1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
5 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
10 #include <linux/ipv6.h>
11 #include <linux/crc32.h>
12 #include <linux/if_vlan.h>
13 #include <linux/jiffies.h>
14 #include <linux/phy.h>
16 #include <net/ip6_checksum.h>
18 #include "emac-sgmii.h"
21 #define SINGLE_PAUSE_MODE 0x10000000
22 #define DEBUG_MODE 0x08000000
23 #define BROAD_EN 0x04000000
24 #define MULTI_ALL 0x02000000
25 #define RX_CHKSUM_EN 0x01000000
26 #define HUGE 0x00800000
27 #define SPEED(x) (((x) & 0x3) << 20)
28 #define SPEED_MASK SPEED(0x3)
29 #define SIMR 0x00080000
30 #define TPAUSE 0x00010000
31 #define PROM_MODE 0x00008000
32 #define VLAN_STRIP 0x00004000
33 #define PRLEN_BMSK 0x00003c00
35 #define HUGEN 0x00000200
36 #define FLCHK 0x00000100
37 #define PCRCE 0x00000080
38 #define CRCE 0x00000040
39 #define FULLD 0x00000020
40 #define MAC_LP_EN 0x00000010
41 #define RXFC 0x00000008
42 #define TXFC 0x00000004
43 #define RXEN 0x00000002
44 #define TXEN 0x00000001
46 /* EMAC_DESC_CTRL_3 */
47 #define RFD_RING_SIZE_BMSK 0xfff
49 /* EMAC_DESC_CTRL_4 */
50 #define RX_BUFFER_SIZE_BMSK 0xffff
52 /* EMAC_DESC_CTRL_6 */
53 #define RRD_RING_SIZE_BMSK 0xfff
55 /* EMAC_DESC_CTRL_9 */
56 #define TPD_RING_SIZE_BMSK 0xffff
59 #define NUM_TXF_BURST_PREF_BMSK 0xffff0000
60 #define NUM_TXF_BURST_PREF_SHFT 16
61 #define LS_8023_SP 0x80
65 #define NUM_TPD_BURST_PREF_BMSK 0xf
66 #define NUM_TPD_BURST_PREF_SHFT 0
69 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK 0x7ff
72 #define TXF_HWM_BMSK 0xfff0000
73 #define TXF_LWM_BMSK 0xfff
76 #define RXQ_EN BIT(31)
77 #define CUT_THRU_EN BIT(30)
78 #define RSS_HASH_EN BIT(29)
79 #define NUM_RFD_BURST_PREF_BMSK 0x3f00000
80 #define NUM_RFD_BURST_PREF_SHFT 20
81 #define IDT_TABLE_SIZE_BMSK 0x1ff00
82 #define IDT_TABLE_SIZE_SHFT 8
86 #define JUMBO_1KAH_BMSK 0xf000
87 #define JUMBO_1KAH_SHFT 12
88 #define RFD_PREF_LOW_TH 0x10
89 #define RFD_PREF_LOW_THRESHOLD_BMSK 0xfc0
90 #define RFD_PREF_LOW_THRESHOLD_SHFT 6
91 #define RFD_PREF_UP_TH 0x10
92 #define RFD_PREF_UP_THRESHOLD_BMSK 0x3f
93 #define RFD_PREF_UP_THRESHOLD_SHFT 0
96 #define RXF_DOF_THRESFHOLD 0x1a0
97 #define RXF_DOF_THRESHOLD_BMSK 0xfff0000
98 #define RXF_DOF_THRESHOLD_SHFT 16
99 #define RXF_UOF_THRESFHOLD 0xbe
100 #define RXF_UOF_THRESHOLD_BMSK 0xfff
101 #define RXF_UOF_THRESHOLD_SHFT 0
103 /* EMAC_RXQ_CTRL_3 */
104 #define RXD_TIMER_BMSK 0xffff0000
105 #define RXD_THRESHOLD_BMSK 0xfff
106 #define RXD_THRESHOLD_SHFT 0
109 #define DMAW_DLY_CNT_BMSK 0xf0000
110 #define DMAW_DLY_CNT_SHFT 16
111 #define DMAR_DLY_CNT_BMSK 0xf800
112 #define DMAR_DLY_CNT_SHFT 11
113 #define DMAR_REQ_PRI 0x400
114 #define REGWRBLEN_BMSK 0x380
115 #define REGWRBLEN_SHFT 7
116 #define REGRDBLEN_BMSK 0x70
117 #define REGRDBLEN_SHFT 4
118 #define OUT_ORDER_MODE 0x4
119 #define ENH_ORDER_MODE 0x2
120 #define IN_ORDER_MODE 0x1
122 /* EMAC_MAILBOX_13 */
123 #define RFD3_PROC_IDX_BMSK 0xfff0000
124 #define RFD3_PROC_IDX_SHFT 16
125 #define RFD3_PROD_IDX_BMSK 0xfff
126 #define RFD3_PROD_IDX_SHFT 0
129 #define NTPD_CONS_IDX_BMSK 0xffff0000
130 #define NTPD_CONS_IDX_SHFT 16
133 #define RFD0_CONS_IDX_BMSK 0xfff
134 #define RFD0_CONS_IDX_SHFT 0
136 /* EMAC_MAILBOX_11 */
137 #define H3TPD_PROD_IDX_BMSK 0xffff0000
138 #define H3TPD_PROD_IDX_SHFT 16
140 /* EMAC_AXI_MAST_CTRL */
141 #define DATA_BYTE_SWAP 0x8
142 #define MAX_BOUND 0x2
143 #define MAX_BTYPE 0x1
145 /* EMAC_MAILBOX_12 */
146 #define H3TPD_CONS_IDX_BMSK 0xffff0000
147 #define H3TPD_CONS_IDX_SHFT 16
150 #define H2TPD_PROD_IDX_BMSK 0xffff
151 #define H2TPD_PROD_IDX_SHFT 0
153 /* EMAC_MAILBOX_10 */
154 #define H1TPD_CONS_IDX_BMSK 0xffff0000
155 #define H1TPD_CONS_IDX_SHFT 16
156 #define H2TPD_CONS_IDX_BMSK 0xffff
157 #define H2TPD_CONS_IDX_SHFT 0
159 /* EMAC_ATHR_HEADER_CTRL */
160 #define HEADER_CNT_EN 0x2
161 #define HEADER_ENABLE 0x1
164 #define RFD0_PROC_IDX_BMSK 0xfff0000
165 #define RFD0_PROC_IDX_SHFT 16
166 #define RFD0_PROD_IDX_BMSK 0xfff
167 #define RFD0_PROD_IDX_SHFT 0
170 #define RFD1_PROC_IDX_BMSK 0xfff0000
171 #define RFD1_PROC_IDX_SHFT 16
172 #define RFD1_PROD_IDX_BMSK 0xfff
173 #define RFD1_PROD_IDX_SHFT 0
176 #define RX_UNCPL_INT_EN 0x1
179 #define RFD2_CONS_IDX_BMSK 0xfff0000
180 #define RFD2_CONS_IDX_SHFT 16
181 #define RFD1_CONS_IDX_BMSK 0xfff
182 #define RFD1_CONS_IDX_SHFT 0
185 #define RFD3_CONS_IDX_BMSK 0xfff
186 #define RFD3_CONS_IDX_SHFT 0
188 /* EMAC_MAILBOX_15 */
189 #define NTPD_PROD_IDX_BMSK 0xffff
190 #define NTPD_PROD_IDX_SHFT 0
192 /* EMAC_MAILBOX_16 */
193 #define H1TPD_PROD_IDX_BMSK 0xffff
194 #define H1TPD_PROD_IDX_SHFT 0
196 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN 0x20
197 #define RXQ0_RSS_HSTYP_IPV6_EN 0x10
198 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN 0x8
199 #define RXQ0_RSS_HSTYP_IPV4_EN 0x4
