1 // SPDX-License-Identifier: GPL-2.0-only
3 * Thunderbolt driver - NHI driver
5 * The NHI (native host interface) is the pci device that allows us to send and
6 * receive frames from the thunderbolt bus.
8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9 * Copyright (C) 2018, Intel Corporation
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/property.h>
22 #include <linux/string_helpers.h>
28 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
30 #define RING_FIRST_USABLE_HOPID 1
32 * Used with QUIRK_E2E to specify an unused HopID the Rx credits are
35 #define RING_E2E_RESERVED_HOPID RING_FIRST_USABLE_HOPID
37 * Minimal number of vectors when we use MSI-X. Two for control channel
38 * