1 // SPDX-License-Identifier: GPL-2.0-only
3 * DB8500 PRCM Unit driver
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
12 * U8500 PRCM Unit interface driver
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include "db8500-prcmu-regs.h"
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE 0x2FC
43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
57 #define PRCM_AVS_VOLTAGE 0
58 #define PRCM_AVS_VOLTAGE_MASK 0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP 6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE 7
62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
64 #define PRCM_BOOT_STATUS 0xFFF
65 #define PRCM_ROMCODE_A2P 0xFFE
66 #define PRCM_ROMCODE_P2A 0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS 0
98 #define MB0H_CONFIG_WAKEUPS_EXE 1
99 #define MB0H_READ_WAKEUP_ACK 3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF 0x1
135 #define PLL_SOC0_ON 0x2
136 #define PLL_SOC1_OFF 0x4
137 #define PLL_SOC1_ON 0x8
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
145 /* Mailbox 2 headers */
147 #define MB2H_AUTO_PWR 0x1
150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
165 /* Mailbox 3 headers */
167 #define MB3H_SIDETONE 0x1
168 #define MB3H_SYSCLK 0xE
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT 0x0
181 #define MB4H_MEM_ST 0x1
182 #define MB4H_HOTDOG 0x12
183 #define MB4H_HOTMON 0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN 0x17
187 #define MB4H_A9WDOG_DIS 0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW BIT(0)
201 #define HOTMON_CONFIG_HIGH BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS 0
208 #define A9WDOG_ID_MASK 0xf
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN BIT(3)
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
265 struct prcmu_fw_version version
;
268 static struct irq_domain
*db8500_irq_domain
;
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
306 static u32 prcmu_irq_bit
[NUM_PRCMU_WAKEUPS
] = {
318 IRQ_ENTRY(HOTMON_LOW
),
319 IRQ_ENTRY(HOTMON_HIGH
),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ
),
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit
[NUM_PRCMU_WAKEUP_INDICES
] = {
342 WAKEUP_ENTRY(ABB_FIFO
),
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
356 spinlock_t dbb_irqs_lock
;
357 struct work_struct mask_work
;
358 struct mutex ac_wake_lock
;
359 struct completion ac_wake_work
;
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
376 struct completion work
;
382 u8 ape_voltage_status
;
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
397 struct completion work
;
398 spinlock_t auto_pm_lock
;
399 bool auto_pm_enabled
;
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
413 struct mutex sysclk_lock
;
414 struct completion sysclk_work
;
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
424 struct completion work
;
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
435 struct completion work
;
442 static atomic_t ac_wake_req_state
= ATOMIC_INIT(0);
445 static DEFINE_SPINLOCK(prcmu_lock
);
446 static DEFINE_SPINLOCK(clkout_lock
);
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem
void *tcdm_base
;
450 static __iomem
void *prcmu_base
;
465 static DEFINE_SPINLOCK(clk_mgt_lock
);
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt
[PRCMU_NUM_REG_CLOCKS
] = {
470 CLK_MGT_ENTRY(SGACLK
, PLL_DIV
, false),
471 CLK_MGT_ENTRY(UARTCLK
, PLL_FIX
, true),
472 CLK_MGT_ENTRY(MSP02CLK
, PLL_FIX
, true),
473 CLK_MGT_ENTRY(MSP1CLK
, PLL_FIX
, true),
474 CLK_MGT_ENTRY(I2CCLK
, PLL_FIX
, true),
475 CLK_MGT_ENTRY(SDMMCCLK
, PLL_DIV
, true),
476 CLK_MGT_ENTRY(SLIMCLK
, PLL_FIX
, true),
477 CLK_MGT_ENTRY(PER1CLK
, PLL_DIV
, true),
478 CLK_MGT_ENTRY(PER2CLK
, PLL_DIV
, true),
479 CLK_MGT_ENTRY(PER3CLK
, PLL_DIV
, true),
480 CLK_MGT_ENTRY(PER5CLK
, PLL_DIV
, true),
481 CLK_MGT_ENTRY(PER6CLK
, PLL_DIV
, true),
482 CLK_MGT_ENTRY(PER7CLK
, PLL_DIV
, true),
483 CLK_MGT_ENTRY(LCDCLK
, PLL_FIX
, true),
484 CLK_MGT_ENTRY(BMLCLK
, PLL_DIV
, true),
485 CLK_MGT_ENTRY(HSITXCLK
, PLL_DIV
, true),
486 CLK_MGT_ENTRY(HSIRXCLK
, PLL_DIV
, true),
487 CLK_MGT_ENTRY(HDMICLK
, PLL_FIX
, false),
488 CLK_MGT_ENTRY(APEATCLK
, PLL_DIV
, true),
489 CLK_MGT_ENTRY(APETRACECLK
, PLL_DIV
, true),
490 CLK_MGT_ENTRY(MCDECLK
, PLL_DIV
, true),
491 CLK_MGT_ENTRY(IPI2CCLK
, PLL_FIX
, true),
492 CLK_MGT_ENTRY(DSIALTCLK
, PLL_FIX
, false),
493 CLK_MGT_ENTRY(DMACLK
, PLL_DIV
, true),
494 CLK_MGT_ENTRY(B2R2CLK
, PLL_DIV
, true),
495 CLK_MGT_ENTRY(TVCLK
, PLL_FIX
, true),
496 CLK_MGT_ENTRY(SSPCLK
, PLL_FIX
, true),
497 CLK_MGT_ENTRY(RNGCLK
, PLL_FIX
, true),
498 CLK_MGT_ENTRY(UICCCLK
, PLL_FIX
, false),
507 static struct dsiclk dsiclk
[2] = {
509 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK
,
510 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT
,
511 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
514 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK
,
515 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT
,
516 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
526 static struct dsiescclk dsiescclk
[3] = {
528 .en
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN
,
529 .div_mask
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK
,
530 .div_shift
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT
,
533 .en
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN
,
534 .div_mask
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK
,
535 .div_shift
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT
,
538 .en
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN
,
539 .div_mask
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK
,
540 .div_shift
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT
,
544 u32
db8500_prcmu_read(unsigned int reg
)
546 return readl(prcmu_base
+ reg
);
549 void db8500_prcmu_write(unsigned int reg
, u32 value
)
553 spin_lock_irqsave(&prcmu_lock
, flags
);
554 writel(value
, (prcmu_base
+ reg
));
555 spin_unlock_irqrestore(&prcmu_lock
, flags
);
558 void db8500_prcmu_write_masked(unsigned int reg
, u32 mask
, u32 value
)
563 spin_lock_irqsave(&prcmu_lock
, flags
);
564 val
= readl(prcmu_base
+ reg
);
565 val
= ((val
& ~mask
) | (value
& mask
));
566 writel(val
, (prcmu_base
+ reg
));
567 spin_unlock_irqrestore(&prcmu_lock
, flags
);
570 struct prcmu_fw_version
*prcmu_get_fw_version(void)
572 return fw_info
.valid
? &fw_info
.version
: NULL
;
575 static bool prcmu_is_ulppll_disabled(void)
577 struct prcmu_fw_version
*ver
;
579 ver
= prcmu_get_fw_version();
580 return ver
&& ver
->project
== PRCMU_FW_PROJECT_U8420_SYSCLK
;
583 bool prcmu_has_arm_maxopp(void)
585 return (readb(tcdm_base
+ PRCM_AVS_VARM_MAX_OPP
) &
586 PRCM_AVS_ISMODEENABLE_MASK
) == PRCM_AVS_ISMODEENABLE_MASK
;
590 * prcmu_set_rc_a2p - This function is used to run few power state sequences
591 * @val: Value to be set, i.e. transition requested
592 * Returns: 0 on success, -EINVAL on invalid argument
594 * This function is used to run the following power state sequences -
595 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
597 int prcmu_set_rc_a2p(enum romcode_write val
)
599 if (val
< RDY_2_DS
|| val
> RDY_2_XP70_RST
)
601 writeb(val
, (tcdm_base
+ PRCM_ROMCODE_A2P
));
606 * prcmu_get_rc_p2a - This function is used to get power state sequences
607 * Returns: the power transition that has last happened
609 * This function can return the following transitions-
610 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
612 enum romcode_read
prcmu_get_rc_p2a(void)
614 return readb(tcdm_base
+ PRCM_ROMCODE_P2A
);
618 * prcmu_get_xp70_current_state - Return the current XP70 power mode
619 * Returns: Returns the current AP(ARM) power mode: init,
620 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
622 enum ap_pwrst
prcmu_get_xp70_current_state(void)
624 return readb(tcdm_base
+ PRCM_XP70_CUR_PWR_STATE
);
628 * prcmu_config_clkout - Configure one of the programmable clock outputs.
629 * @clkout: The CLKOUT number (0 or 1).
630 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
631 * @div: The divider to be applied.
633 * Configures one of the programmable clock outputs (CLKOUTs).
634 * @div should be in the range [1,63] to request a configuration, or 0 to
635 * inform that the configuration is no longer requested.
