1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
28 * Test Tx checksumming thoroughly
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
79 #include <linux/uaccess.h>
81 /* These identify the driver base version and may not be removed. */
82 static char version
[] =
83 DRV_NAME
": 10/100 PCI Ethernet driver v" DRV_VERSION
" (" DRV_RELDATE
")\n";
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION
);
88 MODULE_LICENSE("GPL");
90 static int debug
= -1;
91 module_param(debug
, int, 0);
92 MODULE_PARM_DESC (debug
, "8139cp: bitmapped message enable number");
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit
= 32;
97 module_param(multicast_filter_limit
, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit
, "8139cp: maximum number of filtered multicast addresses");
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
137 /* NIC register offsets */
138 MAC0
= 0x00, /* Ethernet hardware address. */
139 MAR0
= 0x08, /* Multicast filter. */
140 StatsAddr
= 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr
= 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr
= 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd
= 0x37, /* Command register */
144 IntrMask
= 0x3C, /* Interrupt mask */
145 IntrStatus
= 0x3E, /* Interrupt status */
146 TxConfig
= 0x40, /* Tx configuration */
147 ChipVersion
= 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig
= 0x44, /* Rx configuration */
149 RxMissed
= 0x4C, /* 24 bits valid, write clears */
150 Cfg9346
= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1
= 0x52, /* Config1 */
152 Config3
= 0x59, /* Config3 */
153 Config4
= 0x5A, /* Config4 */
154 MultiIntr
= 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl
= 0x62, /* MII BMCR */
156 BasicModeStatus
= 0x64, /* MII BMSR */
157 NWayAdvert
= 0x66, /* MII ADVERTISE */
158 NWayLPAR
= 0x68, /* MII LPA */
159 NWayExpansion
= 0x6A, /* MII Expansion */
160 TxDmaOkLowDesc
= 0x82, /* Low 16 bit address of a Tx descriptor. */
161 Config5
= 0xD8, /* Config5 */
162 TxPoll
= 0xD9, /* Tell chip to check Tx descriptors for work */
163 RxMaxSize
= 0xDA, /* Max size of an Rx packet (8169 only) */
164 CpCmd
= 0xE0, /* C+ Command register (C+ mode only) */
165 IntrMitigate
= 0xE2, /* rx/tx interrupt mitigation control */
166 RxRingAddr
= 0xE4, /* 64-bit start addr of Rx ring */
167 TxThresh
= 0xEC, /* Early Tx threshold */
168 OldRxBufAddr
= 0x30, /* DMA address of Rx ring buffer (C mode) */
169 OldTSD0
= 0x10, /* DMA address of first Tx desc (C mode) */
171 /* Tx and Rx status descriptors */
172 DescOwn
= (1 << 31), /* Descriptor is owned by NIC */
173 RingEnd
= (1 << 30), /* End of descriptor ring */
174 FirstFrag
= (1 << 29), /* First segment of a packet */
175 LastFrag
= (1 << 28), /* Final segment of a packet */
176 LargeSend
= (1 << 27), /* TCP Large Send Offload (TSO) */
177 MSSShift
= 16, /* MSS value position */
178 MSSMask
= 0x7ff, /* MSS value: 11 bits */
179 TxError
= (1 << 23), /* Tx error summary */
180 RxError
= (1 << 20), /* Rx error summary */
181 IPCS
= (1 << 18), /* Calculate IP checksum */
182 UDPCS
= (1 << 17), /* Calculate UDP/IP checksum */
183 TCPCS
= (1 << 16), /* Calculate TCP/IP checksum */
184 TxVlanTag
= (1 << 17), /* Add VLAN tag */
185 RxVlanTagged
= (1 << 16), /* Rx VLAN tag available */
186 IPFail
= (1 << 15), /* IP checksum failed */
187 UDPFail
= (1 << 14), /* UDP/IP checksum failed */
188 TCPFail
= (1 << 13), /* TCP/IP checksum failed */
189 NormalTxPoll
= (1 << 6), /* One or more normal Tx packets to send */
190 PID1
= (1 << 17), /* 2 protocol id bits: 0==non-IP, */
191 PID0
= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
195 TxFIFOUnder
= (1 << 25), /* Tx FIFO underrun */
196 TxOWC
= (1 << 22), /* Tx Out-of-window collision */
197 TxLinkFail
= (1 << 21), /* Link failed during Tx of packet */
198 TxMaxCol
= (1 << 20), /* Tx aborted due to excessive collisions */
199 TxColCntShift
= 16, /* Shift, to get 4-bit Tx collision cnt */
200 TxColCntMask
= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 RxErrFrame
= (1 << 27), /* Rx frame alignment error */
202 RxMcast
= (1 << 26), /* Rx multicast packet rcv'd */
203 RxErrCRC
= (1 << 18), /* Rx CRC error */
204 RxErrRunt
= (1 << 19), /* Rx error, packet < 64 bytes */
205 RxErrLong
= (1 << 21), /* Rx error, packet > 4096 bytes */
206 RxErrFIFO
= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
208 /* StatsAddr register */
209 DumpStats
= (1 << 3), /* Begin stats dump */
211 /* RxConfig register */
212 RxCfgFIFOShift
= 13, /* Shift, to get Rx FIFO thresh value */
213 RxCfgDMAShift
= 8, /* Shift, to get Rx Max DMA value */
214 AcceptErr
= 0x20, /* Accept packets with CRC errors */
215 AcceptRunt
= 0x10, /* Accept runt (<64 bytes) packets */
216 AcceptBroadcast
= 0x08, /* Accept broadcast packets */
217 AcceptMulticast
= 0x04, /* Accept multicast packets */
218 AcceptMyPhys
= 0x02, /* Accept pkts with our MAC as dest */
219 AcceptAllPhys
= 0x01, /* Accept all pkts w/ physical dest */
221 /* IntrMask / IntrStatus registers */
222 PciErr
= (1 << 15), /* System error on the PCI bus */
223 TimerIntr
= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 LenChg
= (1 << 13), /* Cable length change */
225 SWInt
= (1 << 8), /* Software-requested interrupt */
226 TxEmpty
= (1 << 7), /* No Tx descriptors available */
227 RxFIFOOvr
= (1 << 6), /* Rx FIFO Overflow */
228 LinkChg
= (1 << 5), /* Packet underrun, or link change */
229 RxEmpty
= (1 << 4), /* No Rx descriptors available */
230 TxErr
= (1 << 3), /* Tx error */
231 TxOK
= (1 << 2), /* Tx packet sent */
232 RxErr
= (1 << 1), /* Rx error */
233 RxOK
= (1 << 0), /* Rx packet received */
234 IntrResvd
= (1 << 10), /* reserved, according to RealTek engineers,
235 but hardware likes to raise it */
237 IntrAll
= PciErr
| TimerIntr
| LenChg
| SWInt
| TxEmpty
|
238 RxFIFOOvr
| LinkChg
| RxEmpty
| TxErr
| TxOK
|
239 RxErr
| RxOK
| IntrResvd
,
241 /* C mode command register */
242 CmdReset
= (1 << 4), /* Enable to reset; self-clearing */
243 RxOn
= (1 << 3), /* Rx mode enable */
244 TxOn
= (1 << 2), /* Tx mode enable */
246 /* C+ mode command register */
