 return 0;
509 break;
510 case AK09912:
511 if (wia_val[1] == AK09912_DEVICE_ID)
512 return 0;
513 break;
514 case AK09916:
515 if (wia_val[1] == AK09916_DEVICE_ID)
516 return 0;
517 break;
518 case AK09918:
519 if (wia_val[1] == AK09918_DEVICE_ID)
520 return 0;
521 break;
524 dev_info(&client->dev, "Device ID %x is unknown.\n", wia_val[1]);
526 * Let driver to probe on unknown id for support more register
527 * compatible variants.
529 return 0;
533 * Helper function to write to CNTL register.
535 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
537 u8 regval;
538 int ret;
540 regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
541 data->def->ctrl_modes[mode];
542 ret = i2c_smbus_write_byte_data(data->client,
543 data->def->ctrl_regs[CNTL], regval);
544 if (ret < 0) {
545 return ret;
547 data->cntl_cache = regval;
548 /* After mode change wait atleast 100us */
549 usleep_range(100, 500);
551 return 0;
555 * Handle data ready irq
557 static irqreturn_t ak8975_irq_handler(int irq, void *data)
559 struct ak8975_data *ak8975 = data;
561 set_bit(0, &ak8975->flags);
562 wake_up(&ak8975->data_ready_queue);
564 return IRQ_HANDLED;
568 * Install data ready interrupt handler
570 static int ak8975_setup_irq(struct ak8975_data *data)
572 struct i2c_client *client = data->client;
573 int rc;
574 int irq;
576 init_waitqueue_head(&data->data_ready_queue);
577 clear_bit(0, &data->flags);
578 if (client->irq)
579 irq = client->irq;
580 else
581 irq = gpiod_to_irq(data->eoc_gpiod);
583 rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
584 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
585 dev_name(&client->dev), data);
586 if (rc < 0) {
587 dev_err(&client->dev, "irq %d request failed: %d\n", irq, rc);
588 return rc;
591 data->eoc_irq = irq;
593 return rc;
598 * Perform some start-of-day setup, including reading the asa calibration
599 * values and caching them.
601 static int ak8975_setup(struct i2c_client *client)
603 struct iio_dev *indio_dev = i2c_get_clientdata(client);
604 struct ak8975_data *data = iio_priv(indio_dev);
605 int ret;
607 /* Write the fused rom access mode. */
608 ret = ak8975_set_mode(data, FUSE_ROM);
609 if (ret < 0) {
610 dev_err(&client->dev, "Error in setting fuse access mode\n");
611 return ret;
614 /* Get asa data and store in the device data. */
615 ret = i2c_smbus_read_i2c_block_data_or_emulated(
616 client, data->def->ctrl_regs[ASA_BASE],
617 3, data->asa);
618 if (ret < 0) {
619 dev_err(&client->dev, "Not able to read asa data\n");
620 return ret;
623 /* After reading fuse ROM data set power-down mode */
624 ret = ak8975_set_mode(data, POWER_DOWN);
625 if (ret < 0) {
626 dev_err(&client->dev, "Error in setting power-down mode\n");
627 return ret;
630 if (data->eoc_gpiod || client->irq > 0) {
631 ret = ak8975_setup_irq(data);
632 if (ret < 0) {
633 dev_err(&client->dev,
634 "Error setting data ready interrupt\n");
635 return ret;
639 data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
640 data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
641 data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
643 return 0;
646 static int wait_conversion_complete_gpio(struct ak8975_data *data)
648 struct i2c_client *client = data->client;
649 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
650 int ret;
652 /* Wait for the conversion to complete. */
653 while (timeout_ms) {
654 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
655 if (gpiod_get_value(data->eoc_gpiod))
656 break;
657 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
