Linux 6.13-rc6
[linux.git] / drivers / net / ethernet / faraday / ftgmac100.c
blob17ec35e75a65632da0255780bd5e456effeb076f
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Faraday FTGMAC100 Gigabit Ethernet
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/of.h>
20 #include <linux/of_mdio.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/property.h>
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 #include <linux/of_net.h>
27 #include <linux/phy_fixed.h>
28 #include <net/ip.h>
29 #include <net/ncsi.h>
31 #include "ftgmac100.h"
33 #define DRV_NAME "ftgmac100"
35 /* Arbitrary values, I am not sure the HW has limits */
36 #define MAX_RX_QUEUE_ENTRIES 1024
37 #define MAX_TX_QUEUE_ENTRIES 1024
38 #define MIN_RX_QUEUE_ENTRIES 32
39 #define MIN_TX_QUEUE_ENTRIES 32
41 /* Defaults */
42 #define DEF_RX_QUEUE_ENTRIES 128
43 #define DEF_TX_QUEUE_ENTRIES 128
45 #define MAX_PKT_SIZE 1536
46 #define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
48 /* Min number of tx ring entries before stopping queue */
49 #define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
51 #define FTGMAC_100MHZ 100000000
52 #define FTGMAC_25MHZ 25000000
54 /* For NC-SI to register a fixed-link phy device */
55 static struct fixed_phy_status ncsi_phy_status = {
56 .link = 1,
57 .speed = SPEED_100,
58 .duplex = DUPLEX_FULL,
59 .pause = 0,
60 .asym_pause = 0
63 struct ftgmac100 {
64 /* Registers */
65 struct resource *res;
66 void __iomem *base;
68 /* Rx ring */
69 unsigned int rx_q_entries;
70 struct ftgmac100_rxdes *rxdes;
71 dma_addr_t rxdes_dma;
72 struct sk_buff **rx_skbs;
73 unsigned int rx_pointer;
74 u32 rxdes0_edorr_mask;
76 /* Tx ring */
77 unsigned int tx_q_entries;
78 struct ftgmac100_txdes *txdes;
79 dma_addr_t txdes_dma;
80 struct sk_buff **tx_skbs;
81 unsigned int tx_clean_pointer;
82 unsigned int tx_pointer;
83 u32 txdes0_edotr_mask;
85 /* Used to signal the reset task of ring change request */
86 unsigned int new_rx_q_entries;
87 unsigned int new_tx_q_entries;
89 /* Scratch page to use when rx skb alloc fails */
90 void *rx_scratch;
91 dma_addr_t rx_scratch_dma;
93 /* Component structures */
94 struct net_device *netdev;
95 struct device *dev;
96 struct ncsi_dev *ndev;
97 struct napi_struct napi;
98 struct work_struct reset_task;
99 struct mii_bus *mii_bus;
100 struct clk *clk;
102 /* AST2500/AST2600 RMII ref clock gate */
103 struct clk *rclk;
105 /* Link management */
106 int cur_speed;
107 int cur_duplex;
108 bool use_ncsi;
110 /* Multicast filter settings */
111 u32 maht0;
112 u32 maht1;
114 /* Flow control settings */
115 bool tx_pause;
116 bool rx_pause;
117 bool aneg_pause;
119 /* Misc */
120 bool need_mac_restart;
121 bool is_aspeed;
124 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
126 struct net_device *netdev = priv->netdev;
127 int i;
129 /* NOTE: reset clears all registers */
130 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
131 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
132 priv->base + FTGMAC100_OFFSET_MACCR);
133 for (i = 0; i < 200; i++) {
134 unsigned int maccr;
136 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
137 if (!(maccr & FTGMAC100_MACCR_SW_RST))
138 return 0;
140 udelay(1);
143 netdev_err(netdev, "Hardware reset failed\n");
144 return -EIO;
147 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
149 u32 maccr = 0;
151 switch (priv->cur_speed) {
152 case SPEED_10:
153 case 0: /* no link */
154 break;
156 case SPEED_100:
157 maccr |= FTGMAC100_MACCR_FAST_MODE;
158 break;
160 case SPEED_1000:
161 maccr |= FTGMAC100_MACCR_GIGA_MODE;
162 break;
163 default:
164 netdev_err(priv->netdev, "Unknown speed %d !\n",
165 priv->cur_speed);
166 break;
169 /* (Re)initialize the queue pointers */
170 priv->rx_pointer = 0;
171 priv->tx_clean_pointer = 0;
172 priv->tx_pointer = 0;
174 /* The doc says reset twice with 10us interval */
175 if (ftgmac100_reset_mac(priv, maccr))
176 return -EIO;
177 usleep_range(10, 1000);
178 return ftgmac100_reset_mac(priv, maccr);
181 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
183 unsigned int maddr = mac[0] << 8 | mac[1];
184 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
186 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
187 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
190 static int ftgmac100_initial_mac(struct ftgmac100 *priv)
192 u8 mac[ETH_ALEN];
193 unsigned int m;
194 unsigned int l;
195 int err;
197 err = of_get_ethdev_address(priv->dev->of_node, priv->netdev);
198 if (err == -EPROBE_DEFER)
199 return err;
200 if (!err) {
201 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
202 priv->netdev->dev_addr);
203 return 0;
206 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
207 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
209 mac[0] = (m >> 8) & 0xff;
210 mac[1] = m & 0xff;
211 mac[2] = (l >> 24) & 0xff;
212 mac[3] = (l >> 16) & 0xff;
213 mac[4] = (l >> 8) & 0xff;
214 mac[5] = l & 0xff;
216 if (is_valid_ether_addr(mac)) {
217 eth_hw_addr_set(priv->netdev, mac);
218 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
219 } else {
220 eth_hw_addr_random(priv->netdev);
221 dev_info(priv->dev, "Generated random MAC address %pM\n",
222 priv->netdev->dev_addr);
225 return 0;
228 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
230 int ret;
232 ret = eth_prepare_mac_addr_change(dev, p);
233 if (ret < 0)
234 return ret;
236 eth_commit_mac_addr_change(dev, p);
237 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
239 return 0;
242 static void ftgmac100_config_pause(struct ftgmac100 *priv)
244 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
246 /* Throttle tx queue when receiving pause frames */
247 if (priv->rx_pause)
248 fcr |= FTGMAC100_FCR_FC_EN;
250 /* Enables sending pause frames when the RX queue is past a
251 * certain threshold.
253 if (priv->tx_pause)
254 fcr |= FTGMAC100_FCR_FCTHR_EN;
256 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
259 static void ftgmac100_init_hw(struct ftgmac100 *priv)
261 u32 reg, rfifo_sz, tfifo_sz;
263 /* Clear stale interrupts */
264 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
265 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
267 /* Setup RX ring buffer base */
268 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
270 /* Setup TX ring buffer base */
271 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
273 /* Configure RX buffer size */
274 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
275 priv->base + FTGMAC100_OFFSET_RBSR);
277 /* Set RX descriptor autopoll */
278 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
279 priv->base + FTGMAC100_OFFSET_APTC);
281 /* Write MAC address */
282 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
284 /* Write multicast filter */
285 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
286 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
288 /* Configure descriptor sizes and increase burst sizes according
289 * to values in Aspeed SDK. The FIFO arbitration is enabled and
290 * the thresholds set based on the recommended values in the
291 * AST2400 specification.
