Linux 6.13
[linux.git] / drivers / net / ipa / gsi.c
blob4c3227e77898cf281d7e8733268776657aec7795
1 // SPDX-License-Identifier: GPL-2.0
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2024 Linaro Ltd.
5 */
7 #include <linux/bits.h>
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/interrupt.h>
11 #include <linux/mutex.h>
12 #include <linux/netdevice.h>
13 #include <linux/platform_device.h>
14 #include <linux/types.h>
16 #include "gsi.h"
17 #include "gsi_private.h"
18 #include "gsi_reg.h"
19 #include "gsi_trans.h"
20 #include "ipa_data.h"
21 #include "ipa_gsi.h"
22 #include "ipa_version.h"
23 #include "reg.h"
25 /**
26 * DOC: The IPA Generic Software Interface
28 * The generic software interface (GSI) is an integral component of the IPA,
29 * providing a well-defined communication layer between the AP subsystem
30 * and the IPA core. The modem uses the GSI layer as well.
32 * -------- ---------
33 * | | | |
34 * | AP +<---. .----+ Modem |
35 * | +--. | | .->+ |
36 * | | | | | | | |
37 * -------- | | | | ---------
38 * v | v |
39 * --+-+---+-+--
40 * | GSI |
41 * |-----------|
42 * | |
43 * | IPA |
44 * | |
45 * -------------
47 * In the above diagram, the AP and Modem represent "execution environments"
48 * (EEs), which are independent operating environments that use the IPA for
49 * data transfer.
51 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
52 * of data to or from the IPA. A channel is implemented as a ring buffer,
53 * with a DRAM-resident array of "transfer elements" (TREs) available to
54 * describe transfers to or from other EEs through the IPA. A transfer
55 * element can also contain an immediate command, requesting the IPA perform
56 * actions other than data transfer.
58 * Each TRE refers to a block of data--also located in DRAM. After writing
59 * one or more TREs to a channel, the writer (either the IPA or an EE) writes
60 * a doorbell register to inform the receiving side how many elements have
61 * been written.
63 * Each channel has a GSI "event ring" associated with it. An event ring
64 * is implemented very much like a channel ring, but is always directed from
65 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
66 * events by adding an entry to the event ring associated with the channel.
67 * The GSI then writes its doorbell for the event ring, causing the target
68 * EE to be interrupted. Each entry in an event ring contains a pointer
69 * to the channel TRE whose completion the event represents.
71 * Each TRE in a channel ring has a set of flags. One flag indicates whether
72 * the completion of the transfer operation generates an entry (and possibly
73 * an interrupt) in the channel's event ring. Other flags allow transfer
74 * elements to be chained together, forming a single logical transaction.
75 * TRE flags are used to control whether and when interrupts are generated
76 * to signal completion of channel transfers.
78 * Elements in channel and event rings are completed (or consumed) strictly
79 * in order. Completion of one entry implies the completion of all preceding
80 * entries. A single completion interrupt can therefore communicate the
81 * completion of many transfers.
83 * Note that all GSI registers are little-endian, which is the assumed
84 * endianness of I/O space accesses. The accessor functions perform byte
85 * swapping if needed (i.e., for a big endian CPU).
88 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
89 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
91 #define GSI_CMD_TIMEOUT 50 /* milliseconds */
93 #define GSI_CHANNEL_STOP_RETRIES 10
94 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10
95 #define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */
97 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
100 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
102 /* An entry in an event ring */
103 struct gsi_event {
104 __le64 xfer_ptr;
105 __le16 len;
106 u8 reserved1;
107 u8 code;
108 __le16 reserved2;
109 u8 type;
110 u8 chid;
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114 * @max_outstanding_tre:
115 * Defines the maximum number of TREs allowed in a single transaction
116 * on a channel (in bytes). This determines the amount of prefetch
117 * performed by the hardware. We configure this to equal the size of
118 * the TLV FIFO for the channel.
119 * @outstanding_threshold:
120 * Defines the threshold (in bytes) determining when the sequencer
121 * should update the channel doorbell. We configure this to equal
122 * the size of two TREs.
124 struct gsi_channel_scratch_gpi {
125 u64 reserved1;
126 u16 reserved2;
127 u16 max_outstanding_tre;
128 u16 reserved3;
129 u16 outstanding_threshold;
132 /** gsi_channel_scratch - channel scratch configuration area
134 * The exact interpretation of this register is protocol-specific.
135 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
137 union gsi_channel_scratch {
138 struct gsi_channel_scratch_gpi gpi;
139 struct {
140 u32 word1;
141 u32 word2;
142 u32 word3;
143 u32 word4;
144 } data;
147 /* Check things that can be validated at build time. */
148 static void gsi_validate_build(void)
150 /* This is used as a divisor */
151 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
153 /* Code assumes the size of channel and event ring element are
154 * the same (and fixed). Make sure the size of an event ring
155 * element is what's expected.
157 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
159 /* Hardware requires a 2^n ring size. We ensure the number of
160 * elements in an event ring is a power of 2 elsewhere; this
161 * ensure the elements themselves meet the requirement.
163 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
166 /* Return the channel id associated with a given channel */
167 static u32 gsi_channel_id(struct gsi_channel *channel)
169 return channel - &channel->gsi->channel[0];
172 /* An initialized channel has a non-null GSI pointer */
173 static bool gsi_channel_initialized(struct gsi_channel *channel)
175 return !!channel->gsi;
178 /* Encode the channel protocol for the CH_C_CNTXT_0 register */
179 static u32 ch_c_cntxt_0_type_encode(enum ipa_version version,
180 const struct reg *reg,
181 enum gsi_channel_type type)
183 u32 val;
185 val = reg_encode(reg, CHTYPE_PROTOCOL, type);
186 if (version < IPA_VERSION_4_5 || version >= IPA_VERSION_5_0)
187 return val;
189 type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL));
191 return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type);
194 /* Update the GSI IRQ type register with the cached value */
195 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
197 const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK);
199 gsi->type_enabled_bitmap = val;
200 iowrite32(val, gsi->virt + reg_offset(reg));
203 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
205 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id);
208 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
210 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id);
213 /* Event ring commands are performed one at a time. Their completion
214 * is signaled by the event ring control GSI interrupt type, which is
215 * only enabled when we issue an event ring command. Only the event
216 * ring being operated on has this interrupt enabled.
218 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
220 u32 val = BIT(evt_ring_id);
221 const struct reg *reg;
223 /* There's a small chance that a previous command completed
224 * after the interrupt was disabled, so make sure we have no
225 * pending interrupts before we enable them.
227 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
228 iowrite32(~0, gsi->virt + reg_offset(reg));
230 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
231 iowrite32(val, gsi->virt + reg_offset(reg));
232 gsi_irq_type_enable(gsi, GSI_EV_CTRL);
235 /* Disable event ring control interrupts */
236 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
238 const struct reg *reg;
240 gsi_irq_type_disable(gsi, GSI_EV_CTRL);
242 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
243 iowrite32(0, gsi->virt + reg_offset(reg));
246 /* Channel commands are performed one at a time. Their completion is
247 * signaled by the channel control GSI interrupt type, which is only
248 * enabled when we issue a channel command. Only the channel being
249 * operated on has this interrupt enabled.
251 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
253 u32 val = BIT(channel_id);
254 const struct reg *reg;
256 /* There's a small chance that a previous command completed
257 * after the interrupt was disabled, so make sure we have no
258 * pending interrupts before we enable them.
260 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
261 iowrite32(~0, gsi->virt + reg_offset(reg));
263 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
264 iowrite32(val, gsi->virt + reg_offset(reg));
266 gsi_irq_type_enable(gsi, GSI_CH_CTRL);
269 /* Disable channel control interrupts */
270 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
272 const struct reg *reg;
274 gsi_irq_type_disable(gsi, GSI_CH_CTRL);
276 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
277 iowrite32(0, gsi->virt + reg_offset(reg));
280 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
282 bool enable_ieob = !gsi->ieob_enabled_bitmap;
283 const struct reg *reg;
284 u32 val;
286 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
288 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
289 val = gsi->ieob_enabled_bitmap;
290 iowrite32(val, gsi->virt + reg_offset(reg));
292 /* Enable the interrupt type if this is the first channel enabled */
293 if (enable_ieob)
294 gsi_irq_type_enable(gsi, GSI_IEOB);
297 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
299 const struct reg *reg;
300 u32 val;
302 gsi->ieob_enabled_bitmap &= ~event_mask;
304 /* Disable the interrupt type if this was the last enabled channel */
305 if (!gsi->ieob_enabled_bitmap)
306 gsi_irq_type_disable(gsi, GSI_IEOB);
308 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
309 val = gsi->ieob_enabled_bitmap;
310 iowrite32(val, gsi->virt + reg_offset(reg));
313 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
315 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
318 /* Enable all GSI_interrupt types */
319 static void gsi_irq_enable(struct gsi *gsi)
321 const struct reg *reg;
322 u32 val;
324 /* Global interrupts include hardware error reports. Enable
325 * that so we can at least report the error should it occur.