247 RxVlanOn
= (1 << 6), /* Rx VLAN de-tagging enable */
248 RxChkSum
= (1 << 5), /* Rx checksum offload enable */
249 PCIDAC
= (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
250 PCIMulRW
= (1 << 3), /* Enable PCI read/write multiple */
251 CpRxOn
= (1 << 1), /* Rx mode enable */
252 CpTxOn
= (1 << 0), /* Tx mode enable */
254 /* Cfg9436 EEPROM control register */
255 Cfg9346_Lock
= 0x00, /* Lock ConfigX/MII register access */
256 Cfg9346_Unlock
= 0xC0, /* Unlock ConfigX/MII register access */
258 /* TxConfig register */
259 IFG
= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 TxDMAShift
= 8, /* DMA burst value (0-7) is shift this many bits */
262 /* Early Tx Threshold register */
263 TxThreshMask
= 0x3f, /* Mask bits 5-0 */
264 TxThreshMax
= 2048, /* Max early Tx threshold */
266 /* Config1 register */
267 DriverLoaded
= (1 << 5), /* Software marker, driver is loaded */
268 LWACT
= (1 << 4), /* LWAKE active mode */
269 PMEnable
= (1 << 0), /* Enable various PM features of chip */
271 /* Config3 register */
272 PARMEnable
= (1 << 6), /* Enable auto-loading of PHY parms */
273 MagicPacket
= (1 << 5), /* Wake up when receives a Magic Packet */
274 LinkUp
= (1 << 4), /* Wake up when the cable connection is re-established */
276 /* Config4 register */
277 LWPTN
= (1 << 1), /* LWAKE Pattern */
278 LWPME
= (1 << 4), /* LANWAKE vs PMEB */
280 /* Config5 register */
281 BWF
= (1 << 6), /* Accept Broadcast wakeup frame */
282 MWF
= (1 << 5), /* Accept Multicast wakeup frame */
283 UWF
= (1 << 4), /* Accept Unicast wakeup frame */
284 LANWake
= (1 << 1), /* Enable LANWake signal */
285 PMEStatus
= (1 << 0), /* PME status can be reset by PCI RST# */
287 cp_norx_intr_mask
= PciErr
| LinkChg
| TxOK
| TxErr
| TxEmpty
,
288 cp_rx_intr_mask
= RxOK
| RxErr
| RxEmpty
| RxFIFOOvr
,
289 cp_intr_mask
= cp_rx_intr_mask
| cp_norx_intr_mask
,
292 static const unsigned int cp_rx_config
=
293 (RX_FIFO_THRESH
<< RxCfgFIFOShift
) |
294 (RX_DMA_BURST
<< RxCfgDMAShift
);
302 struct cp_dma_stats
{
318 struct cp_extra_stats
{
319 unsigned long rx_frags
;
324 struct net_device
*dev
;
328 struct napi_struct napi
;
330 struct pci_dev
*pdev
;
334 struct cp_extra_stats cp_stats
;
336 unsigned rx_head ____cacheline_aligned
;
338 struct cp_desc
*rx_ring
;
339 struct sk_buff
*rx_skb
[CP_RX_RING_SIZE
];
341 unsigned tx_head ____cacheline_aligned
;
343 struct cp_desc
*tx_ring
;
344 struct sk_buff
*tx_skb
[CP_TX_RING_SIZE
];
345 u32 tx_opts
[CP_TX_RING_SIZE
];
348 unsigned wol_enabled
: 1; /* Is Wake-on-LAN enabled? */
352 struct mii_if_info mii_if
;
355 #define cpr8(reg) readb(cp->regs + (reg))
356 #define cpr16(reg) readw(cp->regs + (reg))
357 #define cpr32(reg) readl(cp->regs + (reg))
358 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val) writew((val), cp->regs + (reg))
360 #define cpw32(reg,val) writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do { \
362 writeb((val), cp->regs + (reg)); \
363 readb(cp->regs + (reg)); \
365 #define cpw16_f(reg,val) do { \
366 writew((val), cp->regs + (reg)); \
367 readw(cp->regs + (reg)); \
369 #define cpw32_f(reg,val) do { \
370 writel((val), cp->regs + (reg)); \
371 readl(cp->regs + (reg)); \
375 static void __cp_set_rx_mode (struct net_device
*dev
);
376 static void cp_tx (struct cp_private
*cp
);
377 static void cp_clean_rings (struct cp_private
*cp
);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device
*dev
);
381 static int cp_get_eeprom_len(struct net_device
*dev
);
382 static int cp_get_eeprom(struct net_device
*dev
,
383 struct ethtool_eeprom
*eeprom
, u8
*data
);
384 static int cp_set_eeprom(struct net_device
*dev
,
385 struct ethtool_eeprom
*eeprom
, u8
*data
);
388 const char str
[ETH_GSTRING_LEN
];
389 } ethtool_stats_keys
[] = {
407 static inline void cp_set_rxbufsize (struct cp_private
*cp
)
409 unsigned int mtu
= cp
->dev
->mtu
;
411 if (mtu
> ETH_DATA_LEN
)
412 /* MTU + ethernet header + FCS + optional VLAN tag */
413 cp
->rx_buf_sz
= mtu
+ ETH_HLEN
+ 8;
415 cp
->rx_buf_sz
= PKT_BUF_SZ
;
418 static inline void cp_rx_skb (struct cp_private
*cp
, struct sk_buff
*skb
,
419 struct cp_desc
*desc
)
421 u32 opts2
= le32_to_cpu(desc
->opts2
);
423 skb
->protocol
= eth_type_trans (skb
, cp
->dev
);
425 cp
->dev
->stats
.rx_packets
++;
426 cp
->dev
->stats
.rx_bytes
+= skb
->len
;
428 if (opts2
& RxVlanTagged
)
429 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), swab16(opts2
& 0xffff));
431 napi_gro_receive(&cp
->napi
, skb
);
434 static void cp_rx_err_acct (struct cp_private
*cp
, unsigned rx_tail
,
437 netif_dbg(cp
, rx_err
, cp
->dev
, "rx err, slot %d status 0x%x len %d\n",
438 rx_tail
, status
, len
);
439 cp
->dev
->stats
.rx_errors
++;
440 if (status
& RxErrFrame
)
441 cp
->dev
->stats
.rx_frame_errors
++;
442 if (status
& RxErrCRC
)
443 cp
->dev
->stats
.rx_crc_errors
++;
444 if ((status
& RxErrRunt
) || (status
& RxErrLong
))
445 cp
->dev
->stats
.rx_length_errors
++;
446 if ((status
& (FirstFrag
| LastFrag
)) != (FirstFrag
| LastFrag
))
447 cp
->dev
->stats
.rx_length_errors
++;
448 if (status
& RxErrFIFO
)
449 cp
->dev
->stats
.rx_fifo_errors
++;
452 static inline unsigned int cp_rx_csum_ok (u32 status
)
454 unsigned int protocol
= (status
>> 16) & 0x3;
456 if (((protocol
== RxProtoTCP
) && !(status
& TCPFail
)) ||
457 ((protocol
== RxProtoUDP
) && !(status
& UDPFail
)))
463 static int cp_rx_poll(struct napi_struct
*napi
, int budget
)
465 struct cp_private
*cp
= container_of(napi
, struct cp_private
, napi
);
466 struct net_device
*dev
= cp
->dev
;
467 unsigned int rx_tail
= cp
->rx_tail
;
470 cpw16(IntrStatus
, cp_rx_intr_mask
);
472 while (rx
< budget
) {
474 dma_addr_t mapping
, new_mapping
;
475 struct sk_buff
*skb
, *new_skb
;
476 struct cp_desc
*desc
;
477 const unsigned buflen
= cp
->rx_buf_sz
;
479 skb
= cp
->rx_skb
[rx_tail
];
482 desc
= &cp
->rx_ring
[rx_tail
];
483 status
= le32_to_cpu(desc
->opts1
);
484 if (status
& DescOwn
)
487 len
= (status
& 0x1fff) - 4;
488 mapping
= le64_to_cpu(desc
->addr
);
490 if ((status
& (FirstFrag
| LastFrag
)) != (FirstFrag
| LastFrag
)) {
491 /* we don't support incoming fragmented frames.
