1 // SPDX-License-Identifier: GPL-2.0
3 * RISC-V performance counter support.
5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
7 * This code is based on ARM perf event code which is in turn based on
8 * sparc64 and x86 code.
11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
13 #include <linux/mod_devicetable.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/platform_device.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/of_irq.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/sched/clock.h>
22 #include <linux/soc/andes/irq.h>
23 #include <linux/workqueue.h>
25 #include <asm/errata_list.h>
27 #include <asm/cpufeature.h>
28 #include <asm/vendor_extensions.h>
29 #include <asm/vendor_extensions/andes.h>
31 #define ALT_SBI_PMU_OVERFLOW(__ovl) \
32 asm volatile(ALTERNATIVE_2( \
33 "csrr %0, " __stringify(CSR_SCOUNTOVF), \
34 "csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF), \
35 THEAD_VENDOR_ID, ERRATA_THEAD_PMU, \
36 CONFIG_ERRATA_THEAD_PMU, \
37 "csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF), \
39 RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
40 CONFIG_ANDES_CUSTOM_PMU) \
44 #define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask) \
45 asm volatile(ALTERNATIVE( \
46 "csrc " __stringify(CSR_IP) ", %0\n\t", \
47 "csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t", \
49 RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
50 CONFIG_ANDES_CUSTOM_PMU) \
54 #define SYSCTL_NO_USER_ACCESS 0
55 #define SYSCTL_USER_ACCESS 1
56 #define SYSCTL_LEGACY 2
58 #define PERF_EVENT_FLAG_NO_USER_ACCESS BIT(SYSCTL_NO_USER_ACCESS)
59 #define PERF_EVENT_FLAG_USER_ACCESS BIT(SYSCTL_USER_ACCESS)
60 #define PERF_EVENT_FLAG_LEGACY BIT(SYSCTL_LEGACY)
62 PMU_FORMAT_ATTR(event
, "config:0-47");
63 PMU_FORMAT_ATTR(firmware
, "config:62-63");
65 static bool sbi_v2_available
;
66 static DEFINE_STATIC_KEY_FALSE(sbi_pmu_snapshot_available
);
67 #define sbi_pmu_snapshot_available() \
68 static_branch_unlikely(&sbi_pmu_snapshot_available)
70 static struct attribute
*riscv_arch_formats_attr
[] = {
71 &format_attr_event
.attr
,
72 &format_attr_firmware
.attr
,
76 static struct attribute_group riscv_pmu_format_group
= {
78 .attrs
= riscv_arch_formats_attr
,
81 static const struct attribute_group
*riscv_pmu_attr_groups
[] = {
82 &riscv_pmu_format_group
,
86 /* Allow user mode access by default */
87 static int sysctl_perf_user_access __read_mostly
= SYSCTL_USER_ACCESS
;
90 * RISC-V doesn't have heterogeneous harts yet. This need to be part of
91 * per_cpu in case of harts with different pmu counters
93 static union sbi_pmu_ctr_info
*pmu_ctr_list
;
94 static bool riscv_pmu_use_irq
;
95 static unsigned int riscv_pmu_irq_num
;
96 static unsigned int riscv_pmu_irq_mask
;
97 static unsigned int riscv_pmu_irq
;
99 /* Cache the available counters in a bitmask */
100 static unsigned long cmask
;
102 struct sbi_pmu_event_data
{
105 struct hw_gen_event
{
106 uint32_t event_code
:16;
107 uint32_t event_type
:4;
108 uint32_t reserved
:12;
110 struct hw_cache_event
{
111 uint32_t result_id
:1;
113 uint32_t cache_id
:13;
114 uint32_t event_type
:4;
115 uint32_t reserved
:12;
122 static struct sbi_pmu_event_data pmu_hw_event_map
[] = {
123 [PERF_COUNT_HW_CPU_CYCLES
] = {.hw_gen_event
= {
124 SBI_PMU_HW_CPU_CYCLES
,
125 SBI_PMU_EVENT_TYPE_HW
, 0}},
126 [PERF_COUNT_HW_INSTRUCTIONS
] = {.hw_gen_event
= {
127 SBI_PMU_HW_INSTRUCTIONS
,
128 SBI_PMU_EVENT_TYPE_HW
, 0}},
129 [PERF_COUNT_HW_CACHE_REFERENCES
] = {.hw_gen_event
= {
130 SBI_PMU_HW_CACHE_REFERENCES
,
131 SBI_PMU_EVENT_TYPE_HW
, 0}},
132 [PERF_COUNT_HW_CACHE_MISSES
] = {.hw_gen_event
= {
133 SBI_PMU_HW_CACHE_MISSES
,
134 SBI_PMU_EVENT_TYPE_HW
, 0}},
135 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = {.hw_gen_event
= {
136 SBI_PMU_HW_BRANCH_INSTRUCTIONS
,
137 SBI_PMU_EVENT_TYPE_HW
, 0}},
138 [PERF_COUNT_HW_BRANCH_MISSES
] = {.hw_gen_event
= {
139 SBI_PMU_HW_BRANCH_MISSES
,
140 SBI_PMU_EVENT_TYPE_HW
, 0}},
141 [PERF_COUNT_HW_BUS_CYCLES
] = {.hw_gen_event
= {
142 SBI_PMU_HW_BUS_CYCLES
,
143 SBI_PMU_EVENT_TYPE_HW
, 0}},
144 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = {.hw_gen_event
= {
145 SBI_PMU_HW_STALLED_CYCLES_FRONTEND
,
146 SBI_PMU_EVENT_TYPE_HW
, 0}},
147 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = {.hw_gen_event
= {
148 SBI_PMU_HW_STALLED_CYCLES_BACKEND
,
149 SBI_PMU_EVENT_TYPE_HW
, 0}},
150 [PERF_COUNT_HW_REF_CPU_CYCLES
] = {.hw_gen_event
= {
151 SBI_PMU_HW_REF_CPU_CYCLES
,
152 SBI_PMU_EVENT_TYPE_HW
, 0}},
155 #define C(x) PERF_COUNT_HW_CACHE_##x
156 static struct sbi_pmu_event_data pmu_cache_event_map
[PERF_COUNT_HW_CACHE_MAX
]
157 [PERF_COUNT_HW_CACHE_OP_MAX
]
158 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
161 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
162 C(OP_READ
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
163 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
164 C(OP_READ
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
167 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
168 C(OP_WRITE
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
169 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
170 C(OP_WRITE
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
173 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
174 C(OP_PREFETCH
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
175 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
176 C(OP_PREFETCH
), C(L1D
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
181 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
182 C(OP_READ
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
183 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
), C(OP_READ
),
184 C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
187 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
188 C(OP_WRITE
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
189 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
190 C(OP_WRITE
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
193 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
194 C(OP_PREFETCH
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
195 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
196 C(OP_PREFETCH
), C(L1I
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
201 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
202 C(OP_READ
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
203 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
204 C(OP_READ
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
207 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
208 C(OP_WRITE
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
209 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
210 C(OP_WRITE
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