327 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
328 iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
330 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE);
332 /* General GSI interrupts are reported to all EEs; if they occur
333 * they are unrecoverable (without reset). A breakpoint interrupt
334 * also exists, but we don't support that. We want to be notified
335 * of errors so we can report them, even if they can't be handled.
337 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
338 val = BUS_ERROR;
339 val |= CMD_FIFO_OVRFLOW;
340 val |= MCS_STACK_OVRFLOW;
341 iowrite32(val, gsi->virt + reg_offset(reg));
343 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL);
346 /* Disable all GSI interrupt types */
347 static void gsi_irq_disable(struct gsi *gsi)
349 const struct reg *reg;
351 gsi_irq_type_update(gsi, 0);
353 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */
354 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
355 iowrite32(0, gsi->virt + reg_offset(reg));
357 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
358 iowrite32(0, gsi->virt + reg_offset(reg));
361 /* Return the virtual address associated with a ring index */
362 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
364 /* Note: index *must* be used modulo the ring count here */
365 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
368 /* Return the 32-bit DMA address associated with a ring index */
369 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
371 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
374 /* Return the ring index of a 32-bit ring offset */
375 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
377 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
380 /* Issue a GSI command by writing a value to a register, then wait for
381 * completion to be signaled. Returns true if the command completes
382 * or false if it times out.
384 static bool gsi_command(struct gsi *gsi, u32 reg, u32 val)
386 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
387 struct completion *completion = &gsi->completion;
389 reinit_completion(completion);
391 iowrite32(val, gsi->virt + reg);
393 return !!wait_for_completion_timeout(completion, timeout);
396 /* Return the hardware's notion of the current state of an event ring */
397 static enum gsi_evt_ring_state
398 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
400 const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
401 u32 val;
403 val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id));
405 return reg_decode(reg, EV_CHSTATE, val);
408 /* Issue an event ring command and wait for it to complete */
409 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
410 enum gsi_evt_cmd_opcode opcode)
412 struct device *dev = gsi->dev;
413 const struct reg *reg;
414 bool timeout;
415 u32 val;
417 /* Enable the completion interrupt for the command */
418 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
420 reg = gsi_reg(gsi, EV_CH_CMD);
421 val = reg_encode(reg, EV_CHID, evt_ring_id);
422 val |= reg_encode(reg, EV_OPCODE, opcode);
424 timeout = !gsi_command(gsi, reg_offset(reg), val);
426 gsi_irq_ev_ctrl_disable(gsi);
428 if (!timeout)
429 return;
431 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
432 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
435 /* Allocate an event ring in NOT_ALLOCATED state */
436 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
438 enum gsi_evt_ring_state state;
440 /* Get initial event ring state */
441 state = gsi_evt_ring_state(gsi, evt_ring_id);
442 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
443 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
444 evt_ring_id, state);
445 return -EINVAL;
448 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
450 /* If successful the event ring state will have changed */
451 state = gsi_evt_ring_state(gsi, evt_ring_id);
452 if (state == GSI_EVT_RING_STATE_ALLOCATED)
453 return 0;
455 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
456 evt_ring_id, state);
458 return -EIO;
461 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
462 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
464 enum gsi_evt_ring_state state;
466 state = gsi_evt_ring_state(gsi, evt_ring_id);
467 if (state != GSI_EVT_RING_STATE_ALLOCATED &&
468 state != GSI_EVT_RING_STATE_ERROR) {
469 dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
470 evt_ring_id, state);
471 return;
474 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
476 /* If successful the event ring state will have changed */
477 state = gsi_evt_ring_state(gsi, evt_ring_id);
478 if (state == GSI_EVT_RING_STATE_ALLOCATED)
479 return;
481 dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
482 evt_ring_id, state);
485 /* Issue a hardware de-allocation request for an allocated event ring */
486 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
488 enum gsi_evt_ring_state state;
490 state = gsi_evt_ring_state(gsi, evt_ring_id);
491 if (state != GSI_EVT_RING_STATE_ALLOCATED) {
492 dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
493 evt_ring_id, state);
494 return;
497 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
499 /* If successful the event ring state will have changed */
500 state = gsi_evt_ring_state(gsi, evt_ring_id);
501 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
502 return;
504 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
505 evt_ring_id, state);
508 /* Fetch the current state of a channel from hardware */
509 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
511 const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0);
512 u32 channel_id = gsi_channel_id(channel);
513 struct gsi *gsi = channel->gsi;
514 void __iomem *virt = gsi->virt;
515 u32 val;
517 reg = gsi_reg(gsi, CH_C_CNTXT_0);
518 val = ioread32(virt + reg_n_offset(reg, channel_id));
520 return reg_decode(reg, CHSTATE, val);
523 /* Issue a channel command and wait for it to complete */
524 static void
525 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
527 u32 channel_id = gsi_channel_id(channel);
528 struct gsi *gsi = channel->gsi;
529 struct device *dev = gsi->dev;
530 const struct reg *reg;
531 bool timeout;
532 u32 val;
534 /* Enable the completion interrupt for the command */
535 gsi_irq_ch_ctrl_enable(gsi, channel_id);
537 reg = gsi_reg(gsi, CH_CMD);
538 val = reg_encode(reg, CH_CHID, channel_id);
539 val |= reg_encode(reg, CH_OPCODE, opcode);
541 timeout = !gsi_command(gsi, reg_offset(reg), val);
543 gsi_irq_ch_ctrl_disable(gsi);
545 if (!timeout)
546 return;
548 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
549 opcode, channel_id, gsi_channel_state(channel));
552 /* Allocate GSI channel in NOT_ALLOCATED state */
553 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
555 struct gsi_channel *channel = &gsi->channel[channel_id];
556 struct device *dev = gsi->dev;
557 enum gsi_channel_state state;
559 /* Get initial channel state */
560 state = gsi_channel_state(channel);
561 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
562 dev_err(dev, "channel %u bad state %u before alloc\n",
563 channel_id, state);
564 return -EINVAL;
567 gsi_channel_command(channel, GSI_CH_ALLOCATE);
569 /* If successful the channel state will have changed */
570 state = gsi_channel_state(channel);
571 if (state == GSI_CHANNEL_STATE_ALLOCATED)
572 return 0;
574 dev_err(dev, "channel %u bad state %u after alloc\n",
575 channel_id, state);
577 return -EIO;
580 /* Start an ALLOCATED channel */
581 static int gsi_channel_start_command(struct gsi_channel *channel)
583 struct device *dev = channel->gsi->dev;
584 enum gsi_channel_state state;
586 state = gsi_channel_state(channel);
587 if (state != GSI_CHANNEL_STATE_ALLOCATED &&
588 state != GSI_CHANNEL_STATE_STOPPED) {
589 dev_err(dev, "channel %u bad state %u before start\n",
590 gsi_channel_id(channel), state);
591 return -EINVAL;
594 gsi_channel_command(channel, GSI_CH_START);
596 /* If successful the channel state will have changed */
597 state = gsi_channel_state(channel);
598 if (state == GSI_CHANNEL_STATE_STARTED)
599 return 0;
601 dev_err(dev, "channel %u bad state %u after start\n",
602 gsi_channel_id(channel), state);
604 return -EIO;
607 /* Stop a GSI channel in STARTED state */
608 static int gsi_channel_stop_command(struct gsi_channel *channel)
610 struct device *dev = channel->gsi->dev;
611 enum gsi_channel_state state;
613 state = gsi_channel_state(channel);
615 /* Channel could have entered STOPPED state since last call
616 * if it timed out. If so, we're done.