293 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
294 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
295 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
296 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
297 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
298 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
299 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
300 priv->base + FTGMAC100_OFFSET_DBLAC);
302 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
303 * mitigation doesn't seem to provide any benefit with NAPI so leave
304 * it at that.
306 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
307 FTGMAC100_ITC_TXINT_THR(1),
308 priv->base + FTGMAC100_OFFSET_ITC);
310 /* Configure FIFO sizes in the TPAFCR register */
311 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
312 rfifo_sz = reg & 0x00000007;
313 tfifo_sz = (reg >> 3) & 0x00000007;
314 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
315 reg &= ~0x3f000000;
316 reg |= (tfifo_sz << 27);
317 reg |= (rfifo_sz << 24);
318 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
321 static void ftgmac100_start_hw(struct ftgmac100 *priv)
323 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
325 /* Keep the original GMAC and FAST bits */
326 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
328 /* Add all the main enable bits */
329 maccr |= FTGMAC100_MACCR_TXDMA_EN |
330 FTGMAC100_MACCR_RXDMA_EN |
331 FTGMAC100_MACCR_TXMAC_EN |
332 FTGMAC100_MACCR_RXMAC_EN |
333 FTGMAC100_MACCR_CRC_APD |
334 FTGMAC100_MACCR_PHY_LINK_LEVEL |
335 FTGMAC100_MACCR_RX_RUNT |
336 FTGMAC100_MACCR_RX_BROADPKT;
338 /* Add other bits as needed */
339 if (priv->cur_duplex == DUPLEX_FULL)
340 maccr |= FTGMAC100_MACCR_FULLDUP;
341 if (priv->netdev->flags & IFF_PROMISC)
342 maccr |= FTGMAC100_MACCR_RX_ALL;
343 if (priv->netdev->flags & IFF_ALLMULTI)
344 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
345 else if (netdev_mc_count(priv->netdev))
346 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
348 /* Vlan filtering enabled */
349 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
350 maccr |= FTGMAC100_MACCR_RM_VLAN;
352 /* Hit the HW */
353 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
356 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
358 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
361 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
363 struct netdev_hw_addr *ha;
365 priv->maht1 = 0;
366 priv->maht0 = 0;
367 netdev_for_each_mc_addr(ha, priv->netdev) {
368 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
370 crc_val = (~(crc_val >> 2)) & 0x3f;
371 if (crc_val >= 32)
372 priv->maht1 |= 1ul << (crc_val - 32);
373 else
374 priv->maht0 |= 1ul << (crc_val);
378 static void ftgmac100_set_rx_mode(struct net_device *netdev)
380 struct ftgmac100 *priv = netdev_priv(netdev);
382 /* Setup the hash filter */
383 ftgmac100_calc_mc_hash(priv);
385 /* Interface down ? that's all there is to do */
386 if (!netif_running(netdev))
387 return;
389 /* Update the HW */
390 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
391 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
393 /* Reconfigure MACCR */
394 ftgmac100_start_hw(priv);
397 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
398 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
400 struct net_device *netdev = priv->netdev;
401 struct sk_buff *skb;
402 dma_addr_t map;
403 int err = 0;
405 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
406 if (unlikely(!skb)) {
407 if (net_ratelimit())
408 netdev_warn(netdev, "failed to allocate rx skb\n");
409 err = -ENOMEM;
410 map = priv->rx_scratch_dma;
411 } else {
412 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
413 DMA_FROM_DEVICE);
414 if (unlikely(dma_mapping_error(priv->dev, map))) {
415 if (net_ratelimit())
416 netdev_err(netdev, "failed to map rx page\n");
417 dev_kfree_skb_any(skb);
418 map = priv->rx_scratch_dma;
419 skb = NULL;
420 err = -ENOMEM;
424 /* Store skb */
425 priv->rx_skbs[entry] = skb;
427 /* Store DMA address into RX desc */
428 rxdes->rxdes3 = cpu_to_le32(map);
430 /* Ensure the above is ordered vs clearing the OWN bit */
431 dma_wmb();
433 /* Clean status (which resets own bit) */
434 if (entry == (priv->rx_q_entries - 1))
435 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
436 else
437 rxdes->rxdes0 = 0;
439 return err;
442 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
443 unsigned int pointer)
445 return (pointer + 1) & (priv->rx_q_entries - 1);
448 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
450 struct net_device *netdev = priv->netdev;
452 if (status & FTGMAC100_RXDES0_RX_ERR)
453 netdev->stats.rx_errors++;
455 if (status & FTGMAC100_RXDES0_CRC_ERR)
456 netdev->stats.rx_crc_errors++;
458 if (status & (FTGMAC100_RXDES0_FTL |
459 FTGMAC100_RXDES0_RUNT |
460 FTGMAC100_RXDES0_RX_ODD_NB))
461 netdev->stats.rx_length_errors++;
464 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
466 struct net_device *netdev = priv->netdev;
467 struct ftgmac100_rxdes *rxdes;
468 struct sk_buff *skb;
469 unsigned int pointer, size;
470 u32 status, csum_vlan;
471 dma_addr_t map;
473 /* Grab next RX descriptor */
474 pointer = priv->rx_pointer;
475 rxdes = &priv->rxdes[pointer];
477 /* Grab descriptor status */
478 status = le32_to_cpu(rxdes->rxdes0);
480 /* Do we have a packet ? */
481 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
482 return false;
484 /* Order subsequent reads with the test for the ready bit */
485 dma_rmb();
487 /* We don't cope with fragmented RX packets */
488 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
489 !(status & FTGMAC100_RXDES0_LRS)))
490 goto drop;
492 /* Grab received size and csum vlan field in the descriptor */
493 size = status & FTGMAC100_RXDES0_VDBC;
494 csum_vlan = le32_to_cpu(rxdes->rxdes1);
496 /* Any error (other than csum offload) flagged ? */
497 if (unlikely(status & RXDES0_ANY_ERROR)) {
498 /* Correct for incorrect flagging of runt packets
499 * with vlan tags... Just accept a runt packet that
500 * has been flagged as vlan and whose size is at
501 * least 60 bytes.
503 if ((status & FTGMAC100_RXDES0_RUNT) &&
504 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
505 (size >= 60))
506 status &= ~FTGMAC100_RXDES0_RUNT;
508 /* Any error still in there ? */
509 if (status & RXDES0_ANY_ERROR) {
510 ftgmac100_rx_packet_error(priv, status);
511 goto drop;
515 /* If the packet had no skb (failed to allocate earlier)
516 * then try to allocate one and skip
518 skb = priv->rx_skbs[pointer];
519 if (!unlikely(skb)) {
520 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
521 goto drop;
524 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
525 netdev->stats.multicast++;
527 /* If the HW found checksum errors, bounce it to software.
529 * If we didn't, we need to see if the packet was recognized
530 * by HW as one of the supported checksummed protocols before
531 * we accept the HW test results.