637 int prcmu_config_clkout(u8 clkout
, u8 source
, u8 div
)
639 static int requests
[2];
649 BUG_ON((clkout
== 0) && (source
> PRCMU_CLKSRC_CLK009
));
651 if (!div
&& !requests
[clkout
])
655 div_mask
= PRCM_CLKOCR_CLKODIV0_MASK
;
656 mask
= (PRCM_CLKOCR_CLKODIV0_MASK
| PRCM_CLKOCR_CLKOSEL0_MASK
);
657 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL0_SHIFT
) |
658 (div
<< PRCM_CLKOCR_CLKODIV0_SHIFT
));
660 div_mask
= PRCM_CLKOCR_CLKODIV1_MASK
;
661 mask
= (PRCM_CLKOCR_CLKODIV1_MASK
| PRCM_CLKOCR_CLKOSEL1_MASK
|
662 PRCM_CLKOCR_CLK1TYPE
);
663 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL1_SHIFT
) |
664 (div
<< PRCM_CLKOCR_CLKODIV1_SHIFT
));
668 spin_lock_irqsave(&clkout_lock
, flags
);
670 val
= readl(PRCM_CLKOCR
);
671 if (val
& div_mask
) {
673 if ((val
& mask
) != bits
) {
675 goto unlock_and_return
;
678 if ((val
& mask
& ~div_mask
) != bits
) {
680 goto unlock_and_return
;
684 writel((bits
| (val
& ~mask
)), PRCM_CLKOCR
);
685 requests
[clkout
] += (div
? 1 : -1);
688 spin_unlock_irqrestore(&clkout_lock
, flags
);
693 int db8500_prcmu_set_power_state(u8 state
, bool keep_ulp_clk
, bool keep_ap_pll
)
697 BUG_ON((state
< PRCMU_AP_SLEEP
) || (PRCMU_AP_DEEP_IDLE
< state
));
699 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
701 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
704 writeb(MB0H_POWER_STATE_TRANS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
705 writeb(state
, (tcdm_base
+ PRCM_REQ_MB0_AP_POWER_STATE
));
706 writeb((keep_ap_pll
? 1 : 0), (tcdm_base
+ PRCM_REQ_MB0_AP_PLL_STATE
));
707 writeb((keep_ulp_clk
? 1 : 0),
708 (tcdm_base
+ PRCM_REQ_MB0_ULP_CLOCK_STATE
));
709 writeb(0, (tcdm_base
+ PRCM_REQ_MB0_DO_NOT_WFI
));
710 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
712 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
717 u8
db8500_prcmu_get_power_state_result(void)
719 return readb(tcdm_base
+ PRCM_ACK_MB0_AP_PWRSTTR_STATUS
);
722 /* This function should only be called while mb0_transfer.lock is held. */
723 static void config_wakeups(void)
725 const u8 header
[2] = {
726 MB0H_CONFIG_WAKEUPS_EXE
,
727 MB0H_CONFIG_WAKEUPS_SLEEP
729 static u32 last_dbb_events
;
730 static u32 last_abb_events
;
735 dbb_events
= mb0_transfer
.req
.dbb_irqs
| mb0_transfer
.req
.dbb_wakeups
;
736 dbb_events
|= (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
);
738 abb_events
= mb0_transfer
.req
.abb_events
;
740 if ((dbb_events
== last_dbb_events
) && (abb_events
== last_abb_events
))
743 for (i
= 0; i
< 2; i
++) {
744 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
746 writel(dbb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_8500
));
747 writel(abb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_4500
));
748 writeb(header
[i
], (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
749 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
751 last_dbb_events
= dbb_events
;
752 last_abb_events
= abb_events
;
755 void db8500_prcmu_enable_wakeups(u32 wakeups
)
761 BUG_ON(wakeups
!= (wakeups
& VALID_WAKEUPS
));
763 for (i
= 0, bits
= 0; i
< NUM_PRCMU_WAKEUP_INDICES
; i
++) {
764 if (wakeups
& BIT(i
))
765 bits
|= prcmu_wakeup_bit
[i
];
768 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
770 mb0_transfer
.req
.dbb_wakeups
= bits
;
773 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
776 void db8500_prcmu_config_abb_event_readout(u32 abb_events
)
780 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
782 mb0_transfer
.req
.abb_events
= abb_events
;
785 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
788 void db8500_prcmu_get_abb_event_buffer(void __iomem
**buf
)
790 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
791 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_4500
);
793 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_4500
);
797 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
798 * @opp: The new ARM operating point to which transition is to be made
799 * Returns: 0 on success, non-zero on failure
801 * This function sets the operating point of the ARM.
803 int db8500_prcmu_set_arm_opp(u8 opp
)
807 if (opp
< ARM_NO_CHANGE
|| opp
> ARM_EXTCLK
)
812 mutex_lock(&mb1_transfer
.lock
);
814 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
817 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
818 writeb(opp
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
819 writeb(APE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
821 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
822 wait_for_completion(&mb1_transfer
.work
);
824 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
825 (mb1_transfer
.ack
.arm_opp
!= opp
))
828 mutex_unlock(&mb1_transfer
.lock
);
834 * db8500_prcmu_get_arm_opp - get the current ARM OPP
836 * Returns: the current ARM OPP
838 int db8500_prcmu_get_arm_opp(void)
840 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_ARM_OPP
);
844 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
846 * Returns: the current DDR OPP
848 int db8500_prcmu_get_ddr_opp(void)
850 return readb(PRCM_DDR_SUBSYS_APE_MINBW
);
853 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
854 static void request_even_slower_clocks(bool enable
)
863 spin_lock_irqsave(&clk_mgt_lock
, flags
);
865 /* Grab the HW semaphore. */
866 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
869 for (i
= 0; i
< ARRAY_SIZE(clock_reg
); i
++) {
873 val
= readl(prcmu_base
+ clock_reg
[i
]);
874 div
= (val
& PRCM_CLK_MGT_CLKPLLDIV_MASK
);
876 if ((div
<= 1) || (div
> 15)) {
877 pr_err("prcmu: Bad clock divider %d in %s\n",
879 goto unlock_and_return
;
884 goto unlock_and_return
;
887 val
= ((val
& ~PRCM_CLK_MGT_CLKPLLDIV_MASK
) |
888 (div
& PRCM_CLK_MGT_CLKPLLDIV_MASK
));
889 writel(val
, prcmu_base
+ clock_reg
[i
]);
893 /* Release the HW semaphore. */
896 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
900 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
901 * @opp: The new APE operating point to which transition is to be made
902 * Returns: 0 on success, non-zero on failure
904 * This function sets the operating point of the APE.
906 int db8500_prcmu_set_ape_opp(u8 opp
)
910 if (opp
== mb1_transfer
.ape_opp
)
913 mutex_lock(&mb1_transfer
.lock
);
915 if (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)
916 request_even_slower_clocks(false);
918 if ((opp
!= APE_100_OPP
) && (mb1_transfer
.ape_opp
!= APE_100_OPP
))
921 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
924 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
925 writeb(ARM_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
926 writeb(((opp
== APE_50_PARTLY_25_OPP
) ? APE_50_OPP
: opp
),
927 (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
929 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
930 wait_for_completion(&mb1_transfer
.work
);
932 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
933 (mb1_transfer
.ack
.ape_opp
!= opp
))
937 if ((!r
&& (opp
== APE_50_PARTLY_25_OPP
)) ||
938 (r
&& (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)))
939 request_even_slower_clocks(true);
941 mb1_transfer
.ape_opp
= opp
;
943 mutex_unlock(&mb1_transfer
.lock
);
949 * db8500_prcmu_get_ape_opp - get the current APE OPP
951 * Returns: the current APE OPP
953 int db8500_prcmu_get_ape_opp(void)
955 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_APE_OPP
);
959 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
960 * @enable: true to request the higher voltage, false to drop a request.
962 * Calls to this function to enable and disable requests must be balanced.
964 int db8500_prcmu_request_ape_opp_100_voltage(bool enable
)
968 static unsigned int requests
;
970 mutex_lock(&mb1_transfer
.lock
);
974 goto unlock_and_return
;
975 header
= MB1H_REQUEST_APE_OPP_100_VOLT
;
979 goto unlock_and_return
;
980 } else if (1 != requests
--) {
981 goto unlock_and_return
;
983 header
= MB1H_RELEASE_APE_OPP_100_VOLT
;
986 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
989 writeb(header
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
991 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
992 wait_for_completion(&mb1_transfer
.work
);
994 if ((mb1_transfer
.ack
.header
!= header
) ||
995 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
999 mutex_unlock(&mb1_transfer
.lock
);
1005 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1007 * This function releases the power state requirements of a USB wakeup.
1009 int prcmu_release_usb_wakeup_state(void)
1013 mutex_lock(&mb1_transfer
.lock
);
1015 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1018 writeb(MB1H_RELEASE_USB_WAKEUP
,
1019 (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1021 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1022 wait_for_completion(&mb1_transfer
.work
);
1024 if ((mb1_transfer
.ack
.header
!= MB1H_RELEASE_USB_WAKEUP
) ||
1025 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1028 mutex_unlock(&mb1_transfer
.lock
);
1033 static int request_pll(u8 clock
, bool enable
)
1037 if (clock
== PRCMU_PLLSOC0
)
1038 clock
= (enable
? PLL_SOC0_ON
: PLL_SOC0_OFF
);
1039 else if (clock
== PRCMU_PLLSOC1
)
1040 clock
= (enable
? PLL_SOC1_ON
: PLL_SOC1_OFF
);
1044 mutex_lock(&mb1_transfer
.lock
);
1046 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1049 writeb(MB1H_PLL_ON_OFF
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1050 writeb(clock
, (tcdm_base
+ PRCM_REQ_MB1_PLL_ON_OFF
));
1052 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1053 wait_for_completion(&mb1_transfer
.work
);
1055 if (mb1_transfer
.ack
.header
!= MB1H_PLL_ON_OFF
)
1058 mutex_unlock(&mb1_transfer
.lock
);
1064 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065 * @epod_id: The EPOD to set
1066 * @epod_state: The new EPOD state
1068 * This function sets the state of a EPOD (power domain). It may not be called
1069 * from interrupt context.