659 if (!timeout_ms) {
660 dev_err(&client->dev, "Conversion timeout happened\n");
661 return -EINVAL;
664 ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
665 if (ret < 0)
666 dev_err(&client->dev, "Error in reading ST1\n");
668 return ret;
671 static int wait_conversion_complete_polled(struct ak8975_data *data)
673 struct i2c_client *client = data->client;
674 u8 read_status;
675 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
676 int ret;
678 /* Wait for the conversion to complete. */
679 while (timeout_ms) {
680 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
681 ret = i2c_smbus_read_byte_data(client,
682 data->def->ctrl_regs[ST1]);
683 if (ret < 0) {
684 dev_err(&client->dev, "Error in reading ST1\n");
685 return ret;
687 read_status = ret;
688 if (read_status)
689 break;
690 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
692 if (!timeout_ms) {
693 dev_err(&client->dev, "Conversion timeout happened\n");
694 return -EINVAL;
697 return read_status;
700 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
701 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
703 int ret;
705 ret = wait_event_timeout(data->data_ready_queue,
706 test_bit(0, &data->flags),
707 AK8975_DATA_READY_TIMEOUT);
708 clear_bit(0, &data->flags);
710 return ret > 0 ? 0 : -ETIME;
713 static int ak8975_start_read_axis(struct ak8975_data *data,
714 const struct i2c_client *client)
716 /* Set up the device for taking a sample. */
717 int ret = ak8975_set_mode(data, MODE_ONCE);
719 if (ret < 0) {
720 dev_err(&client->dev, "Error in setting operating mode\n");
721 return ret;
724 /* Wait for the conversion to complete. */
725 if (data->eoc_irq)
726 ret = wait_conversion_complete_interrupt(data);
727 else if (data->eoc_gpiod)
728 ret = wait_conversion_complete_gpio(data);
729 else
730 ret = wait_conversion_complete_polled(data);
731 if (ret < 0)
732 return ret;
734 /* Return with zero if the data is ready. */
735 return !data->def->ctrl_regs[ST1_DRDY];
738 /* Retrieve raw flux value for one of the x, y, or z axis. */
739 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
741 struct ak8975_data *data = iio_priv(indio_dev);
742 const struct i2c_client *client = data->client;
743 const struct ak_def *def = data->def;
744 __le16 rval;
745 u16 buff;
746 int ret;
748 pm_runtime_get_sync(&data->client->dev);
750 mutex_lock(&data->lock);
752 ret = ak8975_start_read_axis(data, client);
753 if (ret)
754 goto exit;
756 ret = i2c_smbus_read_i2c_block_data_or_emulated(
757 client, def->data_regs[index],
758 sizeof(rval), (u8*)&rval);
759 if (ret < 0)
760 goto exit;
762 /* Read out ST2 for release lock on measurment data. */
763 ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST2]);
764 if (ret < 0) {
765 dev_err(&client->dev, "Error in reading ST2\n");
766 goto exit;
769 if (ret & (data->def->ctrl_masks[ST2_DERR] |
770 data->def->ctrl_masks[ST2_HOFL])) {
771 dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
772 ret = -EINVAL;
773 goto exit;
776 mutex_unlock(&data->lock);
778 pm_runtime_mark_last_busy(&data->client->dev);
779 pm_runtime_put_autosuspend(&data->client->dev);
781 /* Swap bytes and convert to valid range. */
782 buff = le16_to_cpu(rval);
783 *val = clamp_t(s16, buff, -def->range, def->range);
784 return IIO_VAL_INT;
786 exit:
787 mutex_unlock(&data->lock);
788 dev_err(&client->dev, "Error in reading axis\n");
789 return ret;
792 static int ak8975_read_raw(struct iio_dev *indio_dev,
793 struct iio_chan_spec const *chan,
794 int *val, int *val2,
795 long mask)
797 struct ak8975_data *data = iio_priv(indio_dev);
