1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
5 * e100.c: Intel(R) PRO/100 ethernet driver
7 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
8 * original e100 driver, but better described as a munging of
9 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
12 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
13 * Open Source Software Developers Manual,
14 * http://sourceforge.net/projects/e1000
21 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22 * controller family, which includes the 82557, 82558, 82559, 82550,
23 * 82551, and 82562 devices. 82558 and greater controllers
24 * integrate the Intel 82555 PHY. The controllers are used in
25 * server and client network interface cards, as well as in
26 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27 * configurations. 8255x supports a 32-bit linear addressing
28 * mode and operates at 33Mhz PCI clock rate.
30 * II. Driver Operation
32 * Memory-mapped mode is used exclusively to access the device's
33 * shared-memory structure, the Control/Status Registers (CSR). All
34 * setup, configuration, and control of the device, including queuing
35 * of Tx, Rx, and configuration commands is through the CSR.
36 * cmd_lock serializes accesses to the CSR command register. cb_lock
37 * protects the shared Command Block List (CBL).
39 * 8255x is highly MII-compliant and all access to the PHY go
40 * through the Management Data Interface (MDI). Consequently, the
41 * driver leverages the mii.c library shared with other MII-compliant
44 * Big- and Little-Endian byte order as well as 32- and 64-bit
45 * archs are supported. Weak-ordered memory and non-cache-coherent
46 * archs are supported.
50 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
51 * together in a fixed-size ring (CBL) thus forming the flexible mode
52 * memory structure. A TCB marked with the suspend-bit indicates
53 * the end of the ring. The last TCB processed suspends the
54 * controller, and the controller can be restarted by issue a CU
55 * resume command to continue from the suspend point, or a CU start
56 * command to start at a given position in the ring.
58 * Non-Tx commands (config, multicast setup, etc) are linked
59 * into the CBL ring along with Tx commands. The common structure
60 * used for both Tx and non-Tx commands is the Command Block (CB).
62 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
63 * is the next CB to check for completion; cb_to_send is the first
64 * CB to start on in case of a previous failure to resume. CB clean
65 * up happens in interrupt context in response to a CU interrupt.
66 * cbs_avail keeps track of number of free CB resources available.
68 * Hardware padding of short packets to minimum packet size is
69 * enabled. 82557 pads with 7Eh, while the later controllers pad
74 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
75 * Descriptors (RFD) + data buffer, thus forming the simplified mode
76 * memory structure. Rx skbs are allocated to contain both the RFD
77 * and the data buffer, but the RFD is pulled off before the skb is
78 * indicated. The data buffer is aligned such that encapsulated
79 * protocol headers are u32-aligned. Since the RFD is part of the
80 * mapped shared memory, and completion status is contained within
81 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
82 * view from software and hardware.
84 * In order to keep updates to the RFD link field from colliding with
85 * hardware writes to mark packets complete, we use the feature that
86 * hardware will not write to a size 0 descriptor and mark the previous
87 * packet as end-of-list (EL). After updating the link, we remove EL
88 * and only then restore the size such that hardware may use the
89 * previous-to-end RFD.
91 * Under typical operation, the receive unit (RU) is start once,
92 * and the controller happily fills RFDs as frames arrive. If
93 * replacement RFDs cannot be allocated, or the RU goes non-active,
94 * the RU must be restarted. Frame arrival generates an interrupt,
95 * and Rx indication and re-allocation happen in the same context,
96 * therefore no locking is required. A software-generated interrupt
97 * is generated from the watchdog to recover from a failed allocation
98 * scenario where all Rx resources have been indicated and none re-
103 * VLAN offloading of tagging, stripping and filtering is not
104 * supported, but driver will accommodate the extra 4-byte VLAN tag
105 * for processing by upper layers. Tx/Rx Checksum offloading is not
106 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
107 * not supported (hardware limitation).
109 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
111 * Thanks to JC (jchapman@katalix.com) for helping with
112 * testing/troubleshooting the development driver.
115 * o several entry points race with dev->close
116 * o check for tx-no-resources/stop Q races with tx clean/wake Q
119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120 * - Stratus87247: protect MDI control register manipulations
121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
127 #include <linux/hardirq.h>
128 #include <linux/interrupt.h>
129 #include <linux/module.h>
130 #include <linux/moduleparam.h>
131 #include <linux/kernel.h>
132 #include <linux/types.h>
133 #include <linux/sched.h>
134 #include <linux/slab.h>
135 #include <linux/delay.h>
136 #include <linux/init.h>
137 #include <linux/pci.h>
138 #include <linux/dma-mapping.h>
139 #include <linux/dmapool.h>
140 #include <linux/netdevice.h>
141 #include <linux/etherdevice.h>
142 #include <linux/mii.h>
143 #include <linux/if_vlan.h>
144 #include <linux/skbuff.h>
145 #include <linux/ethtool.h>
146 #include <linux/string.h>
147 #include <linux/firmware.h>
148 #include <linux/rtnetlink.h>
149 #include <linux/unaligned.h>
152 #define DRV_NAME "e100"
153 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
154 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
156 #define E100_WATCHDOG_PERIOD (2 * HZ)
157 #define E100_NAPI_WEIGHT 16
159 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
160 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
161 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
163 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
164 MODULE_LICENSE("GPL v2");
165 MODULE_FIRMWARE(FIRMWARE_D101M
);
166 MODULE_FIRMWARE(FIRMWARE_D101S
);
167 MODULE_FIRMWARE(FIRMWARE_D102E
);
169 static int debug
= 3;
170 static int eeprom_bad_csum_allow
= 0;
171 static int use_io
= 0;
172 module_param(debug
, int, 0);
173 module_param(eeprom_bad_csum_allow
, int, 0444);
174 module_param(use_io
, int, 0444);
175 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
176 MODULE_PARM_DESC(eeprom_bad_csum_allow
, "Allow bad eeprom checksums");
177 MODULE_PARM_DESC(use_io
, "Force use of i/o access mode");
179 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
180 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
181 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
182 static const struct pci_device_id e100_id_table
[] = {
183 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
184 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
186 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
191 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
197 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
205 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
206 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
214 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
215 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
216 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
217 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
220 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
221 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
222 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
223 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
224 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
227 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
230 mac_82557_D100_A
= 0,
231 mac_82557_D100_B
= 1,
232 mac_82557_D100_C
= 2,
233 mac_82558_D101_A4
= 4,
234 mac_82558_D101_B0
= 5,
238 mac_82550_D102_C
= 13,
246 phy_100a
= 0x000003E0,
247 phy_100c
= 0x035002A8,
248 phy_82555_tx
= 0x015002A8,
249 phy_nsc_tx
= 0x5C002000,
250 phy_82562_et
= 0x033002A8,
251 phy_82562_em
= 0x032002A8,
252 phy_82562_ek
= 0x031002A8,
253 phy_82562_eh
= 0x017002A8,
254 phy_82552_v
= 0xd061004d,
255 phy_unknown
= 0xFFFFFFFF,
258 /* CSR (Control/Status Registers) */
284 RU_UNINITIALIZED
= -1,
288 stat_ack_not_ours
= 0x00,
289 stat_ack_sw_gen
= 0x04,
291 stat_ack_cu_idle
= 0x20,
292 stat_ack_frame_rx
= 0x40,
293 stat_ack_cu_cmd_done
= 0x80,
294 stat_ack_not_present
= 0xFF,
295 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
296 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
300 irq_mask_none
= 0x00,
308 ruc_load_base
= 0x06,
311 cuc_dump_addr
= 0x40,
312 cuc_dump_stats
= 0x50,
313 cuc_load_base
= 0x60,
314 cuc_dump_reset
= 0x70,
318 cuc_dump_complete
= 0x0000A005,
319 cuc_dump_reset_complete
= 0x0000A007,
323 software_reset
= 0x0000,
325 selective_reset
= 0x0002,
328 enum eeprom_ctrl_lo
{
336 mdi_write
= 0x04000000,
337 mdi_read
= 0x08000000,
338 mdi_ready
= 0x10000000,
348 enum eeprom_offsets
{
349 eeprom_cnfg_mdix
= 0x03,
350 eeprom_phy_iface
= 0x06,
352 eeprom_config_asf
= 0x0D,
353 eeprom_smbus_addr
= 0x90,
356 enum eeprom_cnfg_mdix
{
357 eeprom_mdix_enabled
= 0x0080,
360 enum eeprom_phy_iface
{
373 eeprom_id_wol
= 0x0020,
376 enum eeprom_config_asf
{
382 cb_complete
= 0x8000,
387 * cb_command - Command Block flags
388 * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory
416 struct rx
*next
, *prev
;
421 #if defined(__BIG_ENDIAN_BITFIELD)
427 /*0*/ u8
X(byte_count
:6, pad0
:2);
428 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
429 /*2*/ u8 adaptive_ifs
;
430 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
431 term_write_cache_line
:1), pad3
:4);
432 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
433 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
434 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
435 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
436 rx_save_overruns
: 1), rx_save_bad_frames
: 1);
437 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
438 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
440 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
441 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
442 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
443 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
445 /*11*/ u8
X(linear_priority
:3, pad11
:5);
446 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
447 /*13*/ u8 ip_addr_lo
;
448 /*14*/ u8 ip_addr_hi
;
449 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
450 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
451 pad15_2
:1), crs_or_cdt
:1);
452 /*16*/ u8 fc_delay_lo
;
453 /*17*/ u8 fc_delay_hi
;
454 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
455 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
456 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
457 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
458 full_duplex_force
:1), full_duplex_pin
:1);
459 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
460 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
461 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
465 #define E100_MAX_MULTICAST_ADDRS 64
468 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
471 /* Important: keep total struct u32-aligned */
472 #define UCODE_SIZE 134
479 __le32 ucode
[UCODE_SIZE
];
480 struct config config
;
493 __le32 dump_buffer_addr
;
495 struct cb
*next
, *prev
;
501 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
505 __le32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
506 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
507 tx_multiple_collisions
, tx_total_collisions
;
508 __le32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
509 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
510 rx_short_frame_errors
;
511 __le32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
512 __le16 xmt_tco_frames
, rcv_tco_frames
;
532 struct param_range rfds
;
533 struct param_range cbs
;