533 if (netdev->features & NETIF_F_RXCSUM) {
534 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
535 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
536 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
537 if ((csum_vlan & err_bits) ||
538 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
539 skb->ip_summed = CHECKSUM_NONE;
540 else
541 skb->ip_summed = CHECKSUM_UNNECESSARY;
544 /* Transfer received size to skb */
545 skb_put(skb, size);
547 /* Extract vlan tag */
548 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
549 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
550 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
551 csum_vlan & 0xffff);
553 /* Tear down DMA mapping, do necessary cache management */
554 map = le32_to_cpu(rxdes->rxdes3);
556 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
557 /* When we don't have an iommu, we can save cycles by not
558 * invalidating the cache for the part of the packet that
559 * wasn't received.
561 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
562 #else
563 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
564 #endif
567 /* Resplenish rx ring */
568 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
569 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
571 skb->protocol = eth_type_trans(skb, netdev);
573 netdev->stats.rx_packets++;
574 netdev->stats.rx_bytes += size;
576 /* push packet to protocol stack */
577 if (skb->ip_summed == CHECKSUM_NONE)
578 netif_receive_skb(skb);
579 else
580 napi_gro_receive(&priv->napi, skb);
582 (*processed)++;
583 return true;
585 drop:
586 /* Clean rxdes0 (which resets own bit) */
587 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
588 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
589 netdev->stats.rx_dropped++;
590 return true;
593 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
594 unsigned int index)
596 if (index == (priv->tx_q_entries - 1))
597 return priv->txdes0_edotr_mask;
598 else
599 return 0;
602 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
603 unsigned int pointer)
605 return (pointer + 1) & (priv->tx_q_entries - 1);
608 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
610 /* Returns the number of available slots in the TX queue
612 * This always leaves one free slot so we don't have to
613 * worry about empty vs. full, and this simplifies the
614 * test for ftgmac100_tx_buf_cleanable() below
616 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
617 (priv->tx_q_entries - 1);
620 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
622 return priv->tx_pointer != priv->tx_clean_pointer;
625 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
626 unsigned int pointer,
627 struct sk_buff *skb,
628 struct ftgmac100_txdes *txdes,
629 u32 ctl_stat)
631 dma_addr_t map = le32_to_cpu(txdes->txdes3);
632 size_t len;
634 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
635 len = skb_headlen(skb);
636 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
637 } else {
638 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
639 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
642 /* Free SKB on last segment */
643 if (ctl_stat & FTGMAC100_TXDES0_LTS)
644 dev_kfree_skb(skb);
645 priv->tx_skbs[pointer] = NULL;
648 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
650 struct net_device *netdev = priv->netdev;
651 struct ftgmac100_txdes *txdes;
652 struct sk_buff *skb;
653 unsigned int pointer;
654 u32 ctl_stat;
656 pointer = priv->tx_clean_pointer;
657 txdes = &priv->txdes[pointer];
659 ctl_stat = le32_to_cpu(txdes->txdes0);
660 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
661 return false;
663 skb = priv->tx_skbs[pointer];
664 netdev->stats.tx_packets++;
665 netdev->stats.tx_bytes += skb->len;
666 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
667 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
669 /* Ensure the descriptor config is visible before setting the tx
670 * pointer.
672 smp_wmb();
674 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
676 return true;
679 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
681 struct net_device *netdev = priv->netdev;
683 /* Process all completed packets */
684 while (ftgmac100_tx_buf_cleanable(priv) &&
685 ftgmac100_tx_complete_packet(priv))
688 /* Restart queue if needed */
689 smp_mb();
690 if (unlikely(netif_queue_stopped(netdev) &&
691 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
692 struct netdev_queue *txq;
694 txq = netdev_get_tx_queue(netdev, 0);
695 __netif_tx_lock(txq, smp_processor_id());
696 if (netif_queue_stopped(netdev) &&
697 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
698 netif_wake_queue(netdev);
699 __netif_tx_unlock(txq);
703 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
705 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
706 u8 ip_proto = ip_hdr(skb)->protocol;
708 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
709 switch(ip_proto) {
710 case IPPROTO_TCP:
711 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
712 return true;
713 case IPPROTO_UDP:
714 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
715 return true;
716 case IPPROTO_IP:
717 return true;
720 return skb_checksum_help(skb) == 0;
723 static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
724 struct net_device *netdev)
726 struct ftgmac100 *priv = netdev_priv(netdev);
727 struct ftgmac100_txdes *txdes, *first;
728 unsigned int pointer, nfrags, len, i, j;
729 u32 f_ctl_stat, ctl_stat, csum_vlan;
730 dma_addr_t map;
732 /* The HW doesn't pad small frames */
733 if (eth_skb_pad(skb)) {
734 netdev->stats.tx_dropped++;
735 return NETDEV_TX_OK;
738 /* Reject oversize packets */
739 if (unlikely(skb->len > MAX_PKT_SIZE)) {
740 if (net_ratelimit())
741 netdev_dbg(netdev, "tx packet too big\n");
742 goto drop;
745 /* Do we have a limit on #fragments ? I yet have to get a reply
746 * from Aspeed. If there's one I haven't hit it.
748 nfrags = skb_shinfo(skb)->nr_frags;
750 /* Setup HW checksumming */
751 csum_vlan = 0;
752 if (skb->ip_summed == CHECKSUM_PARTIAL &&
753 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
754 goto drop;
756 /* Add VLAN tag */
757 if (skb_vlan_tag_present(skb)) {
758 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
759 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
762 /* Get header len */
763 len = skb_headlen(skb);
765 /* Map the packet head */
766 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
767 if (dma_mapping_error(priv->dev, map)) {
768 if (net_ratelimit())
769 netdev_err(netdev, "map tx packet head failed\n");
770 goto drop;
773 /* Grab the next free tx descriptor */
774 pointer = priv->tx_pointer;
775 txdes = first = &priv->txdes[pointer];
777 /* Setup it up with the packet head. Don't write the head to the
778 * ring just yet
780 priv->tx_skbs[pointer] = skb;
781 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
782 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
783 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
784 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
785 if (nfrags == 0)
786 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
787 txdes->txdes3 = cpu_to_le32(map);
788 txdes->txdes1 = cpu_to_le32(csum_vlan);
790 /* Next descriptor */
791 pointer = ftgmac100_next_tx_pointer(priv, pointer);
793 /* Add the fragments */
794 for (i = 0; i < nfrags; i++) {
795 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
797 len = skb_frag_size(frag);
799 /* Map it */
800 map = skb_frag_dma_map(priv->dev, frag, 0, len,
801 DMA_TO_DEVICE);
802 if (dma_mapping_error(priv->dev, map))
803 goto dma_err;
805 /* Setup descriptor */
806 priv->tx_skbs[pointer] = skb;
807 txdes = &priv->txdes[pointer];
808 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
809 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
810 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
811 if (i == (nfrags - 1))
812 ctl_stat |= FTGMAC100_TXDES0_LTS;
813 txdes->txdes0 = cpu_to_le32(ctl_stat);
814 txdes->txdes1 = 0;
815 txdes->txdes3 = cpu_to_le32(map);
817 /* Next one */
818 pointer = ftgmac100_next_tx_pointer(priv, pointer);
821 /* Order the previous packet and descriptor udpates
822 * before setting the OWN bit on the first descriptor.
