1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * PPP async serial channel driver for Linux.
5 * Copyright 1999 Paul Mackerras.
7 * This driver provides the encapsulation and framing for sending
8 * and receiving PPP frames over async serial lines. It relies on
9 * the generic PPP layer to give it frames to send and to process
10 * received frames. It implements the PPP line discipline.
12 * Part of the code in this driver was inspired by the old async-only
13 * PPP driver, written by Michael Callahan and Al Longyear, and
14 * subsequently hacked by Paul Mackerras.
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/skbuff.h>
20 #include <linux/tty.h>
21 #include <linux/netdevice.h>
22 #include <linux/poll.h>
23 #include <linux/crc-ccitt.h>
24 #include <linux/ppp_defs.h>
25 #include <linux/ppp-ioctl.h>
26 #include <linux/ppp_channel.h>
27 #include <linux/spinlock.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/slab.h>
32 #include <linux/unaligned.h>
33 #include <linux/uaccess.h>
34 #include <asm/string.h>
36 #define PPP_VERSION "2.4.2"
40 /* Structure for storing local state. */
42 struct tty_struct
*tty
;
49 unsigned long xmit_flags
;
52 unsigned int bytes_sent
;
53 unsigned int bytes_rcvd
;
60 unsigned long last_xmit
;
64 struct sk_buff_head rqueue
;
66 struct tasklet_struct tsk
;
69 struct completion dead
;
70 struct ppp_channel chan
; /* interface to generic ppp layer */
71 unsigned char obuf
[OBUFSIZE
];
74 /* Bit numbers in xmit_flags */
82 #define SC_PREV_ERROR 4
85 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
87 static int flag_time
= HZ
;
88 module_param(flag_time
, int, 0);
89 MODULE_PARM_DESC(flag_time
, "ppp_async: interval between flagged packets (in clock ticks)");
90 MODULE_DESCRIPTION("PPP async serial channel module");
91 MODULE_LICENSE("GPL");
92 MODULE_ALIAS_LDISC(N_PPP
);
97 static int ppp_async_encode(struct asyncppp
*ap
);
98 static int ppp_async_send(struct ppp_channel
*chan
, struct sk_buff
*skb
);
99 static int ppp_async_push(struct asyncppp
*ap
);
100 static void ppp_async_flush_output(struct asyncppp
*ap
);
101 static void ppp_async_input(struct asyncppp
*ap
, const unsigned char *buf
,
102 const u8
*flags
, int count
);
103 static int ppp_async_ioctl(struct ppp_channel
*chan
, unsigned int cmd
,
105 static void ppp_async_process(struct tasklet_struct
*t
);
107 static void async_lcp_peek(struct asyncppp
*ap
, unsigned char *data
,
108 int len
, int inbound
);
110 static const struct ppp_channel_ops async_ops
= {
111 .start_xmit
= ppp_async_send
,
112 .ioctl
= ppp_async_ioctl
,
116 * Routines implementing the PPP line discipline.
120 * We have a potential race on dereferencing tty->disc_data,
121 * because the tty layer provides no locking at all - thus one
122 * cpu could be running ppp_asynctty_receive while another
123 * calls ppp_asynctty_close, which zeroes tty->disc_data and
124 * frees the memory that ppp_asynctty_receive is using. The best
125 * way to fix this is to use a rwlock in the tty struct, but for now
126 * we use a single global rwlock for all ttys in ppp line discipline.
128 * FIXME: this is no longer true. The _close path for the ldisc is
129 * now guaranteed to be sane.