799 switch (mask) {
800 case IIO_CHAN_INFO_RAW:
801 return ak8975_read_axis(indio_dev, chan->address, val);
802 case IIO_CHAN_INFO_SCALE:
803 *val = 0;
804 *val2 = data->raw_to_gauss[chan->address];
805 return IIO_VAL_INT_PLUS_MICRO;
807 return -EINVAL;
810 static const struct iio_mount_matrix *
811 ak8975_get_mount_matrix(const struct iio_dev *indio_dev,
812 const struct iio_chan_spec *chan)
814 struct ak8975_data *data = iio_priv(indio_dev);
816 return &data->orientation;
819 static const struct iio_chan_spec_ext_info ak8975_ext_info[] = {
820 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix),
824 #define AK8975_CHANNEL(axis, index) \
826 .type = IIO_MAGN, \
827 .modified = 1, \
828 .channel2 = IIO_MOD_##axis, \
829 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
830 BIT(IIO_CHAN_INFO_SCALE), \
831 .address = index, \
832 .scan_index = index, \
833 .scan_type = { \
834 .sign = 's', \
835 .realbits = 16, \
836 .storagebits = 16, \
837 .endianness = IIO_CPU \
838 }, \
839 .ext_info = ak8975_ext_info, \
842 static const struct iio_chan_spec ak8975_channels[] = {
843 AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
844 IIO_CHAN_SOFT_TIMESTAMP(3),
847 static const unsigned long ak8975_scan_masks[] = { 0x7, 0 };
849 static const struct iio_info ak8975_info = {
850 .read_raw = &ak8975_read_raw,
853 static void ak8975_fill_buffer(struct iio_dev *indio_dev)
855 struct ak8975_data *data = iio_priv(indio_dev);
856 const struct i2c_client *client = data->client;
857 const struct ak_def *def = data->def;
858 int ret;
859 __le16 fval[3];
861 mutex_lock(&data->lock);
863 ret = ak8975_start_read_axis(data, client);
864 if (ret)
865 goto unlock;
868 * For each axis, read the flux value from the appropriate register
869 * (the register is specified in the iio device attributes).
871 ret = i2c_smbus_read_i2c_block_data_or_emulated(client,
872 def->data_regs[0],
873 3 * sizeof(fval[0]),
874 (u8 *)fval);
875 if (ret < 0)
876 goto unlock;
878 mutex_unlock(&data->lock);
880 /* Clamp to valid range. */
881 data->scan.channels[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range);
882 data->scan.channels[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range);
883 data->scan.channels[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range);
885 iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
886 iio_get_time_ns(indio_dev));
888 return;
890 unlock:
891 mutex_unlock(&data->lock);
892 dev_err(&client->dev, "Error in reading axes block\n");
895 static irqreturn_t ak8975_handle_trigger(int irq, void *p)
897 const struct iio_poll_func *pf = p;
898 struct iio_dev *indio_dev = pf->indio_dev;
900 ak8975_fill_buffer(indio_dev);
901 iio_trigger_notify_done(indio_dev->trig);
902 return IRQ_HANDLED;
905 static int ak8975_probe(struct i2c_client *client)
907 const struct i2c_device_id *id = i2c_client_get_device_id(client);
908 struct ak8975_data *data;
909 struct iio_dev *indio_dev;
910 struct gpio_desc *eoc_gpiod;
911 struct gpio_desc *reset_gpiod;
912 int err;
913 const char *name = NULL;
916 * Grab and set up the supplied GPIO.
917 * We may not have a GPIO based IRQ to scan, that is fine, we will
918 * poll if so.
920 eoc_gpiod = devm_gpiod_get_optional(&client->dev, NULL, GPIOD_IN);
921 if (IS_ERR(eoc_gpiod))
922 return PTR_ERR(eoc_gpiod);
923 if (eoc_gpiod)
924 gpiod_set_consumer_name(eoc_gpiod, "ak_8975");
927 * According to AK09911 datasheet, if reset GPIO is provided then
928 * deassert reset on ak8975_power_on() and assert reset on
929 * ak8975_power_off().