537 /* Begin: frequently used values: keep adjacent for cache effect */
538 u32 msg_enable ____cacheline_aligned
;
539 struct net_device
*netdev
;
540 struct pci_dev
*pdev
;
541 u16 (*mdio_ctrl
)(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
);
543 struct rx
*rxs ____cacheline_aligned
;
544 struct rx
*rx_to_use
;
545 struct rx
*rx_to_clean
;
546 struct rfd blank_rfd
;
547 enum ru_state ru_running
;
549 spinlock_t cb_lock ____cacheline_aligned
;
551 struct csr __iomem
*csr
;
552 enum scb_cmd_lo cuc_cmd
;
553 unsigned int cbs_avail
;
554 struct napi_struct napi
;
556 struct cb
*cb_to_use
;
557 struct cb
*cb_to_send
;
558 struct cb
*cb_to_clean
;
560 /* End: frequently used values: keep adjacent for cache effect */
564 promiscuous
= (1 << 1),
565 multicast_all
= (1 << 2),
566 wol_magic
= (1 << 3),
567 ich_10h_workaround
= (1 << 4),
568 } flags ____cacheline_aligned
;
572 struct params params
;
573 struct timer_list watchdog
;
574 struct mii_if_info mii
;
575 struct work_struct tx_timeout_task
;
576 enum loopback loopback
;
581 struct dma_pool
*cbs_pool
;
582 dma_addr_t cbs_dma_addr
;
588 u32 tx_single_collisions
;
589 u32 tx_multiple_collisions
;
594 u32 rx_fc_unsupported
;
596 u32 rx_short_frame_errors
;
597 u32 rx_over_length_errors
;
601 spinlock_t mdio_lock
;
602 const struct firmware
*fw
;
605 static inline void e100_write_flush(struct nic
*nic
)
607 /* Flush previous PCI writes through intermediate bridges
608 * by doing a benign read */
609 (void)ioread8(&nic
->csr
->scb
.status
);
612 static void e100_enable_irq(struct nic
*nic
)
616 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
617 iowrite8(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
618 e100_write_flush(nic
);
619 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
622 static void e100_disable_irq(struct nic
*nic
)
626 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
627 iowrite8(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
628 e100_write_flush(nic
);
629 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
632 static void e100_hw_reset(struct nic
*nic
)
634 /* Put CU and RU into idle with a selective reset to get
635 * device off of PCI bus */
636 iowrite32(selective_reset
, &nic
->csr
->port
);
637 e100_write_flush(nic
); udelay(20);
639 /* Now fully reset device */
640 iowrite32(software_reset
, &nic
->csr
->port
);
641 e100_write_flush(nic
); udelay(20);
643 /* Mask off our interrupt line - it's unmasked after reset */
644 e100_disable_irq(nic
);
647 static int e100_self_test(struct nic
*nic
)
649 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
651 /* Passing the self-test is a pretty good indication
652 * that the device can DMA to/from host memory */
654 nic
->mem
->selftest
.signature
= 0;
655 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
657 iowrite32(selftest
| dma_addr
, &nic
->csr
->port
);
658 e100_write_flush(nic
);
659 /* Wait 10 msec for self-test to complete */
662 /* Interrupts are enabled after self-test */
663 e100_disable_irq(nic
);
665 /* Check results of self-test */
666 if (nic
->mem
->selftest
.result
!= 0) {
667 netif_err(nic
, hw
, nic
->netdev
,
668 "Self-test failed: result=0x%08X\n",
669 nic
->mem
->selftest
.result
);
672 if (nic
->mem
->selftest
.signature
== 0) {
673 netif_err(nic
, hw
, nic
->netdev
, "Self-test failed: timed out\n");
680 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, __le16 data
)
682 u32 cmd_addr_data
[3];
686 /* Three cmds: write/erase enable, write data, write/erase disable */
687 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
688 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
690 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
692 /* Bit-bang cmds to write word to eeprom */
693 for (j
= 0; j
< 3; j
++) {
696 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
697 e100_write_flush(nic
); udelay(4);
699 for (i
= 31; i
>= 0; i
--) {
700 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
702 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
703 e100_write_flush(nic
); udelay(4);
705 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
706 e100_write_flush(nic
); udelay(4);
708 /* Wait 10 msec for cmd to complete */
712 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
713 e100_write_flush(nic
); udelay(4);
717 /* General technique stolen from the eepro100 driver - very clever */
718 static __le16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
725 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
728 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
729 e100_write_flush(nic
); udelay(4);
731 /* Bit-bang to read word from eeprom */
732 for (i
= 31; i
>= 0; i
--) {
733 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
734 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
735 e100_write_flush(nic
); udelay(4);
737 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
738 e100_write_flush(nic
); udelay(4);
740 /* Eeprom drives a dummy zero to EEDO after receiving
741 * complete address. Use this to adjust addr_len. */
742 ctrl
= ioread8(&nic
->csr
->eeprom_ctrl_lo
);
743 if (!(ctrl
& eedo
) && i
> 16) {
744 *addr_len
-= (i
- 16);
748 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
752 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
753 e100_write_flush(nic
); udelay(4);
755 return cpu_to_le16(data
);
758 /* Load entire EEPROM image into driver cache and validate checksum */
759 static int e100_eeprom_load(struct nic
*nic
)
761 u16 addr
, addr_len
= 8, checksum
= 0;
763 /* Try reading with an 8-bit addr len to discover actual addr len */
764 e100_eeprom_read(nic
, &addr_len
, 0);
765 nic
->eeprom_wc
= 1 << addr_len
;
767 for (addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
768 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
769 if (addr
< nic
->eeprom_wc
- 1)
770 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
773 /* The checksum, stored in the last word, is calculated such that
774 * the sum of words should be 0xBABA */
775 if (cpu_to_le16(0xBABA - checksum
) != nic
->eeprom
[nic
->eeprom_wc
- 1]) {
776 netif_err(nic
, probe
, nic
->netdev
, "EEPROM corrupted\n");
777 if (!eeprom_bad_csum_allow
)
784 /* Save (portion of) driver EEPROM cache to device and update checksum */
785 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
787 u16 addr
, addr_len
= 8, checksum
= 0;
789 /* Try reading with an 8-bit addr len to discover actual addr len */
790 e100_eeprom_read(nic
, &addr_len
, 0);
791 nic
->eeprom_wc
= 1 << addr_len
;
793 if (start
+ count
>= nic
->eeprom_wc
)
796 for (addr
= start
; addr
< start
+ count
; addr
++)
797 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
799 /* The checksum, stored in the last word, is calculated such that
800 * the sum of words should be 0xBABA */
801 for (addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
802 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
803 nic
->eeprom
[nic
->eeprom_wc
- 1] = cpu_to_le16(0xBABA - checksum
);
804 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
805 nic
->eeprom
[nic
->eeprom_wc
- 1]);
810 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
811 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
812 static int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
818 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
820 /* Previous command is accepted when SCB clears */
821 for (i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
822 if (likely(!ioread8(&nic
->csr
->scb
.cmd_lo
)))
825 if (unlikely(i
> E100_WAIT_SCB_FAST
))
828 if (unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
833 if (unlikely(cmd
!= cuc_resume
))
834 iowrite32(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
835 iowrite8(cmd
, &nic
->csr
->scb
.cmd_lo
);
838 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
843 static int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
844 int (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
850 spin_lock_irqsave(&nic
->cb_lock
, flags
);
852 if (unlikely(!nic
->cbs_avail
)) {
858 nic
->cb_to_use
= cb
->next
;
862 err
= cb_prepare(nic
, cb
, skb
);
866 if (unlikely(!nic
->cbs_avail
))
870 /* Order is important otherwise we'll be in a race with h/w:
871 * set S-bit in current first, then clear S-bit in previous. */
872 cb
->command
|= cpu_to_le16(cb_s
);
874 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
876 while (nic
->cb_to_send
!= nic
->cb_to_use
) {
877 if (unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
878 nic
->cb_to_send
->dma_addr
))) {
879 /* Ok, here's where things get sticky. It's
880 * possible that we can't schedule the command
881 * because the controller is too busy, so
882 * let's just queue the command and try again
883 * when another command is scheduled. */
884 if (err
== -ENOSPC
) {
886 schedule_work(&nic
->tx_timeout_task
);
890 nic
->cuc_cmd
= cuc_resume
;
891 nic
->cb_to_send
= nic
->cb_to_send
->next
;
896 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
901 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
903 struct nic
*nic
= netdev_priv(netdev
);
904 return nic
->mdio_ctrl(nic
, addr
, mdi_read
, reg
, 0);
907 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
909 struct nic
*nic
= netdev_priv(netdev
);
911 nic
->mdio_ctrl(nic
, addr
, mdi_write
, reg
, data
);
914 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
915 static u16
mdio_ctrl_hw(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
923 * Stratus87247: we shouldn't be writing the MDI control
924 * register until the Ready bit shows True. Also, since
925 * manipulation of the MDI control registers is a multi-step
926 * procedure it should be done under lock.
928 spin_lock_irqsave(&nic
->mdio_lock
, flags
);
929 for (i
= 100; i
; --i
) {
930 if (ioread32(&nic
->csr
->mdi_ctrl
) & mdi_ready
)
935 netdev_err(nic
->netdev
, "e100.mdio_ctrl won't go Ready\n");
936 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
937 return 0; /* No way to indicate timeout error */
939 iowrite32((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
941 for (i
= 0; i
< 100; i
++) {
943 if ((data_out
= ioread32(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
946 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
947 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
948 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
949 dir
== mdi_read
? "READ" : "WRITE",
950 addr
, reg
, data
, data_out
);
951 return (u16
)data_out
;
954 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
955 static u16
mdio_ctrl_phy_82552_v(struct nic
*nic
,
961 if ((reg
== MII_BMCR
) && (dir
== mdi_write
)) {
962 if (data
& (BMCR_ANRESTART
| BMCR_ANENABLE
)) {
963 u16 advert
= mdio_read(nic
->netdev
, nic
->mii
.phy_id
,
967 * Workaround Si issue where sometimes the part will not
968 * autoneg to 100Mbps even when advertised.
970 if (advert
& ADVERTISE_100FULL
)
971 data
|= BMCR_SPEED100
| BMCR_FULLDPLX
;
972 else if (advert
& ADVERTISE_100HALF
)
973 data
|= BMCR_SPEED100
;
976 return mdio_ctrl_hw(nic
, addr
, dir
, reg
, data
);
979 /* Fully software-emulated mdio_ctrl() function for cards without
980 * MII-compliant PHYs.
981 * For now, this is mainly geared towards 80c24 support; in case of further
982 * requirements for other types (i82503, ...?) either extend this mechanism
983 * or split it, whichever is cleaner.
985 static u16
mdio_ctrl_phy_mii_emulated(struct nic
*nic
,
991 /* might need to allocate a netdev_priv'ed register array eventually
992 * to be able to record state changes, but for now
993 * some fully hardcoded register handling ought to be ok I guess. */
995 if (dir
== mdi_read
) {
998 /* Auto-negotiation, right? */
999 return BMCR_ANENABLE
|
1002 return BMSR_LSTATUS
/* for mii_link_ok() */ |
1006 /* 80c24 is a "combo card" PHY, right? */
1007 return ADVERTISE_10HALF
|
1010 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1011 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1012 dir
== mdi_read
? "READ" : "WRITE",
1019 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1020 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1021 dir
== mdi_read
? "READ" : "WRITE",
1027 static inline int e100_phy_supports_mii(struct nic
*nic
)
1029 /* for now, just check it by comparing whether we
1030 are using MII software emulation.