492 * instead, we attempt to ensure that the
493 * pre-allocated RX skbs are properly sized such
494 * that RX fragments are never encountered
496 cp_rx_err_acct(cp
, rx_tail
, status
, len
);
497 dev
->stats
.rx_dropped
++;
498 cp
->cp_stats
.rx_frags
++;
502 if (status
& (RxError
| RxErrFIFO
)) {
503 cp_rx_err_acct(cp
, rx_tail
, status
, len
);
507 netif_dbg(cp
, rx_status
, dev
, "rx slot %d status 0x%x len %d\n",
508 rx_tail
, status
, len
);
510 new_skb
= napi_alloc_skb(napi
, buflen
);
512 dev
->stats
.rx_dropped
++;
516 new_mapping
= dma_map_single(&cp
->pdev
->dev
, new_skb
->data
, buflen
,
518 if (dma_mapping_error(&cp
->pdev
->dev
, new_mapping
)) {
519 dev
->stats
.rx_dropped
++;
524 dma_unmap_single(&cp
->pdev
->dev
, mapping
,
525 buflen
, DMA_FROM_DEVICE
);
527 /* Handle checksum offloading for incoming packets. */
528 if (cp_rx_csum_ok(status
))
529 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
531 skb_checksum_none_assert(skb
);
535 cp
->rx_skb
[rx_tail
] = new_skb
;
537 cp_rx_skb(cp
, skb
, desc
);
539 mapping
= new_mapping
;
542 cp
->rx_ring
[rx_tail
].opts2
= 0;
543 cp
->rx_ring
[rx_tail
].addr
= cpu_to_le64(mapping
);
544 if (rx_tail
== (CP_RX_RING_SIZE
- 1))
545 desc
->opts1
= cpu_to_le32(DescOwn
| RingEnd
|
548 desc
->opts1
= cpu_to_le32(DescOwn
| cp
->rx_buf_sz
);
549 rx_tail
= NEXT_RX(rx_tail
);
552 cp
->rx_tail
= rx_tail
;
554 /* if we did not reach work limit, then we're done with
555 * this round of polling
557 if (rx
< budget
&& napi_complete_done(napi
, rx
)) {
560 spin_lock_irqsave(&cp
->lock
, flags
);
561 cpw16_f(IntrMask
, cp_intr_mask
);
562 spin_unlock_irqrestore(&cp
->lock
, flags
);
568 static irqreturn_t
cp_interrupt (int irq
, void *dev_instance
)
570 struct net_device
*dev
= dev_instance
;
571 struct cp_private
*cp
;
576 if (unlikely(dev
== NULL
))
578 cp
= netdev_priv(dev
);
580 spin_lock(&cp
->lock
);
582 mask
= cpr16(IntrMask
);
586 status
= cpr16(IntrStatus
);
587 if (!status
|| (status
== 0xFFFF))
592 netif_dbg(cp
, intr
, dev
, "intr, status %04x cmd %02x cpcmd %04x\n",
593 status
, cpr8(Cmd
), cpr16(CpCmd
));
595 cpw16(IntrStatus
, status
& ~cp_rx_intr_mask
);
597 /* close possible race's with dev_close */
598 if (unlikely(!netif_running(dev
))) {
603 if (status
& (RxOK
| RxErr
| RxEmpty
| RxFIFOOvr
))
604 if (napi_schedule_prep(&cp
->napi
)) {
605 cpw16_f(IntrMask
, cp_norx_intr_mask
);
606 __napi_schedule(&cp
->napi
);
609 if (status
& (TxOK
| TxErr
| TxEmpty
| SWInt
))
611 if (status
& LinkChg
)
612 mii_check_media(&cp
->mii_if
, netif_msg_link(cp
), false);
615 if (status
& PciErr
) {
618 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &pci_status
);
619 pci_write_config_word(cp
->pdev
, PCI_STATUS
, pci_status
);
620 netdev_err(dev
, "PCI bus error, status=%04x, PCI status=%04x\n",
623 /* TODO: reset hardware */
627 spin_unlock(&cp
->lock
);
629 return IRQ_RETVAL(handled
);
632 #ifdef CONFIG_NET_POLL_CONTROLLER
634 * Polling receive - used by netconsole and other diagnostic tools
635 * to allow network i/o with interrupts disabled.
637 static void cp_poll_controller(struct net_device
*dev
)
639 struct cp_private
*cp
= netdev_priv(dev
);
640 const int irq
= cp
->pdev
->irq
;
643 cp_interrupt(irq
, dev
);
648 static void cp_tx (struct cp_private
*cp
)
650 unsigned tx_head
= cp
->tx_head
;
651 unsigned tx_tail
= cp
->tx_tail
;
652 unsigned bytes_compl
= 0, pkts_compl
= 0;
654 while (tx_tail
!= tx_head
) {
655 struct cp_desc
*txd
= cp
->tx_ring
+ tx_tail
;
660 status
= le32_to_cpu(txd
->opts1
);
661 if (status
& DescOwn
)
664 skb
= cp
->tx_skb
[tx_tail
];
667 dma_unmap_single(&cp
->pdev
->dev
, le64_to_cpu(txd
->addr
),
668 cp
->tx_opts
[tx_tail
] & 0xffff,
671 if (status
& LastFrag
) {
672 if (status
& (TxError
| TxFIFOUnder
)) {
673 netif_dbg(cp
, tx_err
, cp
->dev
,
674 "tx err, status 0x%x\n", status
);
675 cp
->dev
->stats
.tx_errors
++;
677 cp
->dev
->stats
.tx_window_errors
++;
678 if (status
& TxMaxCol
)
679 cp
->dev
->stats
.tx_aborted_errors
++;
680 if (status
& TxLinkFail
)
681 cp
->dev
->stats
.tx_carrier_errors
++;
682 if (status
& TxFIFOUnder
)
683 cp
->dev
->stats
.tx_fifo_errors
++;
685 cp
->dev
->stats
.collisions
+=
686 ((status
>> TxColCntShift
) & TxColCntMask
);
687 cp
->dev
->stats
.tx_packets
++;
688 cp
->dev
->stats
.tx_bytes
+= skb
->len
;
689 netif_dbg(cp
, tx_done
, cp
->dev
,
690 "tx done, slot %d\n", tx_tail
);
692 bytes_compl
+= skb
->len
;
694 dev_consume_skb_irq(skb
);
697 cp
->tx_skb
[tx_tail
] = NULL
;
699 tx_tail
= NEXT_TX(tx_tail
);
702 cp
->tx_tail
= tx_tail
;
704 netdev_completed_queue(cp
->dev
, pkts_compl
, bytes_compl
);
705 if (TX_BUFFS_AVAIL(cp
) > (MAX_SKB_FRAGS
+ 1))
706 netif_wake_queue(cp
->dev
);
709 static inline u32
cp_tx_vlan_tag(struct sk_buff
*skb
)
711 return skb_vlan_tag_present(skb
) ?
712 TxVlanTag
| swab16(skb_vlan_tag_get(skb
)) : 0x00;
715 static void unwind_tx_frag_mapping(struct cp_private
*cp
, struct sk_buff
*skb
,
716 int first
, int entry_last
)
720 skb_frag_t
*this_frag
;
721 for (frag
= 0; frag
+first
< entry_last
; frag
++) {
723 cp
->tx_skb
[index
] = NULL
;
724 txd
= &cp
->tx_ring
[index
];
725 this_frag
= &skb_shinfo(skb
)->frags
[frag
];
726 dma_unmap_single(&cp
->pdev
->dev
, le64_to_cpu(txd
->addr
),
727 skb_frag_size(this_frag
), DMA_TO_DEVICE
);
731 static netdev_tx_t
cp_start_xmit (struct sk_buff
*skb
,
732 struct net_device
*dev
)
734 struct cp_private
*cp
= netdev_priv(dev
);
737 unsigned long intr_flags
;
741 spin_lock_irqsave(&cp
->lock
, intr_flags
);
743 /* This is a hard error, log it. */
744 if (TX_BUFFS_AVAIL(cp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
745 netif_stop_queue(dev
);
746 spin_unlock_irqrestore(&cp
->lock
, intr_flags
);
747 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
748 return NETDEV_TX_BUSY
;
752 eor
= (entry
== (CP_TX_RING_SIZE
- 1)) ? RingEnd
: 0;
753 mss
= skb_shinfo(skb
)->gso_size
;
756 netdev_WARN_ONCE(dev
, "Net bug: GSO size %d too large for 8139CP\n",
761 opts2
= cpu_to_le32(cp_tx_vlan_tag(skb
));
764 opts1
|= LargeSend
| (mss
<< MSSShift
);
765 else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
766 const struct iphdr
*ip
= ip_hdr(skb
);
767 if (ip
->protocol
== IPPROTO_TCP
)
768 opts1
|= IPCS
| TCPCS
;
769 else if (ip
->protocol
== IPPROTO_UDP
)
770 opts1
|= IPCS
| UDPCS
;
773 "Net bug: asked to checksum invalid Legacy IP packet\n");
778 if (skb_shinfo(skb
)->nr_frags
== 0) {
779 struct cp_desc
*txd
= &cp
->tx_ring
[entry
];
784 mapping
= dma_map_single(&cp
->pdev
->dev
, skb
->data
, len
, DMA_TO_DEVICE
);
785 if (dma_mapping_error(&cp
->pdev
->dev
, mapping
))
789 txd
->addr
= cpu_to_le64(mapping
);
792 opts1
|= eor
| len
| FirstFrag
| LastFrag
;
794 txd
->opts1
= cpu_to_le32(opts1
);
797 cp
->tx_skb
[entry
] = skb
;
798 cp
->tx_opts
[entry
] = opts1
;
799 netif_dbg(cp
, tx_queued
, cp
->dev
, "tx queued, slot %d, skblen %d\n",
803 u32 first_len
, first_eor
, ctrl
;
804 dma_addr_t first_mapping
;
805 int frag
, first_entry
= entry
;
807 /* We must give this initial chunk to the device last.
808 * Otherwise we could race with the device.