131 static DEFINE_RWLOCK(disc_data_lock
);
133 static struct asyncppp
*ap_get(struct tty_struct
*tty
)
137 read_lock(&disc_data_lock
);
140 refcount_inc(&ap
->refcnt
);
141 read_unlock(&disc_data_lock
);
145 static void ap_put(struct asyncppp
*ap
)
147 if (refcount_dec_and_test(&ap
->refcnt
))
152 * Called when a tty is put into PPP line discipline. Called in process
156 ppp_asynctty_open(struct tty_struct
*tty
)
162 if (tty
->ops
->write
== NULL
)
166 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
170 /* initialize the asyncppp structure */
173 spin_lock_init(&ap
->xmit_lock
);
174 spin_lock_init(&ap
->recv_lock
);
176 ap
->xaccm
[3] = 0x60000000U
;
182 skb_queue_head_init(&ap
->rqueue
);
183 tasklet_setup(&ap
->tsk
, ppp_async_process
);
185 refcount_set(&ap
->refcnt
, 1);
186 init_completion(&ap
->dead
);
188 ap
->chan
.private = ap
;
189 ap
->chan
.ops
= &async_ops
;
190 ap
->chan
.mtu
= PPP_MRU
;
191 speed
= tty_get_baud_rate(tty
);
192 ap
->chan
.speed
= speed
;
193 err
= ppp_register_channel(&ap
->chan
);
198 tty
->receive_room
= 65536;
208 * Called when the tty is put into another line discipline
209 * or it hangs up. We have to wait for any cpu currently
210 * executing in any of the other ppp_asynctty_* routines to
211 * finish before we can call ppp_unregister_channel and free
212 * the asyncppp struct. This routine must be called from
213 * process context, not interrupt or softirq context.
216 ppp_asynctty_close(struct tty_struct
*tty
)
220 write_lock_irq(&disc_data_lock
);
222 tty
->disc_data
= NULL
;
223 write_unlock_irq(&disc_data_lock
);
228 * We have now ensured that nobody can start using ap from now
229 * on, but we have to wait for all existing users to finish.
230 * Note that ppp_unregister_channel ensures that no calls to
231 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
232 * by the time it returns.
234 if (!refcount_dec_and_test(&ap
->refcnt
))
235 wait_for_completion(&ap
->dead
);
236 tasklet_kill(&ap
->tsk
);
238 ppp_unregister_channel(&ap
->chan
);
240 skb_queue_purge(&ap
->rqueue
);
246 * Called on tty hangup in process context.
248 * Wait for I/O to driver to complete and unregister PPP channel.
249 * This is already done by the close routine, so just call that.
251 static void ppp_asynctty_hangup(struct tty_struct
*tty
)
253 ppp_asynctty_close(tty
);
257 * Read does nothing - no data is ever available this way.
258 * Pppd reads and writes packets via /dev/ppp instead.
261 ppp_asynctty_read(struct tty_struct
*tty
, struct file
*file
, u8
*buf
,
262 size_t count
, void **cookie
, unsigned long offset
)
268 * Write on the tty does nothing, the packets all come in
269 * from the ppp generic stuff.
272 ppp_asynctty_write(struct tty_struct
*tty
, struct file
*file
, const u8
*buf
,
279 * Called in process context only. May be re-entered by multiple
280 * ioctl calling threads.
284 ppp_asynctty_ioctl(struct tty_struct
*tty
, unsigned int cmd
, unsigned long arg
)
286 struct asyncppp
*ap
= ap_get(tty
);
288 int __user
*p
= (int __user
*)arg
;
296 if (put_user(ppp_channel_index(&ap
->chan
), p
))
303 if (put_user(ppp_unit_number(&ap
->chan
), p
))
309 /* flush our buffers and the serial port's buffer */
310 if (arg
== TCIOFLUSH
|| arg
== TCOFLUSH
)
311 ppp_async_flush_output(ap
);
312 err
= n_tty_ioctl_helper(tty
, cmd
, arg
);
317 if (put_user(val
, p
))
323 /* Try the various mode ioctls */
324 err
= tty_mode_ioctl(tty
, cmd
, arg
);
331 /* May sleep, don't call from interrupt level or with interrupts disabled */
333 ppp_asynctty_receive(struct tty_struct
*tty
, const u8
*buf
, const u8
*cflags
,
336 struct asyncppp
*ap
= ap_get(tty
);
341 spin_lock_irqsave(&ap
->recv_lock
, flags
);
342 ppp_async_input(ap
, buf
, cflags
, count
);
343 spin_unlock_irqrestore(&ap
->recv_lock
, flags
);
344 if (!skb_queue_empty(&ap
->rqueue
))
345 tasklet_schedule(&ap
->tsk
);
351 ppp_asynctty_wakeup(struct tty_struct
*tty
)
353 struct asyncppp
*ap
= ap_get(tty
);
355 clear_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
);
358 set_bit(XMIT_WAKEUP
, &ap
->xmit_flags
);
359 tasklet_schedule(&ap
->tsk
);
364 static struct tty_ldisc_ops ppp_ldisc
= {
365 .owner
= THIS_MODULE
,
368 .open
= ppp_asynctty_open
,
369 .close
= ppp_asynctty_close
,
370 .hangup
= ppp_asynctty_hangup
,
371 .read
= ppp_asynctty_read
,
372 .write
= ppp_asynctty_write
,
373 .ioctl
= ppp_asynctty_ioctl
,
374 .receive_buf
= ppp_asynctty_receive
,
375 .write_wakeup
= ppp_asynctty_wakeup
,
383 err
= tty_register_ldisc(&ppp_ldisc
);
385 printk(KERN_ERR
"PPP_async: error %d registering line disc.\n",
391 * The following routines provide the PPP channel interface.