824 dma_wmb();
825 first->txdes0 = cpu_to_le32(f_ctl_stat);
827 /* Ensure the descriptor config is visible before setting the tx
828 * pointer.
830 smp_wmb();
832 /* Update next TX pointer */
833 priv->tx_pointer = pointer;
835 /* If there isn't enough room for all the fragments of a new packet
836 * in the TX ring, stop the queue. The sequence below is race free
837 * vs. a concurrent restart in ftgmac100_poll()
839 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
840 netif_stop_queue(netdev);
841 /* Order the queue stop with the test below */
842 smp_mb();
843 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
844 netif_wake_queue(netdev);
847 /* Poke transmitter to read the updated TX descriptors */
848 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
850 return NETDEV_TX_OK;
852 dma_err:
853 if (net_ratelimit())
854 netdev_err(netdev, "map tx fragment failed\n");
856 /* Free head */
857 pointer = priv->tx_pointer;
858 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
859 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
861 /* Then all fragments */
862 for (j = 0; j < i; j++) {
863 pointer = ftgmac100_next_tx_pointer(priv, pointer);
864 txdes = &priv->txdes[pointer];
865 ctl_stat = le32_to_cpu(txdes->txdes0);
866 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
867 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
870 /* This cannot be reached if we successfully mapped the
871 * last fragment, so we know ftgmac100_free_tx_packet()
872 * hasn't freed the skb yet.
874 drop:
875 /* Drop the packet */
876 dev_kfree_skb_any(skb);
877 netdev->stats.tx_dropped++;
879 return NETDEV_TX_OK;
882 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
884 int i;
886 /* Free all RX buffers */
887 for (i = 0; i < priv->rx_q_entries; i++) {
888 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
889 struct sk_buff *skb = priv->rx_skbs[i];
890 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
892 if (!skb)
893 continue;
895 priv->rx_skbs[i] = NULL;
896 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
897 dev_kfree_skb_any(skb);
900 /* Free all TX buffers */
901 for (i = 0; i < priv->tx_q_entries; i++) {
902 struct ftgmac100_txdes *txdes = &priv->txdes[i];
903 struct sk_buff *skb = priv->tx_skbs[i];
905 if (!skb)
906 continue;
907 ftgmac100_free_tx_packet(priv, i, skb, txdes,
908 le32_to_cpu(txdes->txdes0));
912 static void ftgmac100_free_rings(struct ftgmac100 *priv)
914 /* Free skb arrays */
915 kfree(priv->rx_skbs);
916 kfree(priv->tx_skbs);
918 /* Free descriptors */
919 if (priv->rxdes)
920 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
921 sizeof(struct ftgmac100_rxdes),
922 priv->rxdes, priv->rxdes_dma);
923 priv->rxdes = NULL;
925 if (priv->txdes)
926 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
927 sizeof(struct ftgmac100_txdes),
928 priv->txdes, priv->txdes_dma);
929 priv->txdes = NULL;
931 /* Free scratch packet buffer */
932 if (priv->rx_scratch)
933 dma_free_coherent(priv->dev, RX_BUF_SIZE,
934 priv->rx_scratch, priv->rx_scratch_dma);
937 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
939 /* Allocate skb arrays */
940 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
941 GFP_KERNEL);
942 if (!priv->rx_skbs)
943 return -ENOMEM;
944 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
945 GFP_KERNEL);
946 if (!priv->tx_skbs)
947 return -ENOMEM;
949 /* Allocate descriptors */
950 priv->rxdes = dma_alloc_coherent(priv->dev,
951 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
952 &priv->rxdes_dma, GFP_KERNEL);
953 if (!priv->rxdes)
954 return -ENOMEM;
955 priv->txdes = dma_alloc_coherent(priv->dev,
956 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
957 &priv->txdes_dma, GFP_KERNEL);
958 if (!priv->txdes)
959 return -ENOMEM;
961 /* Allocate scratch packet buffer */
962 priv->rx_scratch = dma_alloc_coherent(priv->dev,
963 RX_BUF_SIZE,
964 &priv->rx_scratch_dma,
965 GFP_KERNEL);
966 if (!priv->rx_scratch)
967 return -ENOMEM;
969 return 0;
972 static void ftgmac100_init_rings(struct ftgmac100 *priv)
974 struct ftgmac100_rxdes *rxdes = NULL;
975 struct ftgmac100_txdes *txdes = NULL;
976 int i;
978 /* Update entries counts */
979 priv->rx_q_entries = priv->new_rx_q_entries;
980 priv->tx_q_entries = priv->new_tx_q_entries;
982 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
983 return;
985 /* Initialize RX ring */
986 for (i = 0; i < priv->rx_q_entries; i++) {
987 rxdes = &priv->rxdes[i];
988 rxdes->rxdes0 = 0;
989 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
991 /* Mark the end of the ring */
992 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
994 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
995 return;
997 /* Initialize TX ring */
998 for (i = 0; i < priv->tx_q_entries; i++) {
999 txdes = &priv->txdes[i];
1000 txdes->txdes0 = 0;
1002 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
1005 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
1007 int i;
1009 for (i = 0; i < priv->rx_q_entries; i++) {
1010 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1012 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1013 return -ENOMEM;
1015 return 0;
1018 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1020 struct net_device *netdev = bus->priv;
1021 struct ftgmac100 *priv = netdev_priv(netdev);
1022 unsigned int phycr;
1023 int i;
1025 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1027 /* preserve MDC cycle threshold */
1028 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1030 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1031 FTGMAC100_PHYCR_REGAD(regnum) |
1032 FTGMAC100_PHYCR_MIIRD;
1034 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1036 for (i = 0; i < 10; i++) {
1037 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1039 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1040 int data;
1042 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1043 return FTGMAC100_PHYDATA_MIIRDATA(data);
1046 udelay(100);
1049 netdev_err(netdev, "mdio read timed out\n");
1050 return -EIO;
1053 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1054 int regnum, u16 value)
1056 struct net_device *netdev = bus->priv;
1057 struct ftgmac100 *priv = netdev_priv(netdev);
1058 unsigned int phycr;
1059 int data;
1060 int i;
1062 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1064 /* preserve MDC cycle threshold */
1065 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1067 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1068 FTGMAC100_PHYCR_REGAD(regnum) |
1069 FTGMAC100_PHYCR_MIIWR;
1071 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1073 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1074 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1076 for (i = 0; i < 10; i++) {
1077 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1079 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1080 return 0;
1082 udelay(100);
1085 netdev_err(netdev, "mdio write timed out\n");
1086 return -EIO;
1089 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1090 struct ethtool_drvinfo *info)
1092 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1093 strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1096 static void
1097 ftgmac100_get_ringparam(struct net_device *netdev,
1098 struct ethtool_ringparam *ering,
1099 struct kernel_ethtool_ringparam *kernel_ering,
1100 struct netlink_ext_ack *extack)
1102 struct ftgmac100 *priv = netdev_priv(netdev);
1104 memset(ering, 0, sizeof(*ering));
1105 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1106 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1107 ering->rx_pending = priv->rx_q_entries;
1108 ering->tx_pending = priv->tx_q_entries;
1111 static int
1112 ftgmac100_set_ringparam(struct net_device *netdev,
1113 struct ethtool_ringparam *ering,
1114 struct kernel_ethtool_ringparam *kernel_ering,
1115 struct netlink_ext_ack *extack)
1117 struct ftgmac100 *priv = netdev_priv(netdev);