1032 return (nic
->mdio_ctrl
!= mdio_ctrl_phy_mii_emulated
);
1035 static void e100_get_defaults(struct nic
*nic
)
1037 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
1038 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
1040 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1041 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->pdev
->revision
;
1042 if (nic
->mac
== mac_unknown
)
1043 nic
->mac
= mac_82557_D100_A
;
1045 nic
->params
.rfds
= rfds
;
1046 nic
->params
.cbs
= cbs
;
1048 /* Quadwords to DMA into FIFO before starting frame transmit */
1049 nic
->tx_threshold
= 0xE0;
1051 /* no interrupt for every tx completion, delay = 256us if not 557 */
1052 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
1053 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
1055 /* Template for a freshly allocated RFD */
1056 nic
->blank_rfd
.command
= 0;
1057 nic
->blank_rfd
.rbd
= cpu_to_le32(0xFFFFFFFF);
1058 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
);
1061 nic
->mii
.phy_id_mask
= 0x1F;
1062 nic
->mii
.reg_num_mask
= 0x1F;
1063 nic
->mii
.dev
= nic
->netdev
;
1064 nic
->mii
.mdio_read
= mdio_read
;
1065 nic
->mii
.mdio_write
= mdio_write
;
1068 static int e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1070 struct config
*config
= &cb
->u
.config
;
1071 u8
*c
= (u8
*)config
;
1072 struct net_device
*netdev
= nic
->netdev
;
1074 cb
->command
= cpu_to_le16(cb_config
);
1076 memset(config
, 0, sizeof(struct config
));
1078 config
->byte_count
= 0x16; /* bytes in this struct */
1079 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
1080 config
->direct_rx_dma
= 0x1; /* reserved */
1081 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
1082 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
1083 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
1084 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
1085 if (e100_phy_supports_mii(nic
))
1086 config
->mii_mode
= 1; /* 1=MII mode, 0=i82503 mode */
1087 config
->pad10
= 0x6;
1088 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
1089 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1090 config
->ifs
= 0x6; /* x16 = inter frame spacing */
1091 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
1092 config
->pad15_1
= 0x1;
1093 config
->pad15_2
= 0x1;
1094 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
1095 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
1096 config
->tx_padding
= 0x1; /* 1=pad short frames */
1097 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
1098 config
->pad18
= 0x1;
1099 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
1100 config
->pad20_1
= 0x1F;
1101 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
1102 config
->pad21_1
= 0x5;
1104 config
->adaptive_ifs
= nic
->adaptive_ifs
;
1105 config
->loopback
= nic
->loopback
;
1107 if (nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
1108 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
1110 if (nic
->flags
& promiscuous
|| nic
->loopback
) {
1111 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1112 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1113 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
1116 if (unlikely(netdev
->features
& NETIF_F_RXFCS
))
1117 config
->rx_crc_transfer
= 0x1; /* 1=save, 0=discard */
1119 if (nic
->flags
& multicast_all
)
1120 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
1122 /* disable WoL when up */
1123 if (netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
1124 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
1126 if (nic
->mac
>= mac_82558_D101_A4
) {
1127 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
1128 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
1129 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
1130 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
1131 if (nic
->mac
>= mac_82559_D101M
) {
1132 config
->tno_intr
= 0x1; /* TCO stats enable */
1133 /* Enable TCO in extended config */
1134 if (nic
->mac
>= mac_82551_10
) {
1135 config
->byte_count
= 0x20; /* extended bytes */
1136 config
->rx_d102_mode
= 0x1; /* GMRC for TCO */
1139 config
->standard_stat_counter
= 0x0;
1143 if (netdev
->features
& NETIF_F_RXALL
) {
1144 config
->rx_save_overruns
= 0x1; /* 1=save, 0=discard */
1145 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1146 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1149 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
, "[00-07]=%8ph\n",
1151 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
, "[08-15]=%8ph\n",
1153 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
, "[16-23]=%8ph\n",
1158 /*************************************************************************
1159 * CPUSaver parameters
1161 * All CPUSaver parameters are 16-bit literals that are part of a
1162 * "move immediate value" instruction. By changing the value of
1163 * the literal in the instruction before the code is loaded, the
1164 * driver can change the algorithm.
1166 * INTDELAY - This loads the dead-man timer with its initial value.
1167 * When this timer expires the interrupt is asserted, and the
1168 * timer is reset each time a new packet is received. (see
1169 * BUNDLEMAX below to set the limit on number of chained packets)
1170 * The current default is 0x600 or 1536. Experiments show that
1171 * the value should probably stay within the 0x200 - 0x1000.
1174 * This sets the maximum number of frames that will be bundled. In
1175 * some situations, such as the TCP windowing algorithm, it may be
1176 * better to limit the growth of the bundle size than let it go as
1177 * high as it can, because that could cause too much added latency.
1178 * The default is six, because this is the number of packets in the
1179 * default TCP window size. A value of 1 would make CPUSaver indicate
1180 * an interrupt for every frame received. If you do not want to put
1181 * a limit on the bundle size, set this value to xFFFF.
1184 * This contains a bit-mask describing the minimum size frame that
1185 * will be bundled. The default masks the lower 7 bits, which means
1186 * that any frame less than 128 bytes in length will not be bundled,
1187 * but will instead immediately generate an interrupt. This does
1188 * not affect the current bundle in any way. Any frame that is 128
1189 * bytes or large will be bundled normally. This feature is meant
1190 * to provide immediate indication of ACK frames in a TCP environment.
1191 * Customers were seeing poor performance when a machine with CPUSaver
1192 * enabled was sending but not receiving. The delay introduced when
1193 * the ACKs were received was enough to reduce total throughput, because
1194 * the sender would sit idle until the ACK was finally seen.
1196 * The current default is 0xFF80, which masks out the lower 7 bits.
1197 * This means that any frame which is x7F (127) bytes or smaller
1198 * will cause an immediate interrupt. Because this value must be a
1199 * bit mask, there are only a few valid values that can be used. To
1200 * turn this feature off, the driver can write the value xFFFF to the
1201 * lower word of this instruction (in the same way that the other
1202 * parameters are used). Likewise, a value of 0xF800 (2047) would
1203 * cause an interrupt to be generated for every frame, because all
1204 * standard Ethernet frames are <= 2047 bytes in length.
1205 *************************************************************************/
1207 /* if you wish to disable the ucode functionality, while maintaining the
1208 * workarounds it provides, set the following defines to:
1213 #define BUNDLESMALL 1
1214 #define BUNDLEMAX (u16)6
1215 #define INTDELAY (u16)1536 /* 0x600 */
1217 /* Initialize firmware */
1218 static const struct firmware
*e100_request_firmware(struct nic
*nic
)
1220 const char *fw_name
;
1221 const struct firmware
*fw
= nic
->fw
;
1222 u8 timer
, bundle
, min_size
;
1224 bool required
= false;
1226 /* do not load u-code for ICH devices */
1227 if (nic
->flags
& ich
)
1230 /* Search for ucode match against h/w revision
1232 * Based on comments in the source code for the FreeBSD fxp
1233 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235 * "fixes for bugs in the B-step hardware (specifically, bugs
1236 * with Inline Receive)."
1238 * So we must fail if it cannot be loaded.
1240 * The other microcode files are only required for the optional
1241 * CPUSaver feature. Nice to have, but no reason to fail.
1243 if (nic
->mac
== mac_82559_D101M
) {
1244 fw_name
= FIRMWARE_D101M
;
1245 } else if (nic
->mac
== mac_82559_D101S
) {
1246 fw_name
= FIRMWARE_D101S
;
1247 } else if (nic
->mac
== mac_82551_F
|| nic
->mac
== mac_82551_10
) {
1248 fw_name
= FIRMWARE_D102E
;
1250 } else { /* No ucode on other devices */
1254 /* If the firmware has not previously been loaded, request a pointer
1255 * to it. If it was previously loaded, we are reinitializing the
1256 * adapter, possibly in a resume from hibernate, in which case
1257 * request_firmware() cannot be used.
1260 err
= request_firmware(&fw
, fw_name
, &nic
->pdev
->dev
);
1264 netif_err(nic
, probe
, nic
->netdev
,
1265 "Failed to load firmware \"%s\": %d\n",
1267 return ERR_PTR(err
);
1269 netif_info(nic
, probe
, nic
->netdev
,
1270 "CPUSaver disabled. Needs \"%s\": %d\n",
1276 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1277 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1278 if (fw
->size
!= UCODE_SIZE
* 4 + 3) {
1279 netif_err(nic
, probe
, nic
->netdev
,
1280 "Firmware \"%s\" has wrong size %zu\n",
1282 release_firmware(fw
);
1283 return ERR_PTR(-EINVAL
);
1286 /* Read timer, bundle and min_size from end of firmware blob */
1287 timer
= fw
->data
[UCODE_SIZE
* 4];
1288 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1289 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1291 if (timer
>= UCODE_SIZE
|| bundle
>= UCODE_SIZE
||
1292 min_size
>= UCODE_SIZE
) {
1293 netif_err(nic
, probe
, nic
->netdev
,
1294 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1295 fw_name
, timer
, bundle
, min_size
);
1296 release_firmware(fw
);
1297 return ERR_PTR(-EINVAL
);
1300 /* OK, firmware is validated and ready to use. Save a pointer
1301 * to it in the nic */
1306 static int e100_setup_ucode(struct nic
*nic
, struct cb
*cb
,
1307 struct sk_buff
*skb
)
1309 const struct firmware
*fw
= (void *)skb
;
1310 u8 timer
, bundle
, min_size
;
1312 /* It's not a real skb; we just abused the fact that e100_exec_cb
1313 will pass it through to here... */
1316 /* firmware is stored as little endian already */
1317 memcpy(cb
->u
.ucode
, fw
->data
, UCODE_SIZE
* 4);
1319 /* Read timer, bundle and min_size from end of firmware blob */
1320 timer
= fw
->data
[UCODE_SIZE
* 4];
1321 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1322 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1324 /* Insert user-tunable settings in cb->u.ucode */
1325 cb
->u
.ucode
[timer
] &= cpu_to_le32(0xFFFF0000);
1326 cb
->u
.ucode
[timer
] |= cpu_to_le32(INTDELAY
);
1327 cb
->u
.ucode
[bundle
] &= cpu_to_le32(0xFFFF0000);
1328 cb
->u
.ucode
[bundle
] |= cpu_to_le32(BUNDLEMAX
);
1329 cb
->u
.ucode
[min_size
] &= cpu_to_le32(0xFFFF0000);
1330 cb
->u
.ucode
[min_size
] |= cpu_to_le32((BUNDLESMALL
) ? 0xFFFF : 0xFF80);
1332 cb
->command
= cpu_to_le16(cb_ucode
| cb_el
);
1336 static inline int e100_load_ucode_wait(struct nic
*nic
)
1338 const struct firmware
*fw
;
1339 int err
= 0, counter
= 50;
1340 struct cb
*cb
= nic
->cb_to_clean
;
1342 fw
= e100_request_firmware(nic
);
1343 /* If it's NULL, then no ucode is required */
1344 if (IS_ERR_OR_NULL(fw
))
1345 return PTR_ERR_OR_ZERO(fw
);
1347 if ((err
= e100_exec_cb(nic
, (void *)fw
, e100_setup_ucode
)))
1348 netif_err(nic
, probe
, nic
->netdev
,
1349 "ucode cmd failed with error %d\n", err
);
1351 /* must restart cuc */
1352 nic
->cuc_cmd
= cuc_start
;
1354 /* wait for completion */
1355 e100_write_flush(nic
);
1358 /* wait for possibly (ouch) 500ms */
1359 while (!(cb
->status
& cpu_to_le16(cb_complete
))) {
1361 if (!--counter
) break;
1364 /* ack any interrupts, something could have been set */
1365 iowrite8(~0, &nic
->csr
->scb
.stat_ack
);
1367 /* if the command failed, or is not OK, notify and return */
1368 if (!counter
|| !(cb
->status
& cpu_to_le16(cb_ok
))) {
1369 netif_err(nic
, probe
, nic
->netdev
, "ucode load failed\n");
1376 static int e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1377 struct sk_buff
*skb
)
1379 cb
->command
= cpu_to_le16(cb_iaaddr
);
1380 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1384 static int e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1386 cb
->command
= cpu_to_le16(cb_dump
);
1387 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1388 offsetof(struct mem
, dump_buf
));
1392 static int e100_phy_check_without_mii(struct nic
*nic
)
1397 phy_type
= (le16_to_cpu(nic
->eeprom
[eeprom_phy_iface
]) >> 8) & 0x0f;
1400 case NoSuchPhy
: /* Non-MII PHY; UNTESTED! */
1401 case I82503
: /* Non-MII PHY; UNTESTED! */
1402 case S80C24
: /* Non-MII PHY; tested and working */
1403 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1404 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1405 * doesn't have a programming interface of any sort. The
1406 * media is sensed automatically based on how the link partner
1407 * is configured. This is, in essence, manual configuration.