811 first_len
= skb_headlen(skb
);
812 first_mapping
= dma_map_single(&cp
->pdev
->dev
, skb
->data
,
813 first_len
, DMA_TO_DEVICE
);
814 if (dma_mapping_error(&cp
->pdev
->dev
, first_mapping
))
817 cp
->tx_skb
[entry
] = skb
;
819 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
820 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
824 entry
= NEXT_TX(entry
);
826 len
= skb_frag_size(this_frag
);
827 mapping
= dma_map_single(&cp
->pdev
->dev
,
828 skb_frag_address(this_frag
),
830 if (dma_mapping_error(&cp
->pdev
->dev
, mapping
)) {
831 unwind_tx_frag_mapping(cp
, skb
, first_entry
, entry
);
835 eor
= (entry
== (CP_TX_RING_SIZE
- 1)) ? RingEnd
: 0;
837 ctrl
= opts1
| eor
| len
;
839 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
842 txd
= &cp
->tx_ring
[entry
];
844 txd
->addr
= cpu_to_le64(mapping
);
847 txd
->opts1
= cpu_to_le32(ctrl
);
850 cp
->tx_opts
[entry
] = ctrl
;
851 cp
->tx_skb
[entry
] = skb
;
854 txd
= &cp
->tx_ring
[first_entry
];
856 txd
->addr
= cpu_to_le64(first_mapping
);
859 ctrl
= opts1
| first_eor
| first_len
| FirstFrag
;
860 txd
->opts1
= cpu_to_le32(ctrl
);
863 cp
->tx_opts
[first_entry
] = ctrl
;
864 netif_dbg(cp
, tx_queued
, cp
->dev
, "tx queued, slots %d-%d, skblen %d\n",
865 first_entry
, entry
, skb
->len
);
867 cp
->tx_head
= NEXT_TX(entry
);
869 netdev_sent_queue(dev
, skb
->len
);
870 if (TX_BUFFS_AVAIL(cp
) <= (MAX_SKB_FRAGS
+ 1))
871 netif_stop_queue(dev
);
874 spin_unlock_irqrestore(&cp
->lock
, intr_flags
);
876 cpw8(TxPoll
, NormalTxPoll
);
880 dev_kfree_skb_any(skb
);
881 cp
->dev
->stats
.tx_dropped
++;
885 /* Set or clear the multicast filter for this adaptor.
886 This routine is not state sensitive and need not be SMP locked. */
888 static void __cp_set_rx_mode (struct net_device
*dev
)
890 struct cp_private
*cp
= netdev_priv(dev
);
891 u32 mc_filter
[2]; /* Multicast hash filter */
894 /* Note: do not reorder, GCC is clever about common statements. */
895 if (dev
->flags
& IFF_PROMISC
) {
896 /* Unconditionally log net taps. */
898 AcceptBroadcast
| AcceptMulticast
| AcceptMyPhys
|
900 mc_filter
[1] = mc_filter
[0] = 0xffffffff;
901 } else if ((netdev_mc_count(dev
) > multicast_filter_limit
) ||
902 (dev
->flags
& IFF_ALLMULTI
)) {
903 /* Too many to filter perfectly -- accept all multicasts. */
904 rx_mode
= AcceptBroadcast
| AcceptMulticast
| AcceptMyPhys
;
905 mc_filter
[1] = mc_filter
[0] = 0xffffffff;
907 struct netdev_hw_addr
*ha
;
908 rx_mode
= AcceptBroadcast
| AcceptMyPhys
;
909 mc_filter
[1] = mc_filter
[0] = 0;
910 netdev_for_each_mc_addr(ha
, dev
) {
911 int bit_nr
= ether_crc(ETH_ALEN
, ha
->addr
) >> 26;
913 mc_filter
[bit_nr
>> 5] |= 1 << (bit_nr
& 31);
914 rx_mode
|= AcceptMulticast
;
918 /* We can safely update without stopping the chip. */
919 cp
->rx_config
= cp_rx_config
| rx_mode
;
920 cpw32_f(RxConfig
, cp
->rx_config
);
922 cpw32_f (MAR0
+ 0, mc_filter
[0]);
923 cpw32_f (MAR0
+ 4, mc_filter
[1]);
926 static void cp_set_rx_mode (struct net_device
*dev
)
929 struct cp_private
*cp
= netdev_priv(dev
);
931 spin_lock_irqsave (&cp
->lock
, flags
);
932 __cp_set_rx_mode(dev
);
933 spin_unlock_irqrestore (&cp
->lock
, flags
);
936 static void __cp_get_stats(struct cp_private
*cp
)
938 /* only lower 24 bits valid; write any value to clear */
939 cp
->dev
->stats
.rx_missed_errors
+= (cpr32 (RxMissed
) & 0xffffff);
943 static struct net_device_stats
*cp_get_stats(struct net_device
*dev
)
945 struct cp_private
*cp
= netdev_priv(dev
);
948 /* The chip only need report frame silently dropped. */
949 spin_lock_irqsave(&cp
->lock
, flags
);
950 if (netif_running(dev
) && netif_device_present(dev
))
952 spin_unlock_irqrestore(&cp
->lock
, flags
);
957 static void cp_stop_hw (struct cp_private
*cp
)
959 cpw16(IntrStatus
, ~(cpr16(IntrStatus
)));
960 cpw16_f(IntrMask
, 0);
963 cpw16_f(IntrStatus
, ~(cpr16(IntrStatus
)));
966 cp
->tx_head
= cp
->tx_tail
= 0;
968 netdev_reset_queue(cp
->dev
);
971 static void cp_reset_hw (struct cp_private
*cp
)
973 unsigned work
= 1000;
978 if (!(cpr8(Cmd
) & CmdReset
))
981 schedule_timeout_uninterruptible(10);
984 netdev_err(cp
->dev
, "hardware reset timeout\n");
987 static inline void cp_start_hw (struct cp_private
*cp
)
991 cpw16(CpCmd
, cp
->cpcmd
);
994 * These (at least TxRingAddr) need to be configured after the
995 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
996 * (C+ Command Register) recommends that these and more be configured
997 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
998 * it's been observed that the TxRingAddr is actually reset to garbage
999 * when C+ mode Tx is enabled in CpCmd.
1001 cpw32_f(HiTxRingAddr
, 0);
1002 cpw32_f(HiTxRingAddr
+ 4, 0);
1004 ring_dma
= cp
->ring_dma
;
1005 cpw32_f(RxRingAddr
, ring_dma
& 0xffffffff);
1006 cpw32_f(RxRingAddr
+ 4, (ring_dma
>> 16) >> 16);
1008 ring_dma
+= sizeof(struct cp_desc
) * CP_RX_RING_SIZE
;
1009 cpw32_f(TxRingAddr
, ring_dma
& 0xffffffff);
1010 cpw32_f(TxRingAddr
+ 4, (ring_dma
>> 16) >> 16);
1013 * Strictly speaking, the datasheet says this should be enabled
1014 * *before* setting the descriptor addresses. But what, then, would
1015 * prevent it from doing DMA to random unconfigured addresses?
1016 * This variant appears to work fine.