394 ppp_async_ioctl(struct ppp_channel
*chan
, unsigned int cmd
, unsigned long arg
)
396 struct asyncppp
*ap
= chan
->private;
397 void __user
*argp
= (void __user
*)arg
;
398 int __user
*p
= argp
;
405 val
= ap
->flags
| ap
->rbits
;
406 if (put_user(val
, p
))
411 if (get_user(val
, p
))
413 ap
->flags
= val
& ~SC_RCV_BITS
;
414 spin_lock_irq(&ap
->recv_lock
);
415 ap
->rbits
= val
& SC_RCV_BITS
;
416 spin_unlock_irq(&ap
->recv_lock
);
420 case PPPIOCGASYNCMAP
:
421 if (put_user(ap
->xaccm
[0], (u32 __user
*)argp
))
425 case PPPIOCSASYNCMAP
:
426 if (get_user(ap
->xaccm
[0], (u32 __user
*)argp
))
431 case PPPIOCGRASYNCMAP
:
432 if (put_user(ap
->raccm
, (u32 __user
*)argp
))
436 case PPPIOCSRASYNCMAP
:
437 if (get_user(ap
->raccm
, (u32 __user
*)argp
))
442 case PPPIOCGXASYNCMAP
:
443 if (copy_to_user(argp
, ap
->xaccm
, sizeof(ap
->xaccm
)))
447 case PPPIOCSXASYNCMAP
:
448 if (copy_from_user(accm
, argp
, sizeof(accm
)))
450 accm
[2] &= ~0x40000000U
; /* can't escape 0x5e */
451 accm
[3] |= 0x60000000U
; /* must escape 0x7d, 0x7e */
452 memcpy(ap
->xaccm
, accm
, sizeof(ap
->xaccm
));
457 if (put_user(ap
->mru
, p
))
462 if (get_user(val
, p
))
482 * This is called at softirq level to deliver received packets
483 * to the ppp_generic code, and to tell the ppp_generic code
484 * if we can accept more output now.
486 static void ppp_async_process(struct tasklet_struct
*t
)
488 struct asyncppp
*ap
= from_tasklet(ap
, t
, tsk
);
491 /* process received packets */
492 while ((skb
= skb_dequeue(&ap
->rqueue
)) != NULL
) {
494 ppp_input_error(&ap
->chan
, 0);
495 ppp_input(&ap
->chan
, skb
);
498 /* try to push more stuff out */
499 if (test_bit(XMIT_WAKEUP
, &ap
->xmit_flags
) && ppp_async_push(ap
))
500 ppp_output_wakeup(&ap
->chan
);
504 * Procedures for encapsulation and framing.
508 * Procedure to encode the data for async serial transmission.
509 * Does octet stuffing (escaping), puts the address/control bytes
510 * on if A/C compression is disabled, and does protocol compression.
511 * Assumes ap->tpkt != 0 on entry.
512 * Returns 1 if we finished the current frame, 0 otherwise.