201 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
202 #define EMAC_WRAPPER_TX_TS_EMPTY BIT(31)
203 #define EMAC_WRAPPER_TX_TS_INX_BMSK 0xffff
207 unsigned long jiffies
;
210 #define EMAC_SKB_CB(skb) ((struct emac_skb_cb *)(skb)->cb)
211 #define EMAC_RSS_IDT_SIZE 256
212 #define JUMBO_1KAH 0x4
214 #define EMAC_TPD_LAST_FRAGMENT 0x80000000
215 #define EMAC_TPD_TSTAMP_SAVE 0x80000000
217 /* EMAC Errors in emac_rrd.word[3] */
218 #define EMAC_RRD_L4F BIT(14)
219 #define EMAC_RRD_IPF BIT(15)
220 #define EMAC_RRD_CRC BIT(21)
221 #define EMAC_RRD_FAE BIT(22)
222 #define EMAC_RRD_TRN BIT(23)
223 #define EMAC_RRD_RNT BIT(24)
224 #define EMAC_RRD_INC BIT(25)
225 #define EMAC_RRD_FOV BIT(29)
226 #define EMAC_RRD_LEN BIT(30)
228 /* Error bits that will result in a received frame being discarded */
229 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
230 EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
231 EMAC_RRD_FOV | EMAC_RRD_LEN)
232 #define EMAC_RRD_STATS_DW_IDX 3
234 #define EMAC_RRD(RXQ, SIZE, IDX) ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
235 #define EMAC_RFD(RXQ, SIZE, IDX) ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
236 #define EMAC_TPD(TXQ, SIZE, IDX) ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
238 #define GET_RFD_BUFFER(RXQ, IDX) (&((RXQ)->rfd.rfbuff[(IDX)]))
239 #define GET_TPD_BUFFER(RTQ, IDX) (&((RTQ)->tpd.tpbuff[(IDX)]))
241 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD 8
243 #define ISR_RX_PKT (\
249 void emac_mac_multicast_addr_set(struct emac_adapter
*adpt
, u8
*addr
)
251 u32 crc32
, bit
, reg
, mta
;
253 /* Calculate the CRC of the MAC address */
254 crc32
= ether_crc(ETH_ALEN
, addr
);
256 /* The HASH Table is an array of 2 32-bit registers. It is
257 * treated like an array of 64 bits (BitArray[hash_value]).
258 * Use the upper 6 bits of the above CRC as the hash value.
260 reg
= (crc32
>> 31) & 0x1;
261 bit
= (crc32
>> 26) & 0x1F;
263 mta
= readl(adpt
->base
+ EMAC_HASH_TAB_REG0
+ (reg
<< 2));
265 writel(mta
, adpt
->base
+ EMAC_HASH_TAB_REG0
+ (reg
<< 2));
268 void emac_mac_multicast_addr_clear(struct emac_adapter
*adpt
)
270 writel(0, adpt
->base
+ EMAC_HASH_TAB_REG0
);
271 writel(0, adpt
->base
+ EMAC_HASH_TAB_REG1
);
274 /* definitions for RSS */
275 #define EMAC_RSS_KEY(_i, _type) \
276 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
277 #define EMAC_RSS_TBL(_i, _type) \
278 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
280 /* Config MAC modes */
281 void emac_mac_mode_config(struct emac_adapter
*adpt
)
283 struct net_device
*netdev
= adpt
->netdev
;
286 mac
= readl(adpt
->base
+ EMAC_MAC_CTRL
);
287 mac
&= ~(VLAN_STRIP
| PROM_MODE
| MULTI_ALL
| MAC_LP_EN
);
289 if (netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
292 if (netdev
->flags
& IFF_PROMISC
)
295 if (netdev
->flags
& IFF_ALLMULTI
)
298 writel(mac
, adpt
->base
+ EMAC_MAC_CTRL
);
301 /* Config descriptor rings */
302 static void emac_mac_dma_rings_config(struct emac_adapter
*adpt
)
304 /* TPD (Transmit Packet Descriptor) */
305 writel(upper_32_bits(adpt
->tx_q
.tpd
.dma_addr
),
306 adpt
->base
+ EMAC_DESC_CTRL_1
);
308 writel(lower_32_bits(adpt
->tx_q
.tpd
.dma_addr
),
309 adpt
->base
+ EMAC_DESC_CTRL_8
);
311 writel(adpt
->tx_q
.tpd
.count
& TPD_RING_SIZE_BMSK
,
312 adpt
->base
+ EMAC_DESC_CTRL_9
);
314 /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
315 writel(upper_32_bits(adpt
->rx_q
.rfd
.dma_addr
),
316 adpt
->base
+ EMAC_DESC_CTRL_0
);
318 writel(lower_32_bits(adpt
->rx_q
.rfd
.dma_addr
),
319 adpt
->base
+ EMAC_DESC_CTRL_2
);
320 writel(lower_32_bits(adpt
->rx_q
.rrd
.dma_addr
),
321 adpt
->base
+ EMAC_DESC_CTRL_5
);
323 writel(adpt
->rx_q
.rfd
.count
& RFD_RING_SIZE_BMSK
,
324 adpt
->base
+ EMAC_DESC_CTRL_3
);
325 writel(adpt
->rx_q
.rrd
.count
& RRD_RING_SIZE_BMSK
,
326 adpt
->base
+ EMAC_DESC_CTRL_6
);
328 writel(adpt
->rxbuf_size
& RX_BUFFER_SIZE_BMSK
,
329 adpt
->base
+ EMAC_DESC_CTRL_4
);
331 writel(0, adpt
->base
+ EMAC_DESC_CTRL_11
);
333 /* Load all of the base addresses above and ensure that triggering HW to
334 * read ring pointers is flushed
336 writel(1, adpt
->base
+ EMAC_INTER_SRAM_PART9
);
339 /* Config transmit parameters */
340 static void emac_mac_tx_config(struct emac_adapter
*adpt
)
344 writel((EMAC_MAX_TX_OFFLOAD_THRESH
>> 3) &
345 JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK
, adpt
->base
+ EMAC_TXQ_CTRL_1
);
347 val
= (adpt
->tpd_burst
<< NUM_TPD_BURST_PREF_SHFT
) &
348 NUM_TPD_BURST_PREF_BMSK
;
350 val
|= TXQ_MODE
| LS_8023_SP
;
351 val
|= (0x0100 << NUM_TXF_BURST_PREF_SHFT
) &
352 NUM_TXF_BURST_PREF_BMSK
;
354 writel(val
, adpt
->base
+ EMAC_TXQ_CTRL_0
);
355 emac_reg_update32(adpt
->base
+ EMAC_TXQ_CTRL_2
,
356 (TXF_HWM_BMSK
| TXF_LWM_BMSK
), 0);
359 /* Config receive parameters */
360 static void emac_mac_rx_config(struct emac_adapter