1119 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1120 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1121 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1122 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1123 !is_power_of_2(ering->rx_pending) ||
1124 !is_power_of_2(ering->tx_pending))
1125 return -EINVAL;
1127 priv->new_rx_q_entries = ering->rx_pending;
1128 priv->new_tx_q_entries = ering->tx_pending;
1129 if (netif_running(netdev))
1130 schedule_work(&priv->reset_task);
1132 return 0;
1135 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1136 struct ethtool_pauseparam *pause)
1138 struct ftgmac100 *priv = netdev_priv(netdev);
1140 pause->autoneg = priv->aneg_pause;
1141 pause->tx_pause = priv->tx_pause;
1142 pause->rx_pause = priv->rx_pause;
1145 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1146 struct ethtool_pauseparam *pause)
1148 struct ftgmac100 *priv = netdev_priv(netdev);
1149 struct phy_device *phydev = netdev->phydev;
1151 priv->aneg_pause = pause->autoneg;
1152 priv->tx_pause = pause->tx_pause;
1153 priv->rx_pause = pause->rx_pause;
1155 if (phydev)
1156 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1158 if (netif_running(netdev)) {
1159 if (!(phydev && priv->aneg_pause))
1160 ftgmac100_config_pause(priv);
1163 return 0;
1166 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1167 .get_drvinfo = ftgmac100_get_drvinfo,
1168 .get_link = ethtool_op_get_link,
1169 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1170 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1171 .nway_reset = phy_ethtool_nway_reset,
1172 .get_ringparam = ftgmac100_get_ringparam,
1173 .set_ringparam = ftgmac100_set_ringparam,
1174 .get_pauseparam = ftgmac100_get_pauseparam,
1175 .set_pauseparam = ftgmac100_set_pauseparam,
1178 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1180 struct net_device *netdev = dev_id;
1181 struct ftgmac100 *priv = netdev_priv(netdev);
1182 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1184 /* Fetch and clear interrupt bits, process abnormal ones */
1185 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1186 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1187 if (unlikely(status & FTGMAC100_INT_BAD)) {
1189 /* RX buffer unavailable */
1190 if (status & FTGMAC100_INT_NO_RXBUF)
1191 netdev->stats.rx_over_errors++;
1193 /* received packet lost due to RX FIFO full */
1194 if (status & FTGMAC100_INT_RPKT_LOST)
1195 netdev->stats.rx_fifo_errors++;
1197 /* sent packet lost due to excessive TX collision */
1198 if (status & FTGMAC100_INT_XPKT_LOST)
1199 netdev->stats.tx_fifo_errors++;
1201 /* AHB error -> Reset the chip */
1202 if (status & FTGMAC100_INT_AHB_ERR) {
1203 if (net_ratelimit())
1204 netdev_warn(netdev,
1205 "AHB bus error ! Resetting chip.\n");
1206 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1207 schedule_work(&priv->reset_task);
1208 return IRQ_HANDLED;
1211 /* We may need to restart the MAC after such errors, delay
1212 * this until after we have freed some Rx buffers though
1214 priv->need_mac_restart = true;
1216 /* Disable those errors until we restart */
1217 new_mask &= ~status;
1220 /* Only enable "bad" interrupts while NAPI is on */
1221 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1223 /* Schedule NAPI bh */
1224 napi_schedule_irqoff(&priv->napi);
1226 return IRQ_HANDLED;
1229 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1231 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1233 /* Do we have a packet ? */
1234 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1237 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1239 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1240 int work_done = 0;
1241 bool more;
1243 /* Handle TX completions */
1244 if (ftgmac100_tx_buf_cleanable(priv))
1245 ftgmac100_tx_complete(priv);
1247 /* Handle RX packets */
1248 do {
1249 more = ftgmac100_rx_packet(priv, &work_done);
1250 } while (more && work_done < budget);
1253 /* The interrupt is telling us to kick the MAC back to life
1254 * after an RX overflow
1256 if (unlikely(priv->need_mac_restart)) {
1257 ftgmac100_start_hw(priv);
1258 priv->need_mac_restart = false;
1260 /* Re-enable "bad" interrupts */
1261 iowrite32(FTGMAC100_INT_BAD,
1262 priv->base + FTGMAC100_OFFSET_IER);
1265 /* As long as we are waiting for transmit packets to be
1266 * completed we keep NAPI going
1268 if (ftgmac100_tx_buf_cleanable(priv))
1269 work_done = budget;
1271 if (work_done < budget) {
1272 /* We are about to re-enable all interrupts. However
1273 * the HW has been latching RX/TX packet interrupts while
1274 * they were masked. So we clear them first, then we need
1275 * to re-check if there's something to process
1277 iowrite32(FTGMAC100_INT_RXTX,
1278 priv->base + FTGMAC100_OFFSET_ISR);
1280 /* Push the above (and provides a barrier vs. subsequent
1281 * reads of the descriptor).
1283 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1285 /* Check RX and TX descriptors for more work to do */
1286 if (ftgmac100_check_rx(priv) ||
1287 ftgmac100_tx_buf_cleanable(priv))
1288 return budget;
1290 /* deschedule NAPI */
1291 napi_complete(napi);
1293 /* enable all interrupts */
1294 iowrite32(FTGMAC100_INT_ALL,
1295 priv->base + FTGMAC100_OFFSET_IER);
1298 return work_done;
1301 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1303 int err = 0;
1305 /* Re-init descriptors (adjust queue sizes) */
1306 ftgmac100_init_rings(priv);
1308 /* Realloc rx descriptors */
1309 err = ftgmac100_alloc_rx_buffers(priv);
1310 if (err && !ignore_alloc_err)
1311 return err;
1313 /* Reinit and restart HW */
1314 ftgmac100_init_hw(priv);
1315 ftgmac100_config_pause(priv);
1316 ftgmac100_start_hw(priv);
1318 /* Re-enable the device */
1319 napi_enable(&priv->napi);
1320 netif_start_queue(priv->netdev);
1322 /* Enable all interrupts */
1323 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1325 return err;
1328 static void ftgmac100_reset(struct ftgmac100 *priv)
1330 struct net_device *netdev = priv->netdev;
1331 int err;
1333 netdev_dbg(netdev, "Resetting NIC...\n");
1335 /* Lock the world */
1336 rtnl_lock();
1337 if (netdev->phydev)
1338 mutex_lock(&netdev->phydev->lock);
1339 if (priv->mii_bus)
1340 mutex_lock(&priv->mii_bus->mdio_lock);
1343 /* Check if the interface is still up */
1344 if (!netif_running(netdev))
1345 goto bail;
1347 /* Stop the network stack */
1348 netif_trans_update(netdev);
1349 napi_disable(&priv->napi);
1350 netif_tx_disable(netdev);
1352 /* Stop and reset the MAC */
1353 ftgmac100_stop_hw(priv);
1354 err = ftgmac100_reset_and_config_mac(priv);
1355 if (err) {
1356 /* Not much we can do ... it might come back... */
1357 netdev_err(netdev, "attempting to continue...\n");
1360 /* Free all rx and tx buffers */
1361 ftgmac100_free_buffers(priv);
1363 /* Setup everything again and restart chip */
1364 ftgmac100_init_all(priv, true);
1366 netdev_dbg(netdev, "Reset done !\n");
1367 bail:
1368 if (priv->mii_bus)
1369 mutex_unlock(&priv->mii_bus->mdio_lock);
1370 if (netdev->phydev)
1371 mutex_unlock(&netdev->phydev->lock);
1372 rtnl_unlock();
1375 static void ftgmac100_reset_task(struct work_struct *work)
1377 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1378 reset_task);
1380 ftgmac100_reset(priv);
1383 static void ftgmac100_adjust_link(struct net_device *netdev)
1385 struct ftgmac100 *priv = netdev_priv(netdev);
1386 struct phy_device *phydev = netdev->phydev;
1387 bool tx_pause, rx_pause;
1388 int new_speed;
1390 /* We store "no link" as speed 0 */
1391 if (!phydev->link)
1392 new_speed = 0;
1393 else
1394 new_speed = phydev->speed;
1396 /* Grab pause settings from PHY if configured to do so */
1397 if (priv->aneg_pause) {
1398 rx_pause = tx_pause = phydev->pause;
1399 if (phydev->asym_pause)
1400 tx_pause = !rx_pause;
1401 } else {
1402 rx_pause = priv->rx_pause;
1403 tx_pause = priv->tx_pause;
1406 /* Link hasn't changed, do nothing */
1407 if (phydev->speed == priv->cur_speed &&
1408 phydev->duplex == priv->cur_duplex &&
1409 rx_pause == priv->rx_pause &&
1410 tx_pause == priv->tx_pause)
1411 return;
1413 /* Print status if we have a link or we had one and just lost it,
1414 * don't print otherwise.