213 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
214 C(OP_PREFETCH
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
215 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
216 C(OP_PREFETCH
), C(LL
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
221 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
222 C(OP_READ
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
223 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
224 C(OP_READ
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
227 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
228 C(OP_WRITE
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
229 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
230 C(OP_WRITE
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
233 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
234 C(OP_PREFETCH
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
235 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
236 C(OP_PREFETCH
), C(DTLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
241 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
242 C(OP_READ
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
243 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
244 C(OP_READ
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
247 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
248 C(OP_WRITE
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
249 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
250 C(OP_WRITE
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
253 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
254 C(OP_PREFETCH
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
255 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
256 C(OP_PREFETCH
), C(ITLB
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
261 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
262 C(OP_READ
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
263 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
264 C(OP_READ
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
267 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
268 C(OP_WRITE
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
269 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
270 C(OP_WRITE
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
273 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
274 C(OP_PREFETCH
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
275 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
276 C(OP_PREFETCH
), C(BPU
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
281 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
282 C(OP_READ
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
283 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
284 C(OP_READ
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
287 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
288 C(OP_WRITE
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
289 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
290 C(OP_WRITE
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
293 [C(RESULT_ACCESS
)] = {.hw_cache_event
= {C(RESULT_ACCESS
),
294 C(OP_PREFETCH
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
295 [C(RESULT_MISS
)] = {.hw_cache_event
= {C(RESULT_MISS
),
296 C(OP_PREFETCH
), C(NODE
), SBI_PMU_EVENT_TYPE_CACHE
, 0}},
301 static void pmu_sbi_check_event(struct sbi_pmu_event_data
*edata
)
305 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_CFG_MATCH
,
306 0, cmask
, 0, edata
->event_idx
, 0, 0);
308 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_STOP
,
309 ret
.value
, 0x1, SBI_PMU_STOP_FLAG_RESET
, 0, 0, 0);
310 } else if (ret
.error
== SBI_ERR_NOT_SUPPORTED
) {
311 /* This event cannot be monitored by any counter */
312 edata
->event_idx
= -ENOENT
;
316 static void pmu_sbi_check_std_events(struct work_struct
*work
)
318 for (int i
= 0; i
< ARRAY_SIZE(pmu_hw_event_map
); i
++)
319 pmu_sbi_check_event(&pmu_hw_event_map
[i
]);
321 for (int i
= 0; i
< ARRAY_SIZE(pmu_cache_event_map
); i
++)
322 for (int j
= 0; j
< ARRAY_SIZE(pmu_cache_event_map
[i
]); j
++)
323 for (int k
= 0; k
< ARRAY_SIZE(pmu_cache_event_map
[i
][j
]); k
++)
324 pmu_sbi_check_event(&pmu_cache_event_map
[i
][j
][k
]);
327 static DECLARE_WORK(check_std_events_work
, pmu_sbi_check_std_events
);
329 static int pmu_sbi_ctr_get_width(int idx
)
331 return pmu_ctr_list
[idx
].width
;
334 static bool pmu_sbi_ctr_is_fw(int cidx
)
336 union sbi_pmu_ctr_info
*info
;
338 info
= &pmu_ctr_list
[cidx
];
342 return (info
->type
== SBI_PMU_CTR_TYPE_FW
) ? true : false;
346 * Returns the counter width of a programmable counter and number of hardware
347 * counters. As we don't support heterogeneous CPUs yet, it is okay to just
348 * return the counter width of the first programmable counter.
350 int riscv_pmu_get_hpm_info(u32
*hw_ctr_width
, u32
*num_hw_ctr
)
353 union sbi_pmu_ctr_info
*info
;
354 u32 hpm_width
= 0, hpm_count
= 0;
359 for_each_set_bit(i
, &cmask
, RISCV_MAX_COUNTERS
) {
360 info
= &pmu_ctr_list
[i
];
363 if (!hpm_width
&& info
->csr
!= CSR_CYCLE
&& info
->csr
!= CSR_INSTRET
)
364 hpm_width
= info
->width
;
365 if (info
->type
== SBI_PMU_CTR_TYPE_HW
)
369 *hw_ctr_width
= hpm_width
;
370 *num_hw_ctr
= hpm_count
;
374 EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info
);
376 static uint8_t pmu_sbi_csr_index(struct perf_event
*event
)
378 return pmu_ctr_list
[event
->hw
.idx
].csr
- CSR_CYCLE
;
381 static unsigned long pmu_sbi_get_filter_flags(struct perf_event
*event
)
383 unsigned long cflags
= 0;
384 bool guest_events
= false;
386 if (event
->attr
.config1
& RISCV_PMU_CONFIG1_GUEST_EVENTS
)
388 if (event
->attr
.exclude_kernel
)
389 cflags
|= guest_events
? SBI_PMU_CFG_FLAG_SET_VSINH
: SBI_PMU_CFG_FLAG_SET_SINH
;
390 if (event
->attr
.exclude_user
)
391 cflags
|= guest_events
? SBI_PMU_CFG_FLAG_SET_VUINH
: SBI_PMU_CFG_FLAG_SET_UINH
;
392 if (guest_events
&& event
->attr
.exclude_hv
)
393 cflags
|= SBI_PMU_CFG_FLAG_SET_SINH
;
394 if (event
->attr
.exclude_host
)
395 cflags
|= SBI_PMU_CFG_FLAG_SET_UINH
| SBI_PMU_CFG_FLAG_SET_SINH
;
396 if (event
->attr
.exclude_guest
)
397 cflags
|= SBI_PMU_CFG_FLAG_SET_VSINH
| SBI_PMU_CFG_FLAG_SET_VUINH
;
402 static int pmu_sbi_ctr_get_idx(struct perf_event
*event
)
404 struct hw_perf_event
*hwc
= &event
->hw
;
405 struct riscv_pmu
*rvpmu
= to_riscv_pmu(event
->pmu
);
406 struct cpu_hw_events
*cpuc
= this_cpu_ptr(rvpmu
->hw_events
);
409 uint64_t cbase
= 0, cmask
= rvpmu
->cmask
;
410 unsigned long cflags
= 0;
412 cflags
= pmu_sbi_get_filter_flags(event
);
415 * In legacy mode, we have to force the fixed counters for those events
416 * but not in the user access mode as we want to use the other counters
417 * that support sampling/filtering.