618 if (state == GSI_CHANNEL_STATE_STOPPED)
619 return 0;
621 if (state != GSI_CHANNEL_STATE_STARTED &&
622 state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
623 dev_err(dev, "channel %u bad state %u before stop\n",
624 gsi_channel_id(channel), state);
625 return -EINVAL;
628 gsi_channel_command(channel, GSI_CH_STOP);
630 /* If successful the channel state will have changed */
631 state = gsi_channel_state(channel);
632 if (state == GSI_CHANNEL_STATE_STOPPED)
633 return 0;
635 /* We may have to try again if stop is in progress */
636 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
637 return -EAGAIN;
639 dev_err(dev, "channel %u bad state %u after stop\n",
640 gsi_channel_id(channel), state);
642 return -EIO;
645 /* Reset a GSI channel in ALLOCATED or ERROR state. */
646 static void gsi_channel_reset_command(struct gsi_channel *channel)
648 struct device *dev = channel->gsi->dev;
649 enum gsi_channel_state state;
651 /* A short delay is required before a RESET command */
652 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
654 state = gsi_channel_state(channel);
655 if (state != GSI_CHANNEL_STATE_STOPPED &&
656 state != GSI_CHANNEL_STATE_ERROR) {
657 /* No need to reset a channel already in ALLOCATED state */
658 if (state != GSI_CHANNEL_STATE_ALLOCATED)
659 dev_err(dev, "channel %u bad state %u before reset\n",
660 gsi_channel_id(channel), state);
661 return;
664 gsi_channel_command(channel, GSI_CH_RESET);
666 /* If successful the channel state will have changed */
667 state = gsi_channel_state(channel);
668 if (state != GSI_CHANNEL_STATE_ALLOCATED)
669 dev_err(dev, "channel %u bad state %u after reset\n",
670 gsi_channel_id(channel), state);
673 /* Deallocate an ALLOCATED GSI channel */
674 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
676 struct gsi_channel *channel = &gsi->channel[channel_id];
677 struct device *dev = gsi->dev;
678 enum gsi_channel_state state;
680 state = gsi_channel_state(channel);
681 if (state != GSI_CHANNEL_STATE_ALLOCATED) {
682 dev_err(dev, "channel %u bad state %u before dealloc\n",
683 channel_id, state);
684 return;
687 gsi_channel_command(channel, GSI_CH_DE_ALLOC);
689 /* If successful the channel state will have changed */
690 state = gsi_channel_state(channel);
692 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
693 dev_err(dev, "channel %u bad state %u after dealloc\n",
694 channel_id, state);
697 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
698 * The index argument (modulo the ring count) is the first unfilled entry, so
699 * we supply one less than that with the doorbell. Update the event ring
700 * index field with the value provided.
702 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
704 const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0);
705 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
706 u32 val;
708 ring->index = index; /* Next unused entry */
710 /* Note: index *must* be used modulo the ring count here */
711 val = gsi_ring_addr(ring, (index - 1) % ring->count);
712 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
715 /* Program an event ring for use */
716 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
718 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
719 struct gsi_ring *ring = &evt_ring->ring;
720 const struct reg *reg;
721 u32 val;
723 reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
724 /* We program all event rings as GPI type/protocol */
725 val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI);
726 /* EV_EE field is 0 (GSI_EE_AP) */
727 val |= reg_bit(reg, EV_INTYPE);
728 val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
729 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
731 reg = gsi_reg(gsi, EV_CH_E_CNTXT_1);
732 val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE);
733 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
735 /* The context 2 and 3 registers store the low-order and
736 * high-order 32 bits of the address of the event ring,
737 * respectively.
739 reg = gsi_reg(gsi, EV_CH_E_CNTXT_2);
740 val = lower_32_bits(ring->addr);
741 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
743 reg = gsi_reg(gsi, EV_CH_E_CNTXT_3);
744 val = upper_32_bits(ring->addr);
745 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
747 /* Enable interrupt moderation by setting the moderation delay */
748 reg = gsi_reg(gsi, EV_CH_E_CNTXT_8);
749 val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT);
750 val |= reg_encode(reg, EV_MODC, 1); /* comes from channel */
751 /* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */
752 iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
754 /* No MSI write data, and MSI high and low address is 0 */
755 reg = gsi_reg(gsi, EV_CH_E_CNTXT_9);
756 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
758 reg = gsi_reg(gsi, EV_CH_E_CNTXT_10);
759 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
761 reg = gsi_reg(gsi, EV_CH_E_CNTXT_11);
762 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
764 /* We don't need to get event read pointer updates */
765 reg = gsi_reg(gsi, EV_CH_E_CNTXT_12);
766 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
768 reg = gsi_reg(gsi, EV_CH_E_CNTXT_13);
769 iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
771 /* Finally, tell the hardware our "last processed" event (arbitrary) */
772 gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index);
775 /* Find the transaction whose completion indicates a channel is quiesced */
776 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
778 struct gsi_trans_info *trans_info = &channel->trans_info;
779 u32 pending_id = trans_info->pending_id;
780 struct gsi_trans *trans;
781 u16 trans_id;
783 if (channel->toward_ipa && pending_id != trans_info->free_id) {
784 /* There is a small chance a TX transaction got allocated
785 * just before we disabled transmits, so check for that.
786 * The last allocated, committed, or pending transaction
787 * precedes the first free transaction.
789 trans_id = trans_info->free_id - 1;
790 } else if (trans_info->polled_id != pending_id) {
791 /* Otherwise (TX or RX) we want to wait for anything that
792 * has completed, or has been polled but not released yet.
794 * The last completed or polled transaction precedes the
795 * first pending transaction.
797 trans_id = pending_id - 1;
798 } else {
799 return NULL;
802 /* Caller will wait for this, so take a reference */
803 trans = &trans_info->trans[trans_id % channel->tre_count];
804 refcount_inc(&trans->refcount);
806 return trans;
809 /* Wait for transaction activity on a channel to complete */
810 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
812 struct gsi_trans *trans;
814 /* Get the last transaction, and wait for it to complete */
815 trans = gsi_channel_trans_last(channel);
816 if (trans) {
817 wait_for_completion(&trans->completion);
818 gsi_trans_free(trans);
822 /* Program a channel for use; there is no gsi_channel_deprogram() */
823 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
825 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
826 u32 channel_id = gsi_channel_id(channel);
827 union gsi_channel_scratch scr = { };
828 struct gsi_channel_scratch_gpi *gpi;
829 struct gsi *gsi = channel->gsi;
830 const struct reg *reg;
831 u32 wrr_weight = 0;
832 u32 offset;
833 u32 val;
835 reg = gsi_reg(gsi, CH_C_CNTXT_0);
837 /* We program all channels as GPI type/protocol */
838 val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI);
839 if (channel->toward_ipa)
840 val |= reg_bit(reg, CHTYPE_DIR);
841 if (gsi->version < IPA_VERSION_5_0)
842 val |= reg_encode(reg, ERINDEX, channel->evt_ring_id);
843 val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
844 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
846 reg = gsi_reg(gsi, CH_C_CNTXT_1);
847 val = reg_encode(reg, CH_R_LENGTH, size);
848 if (gsi->version >= IPA_VERSION_5_0)
849 val |= reg_encode(reg, CH_ERINDEX, channel->evt_ring_id);
850 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
852 /* The context 2 and 3 registers store the low-order and
853 * high-order 32 bits of the address of the channel ring,
854 * respectively.
856 reg = gsi_reg(gsi, CH_C_CNTXT_2);
857 val = lower_32_bits(channel->tre_ring.addr);
858 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
860 reg = gsi_reg(gsi, CH_C_CNTXT_3);
861 val = upper_32_bits(channel->tre_ring.addr);
862 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
864 reg = gsi_reg(gsi, CH_C_QOS);
866 /* Command channel gets low weighted round-robin priority */
867 if (channel->command)
868 wrr_weight = reg_field_max(reg, WRR_WEIGHT);
869 val = reg_encode(reg, WRR_WEIGHT, wrr_weight);
871 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
873 /* No need to use the doorbell engine starting at IPA v4.0 */
874 if (gsi->version < IPA_VERSION_4_0 && doorbell)
875 val |= reg_bit(reg, USE_DB_ENG);
877 /* v4.0 introduces an escape buffer for prefetch. We use it
878 * on all but the AP command channel.
880 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
881 /* If not otherwise set, prefetch buffers are used */
882 if (gsi->version < IPA_VERSION_4_5)
883 val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY);
884 else
885 val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY);
887 /* All channels set DB_IN_BYTES */
888 if (gsi->version >= IPA_VERSION_4_9)
889 val |= reg_bit(reg, DB_IN_BYTES);
891 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
893 /* Now update the scratch registers for GPI protocol */
894 gpi = &scr.gpi;
895 gpi->max_outstanding_tre = channel->trans_tre_max *
896 GSI_RING_ELEMENT_SIZE;
897 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
899 reg = gsi_reg(gsi, CH_C_SCRATCH_0);
900 val = scr.data.word1;
901 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
903 reg = gsi_reg(gsi, CH_C_SCRATCH_1);
904 val = scr.data.word2;
905 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
907 reg = gsi_reg(gsi, CH_C_SCRATCH_2);
908 val = scr.data.word3;
909 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
911 /* We must preserve the upper 16 bits of the last scratch register.
912 * The next sequence assumes those bits remain unchanged between the
913 * read and the write.