*adpt
)
364 val
= (adpt
->rfd_burst
<< NUM_RFD_BURST_PREF_SHFT
) &
365 NUM_RFD_BURST_PREF_BMSK
;
366 val
|= (SP_IPV6
| CUT_THRU_EN
);
368 writel(val
, adpt
->base
+ EMAC_RXQ_CTRL_0
);
370 val
= readl(adpt
->base
+ EMAC_RXQ_CTRL_1
);
371 val
&= ~(JUMBO_1KAH_BMSK
| RFD_PREF_LOW_THRESHOLD_BMSK
|
372 RFD_PREF_UP_THRESHOLD_BMSK
);
373 val
|= (JUMBO_1KAH
<< JUMBO_1KAH_SHFT
) |
374 (RFD_PREF_LOW_TH
<< RFD_PREF_LOW_THRESHOLD_SHFT
) |
375 (RFD_PREF_UP_TH
<< RFD_PREF_UP_THRESHOLD_SHFT
);
376 writel(val
, adpt
->base
+ EMAC_RXQ_CTRL_1
);
378 val
= readl(adpt
->base
+ EMAC_RXQ_CTRL_2
);
379 val
&= ~(RXF_DOF_THRESHOLD_BMSK
| RXF_UOF_THRESHOLD_BMSK
);
380 val
|= (RXF_DOF_THRESFHOLD
<< RXF_DOF_THRESHOLD_SHFT
) |
381 (RXF_UOF_THRESFHOLD
<< RXF_UOF_THRESHOLD_SHFT
);
382 writel(val
, adpt
->base
+ EMAC_RXQ_CTRL_2
);
384 val
= readl(adpt
->base
+ EMAC_RXQ_CTRL_3
);
385 val
&= ~(RXD_TIMER_BMSK
| RXD_THRESHOLD_BMSK
);
386 val
|= RXD_TH
<< RXD_THRESHOLD_SHFT
;
387 writel(val
, adpt
->base
+ EMAC_RXQ_CTRL_3
);
391 static void emac_mac_dma_config(struct emac_adapter
*adpt
)
393 u32 dma_ctrl
= DMAR_REQ_PRI
;
395 switch (adpt
->dma_order
) {
396 case emac_dma_ord_in
:
397 dma_ctrl
|= IN_ORDER_MODE
;
399 case emac_dma_ord_enh
:
400 dma_ctrl
|= ENH_ORDER_MODE
;
402 case emac_dma_ord_out
:
403 dma_ctrl
|= OUT_ORDER_MODE
;
409 dma_ctrl
|= (((u32
)adpt
->dmar_block
) << REGRDBLEN_SHFT
) &
411 dma_ctrl
|= (((u32
)adpt
->dmaw_block
) << REGWRBLEN_SHFT
) &
413 dma_ctrl
|= (((u32
)adpt
->dmar_dly_cnt
) << DMAR_DLY_CNT_SHFT
) &
415 dma_ctrl
|= (((u32
)adpt
->dmaw_dly_cnt
) << DMAW_DLY_CNT_SHFT
) &
418 /* config DMA and ensure that configuration is flushed to HW */
419 writel(dma_ctrl
, adpt
->base
+ EMAC_DMA_CTRL
);
422 /* set MAC address */
423 static void emac_set_mac_address(struct emac_adapter
*adpt
, const u8
*addr
)
427 /* for example: 00-A0-C6-11-22-33
428 * 0<-->C6112233, 1<-->00A0.
432 sta
= (((u32
)addr
[2]) << 24) | (((u32
)addr
[3]) << 16) |
433 (((u32
)addr
[4]) << 8) | (((u32
)addr
[5]));
434 writel(sta
, adpt
->base
+ EMAC_MAC_STA_ADDR0
);
436 /* hight 32bit word */
437 sta
= (((u32
)addr
[0]) << 8) | (u32
)addr
[1];
438 writel(sta
, adpt
->base
+ EMAC_MAC_STA_ADDR1
);
441 static void emac_mac_config(struct emac_adapter
*adpt
)
443 struct net_device
*netdev
= adpt
->netdev
;
444 unsigned int max_frame
;
447 emac_set_mac_address(adpt
, netdev
->dev_addr
);
449 max_frame
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
;
450 adpt
->rxbuf_size
= netdev
->mtu
> EMAC_DEF_RX_BUF_SIZE
?
451 ALIGN(max_frame
, 8) : EMAC_DEF_RX_BUF_SIZE
;
453 emac_mac_dma_rings_config(adpt
);
455 writel(netdev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
+ ETH_FCS_LEN
,
456 adpt
->base
+ EMAC_MAX_FRAM_LEN_CTRL
);
458 emac_mac_tx_config(adpt
);
459 emac_mac_rx_config(adpt
);
460 emac_mac_dma_config(adpt
);
462 val
= readl(adpt
->base
+ EMAC_AXI_MAST_CTRL
);
463 val
&= ~(DATA_BYTE_SWAP
| MAX_BOUND
);
465 writel(val
, adpt
->base
+ EMAC_AXI_MAST_CTRL
);
466 writel(0, adpt
->base
+ EMAC_CLK_GATE_CTRL
);
467 writel(RX_UNCPL_INT_EN
, adpt
->base
+ EMAC_MISC_CTRL
);
470 void emac_mac_reset(struct emac_adapter
*adpt
)
474 emac_reg_update32(adpt
->base
+ EMAC_DMA_MAS_CTRL
, 0, SOFT_RST
);
475 usleep_range(100, 150); /* reset may take up to 100usec */
477 /* interrupt clear-on-read */
478 emac_reg_update32(adpt
->base
+ EMAC_DMA_MAS_CTRL
, 0, INT_RD_CLR_EN
);
481 static void emac_mac_start(struct emac_adapter
*adpt
)
483 struct phy_device
*phydev
= adpt
->phydev
;
486 /* enable tx queue */
487 emac_reg_update32(adpt
->base
+ EMAC_TXQ_CTRL_0
, 0, TXQ_EN
);
489 /* enable rx queue */
490 emac_reg_update32(adpt
->base
+ EMAC_RXQ_CTRL_0
, 0, RXQ_EN
);
492 /* enable mac control */
493 mac
= readl(adpt
->base
+ EMAC_MAC_CTRL
);
494 csr1
= readl(adpt
->csr
+ EMAC_EMAC_WRAPPER_CSR1
);
496 mac
|= TXEN
| RXEN
; /* enable RX/TX */
498 /* Configure MAC flow control. If set to automatic, then match
499 * whatever the PHY does. Otherwise, enable or disable it, depending
500 * on what the user configured via ethtool.
502 mac
&= ~(RXFC
| TXFC
);
504 if (adpt
->automatic
) {
505 /* If it's set to automatic, then update our local values */
506 adpt
->rx_flow_control
= phydev
->pause
;
507 adpt
->tx_flow_control
= phydev
->pause
!= phydev
->asym_pause
;
509 mac
|= adpt
->rx_flow_control
? RXFC
: 0;
510 mac
|= adpt
->tx_flow_control
? TXFC
: 0;
512 /* setup link speed */
514 if (phydev
->speed
== SPEED_1000
) {
522 if (phydev
->duplex
== DUPLEX_FULL
)
527 /* other parameters */
528 mac
|= (CRCE
| PCRCE
);
529 mac
|= ((adpt
->preamble
<< PRLEN_SHFT
) & PRLEN_BMSK
);
532 mac
&= ~RX_CHKSUM_EN
;
533 mac
&= ~(HUGEN
| VLAN_STRIP
| TPAUSE
| SIMR
| HUGE
| MULTI_ALL
|
534 DEBUG_MODE
| SINGLE_PAUSE_MODE
);
536 /* Enable single-pause-frame mode if requested.