1071 int db8500_prcmu_set_epod(u16 epod_id
, u8 epod_state
)
1074 bool ram_retention
= false;
1077 /* check argument */
1078 BUG_ON(epod_id
>= NUM_EPOD_ID
);
1080 /* set flag if retention is possible */
1082 case EPOD_ID_SVAMMDSP
:
1083 case EPOD_ID_SIAMMDSP
:
1084 case EPOD_ID_ESRAM12
:
1085 case EPOD_ID_ESRAM34
:
1086 ram_retention
= true;
1090 /* check argument */
1091 BUG_ON(epod_state
> EPOD_STATE_ON
);
1092 BUG_ON(epod_state
== EPOD_STATE_RAMRET
&& !ram_retention
);
1095 mutex_lock(&mb2_transfer
.lock
);
1097 /* wait for mailbox */
1098 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(2))
1101 /* fill in mailbox */
1102 for (i
= 0; i
< NUM_EPOD_ID
; i
++)
1103 writeb(EPOD_STATE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB2
+ i
));
1104 writeb(epod_state
, (tcdm_base
+ PRCM_REQ_MB2
+ epod_id
));
1106 writeb(MB2H_DPS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB2
));
1108 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET
);
1111 * The current firmware version does not handle errors correctly,
1112 * and we cannot recover if there is an error.
1113 * This is expected to change when the firmware is updated.
1115 if (!wait_for_completion_timeout(&mb2_transfer
.work
,
1116 msecs_to_jiffies(20000))) {
1117 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1120 goto unlock_and_return
;
1123 if (mb2_transfer
.ack
.status
!= HWACC_PWR_ST_OK
)
1127 mutex_unlock(&mb2_transfer
.lock
);
1132 * prcmu_configure_auto_pm - Configure autonomous power management.
1133 * @sleep: Configuration for ApSleep.
1134 * @idle: Configuration for ApIdle.
1136 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config
*sleep
,
1137 struct prcmu_auto_pm_config
*idle
)
1141 unsigned long flags
;
1143 BUG_ON((sleep
== NULL
) || (idle
== NULL
));
1145 sleep_cfg
= (sleep
->sva_auto_pm_enable
& 0xF);
1146 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_auto_pm_enable
& 0xF));
1147 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sva_power_on
& 0xFF));
1148 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sia_power_on
& 0xFF));
1149 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sva_policy
& 0xF));
1150 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_policy
& 0xF));
1152 idle_cfg
= (idle
->sva_auto_pm_enable
& 0xF);
1153 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_auto_pm_enable
& 0xF));
1154 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sva_power_on
& 0xFF));
1155 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sia_power_on
& 0xFF));
1156 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sva_policy
& 0xF));
1157 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_policy
& 0xF));
1159 spin_lock_irqsave(&mb2_transfer
.auto_pm_lock
, flags
);
1162 * The autonomous power management configuration is done through
1163 * fields in mailbox 2, but these fields are only used as shared
1164 * variables - i.e. there is no need to send a message.
1166 writel(sleep_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_SLEEP
));
1167 writel(idle_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_IDLE
));
1169 mb2_transfer
.auto_pm_enabled
=
1170 ((sleep
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1171 (sleep
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1172 (idle
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1173 (idle
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
));
1175 spin_unlock_irqrestore(&mb2_transfer
.auto_pm_lock
, flags
);
1177 EXPORT_SYMBOL(prcmu_configure_auto_pm
);
1179 bool prcmu_is_auto_pm_enabled(void)
1181 return mb2_transfer
.auto_pm_enabled
;
1184 static int request_sysclk(bool enable
)
1187 unsigned long flags
;
1191 mutex_lock(&mb3_transfer
.sysclk_lock
);
1193 spin_lock_irqsave(&mb3_transfer
.lock
, flags
);
1195 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(3))
1198 writeb((enable
? ON
: OFF
), (tcdm_base
+ PRCM_REQ_MB3_SYSCLK_MGT
));
1200 writeb(MB3H_SYSCLK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB3
));
1201 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET
);
1203 spin_unlock_irqrestore(&mb3_transfer
.lock
, flags
);
1206 * The firmware only sends an ACK if we want to enable the
1207 * SysClk, and it succeeds.
1209 if (enable
&& !wait_for_completion_timeout(&mb3_transfer
.sysclk_work
,
1210 msecs_to_jiffies(20000))) {
1211 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1216 mutex_unlock(&mb3_transfer
.sysclk_lock
);
1221 static int request_timclk(bool enable
)
1226 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227 * PLL is disabled so we cannot use doze mode, this will
1228 * stop the clock on this firmware.
1230 if (prcmu_is_ulppll_disabled())
1233 val
= (PRCM_TCR_DOZE_MODE
| PRCM_TCR_TENSEL_MASK
);
1236 val
|= PRCM_TCR_STOP_TIMERS
|
1237 PRCM_TCR_DOZE_MODE
|
1238 PRCM_TCR_TENSEL_MASK
;
1240 writel(val
, PRCM_TCR
);
1245 static int request_clock(u8 clock
, bool enable
)
1248 unsigned long flags
;
1250 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1252 /* Grab the HW semaphore. */
1253 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1256 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1258 val
|= (PRCM_CLK_MGT_CLKEN
| clk_mgt
[clock
].pllsw
);
1260 clk_mgt
[clock
].pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1261 val
&= ~(PRCM_CLK_MGT_CLKEN
| PRCM_CLK_MGT_CLKPLLSW_MASK
);
1263 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1265 /* Release the HW semaphore. */
1266 writel(0, PRCM_SEM
);
1268 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1273 static int request_sga_clock(u8 clock
, bool enable
)
1279 val
= readl(PRCM_CGATING_BYPASS
);
1280 writel(val
| PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1283 ret
= request_clock(clock
, enable
);
1285 if (!ret
&& !enable
) {
1286 val
= readl(PRCM_CGATING_BYPASS
);
1287 writel(val
& ~PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1293 static inline bool plldsi_locked(void)
1295 return (readl(PRCM_PLLDSI_LOCKP
) &
1296 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1297 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
)) ==
1298 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1299 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
);
1302 static int request_plldsi(bool enable
)
1307 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1308 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
), (enable
?
1309 PRCM_MMIP_LS_CLAMP_CLR
: PRCM_MMIP_LS_CLAMP_SET
));
1311 val
= readl(PRCM_PLLDSI_ENABLE
);
1313 val
|= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1315 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1316 writel(val
, PRCM_PLLDSI_ENABLE
);
1320 bool locked
= plldsi_locked();
1322 for (i
= 10; !locked
&& (i
> 0); --i
) {
1324 locked
= plldsi_locked();
1327 writel(PRCM_APE_RESETN_DSIPLL_RESETN
,
1328 PRCM_APE_RESETN_SET
);
1330 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1331 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
),
1332 PRCM_MMIP_LS_CLAMP_SET
);
1333 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1334 writel(val
, PRCM_PLLDSI_ENABLE
);
1338 writel(PRCM_APE_RESETN_DSIPLL_RESETN
, PRCM_APE_RESETN_CLR
);
1343 static int request_dsiclk(u8 n
, bool enable
)
1347 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1348 val
&= ~dsiclk
[n
].divsel_mask
;
1349 val
|= ((enable
? dsiclk
[n
].divsel
: PRCM_DSI_PLLOUT_SEL_OFF
) <<
1350 dsiclk
[n
].divsel_shift
);
1351 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1355 static int request_dsiescclk(u8 n
, bool enable
)
1359 val
= readl(PRCM_DSITVCLK_DIV
);
1360 enable
? (val
|= dsiescclk
[n
].en
) : (val
&= ~dsiescclk
[n
].en
);
1361 writel(val
, PRCM_DSITVCLK_DIV
);
1366 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367 * @clock: The clock for which the request is made.
1368 * @enable: Whether the clock should be enabled (true) or disabled (false).
1370 * This function should only be used by the clock implementation.
1371 * Do not use it from any other place!