915 reg = gsi_reg(gsi, CH_C_SCRATCH_3);
916 offset = reg_n_offset(reg, channel_id);
917 val = ioread32(gsi->virt + offset);
918 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
919 iowrite32(val, gsi->virt + offset);
921 /* All done! */
924 static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
926 struct gsi *gsi = channel->gsi;
927 int ret;
929 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
930 if (resume && gsi->version < IPA_VERSION_4_0)
931 return 0;
933 mutex_lock(&gsi->mutex);
935 ret = gsi_channel_start_command(channel);
937 mutex_unlock(&gsi->mutex);
939 return ret;
942 /* Start an allocated GSI channel */
943 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
945 struct gsi_channel *channel = &gsi->channel[channel_id];
946 int ret;
948 /* Enable NAPI and the completion interrupt */
949 napi_enable(&channel->napi);
950 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
952 ret = __gsi_channel_start(channel, false);
953 if (ret) {
954 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
955 napi_disable(&channel->napi);
958 return ret;
961 static int gsi_channel_stop_retry(struct gsi_channel *channel)
963 u32 retries = GSI_CHANNEL_STOP_RETRIES;
964 int ret;
966 do {
967 ret = gsi_channel_stop_command(channel);
968 if (ret != -EAGAIN)
969 break;
970 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
971 } while (retries--);
973 return ret;
976 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
978 struct gsi *gsi = channel->gsi;
979 int ret;
981 /* Wait for any underway transactions to complete before stopping. */
982 gsi_channel_trans_quiesce(channel);
984 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
985 if (suspend && gsi->version < IPA_VERSION_4_0)
986 return 0;
988 mutex_lock(&gsi->mutex);
990 ret = gsi_channel_stop_retry(channel);
992 mutex_unlock(&gsi->mutex);
994 return ret;
997 /* Stop a started channel */
998 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
1000 struct gsi_channel *channel = &gsi->channel[channel_id];
1001 int ret;
1003 ret = __gsi_channel_stop(channel, false);
1004 if (ret)
1005 return ret;
1007 /* Disable the completion interrupt and NAPI if successful */
1008 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
1009 napi_disable(&channel->napi);
1011 return 0;
1014 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
1015 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
1017 struct gsi_channel *channel = &gsi->channel[channel_id];
1019 mutex_lock(&gsi->mutex);
1021 gsi_channel_reset_command(channel);
1022 /* Due to a hardware quirk we may need to reset RX channels twice. */
1023 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
1024 gsi_channel_reset_command(channel);
1026 /* Hardware assumes this is 0 following reset */
1027 channel->tre_ring.index = 0;
1028 gsi_channel_program(channel, doorbell);
1029 gsi_channel_trans_cancel_pending(channel);
1031 mutex_unlock(&gsi->mutex);
1034 /* Stop a started channel for suspend */
1035 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
1037 struct gsi_channel *channel = &gsi->channel[channel_id];
1038 int ret;
1040 ret = __gsi_channel_stop(channel, true);
1041 if (ret)
1042 return ret;
1044 /* Ensure NAPI polling has finished. */
1045 napi_synchronize(&channel->napi);
1047 return 0;
1050 /* Resume a suspended channel (starting if stopped) */
1051 int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
1053 struct gsi_channel *channel = &gsi->channel[channel_id];
1055 return __gsi_channel_start(channel, true);
1058 /* Prevent all GSI interrupts while suspended */
1059 void gsi_suspend(struct gsi *gsi)
1061 disable_irq(gsi->irq);
1064 /* Allow all GSI interrupts again when resuming */
1065 void gsi_resume(struct gsi *gsi)
1067 enable_irq(gsi->irq);
1070 void gsi_trans_tx_committed(struct gsi_trans *trans)
1072 struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
1074 channel->trans_count++;
1075 channel->byte_count += trans->len;
1077 trans->trans_count = channel->trans_count;
1078 trans->byte_count = channel->byte_count;
1081 void gsi_trans_tx_queued(struct gsi_trans *trans)
1083 u32 channel_id = trans->channel_id;
1084 struct gsi *gsi = trans->gsi;
1085 struct gsi_channel *channel;
1086 u32 trans_count;
1087 u32 byte_count;
1089 channel = &gsi->channel[channel_id];
1091 byte_count = channel->byte_count - channel->queued_byte_count;
1092 trans_count = channel->trans_count - channel->queued_trans_count;
1093 channel->queued_byte_count = channel->byte_count;
1094 channel->queued_trans_count = channel->trans_count;
1096 ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count);
1100 * gsi_trans_tx_completed() - Report completed TX transactions
1101 * @trans: TX channel transaction that has completed
1103 * Report that a transaction on a TX channel has completed. At the time a
1104 * transaction is committed, we record *in the transaction* its channel's
1105 * committed transaction and byte counts. Transactions are completed in
1106 * order, and the difference between the channel's byte/transaction count
1107 * when the transaction was committed and when it completes tells us
1108 * exactly how much data has been transferred while the transaction was
1109 * pending.
1111 * We report this information to the network stack, which uses it to manage
1112 * the rate at which data is sent to hardware.
1114 static void gsi_trans_tx_completed(struct gsi_trans *trans)
1116 u32 channel_id = trans->channel_id;
1117 struct gsi *gsi = trans->gsi;
1118 struct gsi_channel *channel;
1119 u32 trans_count;
1120 u32 byte_count;
1122 channel = &gsi->channel[channel_id];
1123 trans_count = trans->trans_count - channel->compl_trans_count;
1124 byte_count = trans->byte_count - channel->compl_byte_count;
1126 channel->compl_trans_count += trans_count;
1127 channel->compl_byte_count += byte_count;
1129 ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count);
1132 /* Channel control interrupt handler */
1133 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1135 const struct reg *reg;
1136 u32 channel_mask;
1138 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ);
1139 channel_mask = ioread32(gsi->virt + reg_offset(reg));
1141 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
1142 iowrite32(channel_mask, gsi->virt + reg_offset(reg));
1144 while (channel_mask) {
1145 u32 channel_id = __ffs(channel_mask);
1147 channel_mask ^= BIT(channel_id);
1149 complete(&gsi->completion);
1153 /* Event ring control interrupt handler */
1154 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1156 const struct reg *reg;
1157 u32 event_mask;
1159 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ);
1160 event_mask = ioread32(gsi->virt + reg_offset(reg));
1162 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
1163 iowrite32(event_mask, gsi->virt + reg_offset(reg));
1165 while (event_mask) {
1166 u32 evt_ring_id = __ffs(event_mask);
1168 event_mask ^= BIT(evt_ring_id);
1170 complete(&gsi->completion);
1174 /* Global channel error interrupt handler */
1175 static void
1176 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1178 if (code == GSI_OUT_OF_RESOURCES) {
1179 dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1180 complete(&gsi->completion);
1181 return;
1184 /* Report, but otherwise ignore all other error codes */
1185 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1186 channel_id, err_ee, code);
1189 /* Global event error interrupt handler */
1190 static void
1191 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1193 if (code == GSI_OUT_OF_RESOURCES) {
1194 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1195 u32 channel_id = gsi_channel_id(evt_ring->channel);
1197 complete(&gsi->completion);
1198 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1199 channel_id);
1200 return;
1203 /* Report, but otherwise ignore all other error codes */
1204 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1205 evt_ring_id, err_ee, code);
1208 /* Global error interrupt handler */
1209 static void gsi_isr_glob_err(struct gsi *gsi)
1211 const struct reg *log_reg;
1212 const struct reg *clr_reg;
1213 enum gsi_err_type type;
1214 enum gsi_err_code code;
1215 u32 offset;
1216 u32 which;
1217 u32 val;
1218 u32 ee;
1220 /* Get the logged error, then reinitialize the log */
1221 log_reg = gsi_reg(gsi, ERROR_LOG);
1222 offset = reg_offset(log_reg);
1223 val = ioread32(gsi->virt + offset);
1224 iowrite32(0, gsi->virt + offset);
1226 clr_reg = gsi_reg(gsi, ERROR_LOG_CLR);
1227 iowrite32(~0, gsi->virt + reg_offset(clr_reg));
1229 /* Parse the error value */
1230 ee = reg_decode(log_reg, ERR_EE, val);
1231 type = reg_decode(log_reg, ERR_TYPE, val);
1232 which = reg_decode(log_reg, ERR_VIRT_IDX, val);
1233 code = reg_decode(log_reg, ERR_CODE, val);
1235 if (type == GSI_ERR_TYPE_CHAN)
1236 gsi_isr_glob_chan_err(gsi, ee, which, code);
1237 else if (type == GSI_ERR_TYPE_EVT)
1238 gsi_isr_glob_evt_err(gsi, ee, which, code);
1239 else /* type GSI_ERR_TYPE_GLOB should be fatal */
1240 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1243 /* Generic EE interrupt handler */
1244 static void gsi_isr_gp_int1(struct gsi *gsi)
1246 const struct reg *reg;
1247 u32 result;
1248 u32 val;
1250 /* This interrupt is used to handle completions of GENERIC GSI
1251 * commands. We use these to allocate and halt channels on the
1252 * modem's behalf due to a hardware quirk on IPA v4.2. The modem
1253 * "owns" channels even when the AP allocates them, and have no
1254 * way of knowing whether a modem channel's state has been changed.