538 * If enabled, the EMAC will send a single pause frame when the RX
539 * queue is full. This normally leads to packet loss because
540 * the pause frame disables the remote MAC only for 33ms (the quanta),
541 * and then the remote MAC continues sending packets even though
542 * the RX queue is still full.
544 * If disabled, the EMAC sends a pause frame every 31ms until the RX
545 * queue is no longer full. Normally, this is the preferred
546 * method of operation. However, when the system is hung (e.g.
547 * cores are halted), the EMAC interrupt handler is never called
548 * and so the RX queue fills up quickly and stays full. The resuling
549 * non-stop "flood" of pause frames sometimes has the effect of
550 * disabling nearby switches. In some cases, other nearby switches
551 * are also affected, shutting down the entire network.
553 * The user can enable or disable single-pause-frame mode
556 mac
|= adpt
->single_pause_mode
? SINGLE_PAUSE_MODE
: 0;
558 writel_relaxed(csr1
, adpt
->csr
+ EMAC_EMAC_WRAPPER_CSR1
);
560 writel_relaxed(mac
, adpt
->base
+ EMAC_MAC_CTRL
);
562 /* enable interrupt read clear, low power sleep mode and
566 writel_relaxed(adpt
->irq_mod
, adpt
->base
+ EMAC_IRQ_MOD_TIM_INIT
);
567 writel_relaxed(INT_RD_CLR_EN
| LPW_MODE
| IRQ_MODERATOR_EN
|
568 IRQ_MODERATOR2_EN
, adpt
->base
+ EMAC_DMA_MAS_CTRL
);
570 emac_mac_mode_config(adpt
);
572 emac_reg_update32(adpt
->base
+ EMAC_ATHR_HEADER_CTRL
,
573 (HEADER_ENABLE
| HEADER_CNT_EN
), 0);
576 void emac_mac_stop(struct emac_adapter
*adpt
)
578 emac_reg_update32(adpt
->base
+ EMAC_RXQ_CTRL_0
, RXQ_EN
, 0);
579 emac_reg_update32(adpt
->base
+ EMAC_TXQ_CTRL_0
, TXQ_EN
, 0);
580 emac_reg_update32(adpt
->base
+ EMAC_MAC_CTRL
, TXEN
| RXEN
, 0);
581 usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
584 /* Free all descriptors of given transmit queue */
585 static void emac_tx_q_descs_free(struct emac_adapter
*adpt
)
587 struct emac_tx_queue
*tx_q
= &adpt
->tx_q
;
591 /* ring already cleared, nothing to do */
592 if (!tx_q
->tpd
.tpbuff
)
595 for (i
= 0; i
< tx_q
->tpd
.count
; i
++) {
596 struct emac_buffer
*tpbuf
= GET_TPD_BUFFER(tx_q
, i
);
598 if (tpbuf
->dma_addr
) {
599 dma_unmap_single(adpt
->netdev
->dev
.parent
,
600 tpbuf
->dma_addr
, tpbuf
->length
,
605 dev_kfree_skb_any(tpbuf
->skb
);
610 size
= sizeof(struct emac_buffer
) * tx_q
->tpd
.count
;
611 memset(tx_q
->tpd
.tpbuff
, 0, size
);
613 /* clear the descriptor ring */
614 memset(tx_q
->tpd
.v_addr
, 0, tx_q
->tpd
.size
);
616 tx_q
->tpd
.consume_idx
= 0;
617 tx_q
->tpd
.produce_idx
= 0;
620 /* Free all descriptors of given receive queue */
621 static void emac_rx_q_free_descs(struct emac_adapter
*adpt
)
623 struct device
*dev
= adpt
->netdev
->dev
.parent
;
624 struct emac_rx_queue
*rx_q
= &adpt
->rx_q
;
628 /* ring already cleared, nothing to do */
629 if (!rx_q
->rfd
.rfbuff
)
632 for (i
= 0; i
< rx_q
->rfd
.count
; i
++) {
633 struct emac_buffer
*rfbuf
= GET_RFD_BUFFER(rx_q
, i
);
635 if (rfbuf
->dma_addr
) {
636 dma_unmap_single(dev
, rfbuf
->dma_addr
, rfbuf
->length
,
641 dev_kfree_skb(rfbuf
->skb
);
646 size
= sizeof(struct emac_buffer
) * rx_q
->rfd
.count
;
647 memset(rx_q
->rfd
.rfbuff
, 0, size
);
649 /* clear the descriptor rings */
650 memset(rx_q
->rrd
.v_addr
, 0, rx_q
->rrd
.size
);
651 rx_q
->rrd
.produce_idx
= 0;
652 rx_q
->rrd
.consume_idx
= 0;
654 memset(rx_q
->rfd
.v_addr
, 0, rx_q
->rfd
.size
);
655 rx_q
->rfd
.produce_idx
= 0;
656 rx_q
->rfd
.consume_idx
= 0;
659 /* Free all buffers associated with given transmit queue */
660 static void emac_tx_q_bufs_free(struct emac_adapter
*adpt
)
662 struct emac_tx_queue
*tx_q
= &adpt
->tx_q
;
664 emac_tx_q_descs_free(adpt
);
666 kfree(tx_q
->tpd
.tpbuff
);
667 tx_q
->tpd
.tpbuff
= NULL
;
668 tx_q
->tpd
.v_addr
= NULL
;
669 tx_q
->tpd
.dma_addr
= 0;
673 /* Allocate TX descriptor ring for the given transmit queue */
674 static int emac_tx_q_desc_alloc(struct emac_adapter
*adpt
,
675 struct emac_tx_queue
*tx_q
)
677 struct emac_ring_header
*ring_header
= &adpt
->ring_header
;
678 int node
= dev_to_node(adpt
->netdev
->dev
.parent
);
681 size
= sizeof(struct emac_buffer
) * tx_q
->tpd
.count
;
682 tx_q
->tpd
.tpbuff
= kzalloc_node(size
, GFP_KERNEL
, node
);
683 if (!tx_q
->tpd
.tpbuff
)
686 tx_q
->tpd
.size
= tx_q
->tpd
.count
* (adpt
->tpd_size
* 4);
687 tx_q
->tpd
.dma_addr
= ring_header
->dma_addr
+ ring_header
->used
;
688 tx_q
->tpd
.v_addr
= ring_header
->v_addr
+ ring_header
->used
;
689 ring_header
->used
+= ALIGN(tx_q
->tpd
.size
, 8);
690 tx_q
->tpd
.produce_idx
= 0;
691 tx_q
->tpd
.consume_idx
= 0;
696 /* Free all buffers associated with given transmit queue */
697 static void emac_rx_q_bufs_free(struct emac_adapter
*adpt
)
699 struct emac_rx_queue
*rx_q
= &adpt
->rx_q
;
701 emac_rx_q_free_descs(adpt
);
703 kfree(rx_q
->rfd
.rfbuff
);
704 rx_q
->rfd
.rfbuff
= NULL
;
706 rx_q
->rfd
.v_addr
= NULL
;
707 rx_q
->rfd
.dma_addr
= 0;
710 rx_q
->rrd
.v_addr
= NULL
;
711 rx_q
->rrd
.dma_addr
= 0;
715 /* Allocate RX descriptor rings for the given receive queue */
716 static int emac_rx_descs_alloc(struct emac_adapter
*adpt
)
718 struct emac_ring_header
*ring_header
= &adpt
->ring_header
;
719 int node
= dev_to_node(adpt
->netdev
->dev
.parent
);
720 struct emac_rx_queue
*rx_q
= &adpt
->rx_q
;
723 size
= sizeof(struct emac_buffer
) * rx_q
->rfd
.count
;
724 rx_q
->rfd
.rfbuff
= kzalloc_node(size
, GFP_KERNEL
, node
);
725 if (!rx_q
->rfd
.rfbuff
)
728 rx_q
->rrd
.size
= rx_q
->rrd
.count
* (adpt
->rrd_size
* 4);
729 rx_q
->rfd
.size
= rx_q
->rfd
.count
* (adpt
->rfd_size
* 4);
731 rx_q
->rrd
.dma_addr
= ring_header
->dma_addr
+ ring_header
->used
;
732 rx_q
->rrd
.v_addr
= ring_header
->v_addr
+ ring_header
->used
;
733 ring_header
->used
+= ALIGN(rx_q
->rrd
.size
, 8);
735 rx_q
->rfd
.dma_addr
= ring_header
->dma_addr
+ ring_header
->used
;
736 rx_q
->rfd
.v_addr
= ring_header
->v_addr
+ ring_header
->used
;
737 ring_header
->used
+= ALIGN(rx_q
->rfd
.size
, 8);
739 rx_q
->rrd
.produce_idx
= 0;
740 rx_q
->rrd
.consume_idx
= 0;
742 rx_q
->rfd
.produce_idx
= 0;
743 rx_q
->rfd
.consume_idx
= 0;
748 /* Allocate all TX and RX descriptor rings */
749 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter
*adpt
)
751 struct emac_ring_header
*ring_header
= &adpt
->ring_header
;
752 struct device
*dev
= adpt
->netdev
->dev
.parent
;
753 unsigned int num_tx_descs
= adpt
->tx_desc_cnt
;
754 unsigned int num_rx_descs
= adpt
->rx_desc_cnt
;
757 adpt
->tx_q
.tpd
.count
= adpt
->tx_desc_cnt
;
759 adpt
->rx_q
.rrd
.count
= adpt
->rx_desc_cnt
;
760 adpt
->rx_q
.rfd
.count
= adpt
->rx_desc_cnt
;
762 /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
763 * hence the additional padding bytes are allocated.