1373 int db8500_prcmu_request_clock(u8 clock
, bool enable
)
1375 if (clock
== PRCMU_SGACLK
)
1376 return request_sga_clock(clock
, enable
);
1377 else if (clock
< PRCMU_NUM_REG_CLOCKS
)
1378 return request_clock(clock
, enable
);
1379 else if (clock
== PRCMU_TIMCLK
)
1380 return request_timclk(enable
);
1381 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1382 return request_dsiclk((clock
- PRCMU_DSI0CLK
), enable
);
1383 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1384 return request_dsiescclk((clock
- PRCMU_DSI0ESCCLK
), enable
);
1385 else if (clock
== PRCMU_PLLDSI
)
1386 return request_plldsi(enable
);
1387 else if (clock
== PRCMU_SYSCLK
)
1388 return request_sysclk(enable
);
1389 else if ((clock
== PRCMU_PLLSOC0
) || (clock
== PRCMU_PLLSOC1
))
1390 return request_pll(clock
, enable
);
1395 static unsigned long pll_rate(void __iomem
*reg
, unsigned long src_rate
,
1406 rate
*= ((val
& PRCM_PLL_FREQ_D_MASK
) >> PRCM_PLL_FREQ_D_SHIFT
);
1408 d
= ((val
& PRCM_PLL_FREQ_N_MASK
) >> PRCM_PLL_FREQ_N_SHIFT
);
1412 d
= ((val
& PRCM_PLL_FREQ_R_MASK
) >> PRCM_PLL_FREQ_R_SHIFT
);
1416 if (val
& PRCM_PLL_FREQ_SELDIV2
)
1419 if ((branch
== PLL_FIX
) || ((branch
== PLL_DIV
) &&
1420 (val
& PRCM_PLL_FREQ_DIV2EN
) &&
1421 ((reg
== PRCM_PLLSOC0_FREQ
) ||
1422 (reg
== PRCM_PLLARM_FREQ
) ||
1423 (reg
== PRCM_PLLDDR_FREQ
))))
1426 (void)do_div(rate
, div
);
1428 return (unsigned long)rate
;
1431 #define ROOT_CLOCK_RATE 38400000
1433 static unsigned long clock_rate(u8 clock
)
1437 unsigned long rate
= ROOT_CLOCK_RATE
;
1439 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1441 if (val
& PRCM_CLK_MGT_CLK38
) {
1442 if (clk_mgt
[clock
].clk38div
&& (val
& PRCM_CLK_MGT_CLK38DIV
))
1447 val
|= clk_mgt
[clock
].pllsw
;
1448 pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1450 if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1451 rate
= pll_rate(PRCM_PLLSOC0_FREQ
, rate
, clk_mgt
[clock
].branch
);
1452 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1453 rate
= pll_rate(PRCM_PLLSOC1_FREQ
, rate
, clk_mgt
[clock
].branch
);
1454 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1455 rate
= pll_rate(PRCM_PLLDDR_FREQ
, rate
, clk_mgt
[clock
].branch
);
1459 if ((clock
== PRCMU_SGACLK
) &&
1460 (val
& PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
)) {
1461 u64 r
= (rate
* 10);
1463 (void)do_div(r
, 25);
1464 return (unsigned long)r
;
1466 val
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1473 static unsigned long armss_rate(void)
1478 r
= readl(PRCM_ARM_CHGCLKREQ
);
1480 if (r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ
) {
1481 /* External ARMCLKFIX clock */
1483 rate
= pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_FIX
);
1485 /* Check PRCM_ARM_CHGCLKREQ divider */
1486 if (!(r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL
))
1489 /* Check PRCM_ARMCLKFIX_MGT divider */
1490 r
= readl(PRCM_ARMCLKFIX_MGT
);
1491 r
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1494 } else {/* ARM PLL */
1495 rate
= pll_rate(PRCM_PLLARM_FREQ
, ROOT_CLOCK_RATE
, PLL_DIV
);
1501 static unsigned long dsiclk_rate(u8 n
)
1506 divsel
= readl(PRCM_DSI_PLLOUT_SEL
);
1507 divsel
= ((divsel
& dsiclk
[n
].divsel_mask
) >> dsiclk
[n
].divsel_shift
);
1509 if (divsel
== PRCM_DSI_PLLOUT_SEL_OFF
)
1510 divsel
= dsiclk
[n
].divsel
;
1512 dsiclk
[n
].divsel
= divsel
;
1515 case PRCM_DSI_PLLOUT_SEL_PHI_4
:
1518 case PRCM_DSI_PLLOUT_SEL_PHI_2
:
1521 case PRCM_DSI_PLLOUT_SEL_PHI
:
1522 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1529 static unsigned long dsiescclk_rate(u8 n
)
1533 div
= readl(PRCM_DSITVCLK_DIV
);
1534 div
= ((div
& dsiescclk
[n
].div_mask
) >> (dsiescclk
[n
].div_shift
));
1535 return clock_rate(PRCMU_TVCLK
) / max((u32
)1, div
);
1538 unsigned long prcmu_clock_rate(u8 clock
)
1540 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1541 return clock_rate(clock
);
1542 else if (clock
== PRCMU_TIMCLK
)
1543 return prcmu_is_ulppll_disabled() ?
1544 32768 : ROOT_CLOCK_RATE
/ 16;
1545 else if (clock
== PRCMU_SYSCLK
)
1546 return ROOT_CLOCK_RATE
;
1547 else if (clock
== PRCMU_PLLSOC0
)
1548 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1549 else if (clock
== PRCMU_PLLSOC1
)
1550 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1551 else if (clock
== PRCMU_ARMSS
)
1552 return armss_rate();
1553 else if (clock
== PRCMU_PLLDDR
)
1554 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1555 else if (clock
== PRCMU_PLLDSI
)
1556 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1558 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1559 return dsiclk_rate(clock
- PRCMU_DSI0CLK
);
1560 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1561 return dsiescclk_rate(clock
- PRCMU_DSI0ESCCLK
);
1566 static unsigned long clock_source_rate(u32 clk_mgt_val
, int branch
)
1568 if (clk_mgt_val
& PRCM_CLK_MGT_CLK38
)
1569 return ROOT_CLOCK_RATE
;
1570 clk_mgt_val
&= PRCM_CLK_MGT_CLKPLLSW_MASK
;
1571 if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1572 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, branch
);
1573 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1574 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, branch
);
1575 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1576 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, branch
);
1581 static u32
clock_divider(unsigned long src_rate
, unsigned long rate
)
1585 div
= (src_rate
/ rate
);
1588 if (rate
< (src_rate
/ div
))
1593 static long round_clock_rate(u8 clock
, unsigned long rate
)
1597 unsigned long src_rate
;
1600 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1601 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1602 clk_mgt
[clock
].branch
);
1603 div
= clock_divider(src_rate
, rate
);
1604 if (val
& PRCM_CLK_MGT_CLK38
) {
1605 if (clk_mgt
[clock
].clk38div
) {
1611 } else if ((clock
== PRCMU_SGACLK
) && (div
== 3)) {
1612 u64 r
= (src_rate
* 10);
1614 (void)do_div(r
, 25);
1616 return (unsigned long)r
;
1618 rounded_rate
= (src_rate
/ min(div
, (u32
)31));
1620 return rounded_rate
;
1623 static const unsigned long db8500_armss_freqs
[] = {
1630 /* The DB8520 has slightly higher ARMSS max frequency */
1631 static const unsigned long db8520_armss_freqs
[] = {
1638 static long round_armss_rate(unsigned long rate
)
1640 unsigned long freq
= 0;
1641 const unsigned long *freqs
;
1645 if (fw_info
.version
.project
== PRCMU_FW_PROJECT_U8520
) {
1646 freqs
= db8520_armss_freqs
;
1647 nfreqs
= ARRAY_SIZE(db8520_armss_freqs
);
1649 freqs
= db8500_armss_freqs
;
1650 nfreqs
= ARRAY_SIZE(db8500_armss_freqs
);
1653 /* Find the corresponding arm opp from the cpufreq table. */
1654 for (i
= 0; i
< nfreqs
; i
++) {
1660 /* Return the last valid value, even if a match was not found. */
1664 #define MIN_PLL_VCO_RATE 600000000ULL
1665 #define MAX_PLL_VCO_RATE 1680640000ULL
1667 static long round_plldsi_rate(unsigned long rate
)
1669 long rounded_rate
= 0;
1670 unsigned long src_rate
;
1674 src_rate
= clock_rate(PRCMU_HDMICLK
);
1677 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1681 (void)do_div(d
, src_rate
);
1687 if (((2 * d
) < (r
* MIN_PLL_VCO_RATE
)) ||
1688 ((r
* MAX_PLL_VCO_RATE
) < (2 * d
)))
1692 if (rounded_rate
== 0)
1693 rounded_rate
= (long)d
;
1696 if ((rate
- d
) < rem
) {
1698 rounded_rate
= (long)d
;
1701 return rounded_rate
;
1704 static long round_dsiclk_rate(unsigned long rate
)
1707 unsigned long src_rate
;
1710 src_rate
= pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1712 div
= clock_divider(src_rate
, rate
);
1713 rounded_rate
= (src_rate
/ ((div
> 2) ? 4 : div
));
1715 return rounded_rate
;
1718 static long round_dsiescclk_rate(unsigned long rate
)
1721 unsigned long src_rate
;
1724 src_rate
= clock_rate(PRCMU_TVCLK
);
1725 div
= clock_divider(src_rate
, rate
);
1726 rounded_rate
= (src_rate
/ min(div
, (u32
)255));
1728 return rounded_rate
;
1731 long prcmu_round_clock_rate(u8 clock
, unsigned long rate
)
1733 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1734 return round_clock_rate(clock
, rate
);
1735 else if (clock
== PRCMU_ARMSS
)
1736 return round_armss_rate(rate
);
1737 else if (clock
== PRCMU_PLLDSI
)
1738 return round_plldsi_rate(rate
);
1739 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1740 return round_dsiclk_rate(rate
);
1741 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1742 return round_dsiescclk_rate(rate