1409 netif_info(nic
, probe
, nic
->netdev
,
1410 "found MII-less i82503 or 80c24 or other PHY\n");
1412 nic
->mdio_ctrl
= mdio_ctrl_phy_mii_emulated
;
1413 nic
->mii
.phy_id
= 0; /* is this ok for an MII-less PHY? */
1415 /* these might be needed for certain MII-less cards...
1416 * nic->flags |= ich;
1417 * nic->flags |= ich_10h_workaround; */
1428 #define NCONFIG_AUTO_SWITCH 0x0080
1429 #define MII_NSC_CONG MII_RESV1
1430 #define NSC_CONG_ENABLE 0x0100
1431 #define NSC_CONG_TXREADY 0x0400
1432 static int e100_phy_init(struct nic
*nic
)
1434 struct net_device
*netdev
= nic
->netdev
;
1436 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1438 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1439 for (addr
= 0; addr
< 32; addr
++) {
1440 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1441 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1442 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1443 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1444 if (!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1448 /* uhoh, no PHY detected: check whether we seem to be some
1449 * weird, rare variant which is *known* to not have any MII.
1450 * But do this AFTER MII checking only, since this does
1451 * lookup of EEPROM values which may easily be unreliable. */
1452 if (e100_phy_check_without_mii(nic
))
1453 return 0; /* simply return and hope for the best */
1455 /* for unknown cases log a fatal error */
1456 netif_err(nic
, hw
, nic
->netdev
,
1457 "Failed to locate any known PHY, aborting\n");
1461 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1462 "phy_addr = %d\n", nic
->mii
.phy_id
);
1465 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1466 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1467 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1468 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1469 "phy ID = 0x%08X\n", nic
->phy
);
1471 /* Select the phy and isolate the rest */
1472 for (addr
= 0; addr
< 32; addr
++) {
1473 if (addr
!= nic
->mii
.phy_id
) {
1474 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1475 } else if (nic
->phy
!= phy_82552_v
) {
1476 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1477 mdio_write(netdev
, addr
, MII_BMCR
,
1478 bmcr
& ~BMCR_ISOLATE
);
1482 * Workaround for 82552:
1483 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1484 * other phy_id's) using bmcr value from addr discovery loop above.
1486 if (nic
->phy
== phy_82552_v
)
1487 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
,
1488 bmcr
& ~BMCR_ISOLATE
);
1490 /* Handle National tx phys */
1491 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1492 if ((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1493 /* Disable congestion control */
1494 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1495 cong
|= NSC_CONG_TXREADY
;
1496 cong
&= ~NSC_CONG_ENABLE
;
1497 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1500 if (nic
->phy
== phy_82552_v
) {
1501 u16 advert
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
);
1503 /* assign special tweaked mdio_ctrl() function */
1504 nic
->mdio_ctrl
= mdio_ctrl_phy_82552_v
;
1506 /* Workaround Si not advertising flow-control during autoneg */
1507 advert
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1508 mdio_write(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
, advert
);
1510 /* Reset for the above changes to take effect */
1511 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1513 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, bmcr
);
1514 } else if ((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1515 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000) &&
1516 (le16_to_cpu(nic
->eeprom
[eeprom_cnfg_mdix
]) & eeprom_mdix_enabled
))) {
1517 /* enable/disable MDI/MDI-X auto-switching. */
1518 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
,
1519 nic
->mii
.force_media
? 0 : NCONFIG_AUTO_SWITCH
);
1525 static int e100_hw_init(struct nic
*nic
)
1531 netif_err(nic
, hw
, nic
->netdev
, "e100_hw_init\n");
1532 if ((err
= e100_self_test(nic
)))
1535 if ((err
= e100_phy_init(nic
)))
1537 if ((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1539 if ((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1541 if ((err
= e100_load_ucode_wait(nic
)))
1543 if ((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1545 if ((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1547 if ((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1548 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1550 if ((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1553 e100_disable_irq(nic
);
1558 static int e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1560 struct net_device
*netdev
= nic
->netdev
;
1561 struct netdev_hw_addr
*ha
;
1562 u16 i
, count
= min(netdev_mc_count(netdev
), E100_MAX_MULTICAST_ADDRS
);
1564 cb
->command
= cpu_to_le16(cb_multi
);
1565 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1567 netdev_for_each_mc_addr(ha
, netdev
) {
1570 memcpy(&cb
->u
.multi
.addr
[i
++ * ETH_ALEN
], &ha
->addr
,
1576 static void e100_set_multicast_list(struct net_device
*netdev
)
1578 struct nic
*nic
= netdev_priv(netdev
);
1580 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1581 "mc_count=%d, flags=0x%04X\n",
1582 netdev_mc_count(netdev
), netdev
->flags
);
1584 if (netdev
->flags
& IFF_PROMISC
)
1585 nic
->flags
|= promiscuous
;
1587 nic
->flags
&= ~promiscuous
;
1589 if (netdev
->flags
& IFF_ALLMULTI
||
1590 netdev_mc_count(netdev
) > E100_MAX_MULTICAST_ADDRS
)
1591 nic
->flags
|= multicast_all
;
1593 nic
->flags
&= ~multicast_all
;
1595 e100_exec_cb(nic
, NULL
, e100_configure
);
1596 e100_exec_cb(nic
, NULL
, e100_multi
);
1599 static void e100_update_stats(struct nic
*nic
)
1601 struct net_device
*dev
= nic
->netdev
;
1602 struct net_device_stats
*ns
= &dev
->stats
;
1603 struct stats
*s
= &nic
->mem
->stats
;
1604 __le32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1605 (nic
->mac
< mac_82559_D101M
) ? (__le32
*)&s
->xmt_tco_frames
:
1608 /* Device's stats reporting may take several microseconds to
1609 * complete, so we're always waiting for results of the
1610 * previous command. */
1612 if (*complete
== cpu_to_le32(cuc_dump_reset_complete
)) {
1614 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1615 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1616 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1617 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1618 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1619 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1620 ns
->collisions
+= nic
->tx_collisions
;
1621 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1622 le32_to_cpu(s
->tx_lost_crs
);
1623 nic
->rx_short_frame_errors
+=
1624 le32_to_cpu(s
->rx_short_frame_errors
);
1625 ns
->rx_length_errors
= nic
->rx_short_frame_errors
+
1626 nic
->rx_over_length_errors
;
1627 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1628 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1629 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1630 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1631 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1632 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1633 le32_to_cpu(s
->rx_alignment_errors
) +
1634 le32_to_cpu(s
->rx_short_frame_errors
) +
1635 le32_to_cpu(s
->rx_cdt_errors
);
1636 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1637 nic
->tx_single_collisions
+=
1638 le32_to_cpu(s
->tx_single_collisions
);
1639 nic
->tx_multiple_collisions
+=
1640 le32_to_cpu(s
->tx_multiple_collisions
);
1641 if (nic
->mac
>= mac_82558_D101_A4
) {
1642 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1643 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1644 nic
->rx_fc_unsupported
+=
1645 le32_to_cpu(s
->fc_rcv_unsupported
);
1646 if (nic
->mac
>= mac_82559_D101M
) {
1647 nic
->tx_tco_frames
+=
1648 le16_to_cpu(s
->xmt_tco_frames
);
1649 nic
->rx_tco_frames
+=
1650 le16_to_cpu(s
->rcv_tco_frames
);
1656 if (e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1657 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1658 "exec cuc_dump_reset failed\n");
1661 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1663 /* Adjust inter-frame-spacing (IFS) between two transmits if
1664 * we're getting collisions on a half-duplex connection. */
1666 if (duplex
== DUPLEX_HALF
) {
1667 u32 prev
= nic
->adaptive_ifs
;
1668 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1670 if ((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1671 (nic
->tx_frames
> min_frames
)) {
1672 if (nic
->adaptive_ifs
< 60)
1673 nic
->adaptive_ifs
+= 5;
1674 } else if (nic
->tx_frames
< min_frames
) {
1675 if (nic
->adaptive_ifs
>= 5)
1676 nic
->adaptive_ifs
-= 5;
1678 if (nic
->adaptive_ifs
!= prev
)
1679 e100_exec_cb(nic
, NULL
, e100_configure
);
1683 static void e100_watchdog(struct timer_list
*t
)
1685 struct nic
*nic
= from_timer(nic
, t
, watchdog
);
1686 struct ethtool_cmd cmd
= { .cmd
= ETHTOOL_GSET
};
1689 netif_printk(nic
, timer
, KERN_DEBUG
, nic
->netdev
,
1690 "right now = %ld\n", jiffies
);
1692 /* mii library handles link maintenance tasks */
1694 mii_ethtool_gset(&nic
->mii
, &cmd
);
1695 speed
= ethtool_cmd_speed(&cmd
);
1697 if (mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1698 netdev_info(nic
->netdev
, "NIC Link is Up %u Mbps %s Duplex\n",
1699 speed
== SPEED_100
? 100 : 10,
1700 cmd
.duplex
== DUPLEX_FULL
? "Full" : "Half");
1701 } else if (!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1702 netdev_info(nic
->netdev
, "NIC Link is Down\n");
1705 mii_check_link(&nic
->mii
);
1707 /* Software generated interrupt to recover from (rare) Rx
1708 * allocation failure.