515 #define PUT_BYTE(ap, buf, c, islcp) do { \
516 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
517 *buf++ = PPP_ESCAPE; \
518 *buf++ = c ^ PPP_TRANS; \
524 ppp_async_encode(struct asyncppp
*ap
)
526 int fcs
, i
, count
, c
, proto
;
527 unsigned char *buf
, *buflim
;
535 data
= ap
->tpkt
->data
;
536 count
= ap
->tpkt
->len
;
538 proto
= get_unaligned_be16(data
);
541 * LCP packets with code values between 1 (configure-request)
542 * and 7 (code-reject) must be sent as though no options
543 * had been negotiated.
545 islcp
= proto
== PPP_LCP
&& count
>= 3 && 1 <= data
[2] && data
[2] <= 7;
549 async_lcp_peek(ap
, data
, count
, 0);
552 * Start of a new packet - insert the leading FLAG
553 * character if necessary.
555 if (islcp
|| flag_time
== 0 ||
556 time_after_eq(jiffies
, ap
->last_xmit
+ flag_time
))
558 ap
->last_xmit
= jiffies
;
562 * Put in the address/control bytes if necessary
564 if ((ap
->flags
& SC_COMP_AC
) == 0 || islcp
) {
565 PUT_BYTE(ap
, buf
, 0xff, islcp
);
566 fcs
= PPP_FCS(fcs
, 0xff);
567 PUT_BYTE(ap
, buf
, 0x03, islcp
);
568 fcs
= PPP_FCS(fcs
, 0x03);
573 * Once we put in the last byte, we need to put in the FCS
574 * and closing flag, so make sure there is at least 7 bytes
575 * of free space in the output buffer.
577 buflim
= ap
->obuf
+ OBUFSIZE
- 6;
578 while (i
< count
&& buf
< buflim
) {
580 if (i
== 1 && c
== 0 && (ap
->flags
& SC_COMP_PROT
))
581 continue; /* compress protocol field */
582 fcs
= PPP_FCS(fcs
, c
);
583 PUT_BYTE(ap
, buf
, c
, islcp
);
588 * Remember where we are up to in this packet.
597 * We have finished the packet. Add the FCS and flag.
601 PUT_BYTE(ap
, buf
, c
, islcp
);
602 c
= (fcs
>> 8) & 0xff;
603 PUT_BYTE(ap
, buf
, c
, islcp
);
607 consume_skb(ap
->tpkt
);
613 * Transmit-side routines.
617 * Send a packet to the peer over an async tty line.
618 * Returns 1 iff the packet was accepted.
619 * If the packet was not accepted, we will call ppp_output_wakeup
620 * at some later time.
623 ppp_async_send(struct ppp_channel
*chan
, struct sk_buff
*skb
)
625 struct asyncppp
*ap
= chan
->private;
629 if (test_and_set_bit(XMIT_FULL
, &ap
->xmit_flags
))
630 return 0; /* already full */
639 * Push as much data as possible out to the tty.
642 ppp_async_push(struct asyncppp
*ap
)
644 int avail
, sent
, done
= 0;
645 struct tty_struct
*tty
= ap
->tty
;
649 * We can get called recursively here if the tty write
650 * function calls our wakeup function. This can happen
651 * for example on a pty with both the master and slave
652 * set to PPP line discipline.
653 * We use the XMIT_BUSY bit to detect this and get out,
654 * leaving the XMIT_WAKEUP bit set to tell the other
655 * instance that it may now be able to write more now.
657 if (test_and_set_bit(XMIT_BUSY
, &ap
->xmit_flags
))
659 spin_lock_bh(&ap
->xmit_lock
);
661 if (test_and_clear_bit(XMIT_WAKEUP
, &ap
->xmit_flags
))
663 if (!tty_stuffed
&& ap
->optr
< ap
->olim
) {
664 avail
= ap
->olim
- ap
->optr
;
665 set_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
);
666 sent
= tty
->ops
->write(tty
, ap
->optr
, avail
);
668 goto flush
; /* error, e.g. loss of CD */
674 if (ap
->optr
>= ap
->olim
&& ap
->tpkt
) {
675 if (ppp_async_encode(ap
)) {
676 /* finished processing ap->tpkt */
677 clear_bit(XMIT_FULL
, &ap
->xmit_flags
);
683 * We haven't made any progress this time around.