765 ring_header
->size
= num_tx_descs
* (adpt
->tpd_size
* 4) +
766 num_rx_descs
* (adpt
->rfd_size
* 4) +
767 num_rx_descs
* (adpt
->rrd_size
* 4) +
768 8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
770 ring_header
->used
= 0;
771 ring_header
->v_addr
= dma_alloc_coherent(dev
, ring_header
->size
,
772 &ring_header
->dma_addr
,
774 if (!ring_header
->v_addr
)
777 ring_header
->used
= ALIGN(ring_header
->dma_addr
, 8) -
778 ring_header
->dma_addr
;
780 ret
= emac_tx_q_desc_alloc(adpt
, &adpt
->tx_q
);
782 netdev_err(adpt
->netdev
, "error: Tx Queue alloc failed\n");
786 ret
= emac_rx_descs_alloc(adpt
);
788 netdev_err(adpt
->netdev
, "error: Rx Queue alloc failed\n");
795 emac_tx_q_bufs_free(adpt
);
797 dma_free_coherent(dev
, ring_header
->size
,
798 ring_header
->v_addr
, ring_header
->dma_addr
);
800 ring_header
->v_addr
= NULL
;
801 ring_header
->dma_addr
= 0;
802 ring_header
->size
= 0;
803 ring_header
->used
= 0;
808 /* Free all TX and RX descriptor rings */
809 void emac_mac_rx_tx_rings_free_all(struct emac_adapter
*adpt
)
811 struct emac_ring_header
*ring_header
= &adpt
->ring_header
;
812 struct device
*dev
= adpt
->netdev
->dev
.parent
;
814 emac_tx_q_bufs_free(adpt
);
815 emac_rx_q_bufs_free(adpt
);
817 dma_free_coherent(dev
, ring_header
->size
,
818 ring_header
->v_addr
, ring_header
->dma_addr
);
820 ring_header
->v_addr
= NULL
;
821 ring_header
->dma_addr
= 0;
822 ring_header
->size
= 0;
823 ring_header
->used
= 0;
826 /* Initialize descriptor rings */
827 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter
*adpt
)
831 adpt
->tx_q
.tpd
.produce_idx
= 0;
832 adpt
->tx_q
.tpd
.consume_idx
= 0;
833 for (i
= 0; i
< adpt
->tx_q
.tpd
.count
; i
++)
834 adpt
->tx_q
.tpd
.tpbuff
[i
].dma_addr
= 0;
836 adpt
->rx_q
.rrd
.produce_idx
= 0;
837 adpt
->rx_q
.rrd
.consume_idx
= 0;
838 adpt
->rx_q
.rfd
.produce_idx
= 0;
839 adpt
->rx_q
.rfd
.consume_idx
= 0;
840 for (i
= 0; i
< adpt
->rx_q
.rfd
.count
; i
++)
841 adpt
->rx_q
.rfd
.rfbuff
[i
].dma_addr
= 0;
844 /* Produce new receive free descriptor */
845 static void emac_mac_rx_rfd_create(struct emac_adapter
*adpt
,
846 struct emac_rx_queue
*rx_q
,
849 u32
*hw_rfd
= EMAC_RFD(rx_q
, adpt
->rfd_size
, rx_q
->rfd
.produce_idx
);
851 *(hw_rfd
++) = lower_32_bits(addr
);
852 *hw_rfd
= upper_32_bits(addr
);
854 if (++rx_q
->rfd
.produce_idx
== rx_q
->rfd
.count
)
855 rx_q
->rfd
.produce_idx
= 0;
858 /* Fill up receive queue's RFD with preallocated receive buffers */
859 static void emac_mac_rx_descs_refill(struct emac_adapter
*adpt
,
860 struct emac_rx_queue
*rx_q
)
862 struct emac_buffer
*curr_rxbuf
;
863 struct emac_buffer
*next_rxbuf
;
864 unsigned int count
= 0;
865 u32 next_produce_idx
;
867 next_produce_idx
= rx_q
->rfd
.produce_idx
+ 1;
868 if (next_produce_idx
== rx_q
->rfd
.count
)
869 next_produce_idx
= 0;
871 curr_rxbuf
= GET_RFD_BUFFER(rx_q
, rx_q
->rfd
.produce_idx
);
872 next_rxbuf
= GET_RFD_BUFFER(rx_q
, next_produce_idx
);
874 /* this always has a blank rx_buffer*/
875 while (!next_rxbuf
->dma_addr
) {
879 skb
= netdev_alloc_skb_ip_align(adpt
->netdev
, adpt
->rxbuf_size
);
883 curr_rxbuf
->dma_addr
=
884 dma_map_single(adpt
->netdev
->dev
.parent
, skb
->data
,
885 adpt
->rxbuf_size
, DMA_FROM_DEVICE
);
887 ret
= dma_mapping_error(adpt
->netdev
->dev
.parent
,
888 curr_rxbuf
->dma_addr
);
893 curr_rxbuf
->skb
= skb
;
894 curr_rxbuf
->length
= adpt
->rxbuf_size
;
896 emac_mac_rx_rfd_create(adpt
, rx_q
, curr_rxbuf
->dma_addr
);
897 next_produce_idx
= rx_q
->rfd
.produce_idx
+ 1;
898 if (next_produce_idx
== rx_q
->rfd
.count
)
899 next_produce_idx
= 0;
901 curr_rxbuf
= GET_RFD_BUFFER(rx_q
, rx_q
->rfd
.produce_idx
);
902 next_rxbuf
= GET_RFD_BUFFER(rx_q
, next_produce_idx
);
907 u32 prod_idx
= (rx_q
->rfd
.produce_idx
<< rx_q
->produce_shift
) &
909 emac_reg_update32(adpt
->base
+ rx_q
->produce_reg
,
910 rx_q
->produce_mask
, prod_idx
);
914 static void emac_adjust_link(struct net_device
*netdev
)
916 struct emac_adapter
*adpt
= netdev_priv(netdev
);
917 struct phy_device
*phydev
= netdev
->phydev
;
920 emac_mac_start(adpt
);
921 emac_sgmii_link_change(adpt
, true);
923 emac_sgmii_link_change(adpt
, false);
927 phy_print_status(phydev
);
930 /* Bringup the interface/HW */
931 int emac_mac_up(struct emac_adapter