419 if ((hwc
->flags
& PERF_EVENT_FLAG_LEGACY
) && (event
->attr
.type
== PERF_TYPE_HARDWARE
)) {
420 if (event
->attr
.config
== PERF_COUNT_HW_CPU_CYCLES
) {
421 cflags
|= SBI_PMU_CFG_FLAG_SKIP_MATCH
;
423 } else if (event
->attr
.config
== PERF_COUNT_HW_INSTRUCTIONS
) {
424 cflags
|= SBI_PMU_CFG_FLAG_SKIP_MATCH
;
425 cmask
= BIT(CSR_INSTRET
- CSR_CYCLE
);
429 /* retrieve the available counter index */
430 #if defined(CONFIG_32BIT)
431 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_CFG_MATCH
, cbase
,
432 cmask
, cflags
, hwc
->event_base
, hwc
->config
,
435 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_CFG_MATCH
, cbase
,
436 cmask
, cflags
, hwc
->event_base
, hwc
->config
, 0);
439 pr_debug("Not able to find a counter for event %lx config %llx\n",
440 hwc
->event_base
, hwc
->config
);
441 return sbi_err_map_linux_errno(ret
.error
);
445 if (!test_bit(idx
, &rvpmu
->cmask
) || !pmu_ctr_list
[idx
].value
)
448 /* Additional sanity check for the counter id */
449 if (pmu_sbi_ctr_is_fw(idx
)) {
450 if (!test_and_set_bit(idx
, cpuc
->used_fw_ctrs
))
453 if (!test_and_set_bit(idx
, cpuc
->used_hw_ctrs
))
460 static void pmu_sbi_ctr_clear_idx(struct perf_event
*event
)
463 struct hw_perf_event
*hwc
= &event
->hw
;
464 struct riscv_pmu
*rvpmu
= to_riscv_pmu(event
->pmu
);
465 struct cpu_hw_events
*cpuc
= this_cpu_ptr(rvpmu
->hw_events
);
468 if (pmu_sbi_ctr_is_fw(idx
))
469 clear_bit(idx
, cpuc
->used_fw_ctrs
);
471 clear_bit(idx
, cpuc
->used_hw_ctrs
);
474 static int pmu_event_find_cache(u64 config
)
476 unsigned int cache_type
, cache_op
, cache_result
, ret
;
478 cache_type
= (config
>> 0) & 0xff;
479 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
482 cache_op
= (config
>> 8) & 0xff;
483 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
486 cache_result
= (config
>> 16) & 0xff;
487 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
490 ret
= pmu_cache_event_map
[cache_type
][cache_op
][cache_result
].event_idx
;
495 static bool pmu_sbi_is_fw_event(struct perf_event
*event
)
497 u32 type
= event
->attr
.type
;
498 u64 config
= event
->attr
.config
;
500 if ((type
== PERF_TYPE_RAW
) && ((config
>> 63) == 1))
506 static int pmu_sbi_event_map(struct perf_event
*event
, u64
*econfig
)
508 u32 type
= event
->attr
.type
;
509 u64 config
= event
->attr
.config
;
513 * Ensure we are finished checking standard hardware events for
514 * validity before allowing userspace to configure any events.
516 flush_work(&check_std_events_work
);
519 case PERF_TYPE_HARDWARE
:
520 if (config
>= PERF_COUNT_HW_MAX
)
522 ret
= pmu_hw_event_map
[event
->attr
.config
].event_idx
;
524 case PERF_TYPE_HW_CACHE
:
525 ret
= pmu_event_find_cache(config
);
529 * As per SBI specification, the upper 16 bits must be unused
530 * for a hardware raw event.
531 * Bits 63:62 are used to distinguish between raw events
532 * 00 - Hardware raw event
533 * 10 - SBI firmware events
534 * 11 - Risc-V platform specific firmware event
537 switch (config
>> 62) {
539 /* Return error any bits [48-63] is set as it is not allowed by the spec */
540 if (!(config
& ~RISCV_PMU_RAW_EVENT_MASK
)) {
541 *econfig
= config
& RISCV_PMU_RAW_EVENT_MASK
;
542 ret
= RISCV_PMU_RAW_EVENT_IDX
;
546 ret
= (config
& 0xFFFF) | (SBI_PMU_EVENT_TYPE_FW
<< 16);
550 * For Risc-V platform specific firmware events
551 * Event code - 0xFFFF
552 * Event data - raw event encoding
554 ret
= SBI_PMU_EVENT_TYPE_FW
<< 16 | RISCV_PLAT_FW_EVENT
;
555 *econfig
= config
& RISCV_PMU_PLAT_FW_EVENT_MASK
;
568 static void pmu_sbi_snapshot_free(struct riscv_pmu
*pmu
)
572 for_each_possible_cpu(cpu
) {
573 struct cpu_hw_events
*cpu_hw_evt
= per_cpu_ptr(pmu
->hw_events
, cpu
);
575 if (!cpu_hw_evt
->snapshot_addr
)
578 free_page((unsigned long)cpu_hw_evt
->snapshot_addr
);
579 cpu_hw_evt
->snapshot_addr
= NULL
;
580 cpu_hw_evt
->snapshot_addr_phys
= 0;
584 static int pmu_sbi_snapshot_alloc(struct riscv_pmu
*pmu
)
587 struct page
*snapshot_page
;
589 for_each_possible_cpu(cpu
) {
590 struct cpu_hw_events
*cpu_hw_evt
= per_cpu_ptr(pmu
->hw_events
, cpu
);
592 snapshot_page
= alloc_page(GFP_ATOMIC
| __GFP_ZERO
);
593 if (!snapshot_page
) {
594 pmu_sbi_snapshot_free(pmu
);
597 cpu_hw_evt
->snapshot_addr
= page_to_virt(snapshot_page
);
598 cpu_hw_evt
->snapshot_addr_phys
= page_to_phys(snapshot_page
);
604 static int pmu_sbi_snapshot_disable(void)