1256 * We also use GENERIC commands to enable/disable channel flow
1257 * control for IPA v4.2+.
1259 * It is recommended that we halt the modem channels we allocated
1260 * when shutting down, but it's possible the channel isn't running
1261 * at the time we issue the HALT command. We'll get an error in
1262 * that case, but it's harmless (the channel is already halted).
1263 * Similarly, we could get an error back when updating flow control
1264 * on a channel because it's not in the proper state.
1266 * In either case, we silently ignore a INCORRECT_CHANNEL_STATE
1267 * error if we receive it.
1269 reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
1270 val = ioread32(gsi->virt + reg_offset(reg));
1271 result = reg_decode(reg, GENERIC_EE_RESULT, val);
1273 switch (result) {
1274 case GENERIC_EE_SUCCESS:
1275 case GENERIC_EE_INCORRECT_CHANNEL_STATE:
1276 gsi->result = 0;
1277 break;
1279 case GENERIC_EE_RETRY:
1280 gsi->result = -EAGAIN;
1281 break;
1283 default:
1284 dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1285 gsi->result = -EIO;
1286 break;
1289 complete(&gsi->completion);
1292 /* Inter-EE interrupt handler */
1293 static void gsi_isr_glob_ee(struct gsi *gsi)
1295 const struct reg *reg;
1296 u32 val;
1298 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS);
1299 val = ioread32(gsi->virt + reg_offset(reg));
1301 if (val & ERROR_INT)
1302 gsi_isr_glob_err(gsi);
1304 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR);
1305 iowrite32(val, gsi->virt + reg_offset(reg));
1307 val &= ~ERROR_INT;
1309 if (val & GP_INT1) {
1310 val ^= GP_INT1;
1311 gsi_isr_gp_int1(gsi);
1314 if (val)
1315 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1318 /* I/O completion interrupt event */
1319 static void gsi_isr_ieob(struct gsi *gsi)
1321 const struct reg *reg;
1322 u32 event_mask;
1324 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ);
1325 event_mask = ioread32(gsi->virt + reg_offset(reg));
1327 gsi_irq_ieob_disable(gsi, event_mask);
1329 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR);
1330 iowrite32(event_mask, gsi->virt + reg_offset(reg));
1332 while (event_mask) {
1333 u32 evt_ring_id = __ffs(event_mask);
1335 event_mask ^= BIT(evt_ring_id);
1337 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1341 /* General event interrupts represent serious problems, so report them */
1342 static void gsi_isr_general(struct gsi *gsi)
1344 struct device *dev = gsi->dev;
1345 const struct reg *reg;
1346 u32 val;
1348 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS);
1349 val = ioread32(gsi->virt + reg_offset(reg));
1351 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR);
1352 iowrite32(val, gsi->virt + reg_offset(reg));
1354 dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1358 * gsi_isr() - Top level GSI interrupt service routine
1359 * @irq: Interrupt number (ignored)
1360 * @dev_id: GSI pointer supplied to request_irq()
1362 * This is the main handler function registered for the GSI IRQ. Each type
1363 * of interrupt has a separate handler function that is called from here.
1365 static irqreturn_t gsi_isr(int irq, void *dev_id)
1367 struct gsi *gsi = dev_id;
1368 const struct reg *reg;
1369 u32 intr_mask;
1370 u32 cnt = 0;
1371 u32 offset;
1373 reg = gsi_reg(gsi, CNTXT_TYPE_IRQ);
1374 offset = reg_offset(reg);
1376 /* enum gsi_irq_type_id defines GSI interrupt types */
1377 while ((intr_mask = ioread32(gsi->virt + offset))) {
1378 /* intr_mask contains bitmask of pending GSI interrupts */
1379 do {
1380 u32 gsi_intr = BIT(__ffs(intr_mask));
1382 intr_mask ^= gsi_intr;
1384 /* Note: the IRQ condition for each type is cleared
1385 * when the type-specific register is updated.
1387 switch (gsi_intr) {
1388 case GSI_CH_CTRL:
1389 gsi_isr_chan_ctrl(gsi);
1390 break;
1391 case GSI_EV_CTRL:
1392 gsi_isr_evt_ctrl(gsi);
1393 break;
1394 case GSI_GLOB_EE:
1395 gsi_isr_glob_ee(gsi);
1396 break;
1397 case GSI_IEOB:
1398 gsi_isr_ieob(gsi);
1399 break;
1400 case GSI_GENERAL:
1401 gsi_isr_general(gsi);
1402 break;
1403 default:
1404 dev_err(gsi->dev,
1405 "unrecognized interrupt type 0x%08x\n",
1406 gsi_intr);
1407 break;
1409 } while (intr_mask);
1411 if (++cnt > GSI_ISR_MAX_ITER) {
1412 dev_err(gsi->dev, "interrupt flood\n");
1413 break;
1417 return IRQ_HANDLED;
1420 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
1421 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1423 int ret;
1425 ret = platform_get_irq_byname(pdev, "gsi");
1426 if (ret <= 0)
1427 return ret ? : -EINVAL;
1429 gsi->irq = ret;
1431 return 0;
1434 /* Return the transaction associated with a transfer completion event */
1435 static struct gsi_trans *
1436 gsi_event_trans(struct gsi *gsi, struct gsi_event *event)
1438 u32 channel_id = event->chid;
1439 struct gsi_channel *channel;
1440 struct gsi_trans *trans;
1441 u32 tre_offset;
1442 u32 tre_index;
1444 channel = &gsi->channel[channel_id];
1445 if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id))
1446 return NULL;
1448 /* Event xfer_ptr records the TRE it's associated with */
1449 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1450 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1452 trans = gsi_channel_trans_mapped(channel, tre_index);
1454 if (WARN(!trans, "channel %u event with no transaction\n", channel_id))
1455 return NULL;
1457 return trans;
1461 * gsi_evt_ring_update() - Update transaction state from hardware
1462 * @gsi: GSI pointer
1463 * @evt_ring_id: Event ring ID
1464 * @index: Event index in ring reported by hardware
1466 * Events for RX channels contain the actual number of bytes received into
1467 * the buffer. Every event has a transaction associated with it, and here
1468 * we update transactions to record their actual received lengths.
1470 * When an event for a TX channel arrives we use information in the
1471 * transaction to report the number of requests and bytes that have
1472 * been transferred.
1474 * This function is called whenever we learn that the GSI hardware has filled
1475 * new events since the last time we checked. The ring's index field tells
1476 * the first entry in need of processing. The index provided is the
1477 * first *unfilled* event in the ring (following the last filled one).
1479 * Events are sequential within the event ring, and transactions are
1480 * sequential within the transaction array.
1482 * Note that @index always refers to an element *within* the event ring.
1484 static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index)
1486 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1487 struct gsi_ring *ring = &evt_ring->ring;
1488 struct gsi_event *event_done;
1489 struct gsi_event *event;
1490 u32 event_avail;
1491 u32 old_index;
1493 /* Starting with the oldest un-processed event, determine which
1494 * transaction (and which channel) is associated with the event.
1495 * For RX channels, update each completed transaction with the
1496 * number of bytes that were actually received. For TX channels
1497 * associated with a network device, report to the network stack
1498 * the number of transfers and bytes this completion represents.
1500 old_index = ring->index;
1501 event = gsi_ring_virt(ring, old_index);
1503 /* Compute the number of events to process before we wrap,
1504 * and determine when we'll be done processing events.
1506 event_avail = ring->count - old_index % ring->count;
1507 event_done = gsi_ring_virt(ring, index);
1508 do {
1509 struct gsi_trans *trans;
1511 trans = gsi_event_trans(gsi, event);
1512 if (!trans)
1513 return;
1515 if (trans->direction == DMA_FROM_DEVICE)
1516 trans->len = __le16_to_cpu(event->len);
1517 else
1518 gsi_trans_tx_completed(trans);
1520 gsi_trans_move_complete(trans);
1522 /* Move on to the next event and transaction */
1523 if (--event_avail)
1524 event++;
1525 else
1526 event = gsi_ring_virt(ring, 0);
1527 } while (event != event_done);
1529 /* Tell the hardware we've handled these events */
1530 gsi_evt_ring_doorbell(gsi, evt_ring_id, index);
1533 /* Initialize a ring, including allocating DMA memory for its entries */
1534 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1536 u32 size = count * GSI_RING_ELEMENT_SIZE;
1537 struct device *dev = gsi->dev;
1538 dma_addr_t addr;
1540 /* Hardware requires a 2^n ring size, with alignment equal to size.