1018 cpw8(Cmd
, RxOn
| TxOn
);
1020 netdev_reset_queue(cp
->dev
);
1023 static void cp_enable_irq(struct cp_private
*cp
)
1025 cpw16_f(IntrMask
, cp_intr_mask
);
1028 static void cp_init_hw (struct cp_private
*cp
)
1030 struct net_device
*dev
= cp
->dev
;
1034 cpw8_f (Cfg9346
, Cfg9346_Unlock
);
1036 /* Restore our idea of the MAC address. */
1037 cpw32_f (MAC0
+ 0, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 0)));
1038 cpw32_f (MAC0
+ 4, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 4)));
1041 cpw8(TxThresh
, 0x06); /* XXX convert magic num to a constant */
1043 __cp_set_rx_mode(dev
);
1044 cpw32_f (TxConfig
, IFG
| (TX_DMA_BURST
<< TxDMAShift
));
1046 cpw8(Config1
, cpr8(Config1
) | DriverLoaded
| PMEnable
);
1047 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1048 cpw8(Config3
, PARMEnable
);
1049 cp
->wol_enabled
= 0;
1051 cpw8(Config5
, cpr8(Config5
) & PMEStatus
);
1053 cpw16(MultiIntr
, 0);
1055 cpw8_f(Cfg9346
, Cfg9346_Lock
);
1058 static int cp_refill_rx(struct cp_private
*cp
)
1060 struct net_device
*dev
= cp
->dev
;
1063 for (i
= 0; i
< CP_RX_RING_SIZE
; i
++) {
1064 struct sk_buff
*skb
;
1067 skb
= netdev_alloc_skb_ip_align(dev
, cp
->rx_buf_sz
);
1071 mapping
= dma_map_single(&cp
->pdev
->dev
, skb
->data
,
1072 cp
->rx_buf_sz
, DMA_FROM_DEVICE
);
1073 if (dma_mapping_error(&cp
->pdev
->dev
, mapping
)) {
1077 cp
->rx_skb
[i
] = skb
;
1079 cp
->rx_ring
[i
].opts2
= 0;
1080 cp
->rx_ring
[i
].addr
= cpu_to_le64(mapping
);
1081 if (i
== (CP_RX_RING_SIZE
- 1))
1082 cp
->rx_ring
[i
].opts1
=
1083 cpu_to_le32(DescOwn
| RingEnd
| cp
->rx_buf_sz
);
1085 cp
->rx_ring
[i
].opts1
=
1086 cpu_to_le32(DescOwn
| cp
->rx_buf_sz
);
1096 static void cp_init_rings_index (struct cp_private
*cp
)
1099 cp
->tx_head
= cp
->tx_tail
= 0;
1102 static int cp_init_rings (struct cp_private
*cp
)
1104 memset(cp
->tx_ring
, 0, sizeof(struct cp_desc
) * CP_TX_RING_SIZE
);
1105 cp
->tx_ring
[CP_TX_RING_SIZE
- 1].opts1
= cpu_to_le32(RingEnd
);
1106 memset(cp
->tx_opts
, 0, sizeof(cp
->tx_opts
));
1108 cp_init_rings_index(cp
);
1110 return cp_refill_rx (cp
);
1113 static int cp_alloc_rings (struct cp_private
*cp
)
1115 struct device
*d
= &cp
->pdev
->dev
;
1119 mem
= dma_alloc_coherent(d
, CP_RING_BYTES
, &cp
->ring_dma
, GFP_KERNEL
);
1124 cp
->tx_ring
= &cp
->rx_ring
[CP_RX_RING_SIZE
];
1126 rc
= cp_init_rings(cp
);
1128 dma_free_coherent(d
, CP_RING_BYTES
, cp
->rx_ring
, cp
->ring_dma
);
1133 static void cp_clean_rings (struct cp_private
*cp
)
1135 struct cp_desc
*desc
;
1138 for (i
= 0; i
< CP_RX_RING_SIZE
; i
++) {
1139 if (cp
->rx_skb
[i
]) {
1140 desc
= cp
->rx_ring
+ i
;
1141 dma_unmap_single(&cp
->pdev
->dev
,le64_to_cpu(desc
->addr
),
1142 cp
->rx_buf_sz
, DMA_FROM_DEVICE
);
1143 dev_kfree_skb_any(cp
->rx_skb
[i
]);
1147 for (i
= 0; i
< CP_TX_RING_SIZE
; i
++) {
1148 if (cp
->tx_skb
[i
]) {
1149 struct sk_buff
*skb
= cp
->tx_skb
[i
];
1151 desc
= cp
->tx_ring
+ i
;
1152 dma_unmap_single(&cp
->pdev
->dev
,le64_to_cpu(desc
->addr
),
1153 le32_to_cpu(desc
->opts1
) & 0xffff,
1155 if (le32_to_cpu(desc
->opts1
) & LastFrag
)
1156 dev_kfree_skb_any(skb
);
1157 cp
->dev
->stats
.tx_dropped
++;
1160 netdev_reset_queue(cp
->dev
);
1162 memset(cp
->rx_ring
, 0, sizeof(struct cp_desc
) * CP_RX_RING_SIZE
);
1163 memset(cp
->tx_ring
, 0, sizeof(struct cp_desc
) * CP_TX_RING_SIZE
);
1164 memset(cp
->tx_opts
, 0, sizeof(cp
->tx_opts
));
1166 memset(cp
->rx_skb
, 0, sizeof(struct sk_buff
*) * CP_RX_RING_SIZE
);
1167 memset(cp
->tx_skb
, 0, sizeof(struct sk_buff
*) * CP_TX_RING_SIZE
);
1170 static void cp_free_rings (struct cp_private
*cp
)
1173 dma_free_coherent(&cp
->pdev
->dev
, CP_RING_BYTES
, cp
->rx_ring
,
1179 static int cp_open (struct net_device
*dev
)
1181 struct cp_private
*cp
= netdev_priv(dev
);
1182 const int irq
= cp
->pdev
->irq
;
1185 netif_dbg(cp
, ifup
, dev
, "enabling interface\n");
1187 rc
= cp_alloc_rings(cp
);
1191 napi_enable(&cp
->napi
);
1195 rc
= request_irq(irq
, cp_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
1201 netif_carrier_off(dev
);
1202 mii_check_media(&cp
->mii_if
, netif_msg_link(cp
), true);
1203 netif_start_queue(dev
);
1208 napi_disable(&cp
->napi
);
1214 static int cp_close (struct net_device
*dev
)
1216 struct cp_private
*cp
= netdev_priv(dev
);
1217 unsigned long flags
;
1219 napi_disable(&cp
->napi
);
1221 netif_dbg(cp
, ifdown
, dev
, "disabling interface\n");
1223 spin_lock_irqsave(&cp
->lock
, flags
);
1225 netif_stop_queue(dev
);
1226 netif_carrier_off(dev
);
1230 spin_unlock_irqrestore(&cp
->lock
, flags
);
1232 free_irq(cp
->pdev
->irq
, dev
);
1238 static void cp_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
1240 struct cp_private
*cp
= netdev_priv(dev
);
1241 unsigned long flags
;
1244 netdev_warn(dev
, "Transmit timeout, status %2x %4x %4x %4x\n",
1245 cpr8(Cmd
), cpr16(CpCmd
),
1246 cpr16(IntrStatus
), cpr16(IntrMask
));
1248 spin_lock_irqsave(&cp
->lock
, flags
);
1250 netif_dbg(cp
, tx_err
, cp
->dev
, "TX ring head %d tail %d desc %x\n",
1251 cp
->tx_head
, cp
->tx_tail
, cpr16(TxDmaOkLowDesc
));
1252 for (i
= 0; i
< CP_TX_RING_SIZE
; i
++) {
1253 netif_dbg(cp
, tx_err
, cp
->dev
,
1254 "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1255 i
, &cp
->tx_ring
[i
], le32_to_cpu(cp
->tx_ring
[i
].opts1
),
1256 cp
->tx_opts
[i
], le32_to_cpu(cp
->tx_ring
[i
].opts2
),
1257 le64_to_cpu(cp
->tx_ring
[i
].addr
),
1265 __cp_set_rx_mode(dev
);
1266 cpw16_f(IntrMask
, cp_norx_intr_mask
);
1268 netif_wake_queue(dev
);
1269 napi_schedule_irqoff(&cp
->napi
);
1271 spin_unlock_irqrestore(&cp
->lock
, flags
);
1274 static int cp_change_mtu(struct net_device
*dev
, int new_mtu
)
1276 struct cp_private
*cp
= netdev_priv(dev
);
1278 /* if network interface not up, no need for complexity */
1279 if (!netif_running(dev
)) {
1280 WRITE_ONCE(dev
->mtu
, new_mtu
);
1281 cp_set_rxbufsize(cp
); /* set new rx buf size */
1285 /* network IS up, close it, reset MTU, and come up again. */
1287 WRITE_ONCE(dev
->mtu
, new_mtu
);
1288 cp_set_rxbufsize(cp
);
1289 return cp_open(dev
);
1292 static const char mii_2_8139_map
[8] = {
1303 static int mdio_read(struct net_device
*dev
, int phy_id
, int location
)
1305 struct cp_private
*cp
= netdev_priv(dev
);
1307 return location
< 8 && mii_2_8139_map
[location
] ?