608 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM
, SBI_SHMEM_DISABLE
,
609 SBI_SHMEM_DISABLE
, 0, 0, 0, 0);
611 pr_warn("failed to disable snapshot shared memory\n");
612 return sbi_err_map_linux_errno(ret
.error
);
618 static int pmu_sbi_snapshot_setup(struct riscv_pmu
*pmu
, int cpu
)
620 struct cpu_hw_events
*cpu_hw_evt
;
621 struct sbiret ret
= {0};
623 cpu_hw_evt
= per_cpu_ptr(pmu
->hw_events
, cpu
);
624 if (!cpu_hw_evt
->snapshot_addr_phys
)
627 if (cpu_hw_evt
->snapshot_set_done
)
630 if (IS_ENABLED(CONFIG_32BIT
))
631 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM
,
632 cpu_hw_evt
->snapshot_addr_phys
,
633 (u64
)(cpu_hw_evt
->snapshot_addr_phys
) >> 32, 0, 0, 0, 0);
635 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM
,
636 cpu_hw_evt
->snapshot_addr_phys
, 0, 0, 0, 0, 0);
638 /* Free up the snapshot area memory and fall back to SBI PMU calls without snapshot */
640 if (ret
.error
!= SBI_ERR_NOT_SUPPORTED
)
641 pr_warn("pmu snapshot setup failed with error %ld\n", ret
.error
);
642 return sbi_err_map_linux_errno(ret
.error
);
645 memset(cpu_hw_evt
->snapshot_cval_shcopy
, 0, sizeof(u64
) * RISCV_MAX_COUNTERS
);
646 cpu_hw_evt
->snapshot_set_done
= true;
651 static u64
pmu_sbi_ctr_read(struct perf_event
*event
)
653 struct hw_perf_event
*hwc
= &event
->hw
;
657 struct riscv_pmu
*pmu
= to_riscv_pmu(event
->pmu
);
658 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
659 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
660 union sbi_pmu_ctr_info info
= pmu_ctr_list
[idx
];
662 /* Read the value from the shared memory directly only if counter is stopped */
663 if (sbi_pmu_snapshot_available() && (hwc
->state
& PERF_HES_STOPPED
)) {
664 val
= sdata
->ctr_values
[idx
];
668 if (pmu_sbi_is_fw_event(event
)) {
669 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_FW_READ
,
670 hwc
->idx
, 0, 0, 0, 0, 0);
675 if (IS_ENABLED(CONFIG_32BIT
) && sbi_v2_available
&& info
.width
>= 32) {
676 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_FW_READ_HI
,
677 hwc
->idx
, 0, 0, 0, 0, 0);
679 val
|= ((u64
)ret
.value
<< 32);
681 WARN_ONCE(1, "Unable to read upper 32 bits of firmware counter error: %ld\n",
685 val
= riscv_pmu_ctr_read_csr(info
.csr
);
686 if (IS_ENABLED(CONFIG_32BIT
))
687 val
|= ((u64
)riscv_pmu_ctr_read_csr(info
.csr
+ 0x80)) << 32;
693 static void pmu_sbi_set_scounteren(void *arg
)
695 struct perf_event
*event
= (struct perf_event
*)arg
;
697 if (event
->hw
.idx
!= -1)
698 csr_write(CSR_SCOUNTEREN
,
699 csr_read(CSR_SCOUNTEREN
) | BIT(pmu_sbi_csr_index(event
)));
702 static void pmu_sbi_reset_scounteren(void *arg
)
704 struct perf_event
*event
= (struct perf_event
*)arg
;
706 if (event
->hw
.idx
!= -1)
707 csr_write(CSR_SCOUNTEREN
,
708 csr_read(CSR_SCOUNTEREN
) & ~BIT(pmu_sbi_csr_index(event
)));
711 static void pmu_sbi_ctr_start(struct perf_event
*event
, u64 ival
)
714 struct hw_perf_event
*hwc
= &event
->hw
;
715 unsigned long flag
= SBI_PMU_START_FLAG_SET_INIT_VALUE
;
717 /* There is no benefit setting SNAPSHOT FLAG for a single counter */
718 #if defined(CONFIG_32BIT)
719 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, hwc
->idx
,
720 1, flag
, ival
, ival
>> 32, 0);
722 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, hwc
->idx
,
723 1, flag
, ival
, 0, 0);
725 if (ret
.error
&& (ret
.error
!= SBI_ERR_ALREADY_STARTED
))
726 pr_err("Starting counter idx %d failed with error %d\n",
727 hwc
->idx
, sbi_err_map_linux_errno(ret
.error
));
729 if ((hwc
->flags
& PERF_EVENT_FLAG_USER_ACCESS
) &&
730 (hwc
->flags
& PERF_EVENT_FLAG_USER_READ_CNT
))
731 pmu_sbi_set_scounteren((void *)event
);
734 static void pmu_sbi_ctr_stop(struct perf_event
*event
, unsigned long flag
)
737 struct hw_perf_event
*hwc
= &event
->hw
;
738 struct riscv_pmu
*pmu
= to_riscv_pmu(event
->pmu
);
739 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
740 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
742 if ((hwc
->flags
& PERF_EVENT_FLAG_USER_ACCESS
) &&
743 (hwc
->flags
& PERF_EVENT_FLAG_USER_READ_CNT
))
744 pmu_sbi_reset_scounteren((void *)event
);
746 if (sbi_pmu_snapshot_available())
747 flag
|= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT
;
749 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_STOP
, hwc
->idx
, 1, flag
, 0, 0, 0);
750 if (!ret
.error
&& sbi_pmu_snapshot_available()) {
752 * The counter snapshot is based on the index base specified by hwc->idx.