1709 * Unfortunately have to use a spinlock to not re-enable interrupts
1710 * accidentally, due to hardware that shares a register between the
1711 * interrupt mask bit and the SW Interrupt generation bit */
1712 spin_lock_irq(&nic
->cmd_lock
);
1713 iowrite8(ioread8(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1714 e100_write_flush(nic
);
1715 spin_unlock_irq(&nic
->cmd_lock
);
1717 e100_update_stats(nic
);
1718 e100_adjust_adaptive_ifs(nic
, speed
, cmd
.duplex
);
1720 if (nic
->mac
<= mac_82557_D100_C
)
1721 /* Issue a multicast command to workaround a 557 lock up */
1722 e100_set_multicast_list(nic
->netdev
);
1724 if (nic
->flags
& ich
&& speed
== SPEED_10
&& cmd
.duplex
== DUPLEX_HALF
)
1725 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1726 nic
->flags
|= ich_10h_workaround
;
1728 nic
->flags
&= ~ich_10h_workaround
;
1730 mod_timer(&nic
->watchdog
,
1731 round_jiffies(jiffies
+ E100_WATCHDOG_PERIOD
));
1734 static int e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1735 struct sk_buff
*skb
)
1737 dma_addr_t dma_addr
;
1738 cb
->command
= nic
->tx_command
;
1740 dma_addr
= dma_map_single(&nic
->pdev
->dev
, skb
->data
, skb
->len
,
1742 /* If we can't map the skb, have the upper layer try later */
1743 if (dma_mapping_error(&nic
->pdev
->dev
, dma_addr
))
1747 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1748 * testing, ie sending frames with bad CRC.
1750 if (unlikely(skb
->no_fcs
))
1751 cb
->command
|= cpu_to_le16(cb_tx_nc
);
1753 cb
->command
&= ~cpu_to_le16(cb_tx_nc
);
1755 /* interrupt every 16 packets regardless of delay */
1756 if ((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1757 cb
->command
|= cpu_to_le16(cb_i
);
1758 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1759 cb
->u
.tcb
.tcb_byte_count
= 0;
1760 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1761 cb
->u
.tcb
.tbd_count
= 1;
1762 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(dma_addr
);
1763 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1764 skb_tx_timestamp(skb
);
1768 static netdev_tx_t
e100_xmit_frame(struct sk_buff
*skb
,
1769 struct net_device
*netdev
)
1771 struct nic
*nic
= netdev_priv(netdev
);
1774 if (nic
->flags
& ich_10h_workaround
) {
1775 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1776 Issue a NOP command followed by a 1us delay before
1777 issuing the Tx command. */
1778 if (e100_exec_cmd(nic
, cuc_nop
, 0))
1779 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1780 "exec cuc_nop failed\n");
1784 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1788 /* We queued the skb, but now we're out of space. */
1789 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1790 "No space for CB\n");
1791 netif_stop_queue(netdev
);
1794 /* This is a hard error - log it. */
1795 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1796 "Out of Tx resources, returning skb\n");
1797 netif_stop_queue(netdev
);
1798 return NETDEV_TX_BUSY
;
1801 return NETDEV_TX_OK
;
1804 static int e100_tx_clean(struct nic
*nic
)
1806 struct net_device
*dev
= nic
->netdev
;
1810 spin_lock(&nic
->cb_lock
);
1812 /* Clean CBs marked complete */
1813 for (cb
= nic
->cb_to_clean
;
1814 cb
->status
& cpu_to_le16(cb_complete
);
1815 cb
= nic
->cb_to_clean
= cb
->next
) {
1816 dma_rmb(); /* read skb after status */
1817 netif_printk(nic
, tx_done
, KERN_DEBUG
, nic
->netdev
,
1818 "cb[%d]->status = 0x%04X\n",
1819 (int)(((void*)cb
- (void*)nic
->cbs
)/sizeof(struct cb
)),
1822 if (likely(cb
->skb
!= NULL
)) {
1823 dev
->stats
.tx_packets
++;
1824 dev
->stats
.tx_bytes
+= cb
->skb
->len
;
1826 dma_unmap_single(&nic
->pdev
->dev
,
1827 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1828 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1830 dev_kfree_skb_any(cb
->skb
);
1838 spin_unlock(&nic
->cb_lock
);
1840 /* Recover from running out of Tx resources in xmit_frame */
1841 if (unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1842 netif_wake_queue(nic
->netdev
);
1847 static void e100_clean_cbs(struct nic
*nic
)
1850 while (nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1851 struct cb
*cb
= nic
->cb_to_clean
;
1853 dma_unmap_single(&nic
->pdev
->dev
,
1854 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1855 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1857 dev_kfree_skb(cb
->skb
);
1859 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1862 dma_pool_free(nic
->cbs_pool
, nic
->cbs
, nic
->cbs_dma_addr
);
1866 nic
->cuc_cmd
= cuc_start
;
1867 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1871 static int e100_alloc_cbs(struct nic
*nic
)
1874 unsigned int i
, count
= nic
->params
.cbs
.count
;
1876 nic
->cuc_cmd
= cuc_start
;
1877 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1880 nic
->cbs
= dma_pool_zalloc(nic
->cbs_pool
, GFP_KERNEL
,
1881 &nic
->cbs_dma_addr
);
1885 for (cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1886 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1887 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1889 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1890 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1891 ((i
+1) % count
) * sizeof(struct cb
));
1894 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1895 nic
->cbs_avail
= count
;
1900 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1902 if (!nic
->rxs
) return;
1903 if (RU_SUSPENDED
!= nic
->ru_running
) return;
1905 /* handle init time starts */
1906 if (!rx
) rx
= nic
->rxs
;
1908 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1910 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1911 nic
->ru_running
= RU_RUNNING
;
1915 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1916 static int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1918 if (!(rx
->skb
= netdev_alloc_skb_ip_align(nic
->netdev
, RFD_BUF_LEN
)))
1921 /* Init, and map the RFD. */
1922 skb_copy_to_linear_data(rx
->skb
, &nic
->blank_rfd
, sizeof(struct rfd
));
1923 rx
->dma_addr
= dma_map_single(&nic
->pdev
->dev
, rx
->skb
->data
,
1924 RFD_BUF_LEN
, DMA_BIDIRECTIONAL
);
1926 if (dma_mapping_error(&nic
->pdev
->dev
, rx
->dma_addr
)) {
1927 dev_kfree_skb_any(rx
->skb
);
1933 /* Link the RFD to end of RFA by linking previous RFD to
1934 * this one. We are safe to touch the previous RFD because
1935 * it is protected by the before last buffer's el bit being set */
1936 if (rx
->prev
->skb
) {
1937 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1938 put_unaligned_le32(rx
->dma_addr
, &prev_rfd
->link
);
1939 dma_sync_single_for_device(&nic
->pdev
->dev
,
1948 static int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1949 unsigned int *work_done
, unsigned int work_to_do
)
1951 struct net_device
*dev
= nic
->netdev
;
1952 struct sk_buff
*skb
= rx
->skb
;
1953 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1954 u16 rfd_status
, actual_size
;
1957 if (unlikely(work_done
&& *work_done
>= work_to_do
))
1960 /* Need to sync before taking a peek at cb_complete bit */
1961 dma_sync_single_for_cpu(&nic
->pdev
->dev
, rx
->dma_addr
,
1962 sizeof(struct rfd
), DMA_BIDIRECTIONAL
);
1963 rfd_status
= le16_to_cpu(rfd
->status
);
1965 netif_printk(nic
, rx_status
, KERN_DEBUG
, nic
->netdev
,
1966 "status=0x%04X\n", rfd_status
);
1967 dma_rmb(); /* read size after status bit */
1969 /* If data isn't ready, nothing to indicate */
1970 if (unlikely(!(rfd_status
& cb_complete
))) {
1971 /* If the next buffer has the el bit, but we think the receiver
1972 * is still running, check to see if it really stopped while
1973 * we had interrupts off.
1974 * This allows for a fast restart without re-enabling
1976 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1977 (RU_RUNNING
== nic
->ru_running
))
1979 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1980 nic
->ru_running
= RU_SUSPENDED
;
1981 dma_sync_single_for_device(&nic
->pdev
->dev
, rx
->dma_addr
,
1987 /* Get actual data size */
1988 if (unlikely(dev
->features
& NETIF_F_RXFCS
))
1990 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1991 if (unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1992 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
1995 dma_unmap_single(&nic
->pdev
->dev
, rx
->dma_addr
, RFD_BUF_LEN
,
1998 /* If this buffer has the el bit, but we think the receiver
1999 * is still running, check to see if it really stopped while
2000 * we had interrupts off.
2001 * This allows for a fast restart without re-enabling interrupts.
2002 * This can happen when the RU sees the size change but also sees
2003 * the el bit set. */
2004 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
2005 (RU_RUNNING
== nic
->ru_running
)) {
2007 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
2008 nic
->ru_running
= RU_SUSPENDED
;
2011 /* Pull off the RFD and put the actual data (minus eth hdr) */
2012 skb_reserve(skb
, sizeof(struct rfd
));
2013 skb_put(skb
, actual_size
);
2014 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
2016 /* If we are receiving all frames, then don't bother
2017 * checking for errors.
2019 if (unlikely(dev
->features
& NETIF_F_RXALL
)) {
2020 if (actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
+ fcs_pad
)
2021 /* Received oversized frame, but keep it. */
2022 nic
->rx_over_length_errors
++;
2026 if (unlikely(!(rfd_status
& cb_ok
))) {
2027 /* Don't indicate if hardware indicates errors */
2028 dev_kfree_skb_any(skb
);
2029 } else if (actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
+ fcs_pad
) {
2030 /* Don't indicate oversized frames */
2031 nic
->rx_over_length_errors
++;
2032 dev_kfree_skb_any(skb
);
2035 dev
->stats
.rx_packets
++;
2036 dev
->stats
.rx_bytes
+= (actual_size
- fcs_pad
);
2037 netif_receive_skb(skb
);
2047 static void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
2048 unsigned int work_to_do
)
2051 int restart_required
= 0, err
= 0;
2052 struct rx
*old_before_last_rx
, *new_before_last_rx
;
2053 struct rfd
*old_before_last_rfd
, *new_before_last_rfd
;
2055 /* Indicate newly arrived packets */
2056 for (rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
2057 err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
2058 /* Hit quota or no more to clean */
2059 if (-EAGAIN
== err
|| -ENODATA
== err
)
2064 /* On EAGAIN, hit quota so have more work to do, restart once
2065 * cleanup is complete.
2066 * Else, are we already rnr? then pay attention!!! this ensures that
2067 * the state machine progression never allows a start with a
2068 * partially cleaned list, avoiding a race between hardware
2069 * and rx_to_clean when in NAPI mode */
2070 if (-EAGAIN
!= err
&& RU_SUSPENDED
== nic
->ru_running
)
2071 restart_required
= 1;
2073 old_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
2074 old_before_last_rfd
= (struct rfd
*)old_before_last_rx
->skb
->data
;
2076 /* Alloc new skbs to refill list */
2077 for (rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
2078 if (unlikely(e100_rx_alloc_skb(nic
, rx
)))
2079 break; /* Better luck next time (see watchdog) */
2082 new_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
2083 if (new_before_last_rx
!= old_before_last_rx
) {
2084 /* Set the el-bit on the buffer that is before the last buffer.
2085 * This lets us update the next pointer on the last buffer
2086 * without worrying about hardware touching it.