1541 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1542 * be a power-of-2 number of pages, which satisfies the requirement.
1544 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1545 if (!ring->virt)
1546 return -ENOMEM;
1548 ring->addr = addr;
1549 ring->count = count;
1550 ring->index = 0;
1552 return 0;
1555 /* Free a previously-allocated ring */
1556 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1558 size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1560 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1563 /* Allocate an available event ring id */
1564 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1566 u32 evt_ring_id;
1568 if (gsi->event_bitmap == ~0U) {
1569 dev_err(gsi->dev, "event rings exhausted\n");
1570 return -ENOSPC;
1573 evt_ring_id = ffz(gsi->event_bitmap);
1574 gsi->event_bitmap |= BIT(evt_ring_id);
1576 return (int)evt_ring_id;
1579 /* Free a previously-allocated event ring id */
1580 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1582 gsi->event_bitmap &= ~BIT(evt_ring_id);
1585 /* Ring a channel doorbell, reporting the first un-filled entry */
1586 void gsi_channel_doorbell(struct gsi_channel *channel)
1588 struct gsi_ring *tre_ring = &channel->tre_ring;
1589 u32 channel_id = gsi_channel_id(channel);
1590 struct gsi *gsi = channel->gsi;
1591 const struct reg *reg;
1592 u32 val;
1594 reg = gsi_reg(gsi, CH_C_DOORBELL_0);
1595 /* Note: index *must* be used modulo the ring count here */
1596 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1597 iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
1600 /* Consult hardware, move newly completed transactions to completed state */
1601 void gsi_channel_update(struct gsi_channel *channel)
1603 u32 evt_ring_id = channel->evt_ring_id;
1604 struct gsi *gsi = channel->gsi;
1605 struct gsi_evt_ring *evt_ring;
1606 struct gsi_trans *trans;
1607 struct gsi_ring *ring;
1608 const struct reg *reg;
1609 u32 offset;
1610 u32 index;
1612 evt_ring = &gsi->evt_ring[evt_ring_id];
1613 ring = &evt_ring->ring;
1615 /* See if there's anything new to process; if not, we're done. Note
1616 * that index always refers to an entry *within* the event ring.
1618 reg = gsi_reg(gsi, EV_CH_E_CNTXT_4);
1619 offset = reg_n_offset(reg, evt_ring_id);
1620 index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1621 if (index == ring->index % ring->count)
1622 return;
1624 /* Get the transaction for the latest completed event. */
1625 trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1));
1626 if (!trans)
1627 return;
1629 /* For RX channels, update each completed transaction with the number
1630 * of bytes that were actually received. For TX channels, report
1631 * the number of transactions and bytes this completion represents
1632 * up the network stack.
1634 gsi_evt_ring_update(gsi, evt_ring_id, index);
1638 * gsi_channel_poll_one() - Return a single completed transaction on a channel
1639 * @channel: Channel to be polled
1641 * Return: Transaction pointer, or null if none are available
1643 * This function returns the first of a channel's completed transactions.
1644 * If no transactions are in completed state, the hardware is consulted to
1645 * determine whether any new transactions have completed. If so, they're
1646 * moved to completed state and the first such transaction is returned.
1647 * If there are no more completed transactions, a null pointer is returned.
1649 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1651 struct gsi_trans *trans;
1653 /* Get the first completed transaction */
1654 trans = gsi_channel_trans_complete(channel);
1655 if (trans)
1656 gsi_trans_move_polled(trans);
1658 return trans;
1662 * gsi_channel_poll() - NAPI poll function for a channel
1663 * @napi: NAPI structure for the channel
1664 * @budget: Budget supplied by NAPI core
1666 * Return: Number of items polled (<= budget)
1668 * Single transactions completed by hardware are polled until either
1669 * the budget is exhausted, or there are no more. Each transaction
1670 * polled is passed to gsi_trans_complete(), to perform remaining
1671 * completion processing and retire/free the transaction.
1673 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1675 struct gsi_channel *channel;
1676 int count;
1678 channel = container_of(napi, struct gsi_channel, napi);
1679 for (count = 0; count < budget; count++) {
1680 struct gsi_trans *trans;
1682 trans = gsi_channel_poll_one(channel);
1683 if (!trans)
1684 break;
1685 gsi_trans_complete(trans);
1688 if (count < budget && napi_complete(napi))
1689 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1691 return count;
1694 /* The event bitmap represents which event ids are available for allocation.
1695 * Set bits are not available, clear bits can be used. This function
1696 * initializes the map so all events supported by the hardware are available,
1697 * then precludes any reserved events from being allocated.
1699 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1701 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1703 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1705 return event_bitmap;
1708 /* Setup function for a single channel */
1709 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1711 struct gsi_channel *channel = &gsi->channel[channel_id];
1712 u32 evt_ring_id = channel->evt_ring_id;
1713 int ret;
1715 if (!gsi_channel_initialized(channel))
1716 return 0;
1718 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1719 if (ret)
1720 return ret;
1722 gsi_evt_ring_program(gsi, evt_ring_id);
1724 ret = gsi_channel_alloc_command(gsi, channel_id);
1725 if (ret)
1726 goto err_evt_ring_de_alloc;
1728 gsi_channel_program(channel, true);
1730 if (channel->toward_ipa)
1731 netif_napi_add_tx(gsi->dummy_dev, &channel->napi,
1732 gsi_channel_poll);
1733 else
1734 netif_napi_add(gsi->dummy_dev, &channel->napi,
1735 gsi_channel_poll);
1737 return 0;
1739 err_evt_ring_de_alloc:
1740 /* We've done nothing with the event ring yet so don't reset */
1741 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1743 return ret;
1746 /* Inverse of gsi_channel_setup_one() */
1747 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1749 struct gsi_channel *channel = &gsi->channel[channel_id];
1750 u32 evt_ring_id = channel->evt_ring_id;
1752 if (!gsi_channel_initialized(channel))
1753 return;
1755 netif_napi_del(&channel->napi);
1757 gsi_channel_de_alloc_command(gsi, channel_id);
1758 gsi_evt_ring_reset_command(gsi, evt_ring_id);
1759 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1762 /* We use generic commands only to operate on modem channels. We don't have
1763 * the ability to determine channel state for a modem channel, so we simply
1764 * issue the command and wait for it to complete.
1766 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1767 enum gsi_generic_cmd_opcode opcode,
1768 u8 params)
1770 const struct reg *reg;
1771 bool timeout;
1772 u32 offset;
1773 u32 val;
1775 /* The error global interrupt type is always enabled (until we tear
1776 * down), so we will keep it enabled.
1778 * A generic EE command completes with a GSI global interrupt of
1779 * type GP_INT1. We only perform one generic command at a time
1780 * (to allocate, halt, or enable/disable flow control on a modem
1781 * channel), and only from this function. So we enable the GP_INT1
1782 * IRQ type here, and disable it again after the command completes.
1784 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1785 val = ERROR_INT | GP_INT1;
1786 iowrite32(val, gsi->virt + reg_offset(reg));
1788 /* First zero the result code field */
1789 reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
1790 offset = reg_offset(reg);
1791 val = ioread32(gsi->virt + offset);
1793 val &= ~reg_fmask(reg, GENERIC_EE_RESULT);
1794 iowrite32(val, gsi->virt + offset);
1796 /* Now issue the command */
1797 reg = gsi_reg(gsi, GENERIC_CMD);
1798 val = reg_encode(reg, GENERIC_OPCODE, opcode);
1799 val |= reg_encode(reg, GENERIC_CHID, channel_id);
1800 val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM);
1801 if (gsi->version >= IPA_VERSION_4_11)
1802 val |= reg_encode(reg, GENERIC_PARAMS, params);
1804 timeout = !gsi_command(gsi, reg_offset(reg), val);
1806 /* Disable the GP_INT1 IRQ type again */
1807 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1808 iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
1810 if (!timeout)
1811 return gsi->result;
1813 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1814 opcode, channel_id);
1816 return -ETIMEDOUT;
1819 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1821 return gsi_generic_command(gsi, channel_id,
1822 GSI_GENERIC_ALLOCATE_CHANNEL, 0);
1825 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1827 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1828 int ret;
1831 ret = gsi_generic_command(gsi, channel_id,
1832 GSI_GENERIC_HALT_CHANNEL, 0);
1833 while (ret == -EAGAIN && retries--);
1835 if (ret)
1836 dev_err(gsi->dev, "error %d halting modem channel %u\n",
1837 ret, channel_id);
1840 /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */
1841 void
1842 gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable)
1844 u32 retries = 0;
1845 u32 command;
1846 int ret;
1848 command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL
1849 : GSI_GENERIC_DISABLE_FLOW_CONTROL;
1850 /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable
1851 * is underway. In this case we need to retry the command.