753 * The actual counter value is updated in shared memory at index 0 when counter
754 * mask is 0x01. To ensure accurate counter values, it's necessary to transfer
755 * the counter value to shared memory. However, if hwc->idx is zero, the counter
756 * value is already correctly updated in shared memory, requiring no further
760 sdata
->ctr_values
[hwc
->idx
] = sdata
->ctr_values
[0];
761 sdata
->ctr_values
[0] = 0;
763 } else if (ret
.error
&& (ret
.error
!= SBI_ERR_ALREADY_STOPPED
) &&
764 flag
!= SBI_PMU_STOP_FLAG_RESET
) {
765 pr_err("Stopping counter idx %d failed with error %d\n",
766 hwc
->idx
, sbi_err_map_linux_errno(ret
.error
));
770 static int pmu_sbi_find_num_ctrs(void)
774 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_NUM_COUNTERS
, 0, 0, 0, 0, 0, 0);
778 return sbi_err_map_linux_errno(ret
.error
);
781 static int pmu_sbi_get_ctrinfo(int nctr
, unsigned long *mask
)
784 int i
, num_hw_ctr
= 0, num_fw_ctr
= 0;
785 union sbi_pmu_ctr_info cinfo
;
787 pmu_ctr_list
= kcalloc(nctr
, sizeof(*pmu_ctr_list
), GFP_KERNEL
);
791 for (i
= 0; i
< nctr
; i
++) {
792 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_GET_INFO
, i
, 0, 0, 0, 0, 0);
794 /* The logical counter ids are not expected to be contiguous */
799 cinfo
.value
= ret
.value
;
800 if (cinfo
.type
== SBI_PMU_CTR_TYPE_FW
)
804 pmu_ctr_list
[i
].value
= cinfo
.value
;
807 pr_info("%d firmware and %d hardware counters\n", num_fw_ctr
, num_hw_ctr
);
812 static inline void pmu_sbi_stop_all(struct riscv_pmu
*pmu
)
815 * No need to check the error because we are disabling all the counters
816 * which may include counters that are not enabled yet.
818 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_STOP
,
819 0, pmu
->cmask
, SBI_PMU_STOP_FLAG_RESET
, 0, 0, 0);
822 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu
*pmu
)
824 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
825 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
826 unsigned long flag
= 0;
829 u64 temp_ctr_overflow_mask
= 0;
831 if (sbi_pmu_snapshot_available())
832 flag
= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT
;
834 /* Reset the shadow copy to avoid save/restore any value from previous overflow */
835 memset(cpu_hw_evt
->snapshot_cval_shcopy
, 0, sizeof(u64
) * RISCV_MAX_COUNTERS
);
837 for (i
= 0; i
< BITS_TO_LONGS(RISCV_MAX_COUNTERS
); i
++) {
838 /* No need to check the error here as we can't do anything about the error */
839 ret
= sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_STOP
, i
* BITS_PER_LONG
,
840 cpu_hw_evt
->used_hw_ctrs
[i
], flag
, 0, 0, 0);
841 if (!ret
.error
&& sbi_pmu_snapshot_available()) {
842 /* Save the counter values to avoid clobbering */
843 for_each_set_bit(idx
, &cpu_hw_evt
->used_hw_ctrs
[i
], BITS_PER_LONG
)
844 cpu_hw_evt
->snapshot_cval_shcopy
[i
* BITS_PER_LONG
+ idx
] =
845 sdata
->ctr_values
[idx
];
846 /* Save the overflow mask to avoid clobbering */
847 temp_ctr_overflow_mask
|= sdata
->ctr_overflow_mask
<< (i
* BITS_PER_LONG
);
851 /* Restore the counter values to the shared memory for used hw counters */
852 if (sbi_pmu_snapshot_available()) {
853 for_each_set_bit(idx
, cpu_hw_evt
->used_hw_ctrs
, RISCV_MAX_COUNTERS
)
854 sdata
->ctr_values
[idx
] = cpu_hw_evt
->snapshot_cval_shcopy
[idx
];
855 if (temp_ctr_overflow_mask
)
856 sdata
->ctr_overflow_mask
= temp_ctr_overflow_mask
;
861 * This function starts all the used counters in two step approach.
862 * Any counter that did not overflow can be start in a single step
863 * while the overflowed counters need to be started with updated initialization
866 static inline void pmu_sbi_start_ovf_ctrs_sbi(struct cpu_hw_events
*cpu_hw_evt
,
870 struct perf_event
*event
;
871 unsigned long flag
= SBI_PMU_START_FLAG_SET_INIT_VALUE
;
872 unsigned long ctr_start_mask
= 0;
874 struct hw_perf_event
*hwc
;
877 for (i
= 0; i
< BITS_TO_LONGS(RISCV_MAX_COUNTERS
); i
++) {
878 ctr_start_mask
= cpu_hw_evt
->used_hw_ctrs
[i
] & ~ctr_ovf_mask
;
879 /* Start all the counters that did not overflow in a single shot */
880 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, i
* BITS_PER_LONG
, ctr_start_mask
,
884 /* Reinitialize and start all the counter that overflowed */
885 while (ctr_ovf_mask
) {
886 if (ctr_ovf_mask
& 0x01) {
887 event
= cpu_hw_evt
->events
[idx
];
889 max_period
= riscv_pmu_ctr_get_width_mask(event
);
890 init_val
= local64_read(&hwc
->prev_count
) & max_period
;
891 #if defined(CONFIG_32BIT)
892 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, idx
, 1,
893 flag
, init_val
, init_val
>> 32, 0);
895 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, idx
, 1,
896 flag
, init_val
, 0, 0);
898 perf_event_update_userpage(event
);
900 ctr_ovf_mask
= ctr_ovf_mask
>> 1;
905 static inline void pmu_sbi_start_ovf_ctrs_snapshot(struct cpu_hw_events
*cpu_hw_evt
,
909 struct perf_event
*event
;
910 unsigned long flag
= SBI_PMU_START_FLAG_INIT_SNAPSHOT
;
911 u64 max_period
, init_val
= 0;
912 struct hw_perf_event
*hwc
;
913 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
915 for_each_set_bit(idx
, cpu_hw_evt
->used_hw_ctrs
, RISCV_MAX_COUNTERS
) {
916 if (ctr_ovf_mask
& BIT(idx
)) {
917 event
= cpu_hw_evt
->events
[idx
];
919 max_period
= riscv_pmu_ctr_get_width_mask(event
);
920 init_val
= local64_read(&hwc
->prev_count
) & max_period
;
921 cpu_hw_evt
->snapshot_cval_shcopy
[idx
] = init_val
;
924 * We do not need to update the non-overflow counters the previous
925 * value should have been there already.