);
1744 return (long)prcmu_clock_rate(clock
);
1747 static void set_clock_rate(u8 clock
, unsigned long rate
)
1751 unsigned long src_rate
;
1752 unsigned long flags
;
1754 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1756 /* Grab the HW semaphore. */
1757 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1760 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1761 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1762 clk_mgt
[clock
].branch
);
1763 div
= clock_divider(src_rate
, rate
);
1764 if (val
& PRCM_CLK_MGT_CLK38
) {
1765 if (clk_mgt
[clock
].clk38div
) {
1767 val
|= PRCM_CLK_MGT_CLK38DIV
;
1769 val
&= ~PRCM_CLK_MGT_CLK38DIV
;
1771 } else if (clock
== PRCMU_SGACLK
) {
1772 val
&= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK
|
1773 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
);
1775 u64 r
= (src_rate
* 10);
1777 (void)do_div(r
, 25);
1779 val
|= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
;
1783 val
|= min(div
, (u32
)31);
1785 val
&= ~PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1786 val
|= min(div
, (u32
)31);
1788 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1790 /* Release the HW semaphore. */
1791 writel(0, PRCM_SEM
);
1793 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1796 static int set_armss_rate(unsigned long rate
)
1799 u8 opps
[] = { ARM_EXTCLK
, ARM_50_OPP
, ARM_100_OPP
, ARM_MAX_OPP
};
1800 const unsigned long *freqs
;
1804 if (fw_info
.version
.project
== PRCMU_FW_PROJECT_U8520
) {
1805 freqs
= db8520_armss_freqs
;
1806 nfreqs
= ARRAY_SIZE(db8520_armss_freqs
);
1808 freqs
= db8500_armss_freqs
;
1809 nfreqs
= ARRAY_SIZE(db8500_armss_freqs
);
1812 /* Find the corresponding arm opp from the cpufreq table. */
1813 for (i
= 0; i
< nfreqs
; i
++) {
1822 /* Set the new arm opp. */
1823 pr_debug("SET ARM OPP 0x%02x\n", opps
[i
]);
1824 return db8500_prcmu_set_arm_opp(opps
[i
]);
1827 static int set_plldsi_rate(unsigned long rate
)
1829 unsigned long src_rate
;
1834 src_rate
= clock_rate(PRCMU_HDMICLK
);
1837 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1842 (void)do_div(d
, src_rate
);
1847 hwrate
= (d
* src_rate
);
1848 if (((2 * hwrate
) < (r
* MIN_PLL_VCO_RATE
)) ||
1849 ((r
* MAX_PLL_VCO_RATE
) < (2 * hwrate
)))
1851 (void)do_div(hwrate
, r
);
1852 if (rate
< hwrate
) {
1854 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1855 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1858 if ((rate
- hwrate
) < rem
) {
1859 rem
= (rate
- hwrate
);
1860 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1861 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1867 pll_freq
|= (1 << PRCM_PLL_FREQ_N_SHIFT
);
1868 writel(pll_freq
, PRCM_PLLDSI_FREQ
);
1873 static void set_dsiclk_rate(u8 n
, unsigned long rate
)
1878 div
= clock_divider(pll_rate(PRCM_PLLDSI_FREQ
,
1879 clock_rate(PRCMU_HDMICLK
), PLL_RAW
), rate
);
1881 dsiclk
[n
].divsel
= (div
== 1) ? PRCM_DSI_PLLOUT_SEL_PHI
:
1882 (div
== 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2
:
1883 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4
;
1885 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1886 val
&= ~dsiclk
[n
].divsel_mask
;
1887 val
|= (dsiclk
[n
].divsel
<< dsiclk
[n
].divsel_shift
);
1888 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1891 static void set_dsiescclk_rate(u8 n
, unsigned long rate
)
1896 div
= clock_divider(clock_rate(PRCMU_TVCLK
), rate
);
1897 val
= readl(PRCM_DSITVCLK_DIV
);
1898 val
&= ~dsiescclk
[n
].div_mask
;
1899 val
|= (min(div
, (u32
)255) << dsiescclk
[n
].div_shift
);
1900 writel(val
, PRCM_DSITVCLK_DIV
);
1903 int prcmu_set_clock_rate(u8 clock
, unsigned long rate
)
1905 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1906 set_clock_rate(clock
, rate
);
1907 else if (clock
== PRCMU_ARMSS
)
1908 return set_armss_rate(rate
);
1909 else if (clock
== PRCMU_PLLDSI
)
1910 return set_plldsi_rate(rate
);
1911 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1912 set_dsiclk_rate((clock
- PRCMU_DSI0CLK
), rate
);
1913 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1914 set_dsiescclk_rate((clock
- PRCMU_DSI0ESCCLK
), rate
);
1918 int db8500_prcmu_config_esram0_deep_sleep(u8 state
)
1920 if ((state
> ESRAM0_DEEP_SLEEP_STATE_RET
) ||
1921 (state
< ESRAM0_DEEP_SLEEP_STATE_OFF
))
1924 mutex_lock(&mb4_transfer
.lock
);
1926 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1929 writeb(MB4H_MEM_ST
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1930 writeb(((DDR_PWR_STATE_OFFHIGHLAT
<< 4) | DDR_PWR_STATE_ON
),
1931 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE
));
1932 writeb(DDR_PWR_STATE_ON
,
1933 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE
));
1934 writeb(state
, (tcdm_base
+ PRCM_REQ_MB4_ESRAM0_ST
));
1936 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1937 wait_for_completion(&mb4_transfer
.work
);
1939 mutex_unlock(&mb4_transfer
.lock
);
1944 int db8500_prcmu_config_hotdog(u8 threshold
)
1946 mutex_lock(&mb4_transfer
.lock
);
1948 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1951 writeb(threshold
, (tcdm_base
+ PRCM_REQ_MB4_HOTDOG_THRESHOLD
));
1952 writeb(MB4H_HOTDOG
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1954 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1955 wait_for_completion(&mb4_transfer
.work
);
1957 mutex_unlock(&mb4_transfer
.lock
);
1962 int db8500_prcmu_config_hotmon(u8 low
, u8 high
)
1964 mutex_lock(&mb4_transfer
.lock
);
1966 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1969 writeb(low
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_LOW
));
1970 writeb(high
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_HIGH
));
1971 writeb((HOTMON_CONFIG_LOW
| HOTMON_CONFIG_HIGH
),
1972 (tcdm_base
+ PRCM_REQ_MB4_HOTMON_CONFIG
));
1973 writeb(MB4H_HOTMON
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1975 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1976 wait_for_completion(&mb4_transfer
.work
);
1978 mutex_unlock(&mb4_transfer
.lock
);
1982 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon
);
1984 static int config_hot_period(u16 val
)
1986 mutex_lock(&mb4_transfer
.lock
);
1988 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1991 writew(val
, (tcdm_base
+ PRCM_REQ_MB4_HOT_PERIOD
));
1992 writeb(MB4H_HOT_PERIOD
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1994 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1995 wait_for_completion(&mb4_transfer
.work
);
1997 mutex_unlock(&mb4_transfer
.lock
);
2002 int db8500_prcmu_start_temp_sense(u16 cycles32k
)
2004 if (cycles32k
== 0xFFFF)
2007 return config_hot_period(cycles32k
);
2009 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense
);
2011 int db8500_prcmu_stop_temp_sense(void)
2013 return config_hot_period(0xFFFF);
2015 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense
);
2017 static int prcmu_a9wdog(u8 cmd
, u8 d0
, u8 d1
, u8 d2
, u8 d3
)
2020 mutex_lock(&mb4_transfer
.lock
);
2022 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2025 writeb(d0
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_0
));
2026 writeb(d1
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_1
));
2027 writeb(d2
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_2
));
2028 writeb(d3
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_3
));
2030 writeb(cmd
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2032 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2033 wait_for_completion(&mb4_transfer
.work
);
2035 mutex_unlock(&mb4_transfer
.lock
);
2041 int db8500_prcmu_config_a9wdog(u8 num
, bool sleep_auto_off
)
2043 BUG_ON(num
== 0 || num
> 0xf);
2044 return prcmu_a9wdog(MB4H_A9WDOG_CONF
, num
, 0, 0,
2045 sleep_auto_off
? A9WDOG_AUTO_OFF_EN
:
2046 A9WDOG_AUTO_OFF_DIS
);
2048 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog
);
2050 int db8500_prcmu_enable_a9wdog(u8 id
)
2052 return prcmu_a9wdog(MB4H_A9WDOG_EN
, id
, 0, 0, 0);
2054 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog
);
2056 int db8500_prcmu_disable_a9wdog(u8 id
)
2058 return prcmu_a9wdog(MB4H_A9WDOG_DIS
, id
, 0, 0, 0);
2060 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog
);
2062 int db8500_prcmu_kick_a9wdog(u8 id
)
2064 return prcmu_a9wdog(MB4H_A9WDOG_KICK
, id
, 0, 0, 0);
2066 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog
);
2069 * timeout is 28 bit, in ms.