2087 * We set the size to 0 to prevent hardware from touching this
2089 * When the hardware hits the before last buffer with el-bit
2090 * and size of 0, it will RNR interrupt, the RUS will go into
2091 * the No Resources state. It will not complete nor write to
2093 new_before_last_rfd
=
2094 (struct rfd
*)new_before_last_rx
->skb
->data
;
2095 new_before_last_rfd
->size
= 0;
2096 new_before_last_rfd
->command
|= cpu_to_le16(cb_el
);
2097 dma_sync_single_for_device(&nic
->pdev
->dev
,
2098 new_before_last_rx
->dma_addr
,
2102 /* Now that we have a new stopping point, we can clear the old
2103 * stopping point. We must sync twice to get the proper
2104 * ordering on the hardware side of things. */
2105 old_before_last_rfd
->command
&= ~cpu_to_le16(cb_el
);
2106 dma_sync_single_for_device(&nic
->pdev
->dev
,
2107 old_before_last_rx
->dma_addr
,
2110 old_before_last_rfd
->size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
2112 dma_sync_single_for_device(&nic
->pdev
->dev
,
2113 old_before_last_rx
->dma_addr
,
2118 if (restart_required
) {
2120 iowrite8(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
2121 e100_start_receiver(nic
, nic
->rx_to_clean
);
2127 static void e100_rx_clean_list(struct nic
*nic
)
2130 unsigned int i
, count
= nic
->params
.rfds
.count
;
2132 nic
->ru_running
= RU_UNINITIALIZED
;
2135 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
2137 dma_unmap_single(&nic
->pdev
->dev
,
2138 rx
->dma_addr
, RFD_BUF_LEN
,
2140 dev_kfree_skb(rx
->skb
);
2147 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
2150 static int e100_rx_alloc_list(struct nic
*nic
)
2153 unsigned int i
, count
= nic
->params
.rfds
.count
;
2154 struct rfd
*before_last
;
2156 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
2157 nic
->ru_running
= RU_UNINITIALIZED
;
2159 if (!(nic
->rxs
= kcalloc(count
, sizeof(struct rx
), GFP_KERNEL
)))
2162 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
2163 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
2164 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
2165 if (e100_rx_alloc_skb(nic
, rx
)) {
2166 e100_rx_clean_list(nic
);
2170 /* Set the el-bit on the buffer that is before the last buffer.
2171 * This lets us update the next pointer on the last buffer without
2172 * worrying about hardware touching it.
2173 * We set the size to 0 to prevent hardware from touching this buffer.
2174 * When the hardware hits the before last buffer with el-bit and size
2175 * of 0, it will RNR interrupt, the RU will go into the No Resources
2176 * state. It will not complete nor write to this buffer. */
2177 rx
= nic
->rxs
->prev
->prev
;
2178 before_last
= (struct rfd
*)rx
->skb
->data
;
2179 before_last
->command
|= cpu_to_le16(cb_el
);
2180 before_last
->size
= 0;
2181 dma_sync_single_for_device(&nic
->pdev
->dev
, rx
->dma_addr
,
2182 sizeof(struct rfd
), DMA_BIDIRECTIONAL
);
2184 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
2185 nic
->ru_running
= RU_SUSPENDED
;
2190 static irqreturn_t
e100_intr(int irq
, void *dev_id
)
2192 struct net_device
*netdev
= dev_id
;
2193 struct nic
*nic
= netdev_priv(netdev
);
2194 u8 stat_ack
= ioread8(&nic
->csr
->scb
.stat_ack
);
2196 netif_printk(nic
, intr
, KERN_DEBUG
, nic
->netdev
,
2197 "stat_ack = 0x%02X\n", stat_ack
);
2199 if (stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
2200 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
2203 /* Ack interrupt(s) */
2204 iowrite8(stat_ack
, &nic
->csr
->scb
.stat_ack
);
2206 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2207 if (stat_ack
& stat_ack_rnr
)
2208 nic
->ru_running
= RU_SUSPENDED
;
2210 if (likely(napi_schedule_prep(&nic
->napi
))) {
2211 e100_disable_irq(nic
);
2212 __napi_schedule(&nic
->napi
);
2218 static int e100_poll(struct napi_struct
*napi
, int budget
)
2220 struct nic
*nic
= container_of(napi
, struct nic
, napi
);
2221 unsigned int work_done
= 0;
2223 e100_rx_clean(nic
, &work_done
, budget
);
2226 /* If budget fully consumed, continue polling */
2227 if (work_done
== budget
)
2230 /* only re-enable interrupt if stack agrees polling is really done */
2231 if (likely(napi_complete_done(napi
, work_done
)))
2232 e100_enable_irq(nic
);
2237 #ifdef CONFIG_NET_POLL_CONTROLLER
2238 static void e100_netpoll(struct net_device
*netdev
)
2240 struct nic
*nic
= netdev_priv(netdev
);
2242 e100_disable_irq(nic
);
2243 e100_intr(nic
->pdev
->irq
, netdev
);
2245 e100_enable_irq(nic
);
2249 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
2251 struct nic
*nic
= netdev_priv(netdev
);
2252 struct sockaddr
*addr
= p
;
2254 if (!is_valid_ether_addr(addr
->sa_data
))
2255 return -EADDRNOTAVAIL
;
2257 eth_hw_addr_set(netdev
, addr
->sa_data
);
2258 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
2263 static int e100_asf(struct nic
*nic
)
2265 /* ASF can be enabled from eeprom */
2266 return (nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
2267 (le16_to_cpu(nic
->eeprom
[eeprom_config_asf
]) & eeprom_asf
) &&
2268 !(le16_to_cpu(nic
->eeprom
[eeprom_config_asf
]) & eeprom_gcl
) &&
2269 ((le16_to_cpu(nic
->eeprom
[eeprom_smbus_addr
]) & 0xFF) != 0xFE);
2272 static int e100_up(struct nic
*nic
)
2276 if ((err
= e100_rx_alloc_list(nic
)))
2278 if ((err
= e100_alloc_cbs(nic
)))
2279 goto err_rx_clean_list
;
2280 if ((err
= e100_hw_init(nic
)))
2282 e100_set_multicast_list(nic
->netdev
);
2283 e100_start_receiver(nic
, NULL
);
2284 mod_timer(&nic
->watchdog
, jiffies
);
2285 if ((err
= request_irq(nic
->pdev
->irq
, e100_intr
, IRQF_SHARED
,
2286 nic
->netdev
->name
, nic
->netdev
)))
2288 netif_wake_queue(nic
->netdev
);
2289 napi_enable(&nic
->napi
);
2290 /* enable ints _after_ enabling poll, preventing a race between
2291 * disable ints+schedule */
2292 e100_enable_irq(nic
);
2296 del_timer_sync(&nic
->watchdog
);
2298 e100_clean_cbs(nic
);
2300 e100_rx_clean_list(nic
);
2304 static void e100_down(struct nic
*nic
)
2306 /* wait here for poll to complete */
2307 napi_disable(&nic
->napi
);
2308 netif_stop_queue(nic
->netdev
);
2310 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2311 del_timer_sync(&nic
->watchdog
);
2312 netif_carrier_off(nic
->netdev
);
2313 e100_clean_cbs(nic
);
2314 e100_rx_clean_list(nic
);
2317 static void e100_tx_timeout(struct net_device
*netdev
, unsigned int txqueue
)
2319 struct nic
*nic
= netdev_priv(netdev
);
2321 /* Reset outside of interrupt context, to avoid request_irq
2322 * in interrupt context */
2323 schedule_work(&nic
->tx_timeout_task
);
2326 static void e100_tx_timeout_task(struct work_struct
*work
)
2328 struct nic
*nic
= container_of(work
, struct nic
, tx_timeout_task
);
2329 struct net_device
*netdev
= nic
->netdev
;
2331 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
2332 "scb.status=0x%02X\n", ioread8(&nic
->csr
->scb
.status
));
2335 if (netif_running(netdev
)) {
2336 e100_down(netdev_priv(netdev
));
2337 e100_up(netdev_priv(netdev
));
2342 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2345 struct sk_buff
*skb
;
2347 /* Use driver resources to perform internal MAC or PHY
2348 * loopback test. A single packet is prepared and transmitted
2349 * in loopback mode, and the test passes if the received
2350 * packet compares byte-for-byte to the transmitted packet. */
2352 if ((err
= e100_rx_alloc_list(nic
)))
2354 if ((err
= e100_alloc_cbs(nic
)))
2357 /* ICH PHY loopback is broken so do MAC loopback instead */
2358 if (nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2359 loopback_mode
= lb_mac
;
2361 nic
->loopback
= loopback_mode
;
2362 if ((err
= e100_hw_init(nic
)))
2363 goto err_loopback_none
;
2365 if (loopback_mode
== lb_phy
)
2366 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2369 e100_start_receiver(nic
, NULL
);
2371 if (!(skb
= netdev_alloc_skb(nic
->netdev
, ETH_DATA_LEN
))) {
2373 goto err_loopback_none
;
2375 skb_put(skb
, ETH_DATA_LEN
);
2376 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2377 e100_xmit_frame(skb
, nic
->netdev
);
2381 dma_sync_single_for_cpu(&nic
->pdev
->dev
, nic
->rx_to_clean
->dma_addr
,
2382 RFD_BUF_LEN
, DMA_BIDIRECTIONAL
);
2384 if (memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2385 skb
->data
, ETH_DATA_LEN
))
2389 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2390 nic
->loopback
= lb_none
;
2391 e100_clean_cbs(nic
);
2394 e100_rx_clean_list(nic
);
2398 #define MII_LED_CONTROL 0x1B
2399 #define E100_82552_LED_OVERRIDE 0x19
2400 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2401 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2403 static int e100_get_link_ksettings(struct net_device
*netdev
,
2404 struct ethtool_link_ksettings
*cmd
)
2406 struct nic
*nic
= netdev_priv(netdev
);
2408 mii_ethtool_get_link_ksettings(&nic
->mii
, cmd
);
2413 static int e100_set_link_ksettings(struct net_device
*netdev
,
2414 const struct ethtool_link_ksettings
*cmd
)
2416 struct nic
*nic
= netdev_priv(netdev
);
2419 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2420 err
= mii_ethtool_set_link_ksettings(&nic
->mii
, cmd
);
2421 e100_exec_cb(nic
, NULL
, e100_configure
);
2426 static void e100_get_drvinfo(struct net_device
*netdev
,
2427 struct ethtool_drvinfo
*info
)
2429 struct nic
*nic
= netdev_priv(netdev
);
2430 strscpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
2431 strscpy(info
->bus_info
, pci_name(nic
->pdev
),
2432 sizeof(info
->bus_info
));
2435 #define E100_PHY_REGS 0x1D
2436 static int e100_get_regs_len(struct net_device
*netdev
)
2438 struct nic
*nic
= netdev_priv(netdev
);
2440 /* We know the number of registers, and the size of the dump buffer.
2441 * Calculate the total size in bytes.