*adpt
)
933 struct net_device
*netdev
= adpt
->netdev
;
936 emac_mac_rx_tx_ring_reset_all(adpt
);
937 emac_mac_config(adpt
);
938 emac_mac_rx_descs_refill(adpt
, &adpt
->rx_q
);
940 adpt
->phydev
->irq
= PHY_POLL
;
941 ret
= phy_connect_direct(netdev
, adpt
->phydev
, emac_adjust_link
,
942 PHY_INTERFACE_MODE_SGMII
);
944 netdev_err(adpt
->netdev
, "could not connect phy\n");
948 phy_attached_print(adpt
->phydev
, NULL
);
951 writel((u32
)~DIS_INT
, adpt
->base
+ EMAC_INT_STATUS
);
952 writel(adpt
->irq
.mask
, adpt
->base
+ EMAC_INT_MASK
);
954 phy_start(adpt
->phydev
);
956 napi_enable(&adpt
->rx_q
.napi
);
957 netif_start_queue(netdev
);
962 /* Bring down the interface/HW */
963 void emac_mac_down(struct emac_adapter
*adpt
)
965 struct net_device
*netdev
= adpt
->netdev
;
967 netif_stop_queue(netdev
);
968 napi_disable(&adpt
->rx_q
.napi
);
970 phy_stop(adpt
->phydev
);
972 /* Interrupts must be disabled before the PHY is disconnected, to
973 * avoid a race condition where adjust_link is null when we get
976 writel(DIS_INT
, adpt
->base
+ EMAC_INT_STATUS
);
977 writel(0, adpt
->base
+ EMAC_INT_MASK
);
978 synchronize_irq(adpt
->irq
.irq
);
980 phy_disconnect(adpt
->phydev
);
982 emac_mac_reset(adpt
);
984 emac_tx_q_descs_free(adpt
);
985 netdev_reset_queue(adpt
->netdev
);
986 emac_rx_q_free_descs(adpt
);
989 /* Consume next received packet descriptor */
990 static bool emac_rx_process_rrd(struct emac_adapter
*adpt
,
991 struct emac_rx_queue
*rx_q
,
992 struct emac_rrd
*rrd
)
994 u32
*hw_rrd
= EMAC_RRD(rx_q
, adpt
->rrd_size
, rx_q
->rrd
.consume_idx
);
996 rrd
->word
[3] = *(hw_rrd
+ 3);
1004 rrd
->word
[0] = *(hw_rrd
++);
1005 rrd
->word
[1] = *(hw_rrd
++);
1006 rrd
->word
[2] = *(hw_rrd
++);
1008 if (unlikely(RRD_NOR(rrd
) != 1)) {
1009 netdev_err(adpt
->netdev
,
1010 "error: multi-RFD not support yet! nor:%lu\n",
1014 /* mark rrd as processed */
1015 RRD_UPDT_SET(rrd
, 0);
1016 *hw_rrd
= rrd
->word
[3];
1018 if (++rx_q
->rrd
.consume_idx
== rx_q
->rrd
.count
)
1019 rx_q
->rrd
.consume_idx
= 0;
1024 /* Produce new transmit descriptor */
1025 static void emac_tx_tpd_create(struct emac_adapter
*adpt
,
1026 struct emac_tx_queue
*tx_q
, struct emac_tpd
*tpd
)
1030 tx_q
->tpd
.last_produce_idx
= tx_q
->tpd
.produce_idx
;
1031 hw_tpd
= EMAC_TPD(tx_q
, adpt
->tpd_size
, tx_q
->tpd
.produce_idx
);
1033 if (++tx_q
->tpd
.produce_idx
== tx_q
->tpd
.count
)
1034 tx_q
->tpd
.produce_idx
= 0;
1036 *(hw_tpd
++) = tpd
->word
[0];
1037 *(hw_tpd
++) = tpd
->word
[1];
1038 *(hw_tpd
++) = tpd
->word
[2];
1039 *hw_tpd
= tpd
->word
[3];
1042 /* Mark the last transmit descriptor as such (for the transmit packet) */
1043 static void emac_tx_tpd_mark_last(struct emac_adapter
*adpt
,
1044 struct emac_tx_queue
*tx_q
)
1047 EMAC_TPD(tx_q
, adpt
->tpd_size
, tx_q
->tpd
.last_produce_idx
);
1050 tmp_tpd
= *(hw_tpd
+ 1);
1051 tmp_tpd
|= EMAC_TPD_LAST_FRAGMENT
;
1052 *(hw_tpd
+ 1) = tmp_tpd
;
1055 static void emac_rx_rfd_clean(struct emac_rx_queue
*rx_q
, struct emac_rrd
*rrd
)
1057 struct emac_buffer
*rfbuf
= rx_q
->rfd
.rfbuff
;
1058 u32 consume_idx
= RRD_SI(rrd
);
1061 for (i
= 0; i
< RRD_NOR(rrd
); i
++) {
1062 rfbuf
[consume_idx
].skb
= NULL
;
1063 if (++consume_idx
== rx_q
->rfd
.count
)
1067 rx_q
->rfd
.consume_idx
= consume_idx
;
1068 rx_q
->rfd
.process_idx
= consume_idx
;
1071 /* Push the received skb to upper layers */
1072 static void emac_receive_skb(struct emac_rx_queue
*rx_q
,
1073 struct sk_buff
*skb
,
1074 u16 vlan_tag
, bool vlan_flag
)
1079 EMAC_TAG_TO_VLAN(vlan_tag
, vlan
);
1080 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlan
);
1083 napi_gro_receive(&rx_q
->napi
, skb
);
1086 /* Process receive event */
1087 void emac_mac_rx_process(struct emac_adapter
*adpt
, struct emac_rx_queue
*rx_q
,
1088 int *num_pkts
, int max_pkts
)
1090 u32 proc_idx
, hw_consume_idx
, num_consume_pkts
;
1091 struct net_device
*netdev
= adpt
->netdev
;
1092 struct emac_buffer
*rfbuf
;
1093 unsigned int count
= 0;
1094 struct emac_rrd rrd
;
1095 struct sk_buff
*skb
;
1098 reg
= readl_relaxed(adpt
->base
+ rx_q
->consume_reg
);
1100 hw_consume_idx
= (reg
& rx_q
->consume_mask
) >> rx_q
->consume_shift
;
1101 num_consume_pkts
= (hw_consume_idx
>= rx_q
->rrd
.consume_idx
) ?