1416 if (new_speed || priv->cur_speed)
1417 phy_print_status(phydev);
1419 priv->cur_speed = new_speed;
1420 priv->cur_duplex = phydev->duplex;
1421 priv->rx_pause = rx_pause;
1422 priv->tx_pause = tx_pause;
1424 /* Link is down, do nothing else */
1425 if (!new_speed)
1426 return;
1428 /* Disable all interrupts */
1429 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1431 /* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
1432 * order consistent to prevent dead lock.
1434 if (netdev->phydev)
1435 mutex_unlock(&netdev->phydev->lock);
1437 ftgmac100_reset(priv);
1439 if (netdev->phydev)
1440 mutex_lock(&netdev->phydev->lock);
1444 static int ftgmac100_mii_probe(struct net_device *netdev)
1446 struct ftgmac100 *priv = netdev_priv(netdev);
1447 struct platform_device *pdev = to_platform_device(priv->dev);
1448 struct device_node *np = pdev->dev.of_node;
1449 struct phy_device *phydev;
1450 phy_interface_t phy_intf;
1451 int err;
1453 /* Default to RGMII. It's a gigabit part after all */
1454 err = of_get_phy_mode(np, &phy_intf);
1455 if (err)
1456 phy_intf = PHY_INTERFACE_MODE_RGMII;
1458 /* Aspeed only supports these. I don't know about other IP
1459 * block vendors so I'm going to just let them through for
1460 * now. Note that this is only a warning if for some obscure
1461 * reason the DT really means to lie about it or it's a newer
1462 * part we don't know about.
1464 * On the Aspeed SoC there are additionally straps and SCU
1465 * control bits that could tell us what the interface is
1466 * (or allow us to configure it while the IP block is held
1467 * in reset). For now I chose to keep this driver away from
1468 * those SoC specific bits and assume the device-tree is
1469 * right and the SCU has been configured properly by pinmux
1470 * or the firmware.
1472 if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1473 netdev_warn(netdev,
1474 "Unsupported PHY mode %s !\n",
1475 phy_modes(phy_intf));
1478 phydev = phy_find_first(priv->mii_bus);
1479 if (!phydev) {
1480 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1481 return -ENODEV;
1484 phydev = phy_connect(netdev, phydev_name(phydev),
1485 &ftgmac100_adjust_link, phy_intf);
1487 if (IS_ERR(phydev)) {
1488 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1489 return PTR_ERR(phydev);
1492 /* Indicate that we support PAUSE frames (see comment in
1493 * Documentation/networking/phy.rst)
1495 phy_support_asym_pause(phydev);
1497 /* Display what we found */
1498 phy_attached_info(phydev);
1500 return 0;
1503 static int ftgmac100_open(struct net_device *netdev)
1505 struct ftgmac100 *priv = netdev_priv(netdev);
1506 int err;
1508 /* Allocate ring buffers */
1509 err = ftgmac100_alloc_rings(priv);
1510 if (err) {
1511 netdev_err(netdev, "Failed to allocate descriptors\n");
1512 return err;
1515 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1517 * Otherwise we leave it set to 0 (no link), the link
1518 * message from the PHY layer will handle setting it up to
1519 * something else if needed.
1521 if (priv->use_ncsi) {
1522 priv->cur_duplex = DUPLEX_FULL;
1523 priv->cur_speed = SPEED_100;
1524 } else {
1525 priv->cur_duplex = 0;
1526 priv->cur_speed = 0;
1529 /* Reset the hardware */
1530 err = ftgmac100_reset_and_config_mac(priv);
1531 if (err)
1532 goto err_hw;
1534 /* Initialize NAPI */
1535 netif_napi_add(netdev, &priv->napi, ftgmac100_poll);
1537 /* Grab our interrupt */
1538 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1539 if (err) {
1540 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1541 goto err_irq;
1544 /* Start things up */
1545 err = ftgmac100_init_all(priv, false);
1546 if (err) {
1547 netdev_err(netdev, "Failed to allocate packet buffers\n");
1548 goto err_alloc;
1551 if (netdev->phydev) {
1552 /* If we have a PHY, start polling */
1553 phy_start(netdev->phydev);
1555 if (priv->use_ncsi) {
1556 /* If using NC-SI, set our carrier on and start the stack */
1557 netif_carrier_on(netdev);
1559 /* Start the NCSI device */
1560 err = ncsi_start_dev(priv->ndev);
1561 if (err)
1562 goto err_ncsi;
1565 return 0;
1567 err_ncsi:
1568 phy_stop(netdev->phydev);
1569 napi_disable(&priv->napi);
1570 netif_stop_queue(netdev);
1571 err_alloc:
1572 ftgmac100_free_buffers(priv);
1573 free_irq(netdev->irq, netdev);
1574 err_irq:
1575 netif_napi_del(&priv->napi);
1576 err_hw:
1577 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578 ftgmac100_free_rings(priv);
1579 return err;
1582 static int ftgmac100_stop(struct net_device *netdev)
1584 struct ftgmac100 *priv = netdev_priv(netdev);
1586 /* Note about the reset task: We are called with the rtnl lock
1587 * held, so we are synchronized against the core of the reset
1588 * task. We must not try to synchronously cancel it otherwise
1589 * we can deadlock. But since it will test for netif_running()
1590 * which has already been cleared by the net core, we don't
1591 * anything special to do.