684 * Clear XMIT_BUSY to let other callers in, but
685 * after doing so we have to check if anyone set
686 * XMIT_WAKEUP since we last checked it. If they
687 * did, we should try again to set XMIT_BUSY and go
688 * around again in case XMIT_BUSY was still set when
689 * the other caller tried.
691 clear_bit(XMIT_BUSY
, &ap
->xmit_flags
);
692 /* any more work to do? if not, exit the loop */
693 if (!(test_bit(XMIT_WAKEUP
, &ap
->xmit_flags
) ||
694 (!tty_stuffed
&& ap
->tpkt
)))
696 /* more work to do, see if we can do it now */
697 if (test_and_set_bit(XMIT_BUSY
, &ap
->xmit_flags
))
700 spin_unlock_bh(&ap
->xmit_lock
);
704 clear_bit(XMIT_BUSY
, &ap
->xmit_flags
);
708 clear_bit(XMIT_FULL
, &ap
->xmit_flags
);
712 spin_unlock_bh(&ap
->xmit_lock
);
717 * Flush output from our internal buffers.
718 * Called for the TCFLSH ioctl. Can be entered in parallel
719 * but this is covered by the xmit_lock.
722 ppp_async_flush_output(struct asyncppp
*ap
)
726 spin_lock_bh(&ap
->xmit_lock
);
728 if (ap
->tpkt
!= NULL
) {
731 clear_bit(XMIT_FULL
, &ap
->xmit_flags
);
734 spin_unlock_bh(&ap
->xmit_lock
);
736 ppp_output_wakeup(&ap
->chan
);
740 * Receive-side routines.
743 /* see how many ordinary chars there are at the start of buf */
745 scan_ordinary(struct asyncppp
*ap
, const unsigned char *buf
, int count
)
749 for (i
= 0; i
< count
; ++i
) {
751 if (c
== PPP_ESCAPE
|| c
== PPP_FLAG
||
752 (c
< 0x20 && (ap
->raccm
& (1 << c
)) != 0))
758 /* called when a flag is seen - do end-of-packet processing */
760 process_input_packet(struct asyncppp
*ap
)
764 unsigned int len
, fcs
;
767 if (ap
->state
& (SC_TOSS
| SC_ESCAPE
))
771 return; /* 0-length packet */
777 goto err
; /* too short */
779 for (; len
> 0; --len
)
780 fcs
= PPP_FCS(fcs
, *p
++);
781 if (fcs
!= PPP_GOODFCS
)
782 goto err
; /* bad FCS */
783 skb_trim(skb
, skb
->len
- 2);
785 /* check for address/control and protocol compression */
787 if (p
[0] == PPP_ALLSTATIONS
) {
788 /* chop off address/control */
789 if (p
[1] != PPP_UI
|| skb
->len
< 3)
791 p
= skb_pull(skb
, 2);
794 /* If protocol field is not compressed, it can be LCP packet */
795 if (!(p
[0] & 0x01)) {
800 proto
= (p
[0] << 8) + p
[1];
801 if (proto
== PPP_LCP
)
802 async_lcp_peek(ap
, p
, skb
->len
, 1);
805 /* queue the frame to be processed */
806 skb
->cb
[0] = ap
->state
;
807 skb_queue_tail(&ap
->rqueue
, skb
);
813 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
814 ap
->state
= SC_PREV_ERROR
;
816 /* make skb appear as freshly allocated */
818 skb_reserve(skb
, - skb_headroom(skb
));
822 /* Called when the tty driver has data for us. Runs parallel with the
823 other ldisc functions but will not be re-entered */
826 ppp_async_input(struct asyncppp
*ap
, const u8
*buf
, const u8
*flags
, int count
)
829 int c
, i
, j
, n
, s
, f
;
832 /* update bits used for 8-bit cleanness detection */
833 if (~ap
->rbits
& SC_RCV_BITS
) {
835 for (i
= 0; i
< count
; ++i
) {
837 if (flags
&& flags
[i
] != 0)
839 s
|= (c
& 0x80)? SC_RCV_B7_1
: SC_RCV_B7_0
;
840 c
= ((c
>> 4) ^ c
) & 0xf;
841 s
|= (0x6996 & (1 << c
))? SC_RCV_ODDP
: SC_RCV_EVNP
;
847 /* scan through and see how many chars we can do in bulk */
848 if ((ap
->state
& SC_ESCAPE
) && buf
[0] == PPP_ESCAPE
)
851 n
= scan_ordinary(ap
, buf
, count
);
854 if (flags
&& (ap
->state
& SC_TOSS
) == 0) {
855 /* check the flags to see if any char had an error */
856 for (j
= 0; j
< n
; ++j
)
857 if ((f
= flags
[j
]) != 0)
862 ap
->state
|= SC_TOSS
;
864 } else if (n
> 0 && (ap
->state
& SC_TOSS
) == 0) {
865 /* stuff the chars in the skb */
868 skb
= dev_alloc_skb(ap
->mru
+ PPP_HDRLEN
+ 2);
874 /* Try to get the payload 4-byte aligned.