931 reset_gpiod = devm_gpiod_get_optional(&client->dev,
932 "reset", GPIOD_OUT_HIGH);
933 if (IS_ERR(reset_gpiod))
934 return PTR_ERR(reset_gpiod);
936 /* Register with IIO */
937 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
938 if (indio_dev == NULL)
939 return -ENOMEM;
941 data = iio_priv(indio_dev);
942 i2c_set_clientdata(client, indio_dev);
944 data->client = client;
945 data->eoc_gpiod = eoc_gpiod;
946 data->reset_gpiod = reset_gpiod;
947 data->eoc_irq = 0;
949 err = iio_read_mount_matrix(&client->dev, &data->orientation);
950 if (err)
951 return err;
953 /* id will be NULL when enumerated via ACPI */
954 data->def = i2c_get_match_data(client);
955 if (!data->def)
956 return -ENODEV;
958 /* If enumerated via firmware node, fix the ABI */
959 if (dev_fwnode(&client->dev))
960 name = dev_name(&client->dev);
961 else
962 name = id->name;
964 /* Fetch the regulators */
965 data->vdd = devm_regulator_get(&client->dev, "vdd");
966 if (IS_ERR(data->vdd))
967 return PTR_ERR(data->vdd);
968 data->vid = devm_regulator_get(&client->dev, "vid");
969 if (IS_ERR(data->vid))
970 return PTR_ERR(data->vid);
972 err = ak8975_power_on(data);
973 if (err)
974 return err;
976 err = ak8975_who_i_am(client, data->def->type);
977 if (err < 0) {
978 dev_err(&client->dev, "Unexpected device\n");
979 goto power_off;
981 dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
983 /* Perform some basic start-of-day setup of the device. */
984 err = ak8975_setup(client);
985 if (err < 0) {
986 dev_err(&client->dev, "%s initialization fails\n", name);
987 goto power_off;
990 mutex_init(&data->lock);
991 indio_dev->channels = ak8975_channels;
992 indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
993 indio_dev->info = &ak8975_info;
994 indio_dev->available_scan_masks = ak8975_scan_masks;
995 indio_dev->modes = INDIO_DIRECT_MODE;
996 indio_dev->name = name;
998 err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger,
999 NULL);
1000 if (err) {
1001 dev_err(&client->dev, "triggered buffer setup failed\n");
1002 goto power_off;
1005 err = iio_device_register(indio_dev);
1006 if (err) {
1007 dev_err(&client->dev, "device register failed\n");
1008 goto cleanup_buffer;
1011 /* Enable runtime PM */
1012 pm_runtime_get_noresume(&client->dev);
1013 pm_runtime_set_active(&client->dev);
1014 pm_runtime_enable(&client->dev);
1016 * The device comes online in 500us, so add two orders of magnitude
1017 * of delay before autosuspending: 50 ms.
1019 pm_runtime_set_autosuspend_delay(&client->dev, 50);
1020 pm_runtime_use_autosuspend(&client->dev);
1021 pm_runtime_put(&client->dev);
1023 return 0;
1025 cleanup_buffer:
1026 iio_triggered_buffer_cleanup(indio_dev);
1027 power_off:
1028 ak8975_power_off(data);
1029 return err;
1032 static void ak8975_remove(struct i2c_client *client)
1034 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1035 struct ak8975_data *data = iio_priv(indio_dev);
1037 pm_runtime_get_sync(&client->dev);
1038 pm_runtime_put_noidle(&client->dev);
1039 pm_runtime_disable(&client->dev);
1040 iio_device_unregister(indio_dev);
1041 iio_triggered_buffer_cleanup(indio_dev);
1042 ak8975_set_mode(data, POWER_DOWN);
1043 ak8975_power_off(data);
1046 static int ak8975_runtime_suspend(struct device *dev)
1048 struct i2c_client *client = to_i2c_client(dev);
1049 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1050 struct ak8975_data *data = iio_priv(indio_dev);
1051 int ret;
1053 /* Set the device in power down if it wasn't already */
1054 ret = ak8975_set_mode(data, POWER_DOWN);
1055 if (ret < 0) {
1056 dev_err(&client->dev, "Error in setting power-down mode\n");
1057 return ret;
1059 /* Next cut the regulators */
1060 ak8975_power_off(data);
1062 return 0;
1065 static int ak8975_runtime_resume(struct device *dev)
1067 struct i2c_client *client = to_i2c_client(dev);
1068 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1069 struct ak8975_data *data = iio_priv(indio_dev);
1070 int ret;
1072 /* Take up the regulators */
1073 ak8975_power_on(data);
1075 * We come up in powered down mode, the reading routines will
1076 * put us in the mode to read values later.