2443 return (1 + E100_PHY_REGS
) * sizeof(u32
) + sizeof(nic
->mem
->dump_buf
);
2446 static void e100_get_regs(struct net_device
*netdev
,
2447 struct ethtool_regs
*regs
, void *p
)
2449 struct nic
*nic
= netdev_priv(netdev
);
2453 regs
->version
= (1 << 24) | nic
->pdev
->revision
;
2454 buff
[0] = ioread8(&nic
->csr
->scb
.cmd_hi
) << 24 |
2455 ioread8(&nic
->csr
->scb
.cmd_lo
) << 16 |
2456 ioread16(&nic
->csr
->scb
.status
);
2457 for (i
= 0; i
< E100_PHY_REGS
; i
++)
2458 /* Note that we read the registers in reverse order. This
2459 * ordering is the ABI apparently used by ethtool and other
2462 buff
[1 + i
] = mdio_read(netdev
, nic
->mii
.phy_id
,
2463 E100_PHY_REGS
- 1 - i
);
2464 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2465 e100_exec_cb(nic
, NULL
, e100_dump
);
2467 memcpy(&buff
[1 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2468 sizeof(nic
->mem
->dump_buf
));
2471 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2473 struct nic
*nic
= netdev_priv(netdev
);
2474 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2475 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2478 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2480 struct nic
*nic
= netdev_priv(netdev
);
2482 if ((wol
->wolopts
&& wol
->wolopts
!= WAKE_MAGIC
) ||
2483 !device_can_wakeup(&nic
->pdev
->dev
))
2487 nic
->flags
|= wol_magic
;
2489 nic
->flags
&= ~wol_magic
;
2491 device_set_wakeup_enable(&nic
->pdev
->dev
, wol
->wolopts
);
2493 e100_exec_cb(nic
, NULL
, e100_configure
);
2498 static u32
e100_get_msglevel(struct net_device
*netdev
)
2500 struct nic
*nic
= netdev_priv(netdev
);
2501 return nic
->msg_enable
;
2504 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2506 struct nic
*nic
= netdev_priv(netdev
);
2507 nic
->msg_enable
= value
;
2510 static int e100_nway_reset(struct net_device
*netdev
)
2512 struct nic
*nic
= netdev_priv(netdev
);
2513 return mii_nway_restart(&nic
->mii
);
2516 static u32
e100_get_link(struct net_device
*netdev
)
2518 struct nic
*nic
= netdev_priv(netdev
);
2519 return mii_link_ok(&nic
->mii
);
2522 static int e100_get_eeprom_len(struct net_device
*netdev
)
2524 struct nic
*nic
= netdev_priv(netdev
);
2525 return nic
->eeprom_wc
<< 1;
2528 #define E100_EEPROM_MAGIC 0x1234
2529 static int e100_get_eeprom(struct net_device
*netdev
,
2530 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2532 struct nic
*nic
= netdev_priv(netdev
);
2534 eeprom
->magic
= E100_EEPROM_MAGIC
;
2535 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2540 static int e100_set_eeprom(struct net_device
*netdev
,
2541 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2543 struct nic
*nic
= netdev_priv(netdev
);
2545 if (eeprom
->magic
!= E100_EEPROM_MAGIC
)
2548 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2550 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2551 (eeprom
->len
>> 1) + 1);
2554 static void e100_get_ringparam(struct net_device
*netdev
,
2555 struct ethtool_ringparam
*ring
,
2556 struct kernel_ethtool_ringparam
*kernel_ring
,
2557 struct netlink_ext_ack
*extack
)
2559 struct nic
*nic
= netdev_priv(netdev
);
2560 struct param_range
*rfds
= &nic
->params
.rfds
;
2561 struct param_range
*cbs
= &nic
->params
.cbs
;
2563 ring
->rx_max_pending
= rfds
->max
;
2564 ring
->tx_max_pending
= cbs
->max
;
2565 ring
->rx_pending
= rfds
->count
;
2566 ring
->tx_pending
= cbs
->count
;
2569 static int e100_set_ringparam(struct net_device
*netdev
,
2570 struct ethtool_ringparam
*ring
,
2571 struct kernel_ethtool_ringparam
*kernel_ring
,
2572 struct netlink_ext_ack
*extack
)
2574 struct nic
*nic
= netdev_priv(netdev
);
2575 struct param_range
*rfds
= &nic
->params
.rfds
;
2576 struct param_range
*cbs
= &nic
->params
.cbs
;
2578 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2581 if (netif_running(netdev
))
2583 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2584 rfds
->count
= min(rfds
->count
, rfds
->max
);
2585 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2586 cbs
->count
= min(cbs
->count
, cbs
->max
);
2587 netif_info(nic
, drv
, nic
->netdev
, "Ring Param settings: rx: %d, tx %d\n",
2588 rfds
->count
, cbs
->count
);
2589 if (netif_running(netdev
))
2595 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2596 "Link test (on/offline)",
2597 "Eeprom test (on/offline)",
2598 "Self test (offline)",
2599 "Mac loopback (offline)",
2600 "Phy loopback (offline)",
2602 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2604 static void e100_diag_test(struct net_device
*netdev
,
2605 struct ethtool_test
*test
, u64
*data
)
2607 struct ethtool_cmd cmd
;
2608 struct nic
*nic
= netdev_priv(netdev
);
2611 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2612 data
[0] = !mii_link_ok(&nic
->mii
);
2613 data
[1] = e100_eeprom_load(nic
);
2614 if (test
->flags
& ETH_TEST_FL_OFFLINE
) {
2616 /* save speed, duplex & autoneg settings */
2617 mii_ethtool_gset(&nic
->mii
, &cmd
);
2619 if (netif_running(netdev
))
2621 data
[2] = e100_self_test(nic
);
2622 data
[3] = e100_loopback_test(nic
, lb_mac
);
2623 data
[4] = e100_loopback_test(nic
, lb_phy
);
2625 /* restore speed, duplex & autoneg settings */
2626 mii_ethtool_sset(&nic
->mii
, &cmd
);
2628 if (netif_running(netdev
))
2631 for (i
= 0; i
< E100_TEST_LEN
; i
++)
2632 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2634 msleep_interruptible(4 * 1000);
2637 static int e100_set_phys_id(struct net_device
*netdev
,
2638 enum ethtool_phys_id_state state
)
2640 struct nic
*nic
= netdev_priv(netdev
);
2647 u16 led_reg
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_OVERRIDE
:
2652 case ETHTOOL_ID_ACTIVE
:
2656 leds
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_ON
:
2657 (nic
->mac
< mac_82559_D101M
) ? led_on_557
: led_on_559
;
2660 case ETHTOOL_ID_OFF
:
2661 leds
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_OFF
: led_off
;
2664 case ETHTOOL_ID_INACTIVE
:
2668 mdio_write(netdev
, nic
->mii
.phy_id
, led_reg
, leds
);
2672 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2673 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2674 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2675 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2676 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2677 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2678 "tx_heartbeat_errors", "tx_window_errors",
2679 /* device-specific stats */
2680 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2681 "tx_flow_control_pause", "rx_flow_control_pause",
2682 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2683 "rx_short_frame_errors", "rx_over_length_errors",
2685 #define E100_NET_STATS_LEN 21
2686 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2688 static int e100_get_sset_count(struct net_device
*netdev
, int sset
)
2692 return E100_TEST_LEN
;
2694 return E100_STATS_LEN
;
2700 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2701 struct ethtool_stats
*stats
, u64
*data
)
2703 struct nic
*nic
= netdev_priv(netdev
);
2706 for (i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2707 data
[i
] = ((unsigned long *)&netdev
->stats
)[i
];
2709 data
[i
++] = nic
->tx_deferred
;
2710 data
[i
++] = nic
->tx_single_collisions
;
2711 data
[i
++] = nic
->tx_multiple_collisions
;
2712 data
[i
++] = nic
->tx_fc_pause
;
2713 data
[i
++] = nic
->rx_fc_pause
;
2714 data
[i
++] = nic
->rx_fc_unsupported
;
2715 data
[i
++] = nic
->tx_tco_frames
;
2716 data
[i
++] = nic
->rx_tco_frames
;
2717 data
[i
++] = nic
->rx_short_frame_errors
;
2718 data
[i
++] = nic
->rx_over_length_errors
;
2721 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2723 switch (stringset
) {
2725 memcpy(data
, e100_gstrings_test
, sizeof(e100_gstrings_test
));
2728 memcpy(data
, e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2733 static const struct ethtool_ops e100_ethtool_ops
= {
2734 .get_drvinfo
= e100_get_drvinfo
,
2735 .get_regs_len
= e100_get_regs_len
,
2736 .get_regs
= e100_get_regs
,
2737 .get_wol
= e100_get_wol
,
2738 .set_wol
= e100_set_wol
,
2739 .get_msglevel
= e100_get_msglevel
,
2740 .set_msglevel
= e100_set_msglevel
,
2741 .nway_reset
= e100_nway_reset
,
2742 .get_link
= e100_get_link
,
2743 .get_eeprom_len
= e100_get_eeprom_len
,
2744 .get_eeprom
= e100_get_eeprom
,
2745 .set_eeprom
= e100_set_eeprom
,
2746 .get_ringparam
= e100_get_ringparam
,
2747 .set_ringparam
= e100_set_ringparam
,
2748 .self_test
= e100_diag_test
,
2749 .get_strings
= e100_get_strings
,
2750 .set_phys_id
= e100_set_phys_id
,
2751 .get_ethtool_stats
= e100_get_ethtool_stats
,
2752 .get_sset_count
= e100_get_sset_count
,
2753 .get_ts_info
= ethtool_op_get_ts_info
,
2754 .get_link_ksettings
= e100_get_link_ksettings
,
2755 .set_link_ksettings
= e100_set_link_ksettings
,
2758 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2760 struct nic
*nic
= netdev_priv(netdev
);
2762 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2765 static int e100_alloc(struct nic
*nic
)
2767 nic
->mem
= dma_alloc_coherent(&nic
->pdev
->dev
, sizeof(struct mem
),
2768 &nic
->dma_addr
, GFP_KERNEL
);
2769 return nic
->mem
? 0 : -ENOMEM
;
2772 static void e100_free(struct nic
*nic
)
2775 dma_free_coherent(&nic
->pdev
->dev
, sizeof(struct mem
),
2776 nic
->mem
, nic
->dma_addr
);
2781 static int e100_open(struct net_device
*netdev
)
2783 struct nic
*nic
= netdev_priv(netdev
);
2786 netif_carrier_off(netdev
);
2787 if ((err
= e100_up(nic
)))
2788 netif_err(nic
, ifup
, nic
->netdev
, "Cannot open interface, aborting\n");
2792 static int e100_close(struct net_device
*netdev
)
2794 e100_down(netdev_priv(netdev
));
2798 static int e100_set_features(struct net_device
*netdev
,
2799 netdev_features_t features
)
2801 struct nic
*nic
= netdev_priv(netdev
);
2802 netdev_features_t changed
= features
^ netdev
->features
;
2804 if (!(changed
& (NETIF_F_RXFCS
| NETIF_F_RXALL
)))
2807 netdev
->features
= features
;
2808 e100_exec_cb(nic
, NULL
, e100_configure
);