1594 /* disable all interrupts */
1595 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1597 netif_stop_queue(netdev);
1598 napi_disable(&priv->napi);
1599 netif_napi_del(&priv->napi);
1600 if (netdev->phydev)
1601 phy_stop(netdev->phydev);
1602 if (priv->use_ncsi)
1603 ncsi_stop_dev(priv->ndev);
1605 ftgmac100_stop_hw(priv);
1606 free_irq(netdev->irq, netdev);
1607 ftgmac100_free_buffers(priv);
1608 ftgmac100_free_rings(priv);
1610 return 0;
1613 static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1615 struct ftgmac100 *priv = netdev_priv(netdev);
1617 /* Disable all interrupts */
1618 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1620 /* Do the reset outside of interrupt context */
1621 schedule_work(&priv->reset_task);
1624 static int ftgmac100_set_features(struct net_device *netdev,
1625 netdev_features_t features)
1627 struct ftgmac100 *priv = netdev_priv(netdev);
1628 netdev_features_t changed = netdev->features ^ features;
1630 if (!netif_running(netdev))
1631 return 0;
1633 /* Update the vlan filtering bit */
1634 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1635 u32 maccr;
1637 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1638 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1639 maccr |= FTGMAC100_MACCR_RM_VLAN;
1640 else
1641 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1642 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1645 return 0;
1648 #ifdef CONFIG_NET_POLL_CONTROLLER
1649 static void ftgmac100_poll_controller(struct net_device *netdev)
1651 unsigned long flags;
1653 local_irq_save(flags);
1654 ftgmac100_interrupt(netdev->irq, netdev);
1655 local_irq_restore(flags);
1657 #endif
1659 static const struct net_device_ops ftgmac100_netdev_ops = {
1660 .ndo_open = ftgmac100_open,
1661 .ndo_stop = ftgmac100_stop,
1662 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1663 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1664 .ndo_validate_addr = eth_validate_addr,
1665 .ndo_eth_ioctl = phy_do_ioctl,
1666 .ndo_tx_timeout = ftgmac100_tx_timeout,
1667 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1668 .ndo_set_features = ftgmac100_set_features,
1669 #ifdef CONFIG_NET_POLL_CONTROLLER
1670 .ndo_poll_controller = ftgmac100_poll_controller,
1671 #endif
1672 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1673 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1676 static int ftgmac100_setup_mdio(struct net_device *netdev)
1678 struct ftgmac100 *priv = netdev_priv(netdev);
1679 struct platform_device *pdev = to_platform_device(priv->dev);
1680 struct device_node *np = pdev->dev.of_node;
1681 struct device_node *mdio_np;
1682 int i, err = 0;
1683 u32 reg;
1685 /* initialize mdio bus */
1686 priv->mii_bus = mdiobus_alloc();
1687 if (!priv->mii_bus)
1688 return -EIO;
1690 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1691 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1692 /* The AST2600 has a separate MDIO controller */
1694 /* For the AST2400 and AST2500 this driver only supports the
1695 * old MDIO interface
1697 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1698 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1699 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1702 priv->mii_bus->name = "ftgmac100_mdio";
1703 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1704 pdev->name, pdev->id);
1705 priv->mii_bus->parent = priv->dev;
1706 priv->mii_bus->priv = priv->netdev;
1707 priv->mii_bus->read = ftgmac100_mdiobus_read;
1708 priv->mii_bus->write = ftgmac100_mdiobus_write;
1710 for (i = 0; i < PHY_MAX_ADDR; i++)
1711 priv->mii_bus->irq[i] = PHY_POLL;
1713 mdio_np = of_get_child_by_name(np, "mdio");
1715 err = of_mdiobus_register(priv->mii_bus, mdio_np);
1716 if (err) {
1717 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1718 goto err_register_mdiobus;
1721 of_node_put(mdio_np);
1723 return 0;
1725 err_register_mdiobus:
1726 mdiobus_free(priv->mii_bus);
1727 return err;
1730 static void ftgmac100_phy_disconnect(struct net_device *netdev)
1732 struct ftgmac100 *priv = netdev_priv(netdev);
1734 if (!netdev->phydev)
1735 return;
1737 phy_disconnect(netdev->phydev);
1738 if (of_phy_is_fixed_link(priv->dev->of_node))
1739 of_phy_deregister_fixed_link(priv->dev->of_node);
1741 if (priv->use_ncsi)
1742 fixed_phy_unregister(netdev->phydev);
1745 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1747 struct ftgmac100 *priv = netdev_priv(netdev);
1749 if (!priv->mii_bus)
1750 return;
1752 mdiobus_unregister(priv->mii_bus);
1753 mdiobus_free(priv->mii_bus);
1756 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1758 if (unlikely(nd->state != ncsi_dev_state_functional))
1759 return;
1761 netdev_dbg(nd->dev, "NCSI interface %s\n",
1762 nd->link_up ? "up" : "down");
1765 static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1767 struct clk *clk;
1768 int rc;
1770 clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1771 if (IS_ERR(clk))
1772 return PTR_ERR(clk);
1773 priv->clk = clk;
1774 rc = clk_prepare_enable(priv->clk);
1775 if (rc)
1776 return rc;
1778 /* Aspeed specifies a 100MHz clock is required for up to
1779 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1780 * is sufficient
1782 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1783 FTGMAC_100MHZ);
1784 if (rc)
1785 goto cleanup_clk;
1787 /* RCLK is for RMII, typically used for NCSI. Optional because it's not
1788 * necessary if it's the AST2400 MAC, or the MAC is configured for
1789 * RGMII, or the controller is not an ASPEED-based controller.