1102 (hw_consume_idx
- rx_q
->rrd
.consume_idx
) :
1103 (hw_consume_idx
+ rx_q
->rrd
.count
- rx_q
->rrd
.consume_idx
);
1106 if (!num_consume_pkts
)
1109 if (!emac_rx_process_rrd(adpt
, rx_q
, &rrd
))
1112 if (likely(RRD_NOR(&rrd
) == 1)) {
1114 rfbuf
= GET_RFD_BUFFER(rx_q
, RRD_SI(&rrd
));
1115 dma_unmap_single(adpt
->netdev
->dev
.parent
,
1116 rfbuf
->dma_addr
, rfbuf
->length
,
1118 rfbuf
->dma_addr
= 0;
1121 netdev_err(adpt
->netdev
,
1122 "error: multi-RFD not support yet!\n");
1125 emac_rx_rfd_clean(rx_q
, &rrd
);
1129 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1130 * with DF set are marked as error), drop packets based on the
1131 * error mask rather than the summary bit (ignoring L4F errors)
1133 if (rrd
.word
[EMAC_RRD_STATS_DW_IDX
] & EMAC_RRD_ERROR
) {
1134 netif_dbg(adpt
, rx_status
, adpt
->netdev
,
1135 "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1136 rrd
.word
[0], rrd
.word
[1],
1137 rrd
.word
[2], rrd
.word
[3]);
1143 skb_put(skb
, RRD_PKT_SIZE(&rrd
) - ETH_FCS_LEN
);
1145 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
1146 if (netdev
->features
& NETIF_F_RXCSUM
)
1147 skb
->ip_summed
= RRD_L4F(&rrd
) ?
1148 CHECKSUM_NONE
: CHECKSUM_UNNECESSARY
;
1150 skb_checksum_none_assert(skb
);
1152 emac_receive_skb(rx_q
, skb
, (u16
)RRD_CVALN_TAG(&rrd
),
1153 (bool)RRD_CVTAG(&rrd
));
1156 } while (*num_pkts
< max_pkts
);
1159 proc_idx
= (rx_q
->rfd
.process_idx
<< rx_q
->process_shft
) &
1161 emac_reg_update32(adpt
->base
+ rx_q
->process_reg
,
1162 rx_q
->process_mask
, proc_idx
);
1163 emac_mac_rx_descs_refill(adpt
, rx_q
);
1167 /* get the number of free transmit descriptors */
1168 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue
*tx_q
)
1170 u32 produce_idx
= tx_q
->tpd
.produce_idx
;
1171 u32 consume_idx
= tx_q
->tpd
.consume_idx
;
1173 return (consume_idx
> produce_idx
) ?
1174 (consume_idx
- produce_idx
- 1) :
1175 (tx_q
->tpd
.count
+ consume_idx
- produce_idx
- 1);
1178 /* Process transmit event */
1179 void emac_mac_tx_process(struct emac_adapter
*adpt
, struct emac_tx_queue
*tx_q
)
1181 u32 reg
= readl_relaxed(adpt
->base
+ tx_q
->consume_reg
);
1182 u32 hw_consume_idx
, pkts_compl
= 0, bytes_compl
= 0;
1183 struct emac_buffer
*tpbuf
;
1185 hw_consume_idx
= (reg
& tx_q
->consume_mask
) >> tx_q
->consume_shift
;
1187 while (tx_q
->tpd
.consume_idx
!= hw_consume_idx
) {
1188 tpbuf
= GET_TPD_BUFFER(tx_q
, tx_q
->tpd
.consume_idx
);
1189 if (tpbuf
->dma_addr
) {
1190 dma_unmap_page(adpt
->netdev
->dev
.parent
,
1191 tpbuf
->dma_addr
, tpbuf
->length
,
1193 tpbuf
->dma_addr
= 0;
1198 bytes_compl
+= tpbuf
->skb
->len
;
1199 dev_consume_skb_irq(tpbuf
->skb
);
1203 if (++tx_q
->tpd
.consume_idx
== tx_q
->tpd
.count
)
1204 tx_q
->tpd
.consume_idx
= 0;
1207 netdev_completed_queue(adpt
->netdev
, pkts_compl
, bytes_compl
);
1209 if (netif_queue_stopped(adpt
->netdev
))
1210 if (emac_tpd_num_free_descs(tx_q
) > (MAX_SKB_FRAGS
+ 1))
1211 netif_wake_queue(adpt
->netdev
);
1214 /* Initialize all queue data structures */
1215 void emac_mac_rx_tx_ring_init_all(struct platform_device
*pdev
,
1216 struct emac_adapter
*adpt
)
1218 adpt
->rx_q
.netdev
= adpt
->netdev
;
1220 adpt
->rx_q
.produce_reg
= EMAC_MAILBOX_0
;
1221 adpt
->rx_q
.produce_mask
= RFD0_PROD_IDX_BMSK
;
1222 adpt
->rx_q
.produce_shift
= RFD0_PROD_IDX_SHFT
;
1224 adpt
->rx_q
.process_reg
= EMAC_MAILBOX_0
;
1225 adpt
->rx_q
.process_mask
= RFD0_PROC_IDX_BMSK
;
1226 adpt
->rx_q
.process_shft
= RFD0_PROC_IDX_SHFT
;
1228 adpt
->rx_q
.consume_reg
= EMAC_MAILBOX_3
;
1229 adpt
->rx_q
.consume_mask
= RFD0_CONS_IDX_BMSK
;
1230 adpt
->rx_q
.consume_shift
= RFD0_CONS_IDX_SHFT
;
1232 adpt
->rx_q
.irq
= &adpt
->irq
;
1233 adpt
->rx_q
.intr
= adpt
->irq
.mask
& ISR_RX_PKT
;
1235 adpt
->tx_q
.produce_reg
= EMAC_MAILBOX_15
;
1236 adpt
->tx_q
.produce_mask
= NTPD_PROD_IDX_BMSK
;
1237 adpt
->tx_q
.produce_shift
= NTPD_PROD_IDX_SHFT
;
1239 adpt
->tx_q
.consume_reg
= EMAC_MAILBOX_2
;
1240 adpt
->tx_q
.consume_mask
= NTPD_CONS_IDX_BMSK
;
1241 adpt
->tx_q
.consume_shift
= NTPD_CONS_IDX_SHFT
;
1244 /* Fill up transmit descriptors with TSO and Checksum offload information */
1245 static int emac_tso_csum(struct emac_adapter
*adpt
,
1246 struct emac_tx_queue
*tx_q
,
1247 struct sk_buff
*skb
,
1248 struct emac_tpd
*tpd
)
1250 unsigned int hdr_len
;
1253 if (skb_is_gso(skb
)) {
1254 if (skb_header_cloned(skb
)) {
1255 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1260 if (skb
->protocol
== htons(ETH_P_IP
)) {
1261 u32 pkt_len
= ((unsigned char *)ip_hdr(skb
) - skb
->data
)
1262 + ntohs(ip_hdr(skb
)->tot_len
);
1263 if (skb
->len
> pkt_len
) {
1264 ret
= pskb_trim(skb
, pkt_len
);
1270 hdr_len
= skb_tcp_all_headers(skb
);
1271 if (unlikely(skb
->len
== hdr_len
)) {
1272 /* we only need to do csum */
1273 netif_warn(adpt
, tx_err
, adpt
->netdev
,
1274 "tso not needed for packet with 0 data\n");
1278 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
1279 ip_hdr(skb
)->check
= 0;
1280 tcp_hdr(skb
)->check
=