929 for (i
= 0; i
< BITS_TO_LONGS(RISCV_MAX_COUNTERS
); i
++) {
930 /* Restore the counter values to relative indices for used hw counters */
931 for_each_set_bit(idx
, &cpu_hw_evt
->used_hw_ctrs
[i
], BITS_PER_LONG
)
932 sdata
->ctr_values
[idx
] =
933 cpu_hw_evt
->snapshot_cval_shcopy
[idx
+ i
* BITS_PER_LONG
];
934 /* Start all the counters in a single shot */
935 sbi_ecall(SBI_EXT_PMU
, SBI_EXT_PMU_COUNTER_START
, idx
* BITS_PER_LONG
,
936 cpu_hw_evt
->used_hw_ctrs
[i
], flag
, 0, 0, 0);
940 static void pmu_sbi_start_overflow_mask(struct riscv_pmu
*pmu
,
943 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
945 if (sbi_pmu_snapshot_available())
946 pmu_sbi_start_ovf_ctrs_snapshot(cpu_hw_evt
, ctr_ovf_mask
);
948 pmu_sbi_start_ovf_ctrs_sbi(cpu_hw_evt
, ctr_ovf_mask
);
951 static irqreturn_t
pmu_sbi_ovf_handler(int irq
, void *dev
)
953 struct perf_sample_data data
;
954 struct pt_regs
*regs
;
955 struct hw_perf_event
*hw_evt
;
956 union sbi_pmu_ctr_info
*info
;
957 int lidx
, hidx
, fidx
;
958 struct riscv_pmu
*pmu
;
959 struct perf_event
*event
;
961 u64 overflowed_ctrs
= 0;
962 struct cpu_hw_events
*cpu_hw_evt
= dev
;
963 u64 start_clock
= sched_clock();
964 struct riscv_pmu_snapshot_data
*sdata
= cpu_hw_evt
->snapshot_addr
;
966 if (WARN_ON_ONCE(!cpu_hw_evt
))
969 /* Firmware counter don't support overflow yet */
970 fidx
= find_first_bit(cpu_hw_evt
->used_hw_ctrs
, RISCV_MAX_COUNTERS
);
971 if (fidx
== RISCV_MAX_COUNTERS
) {
972 csr_clear(CSR_SIP
, BIT(riscv_pmu_irq_num
));
976 event
= cpu_hw_evt
->events
[fidx
];
978 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask
);
982 pmu
= to_riscv_pmu(event
->pmu
);
983 pmu_sbi_stop_hw_ctrs(pmu
);
985 /* Overflow status register should only be read after counter are stopped */
986 if (sbi_pmu_snapshot_available())
987 overflow
= sdata
->ctr_overflow_mask
;
989 ALT_SBI_PMU_OVERFLOW(overflow
);
992 * Overflow interrupt pending bit should only be cleared after stopping
993 * all the counters to avoid any race condition.
995 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask
);
997 /* No overflow bit is set */
1001 regs
= get_irq_regs();
1003 for_each_set_bit(lidx
, cpu_hw_evt
->used_hw_ctrs
, RISCV_MAX_COUNTERS
) {
1004 struct perf_event
*event
= cpu_hw_evt
->events
[lidx
];
1006 /* Skip if invalid event or user did not request a sampling */
1007 if (!event
|| !is_sampling_event(event
))
1010 info
= &pmu_ctr_list
[lidx
];
1011 /* Do a sanity check */
1012 if (!info
|| info
->type
!= SBI_PMU_CTR_TYPE_HW
)
1015 if (sbi_pmu_snapshot_available())
1016 /* SBI implementation already updated the logical indicies */
1019 /* compute hardware counter index */
1020 hidx
= info
->csr
- CSR_CYCLE
;
1022 /* check if the corresponding bit is set in sscountovf or overflow mask in shmem */
1023 if (!(overflow
& BIT(hidx
)))
1027 * Keep a track of overflowed counters so that they can be started
1028 * with updated initial value.
1030 overflowed_ctrs
|= BIT(lidx
);
1031 hw_evt
= &event
->hw
;
1032 /* Update the event states here so that we know the state while reading */
1033 hw_evt
->state
|= PERF_HES_STOPPED
;
1034 riscv_pmu_event_update(event
);
1035 hw_evt
->state
|= PERF_HES_UPTODATE
;
1036 perf_sample_data_init(&data
, 0, hw_evt
->last_period
);
1037 if (riscv_pmu_event_set_period(event
)) {
1039 * Unlike other ISAs, RISC-V don't have to disable interrupts
1040 * to avoid throttling here. As per the specification, the
1041 * interrupt remains disabled until the OF bit is set.
1042 * Interrupts are enabled again only during the start.
1043 * TODO: We will need to stop the guest counters once
1044 * virtualization support is added.
1046 perf_event_overflow(event
, &data
, regs
);
1048 /* Reset the state as we are going to start the counter after the loop */
1052 pmu_sbi_start_overflow_mask(pmu
, overflowed_ctrs
);
1053 perf_sample_event_took(sched_clock() - start_clock
);
1058 static int pmu_sbi_starting_cpu(unsigned int cpu
, struct hlist_node
*node
)
1060 struct riscv_pmu
*pmu
= hlist_entry_safe(node
, struct riscv_pmu
, node
);
1061 struct cpu_hw_events
*cpu_hw_evt
= this_cpu_ptr(pmu
->hw_events
);
1064 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
1065 * legacy option but that will be removed in the future.