2071 int db8500_prcmu_load_a9wdog(u8 id
, u32 timeout
)
2073 return prcmu_a9wdog(MB4H_A9WDOG_LOAD
,
2074 (id
& A9WDOG_ID_MASK
) |
2076 * Put the lowest 28 bits of timeout at
2077 * offset 4. Four first bits are used for id.
2079 (u8
)((timeout
<< 4) & 0xf0),
2080 (u8
)((timeout
>> 4) & 0xff),
2081 (u8
)((timeout
>> 12) & 0xff),
2082 (u8
)((timeout
>> 20) & 0xff));
2084 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog
);
2087 * prcmu_abb_read() - Read register value(s) from the ABB.
2088 * @slave: The I2C slave address.
2089 * @reg: The (start) register address.
2090 * @value: The read out value(s).
2091 * @size: The number of registers to read.
2093 * Reads register value(s) from the ABB.
2094 * @size has to be 1 for the current firmware version.
2096 int prcmu_abb_read(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2103 mutex_lock(&mb5_transfer
.lock
);
2105 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2108 writeb(0, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2109 writeb(PRCMU_I2C_READ(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2110 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2111 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2112 writeb(0, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2114 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2116 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2117 msecs_to_jiffies(20000))) {
2118 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2122 r
= ((mb5_transfer
.ack
.status
== I2C_RD_OK
) ? 0 : -EIO
);
2126 *value
= mb5_transfer
.ack
.value
;
2128 mutex_unlock(&mb5_transfer
.lock
);
2134 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135 * @slave: The I2C slave address.
2136 * @reg: The (start) register address.
2137 * @value: The value(s) to write.
2138 * @mask: The mask(s) to use.
2139 * @size: The number of registers to write.
2141 * Writes masked register value(s) to the ABB.
2142 * For each @value, only the bits set to 1 in the corresponding @mask
2143 * will be written. The other bits are not changed.
2144 * @size has to be 1 for the current firmware version.
2146 int prcmu_abb_write_masked(u8 slave
, u8 reg
, u8
*value
, u8
*mask
, u8 size
)
2153 mutex_lock(&mb5_transfer
.lock
);
2155 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2158 writeb(~*mask
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2159 writeb(PRCMU_I2C_WRITE(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2160 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2161 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2162 writeb(*value
, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2164 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2166 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2167 msecs_to_jiffies(20000))) {
2168 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2172 r
= ((mb5_transfer
.ack
.status
== I2C_WR_OK
) ? 0 : -EIO
);
2175 mutex_unlock(&mb5_transfer
.lock
);
2181 * prcmu_abb_write() - Write register value(s) to the ABB.
2182 * @slave: The I2C slave address.
2183 * @reg: The (start) register address.
2184 * @value: The value(s) to write.
2185 * @size: The number of registers to write.
2187 * Writes register value(s) to the ABB.
2188 * @size has to be 1 for the current firmware version.
2190 int prcmu_abb_write(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2194 return prcmu_abb_write_masked(slave
, reg
, value
, &mask
, size
);
2198 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2200 int prcmu_ac_wake_req(void)
2205 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2207 val
= readl(PRCM_HOSTACCESS_REQ
);
2208 if (val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
)
2209 goto unlock_and_return
;
2211 atomic_set(&ac_wake_req_state
, 1);
2214 * Force Modem Wake-up before hostaccess_req ping-pong.
2215 * It prevents Modem to enter in Sleep while acking the hostaccess
2216 * request. The 31us delay has been calculated by HWI.
2218 val
|= PRCM_HOSTACCESS_REQ_WAKE_REQ
;
2219 writel(val
, PRCM_HOSTACCESS_REQ
);
2223 val
|= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
;
2224 writel(val
, PRCM_HOSTACCESS_REQ
);
2226 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2227 msecs_to_jiffies(5000))) {
2228 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2234 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2239 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2241 void prcmu_ac_sleep_req(void)
2245 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2247 val
= readl(PRCM_HOSTACCESS_REQ
);
2248 if (!(val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
))
2249 goto unlock_and_return
;
2251 writel((val
& ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
),
2252 PRCM_HOSTACCESS_REQ
);
2254 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2255 msecs_to_jiffies(5000))) {
2256 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2260 atomic_set(&ac_wake_req_state
, 0);
2263 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2266 bool db8500_prcmu_is_ac_wake_requested(void)
2268 return (atomic_read(&ac_wake_req_state
) != 0);
2272 * db8500_prcmu_system_reset - System reset
2274 * Saves the reset reason code and then sets the APE_SOFTRST register which
2275 * fires interrupt to fw
2277 * @reset_code: The reason for system reset
2279 void db8500_prcmu_system_reset(u16 reset_code
)
2281 writew(reset_code
, (tcdm_base
+ PRCM_SW_RST_REASON
));
2282 writel(1, PRCM_APE_SOFTRST
);
2286 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2288 * Retrieves the reset reason code stored by prcmu_system_reset() before
2291 u16
db8500_prcmu_get_reset_code(void)
2293 return readw(tcdm_base
+ PRCM_SW_RST_REASON
);
2297 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2299 void db8500_prcmu_modem_reset(void)
2301 mutex_lock(&mb1_transfer
.lock
);
2303 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
2306 writeb(MB1H_RESET_MODEM
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
2307 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
2308 wait_for_completion(&mb1_transfer
.work
);
2311 * No need to check return from PRCMU as modem should go in reset state
2312 * This state is already managed by upper layer
2315 mutex_unlock(&mb1_transfer
.lock
);
2318 static void ack_dbb_wakeup(void)
2320 unsigned long flags
;
2322 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2324 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
2327 writeb(MB0H_READ_WAKEUP_ACK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
2328 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
2330 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2333 static inline void print_unknown_header_warning(u8 n
, u8 header
)
2335 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2339 static bool read_mailbox_0(void)
2346 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_ACK_MB0
);
2348 case MB0H_WAKEUP_EXE
:
2349 case MB0H_WAKEUP_SLEEP
:
2350 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
2351 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_8500
);
2353 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_8500
);
2355 if (ev
& (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
))
2356 complete(&mb0_transfer
.ac_wake_work
);
2357 if (ev
& WAKEUP_BIT_SYSCLK_OK
)
2358 complete(&mb3_transfer
.sysclk_work
);
2360 ev
&= mb0_transfer
.req
.dbb_irqs
;
2362 for (n
= 0; n
< NUM_PRCMU_WAKEUPS
; n
++) {
2363 if (ev
& prcmu_irq_bit
[n
])
2364 generic_handle_domain_irq(db8500_irq_domain
, n
);
2369 print_unknown_header_warning(0, header
);
2373 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR
);
2377 static bool read_mailbox_1(void)
2379 mb1_transfer
.ack
.header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
);
2380 mb1_transfer
.ack
.arm_opp
= readb(tcdm_base
+
2381 PRCM_ACK_MB1_CURRENT_ARM_OPP
);
2382 mb1_transfer
.ack
.ape_opp
= readb(tcdm_base
+
2383 PRCM_ACK_MB1_CURRENT_APE_OPP
);
2384 mb1_transfer
.ack
.ape_voltage_status
= readb(tcdm_base
+
2385 PRCM_ACK_MB1_APE_VOLTAGE_STATUS
);
2386 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR
);
2387 complete(&mb1_transfer
.work
);
2391 static bool read_mailbox_2(void)
2393 mb2_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB2_DPS_STATUS
);
2394 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR
);
2395 complete(&mb2_transfer
.work
);
2399 static bool read_mailbox_3(void)
2401 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR
);
2405 static bool read_mailbox_4(void)
2408 bool do_complete
= true;
2410 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
);
2415 case MB4H_HOT_PERIOD
:
2416 case MB4H_A9WDOG_CONF
:
2417 case MB4H_A9WDOG_EN