1308 readw(cp
->regs
+ mii_2_8139_map
[location
]) : 0;
1312 static void mdio_write(struct net_device
*dev
, int phy_id
, int location
,
1315 struct cp_private
*cp
= netdev_priv(dev
);
1317 if (location
== 0) {
1318 cpw8(Cfg9346
, Cfg9346_Unlock
);
1319 cpw16(BasicModeCtrl
, value
);
1320 cpw8(Cfg9346
, Cfg9346_Lock
);
1321 } else if (location
< 8 && mii_2_8139_map
[location
])
1322 cpw16(mii_2_8139_map
[location
], value
);
1325 /* Set the ethtool Wake-on-LAN settings */
1326 static int netdev_set_wol (struct cp_private
*cp
,
1327 const struct ethtool_wolinfo
*wol
)
1331 options
= cpr8 (Config3
) & ~(LinkUp
| MagicPacket
);
1332 /* If WOL is being disabled, no need for complexity */
1334 if (wol
->wolopts
& WAKE_PHY
) options
|= LinkUp
;
1335 if (wol
->wolopts
& WAKE_MAGIC
) options
|= MagicPacket
;
1338 cpw8 (Cfg9346
, Cfg9346_Unlock
);
1339 cpw8 (Config3
, options
);
1340 cpw8 (Cfg9346
, Cfg9346_Lock
);
1342 options
= 0; /* Paranoia setting */
1343 options
= cpr8 (Config5
) & ~(UWF
| MWF
| BWF
);
1344 /* If WOL is being disabled, no need for complexity */
1346 if (wol
->wolopts
& WAKE_UCAST
) options
|= UWF
;
1347 if (wol
->wolopts
& WAKE_BCAST
) options
|= BWF
;
1348 if (wol
->wolopts
& WAKE_MCAST
) options
|= MWF
;
1351 cpw8 (Config5
, options
);
1353 cp
->wol_enabled
= (wol
->wolopts
) ? 1 : 0;
1358 /* Get the ethtool Wake-on-LAN settings */
1359 static void netdev_get_wol (struct cp_private
*cp
,
1360 struct ethtool_wolinfo
*wol
)
1364 wol
->wolopts
= 0; /* Start from scratch */
1365 wol
->supported
= WAKE_PHY
| WAKE_BCAST
| WAKE_MAGIC
|
1366 WAKE_MCAST
| WAKE_UCAST
;
1367 /* We don't need to go on if WOL is disabled */
1368 if (!cp
->wol_enabled
) return;
1370 options
= cpr8 (Config3
);
1371 if (options
& LinkUp
) wol
->wolopts
|= WAKE_PHY
;
1372 if (options
& MagicPacket
) wol
->wolopts
|= WAKE_MAGIC
;
1374 options
= 0; /* Paranoia setting */
1375 options
= cpr8 (Config5
);
1376 if (options
& UWF
) wol
->wolopts
|= WAKE_UCAST
;
1377 if (options
& BWF
) wol
->wolopts
|= WAKE_BCAST
;
1378 if (options
& MWF
) wol
->wolopts
|= WAKE_MCAST
;
1381 static void cp_get_drvinfo (struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1383 struct cp_private
*cp
= netdev_priv(dev
);
1385 strscpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
1386 strscpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
1387 strscpy(info
->bus_info
, pci_name(cp
->pdev
), sizeof(info
->bus_info
));
1390 static void cp_get_ringparam(struct net_device
*dev
,
1391 struct ethtool_ringparam
*ring
,
1392 struct kernel_ethtool_ringparam
*kernel_ring
,
1393 struct netlink_ext_ack
*extack
)
1395 ring
->rx_max_pending
= CP_RX_RING_SIZE
;
1396 ring
->tx_max_pending
= CP_TX_RING_SIZE
;
1397 ring
->rx_pending
= CP_RX_RING_SIZE
;
1398 ring
->tx_pending
= CP_TX_RING_SIZE
;
1401 static int cp_get_regs_len(struct net_device
*dev
)
1403 return CP_REGS_SIZE
;
1406 static int cp_get_sset_count (struct net_device
*dev
, int sset
)
1410 return CP_NUM_STATS
;
1416 static int cp_get_link_ksettings(struct net_device
*dev
,
1417 struct ethtool_link_ksettings
*cmd
)
1419 struct cp_private
*cp
= netdev_priv(dev
);
1420 unsigned long flags
;
1422 spin_lock_irqsave(&cp
->lock
, flags
);
1423 mii_ethtool_get_link_ksettings(&cp
->mii_if
, cmd
);
1424 spin_unlock_irqrestore(&cp
->lock
, flags
);
1429 static int cp_set_link_ksettings(struct net_device
*dev
,
1430 const struct ethtool_link_ksettings
*cmd
)
1432 struct cp_private
*cp
= netdev_priv(dev
);
1434 unsigned long flags
;
1436 spin_lock_irqsave(&cp
->lock
, flags
);
1437 rc
= mii_ethtool_set_link_ksettings(&cp
->mii_if
, cmd
);
1438 spin_unlock_irqrestore(&cp
->lock
, flags
);
1443 static int cp_nway_reset(struct net_device
*dev
)
1445 struct cp_private
*cp
= netdev_priv(dev
);
1446 return mii_nway_restart(&cp
->mii_if
);
1449 static u32
cp_get_msglevel(struct net_device
*dev
)
1451 struct cp_private
*cp
= netdev_priv(dev
);
1452 return cp
->msg_enable
;
1455 static void cp_set_msglevel(struct net_device
*dev
, u32 value
)
1457 struct cp_private
*cp
= netdev_priv(dev
);
1458 cp
->msg_enable
= value
;
1461 static int cp_set_features(struct net_device
*dev
, netdev_features_t features
)
1463 struct cp_private
*cp
= netdev_priv(dev
);
1464 unsigned long flags
;
1466 if (!((dev
->features
^ features
) & NETIF_F_RXCSUM
))
1469 spin_lock_irqsave(&cp
->lock
, flags
);
1471 if (features
& NETIF_F_RXCSUM
)
1472 cp
->cpcmd
|= RxChkSum
;
1474 cp
->cpcmd
&= ~RxChkSum
;
1476 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
1477 cp
->cpcmd
|= RxVlanOn
;
1479 cp
->cpcmd
&= ~RxVlanOn
;
1481 cpw16_f(CpCmd
, cp
->cpcmd
);
1482 spin_unlock_irqrestore(&cp
->lock
, flags
);
1487 static void cp_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
1490 struct cp_private
*cp
= netdev_priv(dev
);
1491 unsigned long flags
;
1493 if (regs
->len
< CP_REGS_SIZE
)
1494 return /* -EINVAL */;
1496 regs
->version
= CP_REGS_VER
;
1498 spin_lock_irqsave(&cp
->lock
, flags
);
1499 memcpy_fromio(p
, cp
->regs
, CP_REGS_SIZE
);
1500 spin_unlock_irqrestore(&cp
->lock
, flags
);
1503 static void cp_get_wol (struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
1505 struct cp_private
*cp
= netdev_priv(dev
);
1506 unsigned long flags
;
1508 spin_lock_irqsave (&cp
->lock
, flags
);
1509 netdev_get_wol (cp
, wol
);
1510 spin_unlock_irqrestore (&cp
->lock
, flags
);
1513 static int cp_set_wol (struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
1515 struct cp_private
*cp
= netdev_priv(dev
);
1516 unsigned long flags
;
1519 spin_lock_irqsave (&cp
->lock
, flags
);
1520 rc
= netdev_set_wol (cp
, wol
);
1521 spin_unlock_irqrestore (&cp
->lock
, flags
);
1526 static void cp_get_strings (struct net_device
*dev
, u32 stringset
, u8
*buf
)
1528 switch (stringset
) {
1530 memcpy(buf
, ðtool_stats_keys
, sizeof(ethtool_stats_keys
));
1538 static void cp_get_ethtool_stats (struct net_device
*dev
,
1539 struct ethtool_stats
*estats
, u64
*tmp_stats
)
1541 struct cp_private
*cp
= netdev_priv(dev
);
1542 struct cp_dma_stats
*nic_stats
;
1546 nic_stats
= dma_alloc_coherent(&cp
->pdev
->dev
, sizeof(*nic_stats
),
1551 /* begin NIC statistics dump */
1552 cpw32(StatsAddr
+ 4, (u64
)dma
>> 32);
1553 cpw32(StatsAddr
, ((u64
)dma
& DMA_BIT_MASK(32)) | DumpStats
);
1556 for (i
= 0; i
< 1000; i
++) {
1557 if ((cpr32(StatsAddr
) & DumpStats
) == 0)
1561 cpw32(StatsAddr
, 0);
1562 cpw32(StatsAddr
+ 4, 0);
1566 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->tx_ok
);
1567 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->rx_ok
);
1568 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->tx_err
);
1569 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->rx_err
);
1570 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->rx_fifo
);
1571 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->frame_align
);
1572 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->tx_ok_1col
);
1573 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->tx_ok_mcol
);
1574 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->rx_ok_phys
);
1575 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->rx_ok_bcast
);
1576 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->rx_ok_mcast
);
1577 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->tx_abort
);
1578 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->tx_underrun
);
1579 tmp_stats
[i
++] = cp
->cp_stats
.rx_frags
;
1580 BUG_ON(i
!= CP_NUM_STATS
);
1582 dma_free_coherent(&cp
->pdev
->dev
, sizeof(*nic_stats
), nic_stats
, dma
);
1585 static const struct ethtool_ops cp_ethtool_ops
= {
1586 .get_drvinfo
= cp_get_drvinfo
,
1587 .get_regs_len
= cp_get_regs_len
,
1588 .get_sset_count
= cp_get_sset_count
,
1589 .nway_reset
= cp_nway_reset
,
1590 .get_link
= ethtool_op_get_link
,
1591 .get_msglevel
= cp_get_msglevel
,
1592 .set_msglevel
= cp_set_msglevel
,
1593 .get_regs
= cp_get_regs
,
1594 .get_wol
= cp_get_wol
,
1595 .set_wol
= cp_set_wol
,
1596 .get_strings
= cp_get_strings
,
1597 .get_ethtool_stats
= cp_get_ethtool_stats
,
1598 .get_eeprom_len
= cp_get_eeprom_len
,
1599 .get_eeprom
= cp_get_eeprom
,
1600 .set_eeprom
= cp_set_eeprom
,
1601 .get_ringparam
= cp_get_ringparam
,
1602 .get_link_ksettings
= cp_get_link_ksettings
,
1603 .set_link_ksettings
= cp_set_link_ksettings
,
1606 static int cp_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1608 struct cp_private
*cp
= netdev_priv(dev
);
1610 unsigned long flags
;
1612 if (!netif_running(dev
))
1615 spin_lock_irqsave(&cp
->lock
, flags
);
1616 rc
= generic_mii_ioctl(&cp
->mii_if
, if_mii(rq
), cmd
, NULL
);
1617 spin_unlock_irqrestore(&cp
->lock
, flags
);
1621 static int cp_set_mac_address(struct net_device
*dev
, void *p
)
1623 struct cp_private
*cp
= netdev_priv(dev
);
1624 struct sockaddr
*addr
= p
;
1626 if (!is_valid_ether_addr(addr
->sa_data
))
1627 return -EADDRNOTAVAIL
;
1629 eth_hw_addr_set(dev
, addr
->sa_data
);
1631 spin_lock_irq(&cp
->lock
);
1633 cpw8_f(Cfg9346
, Cfg9346_Unlock
);
1634 cpw32_f(MAC0
+ 0, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 0)));
1635 cpw32_f(MAC0
+ 4, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 4)));
1636 cpw8_f(Cfg9346
, Cfg9346_Lock
);
1638 spin_unlock_irq(&cp
->lock
);
1643 /* Serial EEPROM section. */
1645 /* EEPROM_Ctrl bits. */
1646 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1647 #define EE_CS 0x08 /* EEPROM chip select. */
1648 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1649 #define EE_WRITE_0 0x00
1650 #define EE_WRITE_1 0x02
1651 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1652 #define EE_ENB (0x80 | EE_CS)
1654 /* Delay between EEPROM clock transitions.