1067 if (sysctl_perf_user_access
== SYSCTL_LEGACY
)
1068 csr_write(CSR_SCOUNTEREN
, 0x7);
1070 csr_write(CSR_SCOUNTEREN
, 0x2);
1072 /* Stop all the counters so that they can be enabled from perf */
1073 pmu_sbi_stop_all(pmu
);
1075 if (riscv_pmu_use_irq
) {
1076 cpu_hw_evt
->irq
= riscv_pmu_irq
;
1077 ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask
);
1078 enable_percpu_irq(riscv_pmu_irq
, IRQ_TYPE_NONE
);
1081 if (sbi_pmu_snapshot_available())
1082 return pmu_sbi_snapshot_setup(pmu
, cpu
);
1087 static int pmu_sbi_dying_cpu(unsigned int cpu
, struct hlist_node
*node
)
1089 if (riscv_pmu_use_irq
) {
1090 disable_percpu_irq(riscv_pmu_irq
);
1093 /* Disable all counters access for user mode now */
1094 csr_write(CSR_SCOUNTEREN
, 0x0);
1096 if (sbi_pmu_snapshot_available())
1097 return pmu_sbi_snapshot_disable();
1102 static int pmu_sbi_setup_irqs(struct riscv_pmu
*pmu
, struct platform_device
*pdev
)
1105 struct cpu_hw_events __percpu
*hw_events
= pmu
->hw_events
;
1106 struct irq_domain
*domain
= NULL
;
1108 if (riscv_isa_extension_available(NULL
, SSCOFPMF
)) {
1109 riscv_pmu_irq_num
= RV_IRQ_PMU
;
1110 riscv_pmu_use_irq
= true;
1111 } else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU
) &&
1112 riscv_cached_mvendorid(0) == THEAD_VENDOR_ID
&&
1113 riscv_cached_marchid(0) == 0 &&
1114 riscv_cached_mimpid(0) == 0) {
1115 riscv_pmu_irq_num
= THEAD_C9XX_RV_IRQ_PMU
;
1116 riscv_pmu_use_irq
= true;
1117 } else if (riscv_has_vendor_extension_unlikely(ANDES_VENDOR_ID
,
1118 RISCV_ISA_VENDOR_EXT_XANDESPMU
) &&
1119 IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU
)) {
1120 riscv_pmu_irq_num
= ANDES_SLI_CAUSE_BASE
+ ANDES_RV_IRQ_PMOVI
;
1121 riscv_pmu_use_irq
= true;
1124 riscv_pmu_irq_mask
= BIT(riscv_pmu_irq_num
% BITS_PER_LONG
);
1126 if (!riscv_pmu_use_irq
)
1129 domain
= irq_find_matching_fwnode(riscv_get_intc_hwnode(),
1132 pr_err("Failed to find INTC IRQ root domain\n");
1136 riscv_pmu_irq
= irq_create_mapping(domain
, riscv_pmu_irq_num
);
1137 if (!riscv_pmu_irq
) {
1138 pr_err("Failed to map PMU interrupt for node\n");
1142 ret
= request_percpu_irq(riscv_pmu_irq
, pmu_sbi_ovf_handler
, "riscv-pmu", hw_events
);
1144 pr_err("registering percpu irq failed [%d]\n", ret
);
1151 #ifdef CONFIG_CPU_PM
1152 static int riscv_pm_pmu_notify(struct notifier_block
*b
, unsigned long cmd
,
1155 struct riscv_pmu
*rvpmu
= container_of(b
, struct riscv_pmu
, riscv_pm_nb
);
1156 struct cpu_hw_events
*cpuc
= this_cpu_ptr(rvpmu
->hw_events
);
1157 int enabled
= bitmap_weight(cpuc
->used_hw_ctrs
, RISCV_MAX_COUNTERS
);
1158 struct perf_event
*event
;
1164 for (idx
= 0; idx
< RISCV_MAX_COUNTERS
; idx
++) {
1165 event
= cpuc
->events
[idx
];
1172 * Stop and update the counter
1174 riscv_pmu_stop(event
, PERF_EF_UPDATE
);
1177 case CPU_PM_ENTER_FAILED
:
1179 * Restore and enable the counter.
1181 riscv_pmu_start(event
, PERF_EF_RELOAD
);
1191 static int riscv_pm_pmu_register(struct riscv_pmu
*pmu
)
1193 pmu
->riscv_pm_nb
.notifier_call
= riscv_pm_pmu_notify
;
1194 return cpu_pm_register_notifier(&pmu
->riscv_pm_nb
);
1197 static void riscv_pm_pmu_unregister(struct riscv_pmu
*pmu
)
1199 cpu_pm_unregister_notifier(&pmu
->riscv_pm_nb
);
1202 static inline int riscv_pm_pmu_register(struct riscv_pmu
*pmu
) { return 0; }
1203 static inline void riscv_pm_pmu_unregister(struct riscv_pmu
*pmu
) { }
1206 static void riscv_pmu_destroy(struct riscv_pmu
*pmu
)
1208 if (sbi_v2_available
) {
1209 if (sbi_pmu_snapshot_available()) {
1210 pmu_sbi_snapshot_disable();
1211 pmu_sbi_snapshot_free(pmu
);
1214 riscv_pm_pmu_unregister(pmu
);
1215 cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING
, &pmu
->node
);
1218 static void pmu_sbi_event_init(struct perf_event
*event
)
1221 * The permissions are set at event_init so that we do not depend
1222 * on the sysctl value that can change.
1224 if (sysctl_perf_user_access
== SYSCTL_NO_USER_ACCESS
)
1225 event
->hw
.flags
|= PERF_EVENT_FLAG_NO_USER_ACCESS
;
1226 else if (sysctl_perf_user_access
== SYSCTL_USER_ACCESS
)
1227 event
->hw
.flags
|= PERF_EVENT_FLAG_USER_ACCESS
;
1229 event
->hw
.flags
|= PERF_EVENT_FLAG_LEGACY
;
1232 static void pmu_sbi_event_mapped(struct perf_event
*event
, struct mm_struct
*mm
)
1234 if (event
->hw
.flags
& PERF_EVENT_FLAG_NO_USER_ACCESS
)
1237 if (event
->hw
.flags
& PERF_EVENT_FLAG_LEGACY
) {
1238 if (event
->attr
.config
!= PERF_COUNT_HW_CPU_CYCLES
&&
1239 event
->attr
.config
!= PERF_COUNT_HW_INSTRUCTIONS
) {
1245 * The user mmapped the event to directly access it: this is where
1246 * we determine based on sysctl_perf_user_access if we grant userspace
1247 * the direct access to this event. That means that within the same
1248 * task, some events may be directly accessible and some other may not,
1249 * if the user changes the value of sysctl_perf_user_accesss in the
1253 event
->hw
.flags
|= PERF_EVENT_FLAG_USER_READ_CNT
;
1256 * We must enable userspace access *before* advertising in the user page
1257 * that it is possible to do so to avoid any race.
1258 * And we must notify all cpus here because threads that currently run
1259 * on other cpus will try to directly access the counter too without
1260 * calling pmu_sbi_ctr_start.