:
2418 case MB4H_A9WDOG_DIS
:
2419 case MB4H_A9WDOG_LOAD
:
2420 case MB4H_A9WDOG_KICK
:
2423 print_unknown_header_warning(4, header
);
2424 do_complete
= false;
2428 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR
);
2431 complete(&mb4_transfer
.work
);
2436 static bool read_mailbox_5(void)
2438 mb5_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_STATUS
);
2439 mb5_transfer
.ack
.value
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_VAL
);
2440 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR
);
2441 complete(&mb5_transfer
.work
);
2445 static bool read_mailbox_6(void)
2447 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR
);
2451 static bool read_mailbox_7(void)
2453 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR
);
2457 static bool (* const read_mailbox
[NUM_MB
])(void) = {
2468 static irqreturn_t
prcmu_irq_handler(int irq
, void *data
)
2474 bits
= (readl(PRCM_ARM_IT1_VAL
) & ALL_MBOX_BITS
);
2475 if (unlikely(!bits
))
2479 for (n
= 0; bits
; n
++) {
2480 if (bits
& MBOX_BIT(n
)) {
2481 bits
-= MBOX_BIT(n
);
2482 if (read_mailbox
[n
]())
2483 r
= IRQ_WAKE_THREAD
;
2489 static irqreturn_t
prcmu_irq_thread_fn(int irq
, void *data
)
2495 static void prcmu_mask_work(struct work_struct
*work
)
2497 unsigned long flags
;
2499 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2503 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2506 static void prcmu_irq_mask(struct irq_data
*d
)
2508 unsigned long flags
;
2510 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2512 mb0_transfer
.req
.dbb_irqs
&= ~prcmu_irq_bit
[d
->hwirq
];
2514 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2516 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2517 schedule_work(&mb0_transfer
.mask_work
);
2520 static void prcmu_irq_unmask(struct irq_data
*d
)
2522 unsigned long flags
;
2524 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2526 mb0_transfer
.req
.dbb_irqs
|= prcmu_irq_bit
[d
->hwirq
];
2528 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2530 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2531 schedule_work(&mb0_transfer
.mask_work
);
2534 static void noop(struct irq_data
*d
)
2538 static struct irq_chip prcmu_irq_chip
= {
2540 .irq_disable
= prcmu_irq_mask
,
2542 .irq_mask
= prcmu_irq_mask
,
2543 .irq_unmask
= prcmu_irq_unmask
,
2546 static char *fw_project_name(u32 project
)
2549 case PRCMU_FW_PROJECT_U8500
:
2551 case PRCMU_FW_PROJECT_U8400
:
2553 case PRCMU_FW_PROJECT_U9500
:
2555 case PRCMU_FW_PROJECT_U8500_MBB
:
2557 case PRCMU_FW_PROJECT_U8500_C1
:
2559 case PRCMU_FW_PROJECT_U8500_C2
:
2561 case PRCMU_FW_PROJECT_U8500_C3
:
2563 case PRCMU_FW_PROJECT_U8500_C4
:
2565 case PRCMU_FW_PROJECT_U9500_MBL
:
2567 case PRCMU_FW_PROJECT_U8500_SSG1
:
2568 return "U8500 Samsung 1";
2569 case PRCMU_FW_PROJECT_U8500_MBL2
:
2570 return "U8500 MBL2";
2571 case PRCMU_FW_PROJECT_U8520
:
2573 case PRCMU_FW_PROJECT_U8420
:
2575 case PRCMU_FW_PROJECT_U8500_SSG2
:
2576 return "U8500 Samsung 2";
2577 case PRCMU_FW_PROJECT_U8420_SYSCLK
:
2578 return "U8420-sysclk";
2579 case PRCMU_FW_PROJECT_U9540
:
2581 case PRCMU_FW_PROJECT_A9420
:
2583 case PRCMU_FW_PROJECT_L8540
:
2585 case PRCMU_FW_PROJECT_L8580
:
2592 static int db8500_irq_map(struct irq_domain
*d
, unsigned int virq
,
2593 irq_hw_number_t hwirq
)
2595 irq_set_chip_and_handler(virq
, &prcmu_irq_chip
,
2601 static const struct irq_domain_ops db8500_irq_ops
= {
2602 .map
= db8500_irq_map
,
2603 .xlate
= irq_domain_xlate_twocell
,
2606 static int db8500_irq_init(struct device_node
*np
)
2610 db8500_irq_domain
= irq_domain_add_simple(
2611 np
, NUM_PRCMU_WAKEUPS
, 0,
2612 &db8500_irq_ops
, NULL
);
2614 if (!db8500_irq_domain
) {
2615 pr_err("Failed to create irqdomain\n");
2619 /* All wakeups will be used, so create mappings for all */
2620 for (i
= 0; i
< NUM_PRCMU_WAKEUPS
; i
++)
2621 irq_create_mapping(db8500_irq_domain
, i
);
2626 static void dbx500_fw_version_init(struct device_node
*np
)
2628 void __iomem
*tcpm_base
;
2631 tcpm_base
= of_iomap(np
, 1);
2633 pr_err("no prcmu tcpm mem region provided\n");
2637 version
= readl(tcpm_base
+ DB8500_PRCMU_FW_VERSION_OFFSET
);
2638 fw_info
.version
.project
= (version
& 0xFF);
2639 fw_info
.version
.api_version
= (version
>> 8) & 0xFF;
2640 fw_info
.version
.func_version
= (version
>> 16) & 0xFF;
2641 fw_info
.version
.errata
= (version
>> 24) & 0xFF;
2642 strscpy(fw_info
.version
.project_name
,
2643 fw_project_name(fw_info
.version
.project
),
2644 sizeof(fw_info
.version
.project_name
));
2645 fw_info
.valid
= true;
2646 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647 fw_info
.version
.project_name
,
2648 fw_info
.version
.project
,
2649 fw_info
.version
.api_version
,
2650 fw_info
.version
.func_version
,
2651 fw_info
.version
.errata
);
2655 void __init
db8500_prcmu_early_init(void)
2658 * This is a temporary remap to bring up the clocks. It is
2659 * subsequently replaces with a real remap. After the merge of
2660 * the mailbox subsystem all of this early code goes away, and the
2661 * clock driver can probe independently. An early initcall will
2662 * still be needed, but it can be diverted into drivers/clk/ux500.
2664 struct device_node
*np
;
2666 np
= of_find_compatible_node(NULL
, NULL
, "stericsson,db8500-prcmu");
2667 prcmu_base
= of_iomap(np
, 0);
2670 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__
);
2673 dbx500_fw_version_init(np
);
2676 spin_lock_init(&mb0_transfer
.lock
);
2677 spin_lock_init(&mb0_transfer
.dbb_irqs_lock
);
2678 mutex_init(&mb0_transfer
.ac_wake_lock
);
2679 init_completion(&mb0_transfer
.ac_wake_work
);
2680 mutex_init(&mb1_transfer
.lock
);
2681 init_completion(&mb1_transfer
.work
);
2682 mb1_transfer
.ape_opp
= APE_NO_CHANGE
;
2683 mutex_init(&mb2_transfer
.lock
);
2684 init_completion(&mb2_transfer
.work
);
2685 spin_lock_init(&mb2_transfer
.auto_pm_lock
);
2686 spin_lock_init(&mb3_transfer
.lock
);
2687 mutex_init(&mb3_transfer
.sysclk_lock
);
2688 init_completion(&mb3_transfer
.sysclk_work
);
2689 mutex_init(&mb4_transfer
.lock
);
2690 init_completion(&mb4_transfer
.work
);
2691 mutex_init(&mb5_transfer
.lock
);
2692 init_completion(&mb5_transfer
.work
);
2694 INIT_WORK(&mb0_transfer
.mask_work
, prcmu_mask_work
);
2697 static void init_prcm_registers(void)
2701 val
= readl(PRCM_A9PL_FORCE_CLKEN
);
2702 val
&= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN
|
2703 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN
);
2704 writel(val
, (PRCM_A9PL_FORCE_CLKEN
));
2708 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2710 static struct regulator_consumer_supply db8500_vape_consumers
[] = {
2711 REGULATOR_SUPPLY("v-ape", NULL
),
2712 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717 /* "v-mmc" changed to "vcore" in the mainline kernel */
2718 REGULATOR_SUPPLY("vcore", "sdi0"),
2719 REGULATOR_SUPPLY("vcore", "sdi1"),
2720 REGULATOR_SUPPLY("vcore", "sdi2"),
2721 REGULATOR_SUPPLY("vcore", "sdi3"),
2722 REGULATOR_SUPPLY("vcore", "sdi4"),
2723 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725 /* "v-uart" changed to "vcore" in the mainline kernel */
2726 REGULATOR_SUPPLY("vcore", "uart0"),
2727 REGULATOR_SUPPLY("vcore", "uart1"),
2728 REGULATOR_SUPPLY("vcore", "uart2"),
2729 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2734 static struct regulator_consumer_supply db8500_vsmps2_consumers
[] = {
2735 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736 /* AV8100 regulator */
2737 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2740 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers
[] = {
2741 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742 REGULATOR_SUPPLY("vsupply", "mcde"),
2745 /* SVA MMDSP regulator switch */
2746 static struct regulator_consumer_supply db8500_svammdsp_consumers
[] = {
2747 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2750 /* SVA pipe regulator switch */
2751 static struct regulator_consumer_supply db8500_svapipe_consumers
[] = {
2752 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2755 /* SIA MMDSP regulator switch */
2756 static struct regulator_consumer_supply db8500_siammdsp_consumers
[] = {
2757 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2760 /* SIA pipe regulator switch */
2761 static struct regulator_consumer_supply db8500_siapipe_consumers
[] = {
2762 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2765 static struct regulator_consumer_supply db8500_sga_consumers
[] = {
2766 REGULATOR_SUPPLY("v-mali", NULL
),
2769 /* ESRAM1 and 2 regulator switch */
2770 static struct regulator_consumer_supply db8500_esram12_consumers
[] = {
2771 REGULATOR_SUPPLY("esram12", "cm_control"),