1655 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1658 #define eeprom_delay() readb(ee_addr)
1660 /* The EEPROM commands include the alway-set leading bit. */
1661 #define EE_EXTEND_CMD (4)
1662 #define EE_WRITE_CMD (5)
1663 #define EE_READ_CMD (6)
1664 #define EE_ERASE_CMD (7)
1666 #define EE_EWDS_ADDR (0)
1667 #define EE_WRAL_ADDR (1)
1668 #define EE_ERAL_ADDR (2)
1669 #define EE_EWEN_ADDR (3)
1671 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1673 static void eeprom_cmd_start(void __iomem
*ee_addr
)
1675 writeb (EE_ENB
& ~EE_CS
, ee_addr
);
1676 writeb (EE_ENB
, ee_addr
);
1680 static void eeprom_cmd(void __iomem
*ee_addr
, int cmd
, int cmd_len
)
1684 /* Shift the command bits out. */
1685 for (i
= cmd_len
- 1; i
>= 0; i
--) {
1686 int dataval
= (cmd
& (1 << i
)) ? EE_DATA_WRITE
: 0;
1687 writeb (EE_ENB
| dataval
, ee_addr
);
1689 writeb (EE_ENB
| dataval
| EE_SHIFT_CLK
, ee_addr
);
1692 writeb (EE_ENB
, ee_addr
);
1696 static void eeprom_cmd_end(void __iomem
*ee_addr
)
1702 static void eeprom_extend_cmd(void __iomem
*ee_addr
, int extend_cmd
,
1705 int cmd
= (EE_EXTEND_CMD
<< addr_len
) | (extend_cmd
<< (addr_len
- 2));
1707 eeprom_cmd_start(ee_addr
);
1708 eeprom_cmd(ee_addr
, cmd
, 3 + addr_len
);
1709 eeprom_cmd_end(ee_addr
);
1712 static u16
read_eeprom (void __iomem
*ioaddr
, int location
, int addr_len
)
1716 void __iomem
*ee_addr
= ioaddr
+ Cfg9346
;
1717 int read_cmd
= location
| (EE_READ_CMD
<< addr_len
);
1719 eeprom_cmd_start(ee_addr
);
1720 eeprom_cmd(ee_addr
, read_cmd
, 3 + addr_len
);
1722 for (i
= 16; i
> 0; i
--) {
1723 writeb (EE_ENB
| EE_SHIFT_CLK
, ee_addr
);
1726 (retval
<< 1) | ((readb (ee_addr
) & EE_DATA_READ
) ? 1 :
1728 writeb (EE_ENB
, ee_addr
);
1732 eeprom_cmd_end(ee_addr
);
1737 static void write_eeprom(void __iomem
*ioaddr
, int location
, u16 val
,
1741 void __iomem
*ee_addr
= ioaddr
+ Cfg9346
;
1742 int write_cmd
= location
| (EE_WRITE_CMD
<< addr_len
);
1744 eeprom_extend_cmd(ee_addr
, EE_EWEN_ADDR
, addr_len
);
1746 eeprom_cmd_start(ee_addr
);
1747 eeprom_cmd(ee_addr
, write_cmd
, 3 + addr_len
);
1748 eeprom_cmd(ee_addr
, val
, 16);
1749 eeprom_cmd_end(ee_addr
);
1751 eeprom_cmd_start(ee_addr
);
1752 for (i
= 0; i
< 20000; i
++)
1753 if (readb(ee_addr
) & EE_DATA_READ
)
1755 eeprom_cmd_end(ee_addr
);
1757 eeprom_extend_cmd(ee_addr
, EE_EWDS_ADDR
, addr_len
);
1760 static int cp_get_eeprom_len(struct net_device
*dev
)
1762 struct cp_private
*cp
= netdev_priv(dev
);
1765 spin_lock_irq(&cp
->lock
);
1766 size
= read_eeprom(cp
->regs
, 0, 8) == 0x8129 ? 256 : 128;
1767 spin_unlock_irq(&cp
->lock
);
1772 static int cp_get_eeprom(struct net_device
*dev
,
1773 struct ethtool_eeprom
*eeprom
, u8
*data
)
1775 struct cp_private
*cp
= netdev_priv(dev
);
1776 unsigned int addr_len
;
1778 u32 offset
= eeprom
->offset
>> 1;
1779 u32 len
= eeprom
->len
;
1782 eeprom
->magic
= CP_EEPROM_MAGIC
;
1784 spin_lock_irq(&cp
->lock
);
1786 addr_len
= read_eeprom(cp
->regs
, 0, 8) == 0x8129 ? 8 : 6;
1788 if (eeprom
->offset
& 1) {
1789 val
= read_eeprom(cp
->regs
, offset
, addr_len
);
1790 data
[i
++] = (u8
)(val
>> 8);
1794 while (i
< len
- 1) {
1795 val
= read_eeprom(cp
->regs
, offset
, addr_len
);
1796 data
[i
++] = (u8
)val
;
1797 data
[i
++] = (u8
)(val
>> 8);
1802 val
= read_eeprom(cp
->regs
, offset
, addr_len
);
1806 spin_unlock_irq(&cp
->lock
);
1810 static int cp_set_eeprom(struct net_device
*dev
,
1811 struct ethtool_eeprom
*eeprom
, u8
*data
)
1813 struct cp_private
*cp
= netdev_priv(dev
);
1814 unsigned int addr_len
;
1816 u32 offset
= eeprom
->offset
>> 1;
1817 u32 len
= eeprom
->len
;
1820 if (eeprom
->magic
!= CP_EEPROM_MAGIC
)
1823 spin_lock_irq(&cp
->lock
);
1825 addr_len
= read_eeprom(cp
->regs
, 0, 8) == 0x8129 ? 8 : 6;
1827 if (eeprom
->offset
& 1) {
1828 val
= read_eeprom(cp
->regs
, offset
, addr_len
) & 0xff;
1829 val
|= (u16
)data
[i
++] << 8;
1830 write_eeprom(cp
->regs
, offset
, val
, addr_len
);
1834 while (i
< len
- 1) {
1835 val
= (u16
)data
[i
++];
1836 val
|= (u16
)data
[i
++] << 8;
1837 write_eeprom(cp
->regs
, offset
, val
, addr_len
);
1842 val
= read_eeprom(cp
->regs
, offset
, addr_len
) & 0xff00;
1843 val
|= (u16
)data
[i
];
1844 write_eeprom(cp
->regs
, offset
, val
, addr_len
);
1847 spin_unlock_irq(&cp
->lock
);
1851 /* Put the board into D3cold state and wait for WakeUp signal */
1852 static void cp_set_d3_state (struct cp_private
*cp
)
1854 pci_enable_wake(cp
->pdev
, PCI_D0
, 1); /* Enable PME# generation */
1855 pci_set_power_state (cp
->pdev
, PCI_D3hot
);
1858 static netdev_features_t
cp_features_check(struct sk_buff
*skb
,
1859 struct net_device
*dev
,
1860 netdev_features_t features
)
1862 if (skb_shinfo(skb
)->gso_size
> MSSMask
)
1863 features
&= ~NETIF_F_TSO
;
1865 return vlan_features_check(skb
, features
);
1867 static const struct net_device_ops cp_netdev_ops
= {
1868 .ndo_open
= cp_open
,
1869 .ndo_stop
= cp_close
,
1870 .ndo_validate_addr
= eth_validate_addr
,
1871 .ndo_set_mac_address
= cp_set_mac_address
,
1872 .ndo_set_rx_mode
= cp_set_rx_mode
,
1873 .ndo_get_stats
= cp_get_stats
,
1874 .ndo_eth_ioctl
= cp_ioctl
,
1875 .ndo_start_xmit
= cp_start_xmit
,
1876 .ndo_tx_timeout
= cp_tx_timeout
,
1877 .ndo_set_features
= cp_set_features
,
1878 .ndo_change_mtu
= cp_change_mtu
,
1879 .ndo_features_check
= cp_features_check
,
1881 #ifdef CONFIG_NET_POLL_CONTROLLER
1882 .ndo_poll_controller
= cp_poll_controller
,