1791 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1792 rc = clk_prepare_enable(priv->rclk);
1793 if (!rc)
1794 return 0;
1796 cleanup_clk:
1797 clk_disable_unprepare(priv->clk);
1799 return rc;
1802 static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1804 struct device_node *child_np = of_get_child_by_name(np, name);
1805 bool ret = false;
1807 if (child_np) {
1808 ret = true;
1809 of_node_put(child_np);
1812 return ret;
1815 static int ftgmac100_probe(struct platform_device *pdev)
1817 struct resource *res;
1818 int irq;
1819 struct net_device *netdev;
1820 struct phy_device *phydev;
1821 struct ftgmac100 *priv;
1822 struct device_node *np;
1823 int err = 0;
1825 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1826 if (!res)
1827 return -ENXIO;
1829 irq = platform_get_irq(pdev, 0);
1830 if (irq < 0)
1831 return irq;
1833 /* setup net_device */
1834 netdev = alloc_etherdev(sizeof(*priv));
1835 if (!netdev) {
1836 err = -ENOMEM;
1837 goto err_alloc_etherdev;
1840 SET_NETDEV_DEV(netdev, &pdev->dev);
1842 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1843 netdev->netdev_ops = &ftgmac100_netdev_ops;
1844 netdev->watchdog_timeo = 5 * HZ;
1846 platform_set_drvdata(pdev, netdev);
1848 /* setup private data */
1849 priv = netdev_priv(netdev);
1850 priv->netdev = netdev;
1851 priv->dev = &pdev->dev;
1852 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1854 /* map io memory */
1855 priv->res = request_mem_region(res->start, resource_size(res),
1856 dev_name(&pdev->dev));
1857 if (!priv->res) {
1858 dev_err(&pdev->dev, "Could not reserve memory region\n");
1859 err = -ENOMEM;
1860 goto err_req_mem;
1863 priv->base = ioremap(res->start, resource_size(res));
1864 if (!priv->base) {
1865 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1866 err = -EIO;
1867 goto err_ioremap;
1870 netdev->irq = irq;
1872 /* Enable pause */
1873 priv->tx_pause = true;
1874 priv->rx_pause = true;
1875 priv->aneg_pause = true;
1877 /* MAC address from chip or random one */
1878 err = ftgmac100_initial_mac(priv);
1879 if (err)
1880 goto err_phy_connect;
1882 np = pdev->dev.of_node;
1883 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1884 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1885 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1886 priv->rxdes0_edorr_mask = BIT(30);
1887 priv->txdes0_edotr_mask = BIT(30);
1888 priv->is_aspeed = true;
1889 } else {
1890 priv->rxdes0_edorr_mask = BIT(15);
1891 priv->txdes0_edotr_mask = BIT(15);
1894 if (np && of_get_property(np, "use-ncsi", NULL)) {
1895 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1896 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1897 err = -EINVAL;
1898 goto err_phy_connect;
1901 dev_info(&pdev->dev, "Using NCSI interface\n");
1902 priv->use_ncsi = true;
1903 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1904 if (!priv->ndev) {
1905 err = -EINVAL;
1906 goto err_phy_connect;
1909 phydev = fixed_phy_register(PHY_POLL, &ncsi_phy_status, np);
1910 if (IS_ERR(phydev)) {
1911 dev_err(&pdev->dev, "failed to register fixed PHY device\n");
1912 err = PTR_ERR(phydev);
1913 goto err_phy_connect;
1915 err = phy_connect_direct(netdev, phydev, ftgmac100_adjust_link,
1916 PHY_INTERFACE_MODE_RMII);
1917 if (err) {
1918 dev_err(&pdev->dev, "Connecting PHY failed\n");
1919 goto err_phy_connect;
1921 } else if (np && (of_phy_is_fixed_link(np) ||
1922 of_get_property(np, "phy-handle", NULL))) {
1923 struct phy_device *phy;
1925 /* Support "mdio"/"phy" child nodes for ast2400/2500 with
1926 * an embedded MDIO controller. Automatically scan the DTS for
1927 * available PHYs and register them.
1929 if (of_get_property(np, "phy-handle", NULL) &&
1930 (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1931 of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1932 err = ftgmac100_setup_mdio(netdev);
1933 if (err)
1934 goto err_setup_mdio;
1937 phy = of_phy_get_and_connect(priv->netdev, np,
1938 &ftgmac100_adjust_link);
1939 if (!phy) {
1940 dev_err(&pdev->dev, "Failed to connect to phy\n");
1941 err = -EINVAL;
1942 goto err_phy_connect;
1945 /* Indicate that we support PAUSE frames (see comment in
1946 * Documentation/networking/phy.rst)
1948 phy_support_asym_pause(phy);
1950 /* Display what we found */
1951 phy_attached_info(phy);
1952 } else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1953 /* Support legacy ASPEED devicetree descriptions that decribe a
1954 * MAC with an embedded MDIO controller but have no "mdio"
1955 * child node. Automatically scan the MDIO bus for available
1956 * PHYs.
1958 priv->use_ncsi = false;
1959 err = ftgmac100_setup_mdio(netdev);
1960 if (err)
1961 goto err_setup_mdio;
1963 err = ftgmac100_mii_probe(netdev);
1964 if (err) {
1965 dev_err(priv->dev, "MII probe failed!\n");
1966 goto err_ncsi_dev;
1971 if (priv->is_aspeed) {
1972 err = ftgmac100_setup_clk(priv);
1973 if (err)
1974 goto err_phy_connect;
1976 /* Disable ast2600 problematic HW arbitration */
1977 if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
1978 iowrite32(FTGMAC100_TM_DEFAULT,
1979 priv->base + FTGMAC100_OFFSET_TM);
1982 /* Default ring sizes */
1983 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1984 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1986 /* Base feature set */
1987 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1988 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1989 NETIF_F_HW_VLAN_CTAG_TX;
1991 if (priv->use_ncsi)
1992 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1994 /* AST2400 doesn't have working HW checksum generation */
1995 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1996 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1998 /* AST2600 tx checksum with NCSI is broken */
1999 if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
2000 netdev->hw_features &= ~NETIF_F_HW_CSUM;
2002 if (np && of_get_property(np, "no-hw-checksum", NULL))
2003 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
2004 netdev->features |= netdev->hw_features;
2006 /* register network device */
2007 err = register_netdev(netdev);
2008 if (err) {
2009 dev_err(&pdev->dev, "Failed to register netdev\n");
2010 goto err_register_netdev;
2013 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
2015 return 0;
2017 err_register_netdev:
2018 clk_disable_unprepare(priv->rclk);
2019 clk_disable_unprepare(priv->clk);
2020 err_phy_connect:
2021 ftgmac100_phy_disconnect(netdev);
2022 err_ncsi_dev:
2023 if (priv->ndev)
2024 ncsi_unregister_dev(priv->ndev);
2025 ftgmac100_destroy_mdio(netdev);
2026 err_setup_mdio:
2027 iounmap(priv->base);
2028 err_ioremap:
2029 release_resource(priv->res);
2030 err_req_mem:
2031 free_netdev(netdev);
2032 err_alloc_etherdev:
2033 return err;
2036 static void ftgmac100_remove(struct platform_device *pdev)
2038 struct net_device *netdev;
2039 struct ftgmac100 *priv;
2041 netdev = platform_get_drvdata(pdev);
2042 priv = netdev_priv(netdev);
2044 if (priv->ndev)
2045 ncsi_unregister_dev(priv->ndev);
2046 unregister_netdev(netdev);
2048 clk_disable_unprepare(priv->rclk);
2049 clk_disable_unprepare(priv->clk);
2051 /* There's a small chance the reset task will have been re-queued,
2052 * during stop, make sure it's gone before we free the structure.
2054 cancel_work_sync(&priv->reset_task);
2056 ftgmac100_phy_disconnect(netdev);
2057 ftgmac100_destroy_mdio(netdev);
2059 iounmap(priv->base);
2060 release_resource(priv->res);
2062 netif_napi_del(&priv->napi);
2063 free_netdev(netdev);
2066 static const struct of_device_id ftgmac100_of_match[] = {
2067 { .compatible = "faraday,ftgmac100" },
2070 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
2072 static struct platform_driver ftgmac100_driver = {
2073 .probe = ftgmac100_probe,
2074 .remove = ftgmac100_remove,
2075 .driver = {
2076 .name = DRV_NAME,
2077 .of_match_table = ftgmac100_of_match,
2080 module_platform_driver(ftgmac100_driver);
2082 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
2083 MODULE_DESCRIPTION("FTGMAC100 driver");
2084 MODULE_LICENSE("GPL");