2812 static const struct net_device_ops e100_netdev_ops
= {
2813 .ndo_open
= e100_open
,
2814 .ndo_stop
= e100_close
,
2815 .ndo_start_xmit
= e100_xmit_frame
,
2816 .ndo_validate_addr
= eth_validate_addr
,
2817 .ndo_set_rx_mode
= e100_set_multicast_list
,
2818 .ndo_set_mac_address
= e100_set_mac_address
,
2819 .ndo_eth_ioctl
= e100_do_ioctl
,
2820 .ndo_tx_timeout
= e100_tx_timeout
,
2821 #ifdef CONFIG_NET_POLL_CONTROLLER
2822 .ndo_poll_controller
= e100_netpoll
,
2824 .ndo_set_features
= e100_set_features
,
2827 static int e100_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2829 struct net_device
*netdev
;
2833 if (!(netdev
= alloc_etherdev(sizeof(struct nic
))))
2836 netdev
->hw_features
|= NETIF_F_RXFCS
;
2837 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
2838 netdev
->hw_features
|= NETIF_F_RXALL
;
2840 netdev
->netdev_ops
= &e100_netdev_ops
;
2841 netdev
->ethtool_ops
= &e100_ethtool_ops
;
2842 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2843 strscpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
2845 nic
= netdev_priv(netdev
);
2846 netif_napi_add_weight(netdev
, &nic
->napi
, e100_poll
, E100_NAPI_WEIGHT
);
2847 nic
->netdev
= netdev
;
2849 nic
->msg_enable
= (1 << debug
) - 1;
2850 nic
->mdio_ctrl
= mdio_ctrl_hw
;
2851 pci_set_drvdata(pdev
, netdev
);
2853 if ((err
= pci_enable_device(pdev
))) {
2854 netif_err(nic
, probe
, nic
->netdev
, "Cannot enable PCI device, aborting\n");
2855 goto err_out_free_dev
;
2858 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2859 netif_err(nic
, probe
, nic
->netdev
, "Cannot find proper PCI device base address, aborting\n");
2861 goto err_out_disable_pdev
;
2864 if ((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2865 netif_err(nic
, probe
, nic
->netdev
, "Cannot obtain PCI resources, aborting\n");
2866 goto err_out_disable_pdev
;
2869 if ((err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32)))) {
2870 netif_err(nic
, probe
, nic
->netdev
, "No usable DMA configuration, aborting\n");
2871 goto err_out_free_res
;
2874 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2877 netif_info(nic
, probe
, nic
->netdev
, "using i/o access mode\n");
2879 nic
->csr
= pci_iomap(pdev
, (use_io
? 1 : 0), sizeof(struct csr
));
2881 netif_err(nic
, probe
, nic
->netdev
, "Cannot map device registers, aborting\n");
2883 goto err_out_free_res
;
2886 if (ent
->driver_data
)
2891 e100_get_defaults(nic
);
2893 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2894 if (nic
->mac
< mac_82558_D101_A4
)
2895 netdev
->features
|= NETIF_F_VLAN_CHALLENGED
;
2897 /* locks must be initialized before calling hw_reset */
2898 spin_lock_init(&nic
->cb_lock
);
2899 spin_lock_init(&nic
->cmd_lock
);
2900 spin_lock_init(&nic
->mdio_lock
);
2902 /* Reset the device before pci_set_master() in case device is in some
2903 * funky state and has an interrupt pending - hint: we don't have the
2904 * interrupt handler registered yet. */
2907 pci_set_master(pdev
);
2909 timer_setup(&nic
->watchdog
, e100_watchdog
, 0);
2911 INIT_WORK(&nic
->tx_timeout_task
, e100_tx_timeout_task
);
2913 if ((err
= e100_alloc(nic
))) {
2914 netif_err(nic
, probe
, nic
->netdev
, "Cannot alloc driver memory, aborting\n");
2915 goto err_out_iounmap
;
2918 if ((err
= e100_eeprom_load(nic
)))
2923 eth_hw_addr_set(netdev
, (u8
*)nic
->eeprom
);
2924 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
2925 if (!eeprom_bad_csum_allow
) {
2926 netif_err(nic
, probe
, nic
->netdev
, "Invalid MAC address from EEPROM, aborting\n");
2930 netif_err(nic
, probe
, nic
->netdev
, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2934 /* Wol magic packet can be enabled from eeprom */
2935 if ((nic
->mac
>= mac_82558_D101_A4
) &&
2936 (le16_to_cpu(nic
->eeprom
[eeprom_id
]) & eeprom_id_wol
)) {
2937 nic
->flags
|= wol_magic
;
2938 device_set_wakeup_enable(&pdev
->dev
, true);
2941 /* ack any pending wake events, disable PME */
2942 pci_pme_active(pdev
, false);
2944 strcpy(netdev
->name
, "eth%d");
2945 if ((err
= register_netdev(netdev
))) {
2946 netif_err(nic
, probe
, nic
->netdev
, "Cannot register net device, aborting\n");
2949 nic
->cbs_pool
= dma_pool_create(netdev
->name
,
2951 nic
->params
.cbs
.max
* sizeof(struct cb
),
2954 if (!nic
->cbs_pool
) {
2955 netif_err(nic
, probe
, nic
->netdev
, "Cannot create DMA pool, aborting\n");
2959 netif_info(nic
, probe
, nic
->netdev
,
2960 "addr 0x%llx, irq %d, MAC addr %pM\n",
2961 (unsigned long long)pci_resource_start(pdev
, use_io
? 1 : 0),
2962 pdev
->irq
, netdev
->dev_addr
);
2967 unregister_netdev(netdev
);
2971 pci_iounmap(pdev
, nic
->csr
);
2973 pci_release_regions(pdev
);
2974 err_out_disable_pdev
:
2975 pci_disable_device(pdev
);
2977 free_netdev(netdev
);
2981 static void e100_remove(struct pci_dev
*pdev
)
2983 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2986 struct nic
*nic
= netdev_priv(netdev
);
2987 unregister_netdev(netdev
);
2989 pci_iounmap(pdev
, nic
->csr
);
2990 dma_pool_destroy(nic
->cbs_pool
);
2991 free_netdev(netdev
);
2992 pci_release_regions(pdev
);
2993 pci_disable_device(pdev
);
2997 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2998 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2999 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
3000 static void __e100_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
3002 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3003 struct nic
*nic
= netdev_priv(netdev
);
3005 netif_device_detach(netdev
);
3007 if (netif_running(netdev
))
3010 if ((nic
->flags
& wol_magic
) | e100_asf(nic
)) {
3011 /* enable reverse auto-negotiation */
3012 if (nic
->phy
== phy_82552_v
) {
3013 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
3014 E100_82552_SMARTSPEED
);
3016 mdio_write(netdev
, nic
->mii
.phy_id
,
3017 E100_82552_SMARTSPEED
, smartspeed
|
3018 E100_82552_REV_ANEG
| E100_82552_ANEG_NOW
);
3020 *enable_wake
= true;
3022 *enable_wake
= false;
3025 pci_disable_device(pdev
);
3028 static int __e100_power_off(struct pci_dev
*pdev
, bool wake
)
3031 return pci_prepare_to_sleep(pdev
);
3033 pci_wake_from_d3(pdev
, false);
3034 pci_set_power_state(pdev
, PCI_D3hot
);
3039 static int e100_suspend(struct device
*dev_d
)
3043 __e100_shutdown(to_pci_dev(dev_d
), &wake
);
3048 static int e100_resume(struct device
*dev_d
)
3050 struct net_device
*netdev
= dev_get_drvdata(dev_d
);
3051 struct nic
*nic
= netdev_priv(netdev
);
3054 err
= pci_enable_device(to_pci_dev(dev_d
));
3056 netdev_err(netdev
, "Resume cannot enable PCI device, aborting\n");
3059 pci_set_master(to_pci_dev(dev_d
));
3061 /* disable reverse auto-negotiation */
3062 if (nic
->phy
== phy_82552_v
) {
3063 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
3064 E100_82552_SMARTSPEED
);
3066 mdio_write(netdev
, nic
->mii
.phy_id
,
3067 E100_82552_SMARTSPEED
,
3068 smartspeed
& ~(E100_82552_REV_ANEG
));
3071 if (netif_running(netdev
))
3074 netif_device_attach(netdev
);
3079 static void e100_shutdown(struct pci_dev
*pdev
)
3082 __e100_shutdown(pdev
, &wake
);
3083 if (system_state
== SYSTEM_POWER_OFF
)
3084 __e100_power_off(pdev
, wake
);
3087 /* ------------------ PCI Error Recovery infrastructure -------------- */
3089 * e100_io_error_detected - called when PCI error is detected.
3090 * @pdev: Pointer to PCI device
3091 * @state: The current pci connection state
3093 static pci_ers_result_t
e100_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
3095 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3096 struct nic
*nic
= netdev_priv(netdev
);
3098 netif_device_detach(netdev
);
3100 if (state
== pci_channel_io_perm_failure
)
3101 return PCI_ERS_RESULT_DISCONNECT
;
3103 if (netif_running(netdev
))
3105 pci_disable_device(pdev
);
3107 /* Request a slot reset. */
3108 return PCI_ERS_RESULT_NEED_RESET
;
3112 * e100_io_slot_reset - called after the pci bus has been reset.
3113 * @pdev: Pointer to PCI device
3115 * Restart the card from scratch.
3117 static pci_ers_result_t
e100_io_slot_reset(struct pci_dev
*pdev
)
3119 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3120 struct nic
*nic
= netdev_priv(netdev
);
3122 if (pci_enable_device(pdev
)) {
3123 pr_err("Cannot re-enable PCI device after reset\n");
3124 return PCI_ERS_RESULT_DISCONNECT
;
3126 pci_set_master(pdev
);
3128 /* Only one device per card can do a reset */
3129 if (0 != PCI_FUNC(pdev
->devfn
))
3130 return PCI_ERS_RESULT_RECOVERED
;
3134 return PCI_ERS_RESULT_RECOVERED
;
3138 * e100_io_resume - resume normal operations
3139 * @pdev: Pointer to PCI device
3141 * Resume normal operations after an error recovery
3142 * sequence has been completed.
3144 static void e100_io_resume(struct pci_dev
*pdev
)
3146 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3147 struct nic
*nic
= netdev_priv(netdev
);
3149 /* ack any pending wake events, disable PME */
3150 pci_enable_wake(pdev
, PCI_D0
, 0);
3152 netif_device_attach(netdev
);
3153 if (netif_running(netdev
)) {
3155 mod_timer(&nic
->watchdog
, jiffies
);
3159 static const struct pci_error_handlers e100_err_handler
= {
3160 .error_detected
= e100_io_error_detected
,
3161 .slot_reset
= e100_io_slot_reset
,
3162 .resume
= e100_io_resume
,
3165 static DEFINE_SIMPLE_DEV_PM_OPS(e100_pm_ops
, e100_suspend
, e100_resume
);
3167 static struct pci_driver e100_driver
= {
3169 .id_table
= e100_id_table
,
3170 .probe
= e100_probe
,
3171 .remove
= e100_remove
,
3173 /* Power Management hooks */
3174 .driver
.pm
= pm_sleep_ptr(&e100_pm_ops
),
3176 .shutdown
= e100_shutdown
,
3177 .err_handler
= &e100_err_handler
,
3180 static int __init
e100_init_module(void)
3182 if (((1 << debug
) - 1) & NETIF_MSG_DRV
) {
3183 pr_info("%s\n", DRV_DESCRIPTION
);
3184 pr_info("%s\n", DRV_COPYRIGHT
);
3186 return pci_register_driver(&e100_driver
);
3189 static void __exit
e100_cleanup_module(void)
3191 pci_unregister_driver(&e100_driver
);
3194 module_init(e100_init_module
);
3195 module_exit(e100_cleanup_module
);