2774 /* ESRAM3 and 4 regulator switch */
2775 static struct regulator_consumer_supply db8500_esram34_consumers
[] = {
2776 REGULATOR_SUPPLY("v-esram34", "mcde"),
2777 REGULATOR_SUPPLY("esram34", "cm_control"),
2778 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2781 static struct regulator_init_data db8500_regulators
[DB8500_NUM_REGULATORS
] = {
2782 [DB8500_REGULATOR_VAPE
] = {
2784 .name
= "db8500-vape",
2785 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2788 .consumer_supplies
= db8500_vape_consumers
,
2789 .num_consumer_supplies
= ARRAY_SIZE(db8500_vape_consumers
),
2791 [DB8500_REGULATOR_VARM
] = {
2793 .name
= "db8500-varm",
2794 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2797 [DB8500_REGULATOR_VMODEM
] = {
2799 .name
= "db8500-vmodem",
2800 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2803 [DB8500_REGULATOR_VPLL
] = {
2805 .name
= "db8500-vpll",
2806 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2809 [DB8500_REGULATOR_VSMPS1
] = {
2811 .name
= "db8500-vsmps1",
2812 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2815 [DB8500_REGULATOR_VSMPS2
] = {
2817 .name
= "db8500-vsmps2",
2818 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2820 .consumer_supplies
= db8500_vsmps2_consumers
,
2821 .num_consumer_supplies
= ARRAY_SIZE(db8500_vsmps2_consumers
),
2823 [DB8500_REGULATOR_VSMPS3
] = {
2825 .name
= "db8500-vsmps3",
2826 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2829 [DB8500_REGULATOR_VRF1
] = {
2831 .name
= "db8500-vrf1",
2832 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2835 [DB8500_REGULATOR_SWITCH_SVAMMDSP
] = {
2836 /* dependency to u8500-vape is handled outside regulator framework */
2838 .name
= "db8500-sva-mmdsp",
2839 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2841 .consumer_supplies
= db8500_svammdsp_consumers
,
2842 .num_consumer_supplies
= ARRAY_SIZE(db8500_svammdsp_consumers
),
2844 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET
] = {
2846 /* "ret" means "retention" */
2847 .name
= "db8500-sva-mmdsp-ret",
2848 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2851 [DB8500_REGULATOR_SWITCH_SVAPIPE
] = {
2852 /* dependency to u8500-vape is handled outside regulator framework */
2854 .name
= "db8500-sva-pipe",
2855 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2857 .consumer_supplies
= db8500_svapipe_consumers
,
2858 .num_consumer_supplies
= ARRAY_SIZE(db8500_svapipe_consumers
),
2860 [DB8500_REGULATOR_SWITCH_SIAMMDSP
] = {
2861 /* dependency to u8500-vape is handled outside regulator framework */
2863 .name
= "db8500-sia-mmdsp",
2864 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2866 .consumer_supplies
= db8500_siammdsp_consumers
,
2867 .num_consumer_supplies
= ARRAY_SIZE(db8500_siammdsp_consumers
),
2869 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET
] = {
2871 .name
= "db8500-sia-mmdsp-ret",
2872 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2875 [DB8500_REGULATOR_SWITCH_SIAPIPE
] = {
2876 /* dependency to u8500-vape is handled outside regulator framework */
2878 .name
= "db8500-sia-pipe",
2879 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2881 .consumer_supplies
= db8500_siapipe_consumers
,
2882 .num_consumer_supplies
= ARRAY_SIZE(db8500_siapipe_consumers
),
2884 [DB8500_REGULATOR_SWITCH_SGA
] = {
2885 .supply_regulator
= "db8500-vape",
2887 .name
= "db8500-sga",
2888 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2890 .consumer_supplies
= db8500_sga_consumers
,
2891 .num_consumer_supplies
= ARRAY_SIZE(db8500_sga_consumers
),
2894 [DB8500_REGULATOR_SWITCH_B2R2_MCDE
] = {
2895 .supply_regulator
= "db8500-vape",
2897 .name
= "db8500-b2r2-mcde",
2898 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2900 .consumer_supplies
= db8500_b2r2_mcde_consumers
,
2901 .num_consumer_supplies
= ARRAY_SIZE(db8500_b2r2_mcde_consumers
),
2903 [DB8500_REGULATOR_SWITCH_ESRAM12
] = {
2905 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906 * no need to hold Vape
2909 .name
= "db8500-esram12",
2910 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2912 .consumer_supplies
= db8500_esram12_consumers
,
2913 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram12_consumers
),
2915 [DB8500_REGULATOR_SWITCH_ESRAM12RET
] = {
2917 .name
= "db8500-esram12-ret",
2918 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2921 [DB8500_REGULATOR_SWITCH_ESRAM34
] = {
2923 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924 * no need to hold Vape
2927 .name
= "db8500-esram34",
2928 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2930 .consumer_supplies
= db8500_esram34_consumers
,
2931 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram34_consumers
),
2933 [DB8500_REGULATOR_SWITCH_ESRAM34RET
] = {
2935 .name
= "db8500-esram34-ret",
2936 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2941 static const struct mfd_cell common_prcmu_devs
[] = {
2942 MFD_CELL_NAME("db8500_wdt"),
2943 MFD_CELL_NAME("db8500-cpuidle"),
2946 static const struct mfd_cell db8500_prcmu_devs
[] = {
2947 MFD_CELL_OF("db8500-prcmu-regulators", NULL
,
2948 &db8500_regulators
, sizeof(db8500_regulators
), 0,
2949 "stericsson,db8500-prcmu-regulator"),
2950 MFD_CELL_OF("db8500-thermal",
2951 NULL
, NULL
, 0, 0, "stericsson,db8500-thermal"),
2954 static int db8500_prcmu_register_ab8500(struct device
*parent
)
2956 struct device_node
*np
;
2957 struct resource ab850x_resource
;
2958 const struct mfd_cell ab8500_cell
= {
2959 .name
= "ab8500-core",
2960 .of_compatible
= "stericsson,ab8500",
2961 .id
= AB8500_VERSION_AB8500
,
2962 .resources
= &ab850x_resource
,
2965 const struct mfd_cell ab8505_cell
= {
2966 .name
= "ab8505-core",
2967 .of_compatible
= "stericsson,ab8505",
2968 .id
= AB8500_VERSION_AB8505
,
2969 .resources
= &ab850x_resource
,
2972 const struct mfd_cell
*ab850x_cell
;
2974 if (!parent
->of_node
)
2977 /* Look up the device node, sneak the IRQ out of it */
2978 for_each_child_of_node(parent
->of_node
, np
) {
2979 if (of_device_is_compatible(np
, ab8500_cell
.of_compatible
)) {
2980 ab850x_cell
= &ab8500_cell
;
2983 if (of_device_is_compatible(np
, ab8505_cell
.of_compatible
)) {
2984 ab850x_cell
= &ab8505_cell
;
2989 dev_info(parent
, "could not find AB850X node in the device tree\n");
2992 of_irq_to_resource_table(np
, &ab850x_resource
, 1);
2994 return mfd_add_devices(parent
, 0, ab850x_cell
, 1, NULL
, 0, NULL
);
2997 static int db8500_prcmu_probe(struct platform_device
*pdev
)
2999 struct device_node
*np
= pdev
->dev
.of_node
;
3000 int irq
= 0, err
= 0;
3001 struct resource
*res
;
3003 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu");
3005 dev_err(&pdev
->dev
, "no prcmu memory region provided\n");
3008 prcmu_base
= devm_ioremap(&pdev
->dev
, res
->start
, resource_size(res
));
3011 "failed to ioremap prcmu register memory\n");
3014 init_prcm_registers();
3015 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu-tcdm");
3017 dev_err(&pdev
->dev
, "no prcmu tcdm region provided\n");
3020 tcdm_base
= devm_ioremap(&pdev
->dev
, res
->start
,
3021 resource_size(res
));
3024 "failed to ioremap prcmu-tcdm register memory\n");
3028 /* Clean up the mailbox interrupts after pre-kernel code. */
3029 writel(ALL_MBOX_BITS
, PRCM_ARM_IT1_CLR
);
3031 irq
= platform_get_irq(pdev
, 0);
3035 err
= request_threaded_irq(irq
, prcmu_irq_handler
,
3036 prcmu_irq_thread_fn
, IRQF_NO_SUSPEND
, "prcmu", NULL
);
3038 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3042 db8500_irq_init(np
);
3044 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET
);
3046 err
= mfd_add_devices(&pdev
->dev
, 0, common_prcmu_devs
,
3047 ARRAY_SIZE(common_prcmu_devs
), NULL
, 0, db8500_irq_domain
);
3049 pr_err("prcmu: Failed to add subdevices\n");
3053 /* TODO: Remove restriction when clk definitions are available. */
3054 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055 err
= mfd_add_devices(&pdev
->dev
, 0, db8500_prcmu_devs
,
3056 ARRAY_SIZE(db8500_prcmu_devs
), NULL
, 0,
3059 mfd_remove_devices(&pdev
->dev
);
3060 pr_err("prcmu: Failed to add subdevices\n");
3065 err
= db8500_prcmu_register_ab8500(&pdev
->dev
);
3067 mfd_remove_devices(&pdev
->dev
);
3068 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3072 pr_info("DB8500 PRCMU initialized\n");
3075 static const struct of_device_id db8500_prcmu_match
[] = {
3076 { .compatible
= "stericsson,db8500-prcmu"},
3080 static struct platform_driver db8500_prcmu_driver
= {
3082 .name
= "db8500-prcmu",
3083 .of_match_table
= db8500_prcmu_match
,
3085 .probe
= db8500_prcmu_probe
,
3088 static int __init
db8500_prcmu_init(void)
3090 return platform_driver_register(&db8500_prcmu_driver
);
3092 core_initcall(db8500_prcmu_init
);