1886 static int cp_init_one (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
1888 struct net_device
*dev
;
1889 struct cp_private
*cp
;
1892 resource_size_t pciaddr
;
1893 unsigned int addr_len
, i
, pci_using_dac
;
1894 __le16 addr
[ETH_ALEN
/ 2];
1896 pr_info_once("%s", version
);
1898 if (pdev
->vendor
== PCI_VENDOR_ID_REALTEK
&&
1899 pdev
->device
== PCI_DEVICE_ID_REALTEK_8139
&& pdev
->revision
< 0x20) {
1900 dev_info(&pdev
->dev
,
1901 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1902 pdev
->vendor
, pdev
->device
, pdev
->revision
);
1906 dev
= alloc_etherdev(sizeof(struct cp_private
));
1909 SET_NETDEV_DEV(dev
, &pdev
->dev
);
1911 cp
= netdev_priv(dev
);
1914 cp
->msg_enable
= (debug
< 0 ? CP_DEF_MSG_ENABLE
: debug
);
1915 spin_lock_init (&cp
->lock
);
1916 cp
->mii_if
.dev
= dev
;
1917 cp
->mii_if
.mdio_read
= mdio_read
;
1918 cp
->mii_if
.mdio_write
= mdio_write
;
1919 cp
->mii_if
.phy_id
= CP_INTERNAL_PHY
;
1920 cp
->mii_if
.phy_id_mask
= 0x1f;
1921 cp
->mii_if
.reg_num_mask
= 0x1f;
1922 cp_set_rxbufsize(cp
);
1924 rc
= pci_enable_device(pdev
);
1928 rc
= pci_set_mwi(pdev
);
1930 goto err_out_disable
;
1932 rc
= pci_request_regions(pdev
, DRV_NAME
);
1936 pciaddr
= pci_resource_start(pdev
, 1);
1939 dev_err(&pdev
->dev
, "no MMIO resource\n");
1942 if (pci_resource_len(pdev
, 1) < CP_REGS_SIZE
) {
1944 dev_err(&pdev
->dev
, "MMIO resource (%llx) too small\n",
1945 (unsigned long long)pci_resource_len(pdev
, 1));
1949 /* Configure DMA attributes. */
1950 if ((sizeof(dma_addr_t
) > 4) &&
1951 !dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64))) {
1956 rc
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
1959 "No usable DMA configuration, aborting\n");
1964 cp
->cpcmd
= (pci_using_dac
? PCIDAC
: 0) |
1965 PCIMulRW
| RxChkSum
| CpRxOn
| CpTxOn
;
1967 dev
->features
|= NETIF_F_RXCSUM
;
1968 dev
->hw_features
|= NETIF_F_RXCSUM
;
1970 regs
= ioremap(pciaddr
, CP_REGS_SIZE
);
1973 dev_err(&pdev
->dev
, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1974 (unsigned long long)pci_resource_len(pdev
, 1),
1975 (unsigned long long)pciaddr
);
1982 /* read MAC address from EEPROM */
1983 addr_len
= read_eeprom (regs
, 0, 8) == 0x8129 ? 8 : 6;
1984 for (i
= 0; i
< 3; i
++)
1985 addr
[i
] = cpu_to_le16(read_eeprom (regs
, i
+ 7, addr_len
));
1986 eth_hw_addr_set(dev
, (u8
*)addr
);
1988 dev
->netdev_ops
= &cp_netdev_ops
;
1989 netif_napi_add_weight(dev
, &cp
->napi
, cp_rx_poll
, 16);
1990 dev
->ethtool_ops
= &cp_ethtool_ops
;
1991 dev
->watchdog_timeo
= TX_TIMEOUT
;
1993 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
|
1994 NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
1997 dev
->features
|= NETIF_F_HIGHDMA
;
1999 dev
->hw_features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
|
2000 NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
2001 dev
->vlan_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
|
2004 /* MTU range: 60 - 4096 */
2005 dev
->min_mtu
= CP_MIN_MTU
;
2006 dev
->max_mtu
= CP_MAX_MTU
;
2008 rc
= register_netdev(dev
);
2012 netdev_info(dev
, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2013 regs
, dev
->dev_addr
, pdev
->irq
);
2015 pci_set_drvdata(pdev
, dev
);
2017 /* enable busmastering and memory-write-invalidate */
2018 pci_set_master(pdev
);
2020 if (cp
->wol_enabled
)
2021 cp_set_d3_state (cp
);
2028 pci_release_regions(pdev
);
2030 pci_clear_mwi(pdev
);
2032 pci_disable_device(pdev
);
2038 static void cp_remove_one (struct pci_dev
*pdev
)
2040 struct net_device
*dev
= pci_get_drvdata(pdev
);
2041 struct cp_private
*cp
= netdev_priv(dev
);
2043 unregister_netdev(dev
);
2045 if (cp
->wol_enabled
)
2046 pci_set_power_state (pdev
, PCI_D0
);
2047 pci_release_regions(pdev
);
2048 pci_clear_mwi(pdev
);
2049 pci_disable_device(pdev
);
2053 static int __maybe_unused
cp_suspend(struct device
*device
)
2055 struct net_device
*dev
= dev_get_drvdata(device
);
2056 struct cp_private
*cp
= netdev_priv(dev
);
2057 unsigned long flags
;
2059 if (!netif_running(dev
))
2062 netif_device_detach (dev
);
2063 netif_stop_queue (dev
);
2065 spin_lock_irqsave (&cp
->lock
, flags
);
2067 /* Disable Rx and Tx */
2068 cpw16 (IntrMask
, 0);
2069 cpw8 (Cmd
, cpr8 (Cmd
) & (~RxOn
| ~TxOn
));
2071 spin_unlock_irqrestore (&cp
->lock
, flags
);
2073 device_set_wakeup_enable(device
, cp
->wol_enabled
);
2078 static int __maybe_unused
cp_resume(struct device
*device
)
2080 struct net_device
*dev
= dev_get_drvdata(device
);
2081 struct cp_private
*cp
= netdev_priv(dev
);
2082 unsigned long flags
;
2084 if (!netif_running(dev
))
2087 netif_device_attach (dev
);
2089 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2090 cp_init_rings_index (cp
);
2093 netif_start_queue (dev
);
2095 spin_lock_irqsave (&cp
->lock
, flags
);
2097 mii_check_media(&cp
->mii_if
, netif_msg_link(cp
), false);
2099 spin_unlock_irqrestore (&cp
->lock
, flags
);
2104 static const struct pci_device_id cp_pci_tbl
[] = {
2105 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK
, PCI_DEVICE_ID_REALTEK_8139
), },
2106 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH
, PCI_DEVICE_ID_TTTECH_MC322
), },
2109 MODULE_DEVICE_TABLE(pci
, cp_pci_tbl
);
2111 static SIMPLE_DEV_PM_OPS(cp_pm_ops
, cp_suspend
, cp_resume
);
2113 static struct pci_driver cp_driver
= {
2115 .id_table
= cp_pci_tbl
,
2116 .probe
= cp_init_one
,
2117 .remove
= cp_remove_one
,
2118 .driver
.pm
= &cp_pm_ops
,
2121 module_pci_driver(cp_driver
);