875 * This should match the
876 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
877 * process_input_packet, but we do not have
878 * enough chars here to test buf[1] and buf[2].
880 if (buf
[0] != PPP_ALLSTATIONS
)
881 skb_reserve(skb
, 2 + (buf
[0] & 1));
883 if (n
> skb_tailroom(skb
)) {
884 /* packet overflowed MRU */
885 ap
->state
|= SC_TOSS
;
887 sp
= skb_put_data(skb
, buf
, n
);
888 if (ap
->state
& SC_ESCAPE
) {
890 ap
->state
&= ~SC_ESCAPE
;
899 if (flags
!= NULL
&& flags
[n
] != 0) {
900 ap
->state
|= SC_TOSS
;
901 } else if (c
== PPP_FLAG
) {
902 process_input_packet(ap
);
903 } else if (c
== PPP_ESCAPE
) {
904 ap
->state
|= SC_ESCAPE
;
905 } else if (I_IXON(ap
->tty
)) {
906 if (c
== START_CHAR(ap
->tty
))
908 else if (c
== STOP_CHAR(ap
->tty
))
911 /* otherwise it's a char in the recv ACCM */
922 printk(KERN_ERR
"PPPasync: no memory (input pkt)\n");
923 ap
->state
|= SC_TOSS
;
927 * We look at LCP frames going past so that we can notice
928 * and react to the LCP configure-ack from the peer.
929 * In the situation where the peer has been sent a configure-ack
930 * already, LCP is up once it has sent its configure-ack
931 * so the immediately following packet can be sent with the
932 * configured LCP options. This allows us to process the following
933 * packet correctly without pppd needing to respond quickly.
935 * We only respond to the received configure-ack if we have just
936 * sent a configure-request, and the configure-ack contains the
937 * same data (this is checked using a 16-bit crc of the data).
939 #define CONFREQ 1 /* LCP code field values */
941 #define LCP_MRU 1 /* LCP option numbers */
942 #define LCP_ASYNCMAP 2
944 static void async_lcp_peek(struct asyncppp
*ap
, unsigned char *data
,
945 int len
, int inbound
)
947 int dlen
, fcs
, i
, code
;
950 data
+= 2; /* skip protocol bytes */
952 if (len
< 4) /* 4 = code, ID, length */
955 if (code
!= CONFACK
&& code
!= CONFREQ
)
957 dlen
= get_unaligned_be16(data
+ 2);
959 return; /* packet got truncated or length is bogus */
961 if (code
== (inbound
? CONFACK
: CONFREQ
)) {
963 * sent confreq or received confack:
964 * calculate the crc of the data from the ID field on.
967 for (i
= 1; i
< dlen
; ++i
)
968 fcs
= PPP_FCS(fcs
, data
[i
]);
971 /* outbound confreq - remember the crc for later */
976 /* received confack, check the crc */
982 return; /* not interested in received confreq */
984 /* process the options in the confack */
987 /* data[0] is code, data[1] is length */
988 while (dlen
>= 2 && dlen
>= data
[1] && data
[1] >= 2) {
991 val
= get_unaligned_be16(data
+ 2);
998 val
= get_unaligned_be32(data
+ 2);
1010 static void __exit
ppp_async_cleanup(void)
1012 tty_unregister_ldisc(&ppp_ldisc
);
1015 module_init(ppp_async_init
);
1016 module_exit(ppp_async_cleanup
);