1262 if (event
->hw
.flags
& PERF_EVENT_FLAG_USER_ACCESS
)
1263 on_each_cpu_mask(mm_cpumask(mm
),
1264 pmu_sbi_set_scounteren
, (void *)event
, 1);
1267 static void pmu_sbi_event_unmapped(struct perf_event
*event
, struct mm_struct
*mm
)
1269 if (event
->hw
.flags
& PERF_EVENT_FLAG_NO_USER_ACCESS
)
1272 if (event
->hw
.flags
& PERF_EVENT_FLAG_LEGACY
) {
1273 if (event
->attr
.config
!= PERF_COUNT_HW_CPU_CYCLES
&&
1274 event
->attr
.config
!= PERF_COUNT_HW_INSTRUCTIONS
) {
1280 * Here we can directly remove user access since the user does not have
1281 * access to the user page anymore so we avoid the racy window where the
1282 * user could have read cap_user_rdpmc to true right before we disable
1285 event
->hw
.flags
&= ~PERF_EVENT_FLAG_USER_READ_CNT
;
1287 if (event
->hw
.flags
& PERF_EVENT_FLAG_USER_ACCESS
)
1288 on_each_cpu_mask(mm_cpumask(mm
),
1289 pmu_sbi_reset_scounteren
, (void *)event
, 1);
1292 static void riscv_pmu_update_counter_access(void *info
)
1294 if (sysctl_perf_user_access
== SYSCTL_LEGACY
)
1295 csr_write(CSR_SCOUNTEREN
, 0x7);
1297 csr_write(CSR_SCOUNTEREN
, 0x2);
1300 static int riscv_pmu_proc_user_access_handler(const struct ctl_table
*table
,
1301 int write
, void *buffer
,
1302 size_t *lenp
, loff_t
*ppos
)
1304 int prev
= sysctl_perf_user_access
;
1305 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
1308 * Test against the previous value since we clear SCOUNTEREN when
1309 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
1310 * not do that if that was already the case.
1312 if (ret
|| !write
|| prev
== sysctl_perf_user_access
)
1315 on_each_cpu(riscv_pmu_update_counter_access
, NULL
, 1);
1320 static struct ctl_table sbi_pmu_sysctl_table
[] = {
1322 .procname
= "perf_user_access",
1323 .data
= &sysctl_perf_user_access
,
1324 .maxlen
= sizeof(unsigned int),
1326 .proc_handler
= riscv_pmu_proc_user_access_handler
,
1327 .extra1
= SYSCTL_ZERO
,
1328 .extra2
= SYSCTL_TWO
,
1332 static int pmu_sbi_device_probe(struct platform_device
*pdev
)
1334 struct riscv_pmu
*pmu
= NULL
;
1338 pr_info("SBI PMU extension is available\n");
1339 pmu
= riscv_pmu_alloc();
1343 num_counters
= pmu_sbi_find_num_ctrs();
1344 if (num_counters
< 0) {
1345 pr_err("SBI PMU extension doesn't provide any counters\n");
1349 /* It is possible to get from SBI more than max number of counters */
1350 if (num_counters
> RISCV_MAX_COUNTERS
) {
1351 num_counters
= RISCV_MAX_COUNTERS
;
1352 pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters
);
1355 /* cache all the information about counters now */
1356 if (pmu_sbi_get_ctrinfo(num_counters
, &cmask
))
1359 ret
= pmu_sbi_setup_irqs(pmu
, pdev
);
1361 pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1362 pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
1363 pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_EXCLUDE
;
1366 pmu
->pmu
.attr_groups
= riscv_pmu_attr_groups
;
1367 pmu
->pmu
.parent
= &pdev
->dev
;
1369 pmu
->ctr_start
= pmu_sbi_ctr_start
;
1370 pmu
->ctr_stop
= pmu_sbi_ctr_stop
;
1371 pmu
->event_map
= pmu_sbi_event_map
;
1372 pmu
->ctr_get_idx
= pmu_sbi_ctr_get_idx
;
1373 pmu
->ctr_get_width
= pmu_sbi_ctr_get_width
;
1374 pmu
->ctr_clear_idx
= pmu_sbi_ctr_clear_idx
;
1375 pmu
->ctr_read
= pmu_sbi_ctr_read
;
1376 pmu
->event_init
= pmu_sbi_event_init
;
1377 pmu
->event_mapped
= pmu_sbi_event_mapped
;
1378 pmu
->event_unmapped
= pmu_sbi_event_unmapped
;
1379 pmu
->csr_index
= pmu_sbi_csr_index
;
1381 ret
= riscv_pm_pmu_register(pmu
);
1383 goto out_unregister
;
1385 ret
= perf_pmu_register(&pmu
->pmu
, "cpu", PERF_TYPE_RAW
);
1387 goto out_unregister
;
1389 /* SBI PMU Snapsphot is only available in SBI v2.0 */
1390 if (sbi_v2_available
) {
1393 ret
= pmu_sbi_snapshot_alloc(pmu
);
1395 goto out_unregister
;
1398 ret
= pmu_sbi_snapshot_setup(pmu
, cpu
);
1402 /* Snapshot is an optional feature. Continue if not available */
1403 pmu_sbi_snapshot_free(pmu
);
1405 pr_info("SBI PMU snapshot detected\n");
1407 * We enable it once here for the boot cpu. If snapshot shmem setup
1408 * fails during cpu hotplug process, it will fail to start the cpu
1409 * as we can not handle hetergenous PMUs with different snapshot
1412 static_branch_enable(&sbi_pmu_snapshot_available
);
1416 register_sysctl("kernel", sbi_pmu_sysctl_table
);
1418 ret
= cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING
, &pmu
->node
);
1420 goto out_unregister
;
1422 /* Asynchronously check which standard events are available */
1423 schedule_work(&check_std_events_work
);
1428 riscv_pmu_destroy(pmu
);
1435 static struct platform_driver pmu_sbi_driver
= {
1436 .probe
= pmu_sbi_device_probe
,
1438 .name
= RISCV_PMU_SBI_PDEV_NAME
,
1442 static int __init
pmu_sbi_devinit(void)
1445 struct platform_device
*pdev
;
1447 if (sbi_spec_version
< sbi_mk_version(0, 3) ||
1448 !sbi_probe_extension(SBI_EXT_PMU
)) {
1452 if (sbi_spec_version
>= sbi_mk_version(2, 0))
1453 sbi_v2_available
= true;
1455 ret
= cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING
,
1456 "perf/riscv/pmu:starting",
1457 pmu_sbi_starting_cpu
, pmu_sbi_dying_cpu
);
1459 pr_err("CPU hotplug notifier could not be registered: %d\n",
1464 ret
= platform_driver_register(&pmu_sbi_driver
);
1468 pdev
= platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME
, -1, NULL
, 0);
1470 platform_driver_unregister(&pmu_sbi_driver
);
1471 return PTR_ERR(pdev
);
1474 /* Notify legacy implementation that SBI pmu is available*/
1475 riscv_pmu_legacy_skip_init();
1479 device_initcall(pmu_sbi_devinit
)