1078 ret = ak8975_set_mode(data, POWER_DOWN);
1079 if (ret < 0) {
1080 dev_err(&client->dev, "Error in setting power-down mode\n");
1081 return ret;
1084 return 0;
1087 static DEFINE_RUNTIME_DEV_PM_OPS(ak8975_dev_pm_ops, ak8975_runtime_suspend,
1088 ak8975_runtime_resume, NULL);
1090 static const struct acpi_device_id ak_acpi_match[] = {
1091 {"AK8963", (kernel_ulong_t)&ak_def_array[AK8963] },
1092 {"AK8975", (kernel_ulong_t)&ak_def_array[AK8975] },
1093 {"AK009911", (kernel_ulong_t)&ak_def_array[AK09911] },
1094 {"AK09911", (kernel_ulong_t)&ak_def_array[AK09911] },
1095 {"AK09912", (kernel_ulong_t)&ak_def_array[AK09912] },
1096 {"AKM9911", (kernel_ulong_t)&ak_def_array[AK09911] },
1097 {"INVN6500", (kernel_ulong_t)&ak_def_array[AK8963] },
1100 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
1102 static const struct i2c_device_id ak8975_id[] = {
1103 {"AK8963", (kernel_ulong_t)&ak_def_array[AK8963] },
1104 {"ak8963", (kernel_ulong_t)&ak_def_array[AK8963] },
1105 {"ak8975", (kernel_ulong_t)&ak_def_array[AK8975] },
1106 {"ak09911", (kernel_ulong_t)&ak_def_array[AK09911] },
1107 {"ak09912", (kernel_ulong_t)&ak_def_array[AK09912] },
1108 {"ak09916", (kernel_ulong_t)&ak_def_array[AK09916] },
1109 {"ak09918", (kernel_ulong_t)&ak_def_array[AK09918] },
1112 MODULE_DEVICE_TABLE(i2c, ak8975_id);
1114 static const struct of_device_id ak8975_of_match[] = {
1115 { .compatible = "asahi-kasei,ak8975", .data = &ak_def_array[AK8975] },
1116 { .compatible = "ak8975", .data = &ak_def_array[AK8975] },
1117 { .compatible = "asahi-kasei,ak8963", .data = &ak_def_array[AK8963] },
1118 { .compatible = "ak8963", .data = &ak_def_array[AK8963] },
1119 { .compatible = "asahi-kasei,ak09911", .data = &ak_def_array[AK09911] },
1120 { .compatible = "ak09911", .data = &ak_def_array[AK09911] },
1121 { .compatible = "asahi-kasei,ak09912", .data = &ak_def_array[AK09912] },
1122 { .compatible = "ak09912", .data = &ak_def_array[AK09912] },
1123 { .compatible = "asahi-kasei,ak09916", .data = &ak_def_array[AK09916] },
1124 { .compatible = "asahi-kasei,ak09918", .data = &ak_def_array[AK09918] },
1127 MODULE_DEVICE_TABLE(of, ak8975_of_match);
1129 static struct i2c_driver ak8975_driver = {
1130 .driver = {
1131 .name = "ak8975",
1132 .pm = pm_ptr(&ak8975_dev_pm_ops),
1133 .of_match_table = ak8975_of_match,
1134 .acpi_match_table = ak_acpi_match,
1136 .probe = ak8975_probe,
1137 .remove = ak8975_remove,
1138 .id_table = ak8975_id,
1140 module_i2c_driver(ak8975_driver);
1142 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1143 MODULE_DESCRIPTION("AK8975 magnetometer driver");
1144 MODULE_LICENSE("GPL");