1853 if (!enable && gsi->version >= IPA_VERSION_4_11)
1854 retries = GSI_CHANNEL_MODEM_FLOW_RETRIES;
1857 ret = gsi_generic_command(gsi, channel_id, command, 0);
1858 while (ret == -EAGAIN && retries--);
1860 if (ret)
1861 dev_err(gsi->dev,
1862 "error %d %sabling mode channel %u flow control\n",
1863 ret, enable ? "en" : "dis", channel_id);
1866 /* Setup function for channels */
1867 static int gsi_channel_setup(struct gsi *gsi)
1869 u32 channel_id = 0;
1870 u32 mask;
1871 int ret;
1873 gsi_irq_enable(gsi);
1875 mutex_lock(&gsi->mutex);
1877 do {
1878 ret = gsi_channel_setup_one(gsi, channel_id);
1879 if (ret)
1880 goto err_unwind;
1881 } while (++channel_id < gsi->channel_count);
1883 /* Make sure no channels were defined that hardware does not support */
1884 while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1885 struct gsi_channel *channel = &gsi->channel[channel_id++];
1887 if (!gsi_channel_initialized(channel))
1888 continue;
1890 ret = -EINVAL;
1891 dev_err(gsi->dev, "channel %u not supported by hardware\n",
1892 channel_id - 1);
1893 channel_id = gsi->channel_count;
1894 goto err_unwind;
1897 /* Allocate modem channels if necessary */
1898 mask = gsi->modem_channel_bitmap;
1899 while (mask) {
1900 u32 modem_channel_id = __ffs(mask);
1902 ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1903 if (ret)
1904 goto err_unwind_modem;
1906 /* Clear bit from mask only after success (for unwind) */
1907 mask ^= BIT(modem_channel_id);
1910 mutex_unlock(&gsi->mutex);
1912 return 0;
1914 err_unwind_modem:
1915 /* Compute which modem channels need to be deallocated */
1916 mask ^= gsi->modem_channel_bitmap;
1917 while (mask) {
1918 channel_id = __fls(mask);
1920 mask ^= BIT(channel_id);
1922 gsi_modem_channel_halt(gsi, channel_id);
1925 err_unwind:
1926 while (channel_id--)
1927 gsi_channel_teardown_one(gsi, channel_id);
1929 mutex_unlock(&gsi->mutex);
1931 gsi_irq_disable(gsi);
1933 return ret;
1936 /* Inverse of gsi_channel_setup() */
1937 static void gsi_channel_teardown(struct gsi *gsi)
1939 u32 mask = gsi->modem_channel_bitmap;
1940 u32 channel_id;
1942 mutex_lock(&gsi->mutex);
1944 while (mask) {
1945 channel_id = __fls(mask);
1947 mask ^= BIT(channel_id);
1949 gsi_modem_channel_halt(gsi, channel_id);
1952 channel_id = gsi->channel_count - 1;
1954 gsi_channel_teardown_one(gsi, channel_id);
1955 while (channel_id--);
1957 mutex_unlock(&gsi->mutex);
1959 gsi_irq_disable(gsi);
1962 /* Turn off all GSI interrupts initially */
1963 static int gsi_irq_setup(struct gsi *gsi)
1965 const struct reg *reg;
1966 int ret;
1968 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1969 reg = gsi_reg(gsi, CNTXT_INTSET);
1970 iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg));
1972 /* Disable all interrupt types */
1973 gsi_irq_type_update(gsi, 0);
1975 /* Clear all type-specific interrupt masks */
1976 reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
1977 iowrite32(0, gsi->virt + reg_offset(reg));
1979 reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
1980 iowrite32(0, gsi->virt + reg_offset(reg));
1982 reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
1983 iowrite32(0, gsi->virt + reg_offset(reg));
1985 reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
1986 iowrite32(0, gsi->virt + reg_offset(reg));
1988 /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
1989 if (gsi->version > IPA_VERSION_3_1) {
1990 reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK);
1991 iowrite32(0, gsi->virt + reg_offset(reg));
1993 reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK);
1994 iowrite32(0, gsi->virt + reg_offset(reg));
1997 reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
1998 iowrite32(0, gsi->virt + reg_offset(reg));
2000 ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
2001 if (ret)
2002 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
2004 return ret;
2007 static void gsi_irq_teardown(struct gsi *gsi)
2009 free_irq(gsi->irq, gsi);
2012 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */
2013 static int gsi_ring_setup(struct gsi *gsi)
2015 struct device *dev = gsi->dev;
2016 const struct reg *reg;
2017 u32 count;
2018 u32 val;
2020 if (gsi->version < IPA_VERSION_3_5_1) {
2021 /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
2022 gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
2023 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
2025 return 0;
2028 reg = gsi_reg(gsi, HW_PARAM_2);
2029 val = ioread32(gsi->virt + reg_offset(reg));
2031 count = reg_decode(reg, NUM_CH_PER_EE, val);
2032 if (!count) {
2033 dev_err(dev, "GSI reports zero channels supported\n");
2034 return -EINVAL;
2036 if (count > GSI_CHANNEL_COUNT_MAX) {
2037 dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
2038 GSI_CHANNEL_COUNT_MAX, count);
2039 count = GSI_CHANNEL_COUNT_MAX;
2041 gsi->channel_count = count;
2043 if (gsi->version < IPA_VERSION_5_0) {
2044 count = reg_decode(reg, NUM_EV_PER_EE, val);
2045 } else {
2046 reg = gsi_reg(gsi, HW_PARAM_4);
2047 count = reg_decode(reg, EV_PER_EE, val);
2049 if (!count) {
2050 dev_err(dev, "GSI reports zero event rings supported\n");
2051 return -EINVAL;
2053 if (count > GSI_EVT_RING_COUNT_MAX) {
2054 dev_warn(dev,
2055 "limiting to %u event rings; hardware supports %u\n",
2056 GSI_EVT_RING_COUNT_MAX, count);
2057 count = GSI_EVT_RING_COUNT_MAX;
2059 gsi->evt_ring_count = count;
2061 return 0;
2064 /* Setup function for GSI. GSI firmware must be loaded and initialized */
2065 int gsi_setup(struct gsi *gsi)
2067 const struct reg *reg;
2068 u32 val;
2069 int ret;
2071 /* Here is where we first touch the GSI hardware */
2072 reg = gsi_reg(gsi, GSI_STATUS);
2073 val = ioread32(gsi->virt + reg_offset(reg));
2074 if (!(val & reg_bit(reg, ENABLED))) {
2075 dev_err(gsi->dev, "GSI has not been enabled\n");
2076 return -EIO;
2079 ret = gsi_irq_setup(gsi);
2080 if (ret)
2081 return ret;
2083 ret = gsi_ring_setup(gsi); /* No matching teardown required */
2084 if (ret)
2085 goto err_irq_teardown;
2087 /* Initialize the error log */
2088 reg = gsi_reg(gsi, ERROR_LOG);
2089 iowrite32(0, gsi->virt + reg_offset(reg));
2091 ret = gsi_channel_setup(gsi);
2092 if (ret)
2093 goto err_irq_teardown;
2095 return 0;
2097 err_irq_teardown:
2098 gsi_irq_teardown(gsi);
2100 return ret;
2103 /* Inverse of gsi_setup() */
2104 void gsi_teardown(struct gsi *gsi)
2106 gsi_channel_teardown(gsi);
2107 gsi_irq_teardown(gsi);
2110 /* Initialize a channel's event ring */
2111 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
2113 struct gsi *gsi = channel->gsi;
2114 struct gsi_evt_ring *evt_ring;
2115 int ret;
2117 ret = gsi_evt_ring_id_alloc(gsi);
2118 if (ret < 0)
2119 return ret;
2120 channel->evt_ring_id = ret;
2122 evt_ring = &gsi->evt_ring[channel->evt_ring_id];
2123 evt_ring->channel = channel;
2125 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
2126 if (!ret)
2127 return 0; /* Success! */
2129 dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
2130 ret, gsi_channel_id(channel));
2132 gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
2134 return ret;
2137 /* Inverse of gsi_channel_evt_ring_init() */
2138 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
2140 u32 evt_ring_id = channel->evt_ring_id;
2141 struct gsi *gsi = channel->gsi;
2142 struct gsi_evt_ring *evt_ring;
2144 evt_ring = &gsi->evt_ring[evt_ring_id];
2145 gsi_ring_free(gsi, &evt_ring->ring);
2146 gsi_evt_ring_id_free(gsi, evt_ring_id);
2149 static bool gsi_channel_data_valid(struct gsi *gsi, bool command,
2150 const struct ipa_gsi_endpoint_data *data)
2152 const struct gsi_channel_data *channel_data;
2153 u32 channel_id = data->channel_id;
2154 struct device *dev = gsi->dev;
2156 /* Make sure channel ids are in the range driver supports */
2157 if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
2158 dev_err(dev, "bad channel id %u; must be less than %u\n",
2159 channel_id, GSI_CHANNEL_COUNT_MAX);
2160 return false;
2163 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
2164 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
2165 return false;
2168 if (command && !data->toward_ipa) {
2169 dev_err(dev, "command channel %u is not TX\n", channel_id);
2170 return false;
2173 channel_data = &data->channel;
2175 if (!channel_data->tlv_count ||
2176 channel_data->tlv_count > GSI_TLV_MAX) {
2177 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
2178 channel_id, channel_data->tlv_count, GSI_TLV_MAX);
2179 return false;
2182 if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) {
2183 dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n",
2184 channel_id, IPA_COMMAND_TRANS_TRE_MAX,
2185 channel_data->tlv_count);
2186 return false;
2189 /* We have to allow at least one maximally-sized transaction to
2190 * be outstanding (which would use tlv_count TREs). Given how
2191 * gsi_channel_tre_max() is computed, tre_count has to be almost
2192 * twice the TLV FIFO size to satisfy this requirement.