1281 ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
1284 TPD_IPV4_SET(tpd
, 1);
1287 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
1288 /* ipv6 tso need an extra tpd */
1289 struct emac_tpd extra_tpd
;
1291 memset(tpd
, 0, sizeof(*tpd
));
1292 memset(&extra_tpd
, 0, sizeof(extra_tpd
));
1294 tcp_v6_gso_csum_prep(skb
);
1296 TPD_PKT_LEN_SET(&extra_tpd
, skb
->len
);
1297 TPD_LSO_SET(&extra_tpd
, 1);
1298 TPD_LSOV_SET(&extra_tpd
, 1);
1299 emac_tx_tpd_create(adpt
, tx_q
, &extra_tpd
);
1300 TPD_LSOV_SET(tpd
, 1);
1303 TPD_LSO_SET(tpd
, 1);
1304 TPD_TCPHDR_OFFSET_SET(tpd
, skb_transport_offset(skb
));
1305 TPD_MSS_SET(tpd
, skb_shinfo(skb
)->gso_size
);
1310 if (likely(skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
1311 unsigned int css
, cso
;
1313 cso
= skb_transport_offset(skb
);
1314 if (unlikely(cso
& 0x1)) {
1315 netdev_err(adpt
->netdev
,
1316 "error: payload offset should be even\n");
1319 css
= cso
+ skb
->csum_offset
;
1321 TPD_PAYLOAD_OFFSET_SET(tpd
, cso
>> 1);
1322 TPD_CXSUM_OFFSET_SET(tpd
, css
>> 1);
1323 TPD_CSX_SET(tpd
, 1);
1329 /* Fill up transmit descriptors */
1330 static void emac_tx_fill_tpd(struct emac_adapter
*adpt
,
1331 struct emac_tx_queue
*tx_q
, struct sk_buff
*skb
,
1332 struct emac_tpd
*tpd
)
1334 unsigned int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1335 unsigned int first
= tx_q
->tpd
.produce_idx
;
1336 unsigned int len
= skb_headlen(skb
);
1337 struct emac_buffer
*tpbuf
= NULL
;
1338 unsigned int mapped_len
= 0;
1343 /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1345 mapped_len
= skb_tcp_all_headers(skb
);
1347 tpbuf
= GET_TPD_BUFFER(tx_q
, tx_q
->tpd
.produce_idx
);
1348 tpbuf
->length
= mapped_len
;
1349 tpbuf
->dma_addr
= dma_map_page(adpt
->netdev
->dev
.parent
,
1350 virt_to_page(skb
->data
),
1351 offset_in_page(skb
->data
),
1354 ret
= dma_mapping_error(adpt
->netdev
->dev
.parent
,
1359 TPD_BUFFER_ADDR_L_SET(tpd
, lower_32_bits(tpbuf
->dma_addr
));
1360 TPD_BUFFER_ADDR_H_SET(tpd
, upper_32_bits(tpbuf
->dma_addr
));
1361 TPD_BUF_LEN_SET(tpd
, tpbuf
->length
);
1362 emac_tx_tpd_create(adpt
, tx_q
, tpd
);
1366 if (mapped_len
< len
) {
1367 tpbuf
= GET_TPD_BUFFER(tx_q
, tx_q
->tpd
.produce_idx
);
1368 tpbuf
->length
= len
- mapped_len
;
1369 tpbuf
->dma_addr
= dma_map_page(adpt
->netdev
->dev
.parent
,
1370 virt_to_page(skb
->data
+
1372 offset_in_page(skb
->data
+
1374 tpbuf
->length
, DMA_TO_DEVICE
);
1375 ret
= dma_mapping_error(adpt
->netdev
->dev
.parent
,
1380 TPD_BUFFER_ADDR_L_SET(tpd
, lower_32_bits(tpbuf
->dma_addr
));
1381 TPD_BUFFER_ADDR_H_SET(tpd
, upper_32_bits(tpbuf
->dma_addr
));
1382 TPD_BUF_LEN_SET(tpd
, tpbuf
->length
);
1383 emac_tx_tpd_create(adpt
, tx_q
, tpd
);
1387 for (i
= 0; i
< nr_frags
; i
++) {
1388 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1390 tpbuf
= GET_TPD_BUFFER(tx_q
, tx_q
->tpd
.produce_idx
);
1391 tpbuf
->length
= skb_frag_size(frag
);
1392 tpbuf
->dma_addr
= skb_frag_dma_map(adpt
->netdev
->dev
.parent
,
1393 frag
, 0, tpbuf
->length
,
1395 ret
= dma_mapping_error(adpt
->netdev
->dev
.parent
,
1400 TPD_BUFFER_ADDR_L_SET(tpd
, lower_32_bits(tpbuf
->dma_addr
));
1401 TPD_BUFFER_ADDR_H_SET(tpd
, upper_32_bits(tpbuf
->dma_addr
));
1402 TPD_BUF_LEN_SET(tpd
, tpbuf
->length
);
1403 emac_tx_tpd_create(adpt
, tx_q
, tpd
);
1409 emac_tx_tpd_mark_last(adpt
, tx_q
);
1411 /* The last buffer info contain the skb address,
1412 * so it will be freed after unmap
1419 /* One of the memory mappings failed, so undo everything */
1420 tx_q
->tpd
.produce_idx
= first
;
1423 tpbuf
= GET_TPD_BUFFER(tx_q
, first
);
1424 dma_unmap_page(adpt
->netdev
->dev
.parent
, tpbuf
->dma_addr
,
1425 tpbuf
->length
, DMA_TO_DEVICE
);
1426 tpbuf
->dma_addr
= 0;
1429 if (++first
== tx_q
->tpd
.count
)
1436 /* Transmit the packet using specified transmit queue */
1437 netdev_tx_t
emac_mac_tx_buf_send(struct emac_adapter
*adpt
,
1438 struct emac_tx_queue
*tx_q
,
1439 struct sk_buff
*skb
)
1441 struct emac_tpd tpd
;
1445 memset(&tpd
, 0, sizeof(tpd
));
1447 if (emac_tso_csum(adpt
, tx_q
, skb
, &tpd
) != 0) {
1448 dev_kfree_skb_any(skb
);
1449 return NETDEV_TX_OK
;
1452 if (skb_vlan_tag_present(skb
)) {
1455 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb
), tag
);
1456 TPD_CVLAN_TAG_SET(&tpd
, tag
);
1457 TPD_INSTC_SET(&tpd
, 1);
1460 if (skb_network_offset(skb
) != ETH_HLEN
)
1461 TPD_TYP_SET(&tpd
, 1);
1464 emac_tx_fill_tpd(adpt
, tx_q
, skb
, &tpd
);
1466 netdev_sent_queue(adpt
->netdev
, len
);
1468 /* Make sure the are enough free descriptors to hold one
1469 * maximum-sized SKB. We need one desc for each fragment,
1470 * one for the checksum (emac_tso_csum), one for TSO, and
1471 * one for the SKB header.
1473 if (emac_tpd_num_free_descs(tx_q
) < (MAX_SKB_FRAGS
+ 3))
1474 netif_stop_queue(adpt
->netdev
);
1476 /* update produce idx */
1477 prod_idx
= (tx_q
->tpd
.produce_idx
<< tx_q
->produce_shift
) &
1479 emac_reg_update32(adpt
->base
+ tx_q
->produce_reg
,
1480 tx_q
->produce_mask
, prod_idx
);
1482 return NETDEV_TX_OK
;