2194 if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) {
2195 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
2196 channel_id, channel_data->tlv_count,
2197 channel_data->tre_count);
2198 return false;
2201 if (!is_power_of_2(channel_data->tre_count)) {
2202 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2203 channel_id, channel_data->tre_count);
2204 return false;
2207 if (!is_power_of_2(channel_data->event_count)) {
2208 dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2209 channel_id, channel_data->event_count);
2210 return false;
2213 return true;
2216 /* Init function for a single channel */
2217 static int gsi_channel_init_one(struct gsi *gsi,
2218 const struct ipa_gsi_endpoint_data *data,
2219 bool command)
2221 struct gsi_channel *channel;
2222 u32 tre_count;
2223 int ret;
2225 if (!gsi_channel_data_valid(gsi, command, data))
2226 return -EINVAL;
2228 /* Worst case we need an event for every outstanding TRE */
2229 if (data->channel.tre_count > data->channel.event_count) {
2230 tre_count = data->channel.event_count;
2231 dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2232 data->channel_id, tre_count);
2233 } else {
2234 tre_count = data->channel.tre_count;
2237 channel = &gsi->channel[data->channel_id];
2238 memset(channel, 0, sizeof(*channel));
2240 channel->gsi = gsi;
2241 channel->toward_ipa = data->toward_ipa;
2242 channel->command = command;
2243 channel->trans_tre_max = data->channel.tlv_count;
2244 channel->tre_count = tre_count;
2245 channel->event_count = data->channel.event_count;
2247 ret = gsi_channel_evt_ring_init(channel);
2248 if (ret)
2249 goto err_clear_gsi;
2251 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2252 if (ret) {
2253 dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2254 ret, data->channel_id);
2255 goto err_channel_evt_ring_exit;
2258 ret = gsi_channel_trans_init(gsi, data->channel_id);
2259 if (ret)
2260 goto err_ring_free;
2262 if (command) {
2263 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2265 ret = ipa_cmd_pool_init(channel, tre_max);
2267 if (!ret)
2268 return 0; /* Success! */
2270 gsi_channel_trans_exit(channel);
2271 err_ring_free:
2272 gsi_ring_free(gsi, &channel->tre_ring);
2273 err_channel_evt_ring_exit:
2274 gsi_channel_evt_ring_exit(channel);
2275 err_clear_gsi:
2276 channel->gsi = NULL; /* Mark it not (fully) initialized */
2278 return ret;
2281 /* Inverse of gsi_channel_init_one() */
2282 static void gsi_channel_exit_one(struct gsi_channel *channel)
2284 if (!gsi_channel_initialized(channel))
2285 return;
2287 if (channel->command)
2288 ipa_cmd_pool_exit(channel);
2289 gsi_channel_trans_exit(channel);
2290 gsi_ring_free(channel->gsi, &channel->tre_ring);
2291 gsi_channel_evt_ring_exit(channel);
2294 /* Init function for channels */
2295 static int gsi_channel_init(struct gsi *gsi, u32 count,
2296 const struct ipa_gsi_endpoint_data *data)
2298 bool modem_alloc;
2299 int ret = 0;
2300 u32 i;
2302 /* IPA v4.2 requires the AP to allocate channels for the modem */
2303 modem_alloc = gsi->version == IPA_VERSION_4_2;
2305 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
2306 gsi->ieob_enabled_bitmap = 0;
2308 /* The endpoint data array is indexed by endpoint name */
2309 for (i = 0; i < count; i++) {
2310 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2312 if (ipa_gsi_endpoint_data_empty(&data[i]))
2313 continue; /* Skip over empty slots */
2315 /* Mark modem channels to be allocated (hardware workaround) */
2316 if (data[i].ee_id == GSI_EE_MODEM) {
2317 if (modem_alloc)
2318 gsi->modem_channel_bitmap |=
2319 BIT(data[i].channel_id);
2320 continue;
2323 ret = gsi_channel_init_one(gsi, &data[i], command);
2324 if (ret)
2325 goto err_unwind;
2328 return ret;
2330 err_unwind:
2331 while (i--) {
2332 if (ipa_gsi_endpoint_data_empty(&data[i]))
2333 continue;
2334 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2335 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2336 continue;
2338 gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2341 return ret;
2344 /* Inverse of gsi_channel_init() */
2345 static void gsi_channel_exit(struct gsi *gsi)
2347 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2350 gsi_channel_exit_one(&gsi->channel[channel_id]);
2351 while (channel_id--);
2352 gsi->modem_channel_bitmap = 0;
2355 /* Init function for GSI. GSI hardware does not need to be "ready" */
2356 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2357 enum ipa_version version, u32 count,
2358 const struct ipa_gsi_endpoint_data *data)
2360 int ret;
2362 gsi_validate_build();
2364 gsi->dev = &pdev->dev;
2365 gsi->version = version;
2367 /* GSI uses NAPI on all channels. Create a dummy network device
2368 * for the channel NAPI contexts to be associated with.
2370 gsi->dummy_dev = alloc_netdev_dummy(0);
2371 if (!gsi->dummy_dev)
2372 return -ENOMEM;
2373 init_completion(&gsi->completion);
2375 ret = gsi_reg_init(gsi, pdev);
2376 if (ret)
2377 goto err_reg_exit;
2379 ret = gsi_irq_init(gsi, pdev); /* No matching exit required */
2380 if (ret)
2381 goto err_reg_exit;
2383 ret = gsi_channel_init(gsi, count, data);
2384 if (ret)
2385 goto err_reg_exit;
2387 mutex_init(&gsi->mutex);
2389 return 0;
2391 err_reg_exit:
2392 free_netdev(gsi->dummy_dev);
2393 gsi_reg_exit(gsi);
2395 return ret;
2398 /* Inverse of gsi_init() */
2399 void gsi_exit(struct gsi *gsi)
2401 mutex_destroy(&gsi->mutex);
2402 gsi_channel_exit(gsi);
2403 free_netdev(gsi->dummy_dev);
2404 gsi_reg_exit(gsi);
2407 /* The maximum number of outstanding TREs on a channel. This limits
2408 * a channel's maximum number of transactions outstanding (worst case
2409 * is one TRE per transaction).
2411 * The absolute limit is the number of TREs in the channel's TRE ring,
2412 * and in theory we should be able use all of them. But in practice,
2413 * doing that led to the hardware reporting exhaustion of event ring
2414 * slots for writing completion information. So the hardware limit
2415 * would be (tre_count - 1).
2417 * We reduce it a bit further though. Transaction resource pools are
2418 * sized to be a little larger than this maximum, to allow resource
2419 * allocations to always be contiguous. The number of entries in a
2420 * TRE ring buffer is a power of 2, and the extra resources in a pool
2421 * tends to nearly double the memory allocated for it. Reducing the
2422 * maximum number of outstanding TREs allows the number of entries in
2423 * a pool to avoid crossing that power-of-2 boundary, and this can
2424 * substantially reduce pool memory requirements. The number we
2425 * reduce it by matches the number added in gsi_trans_pool_init().
2427 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2429 struct gsi_channel *channel = &gsi->channel[channel_id];
2431 /* Hardware limit is channel->tre_count - 1 */
2432 return channel->tre_count - (channel->trans_tre_max - 1);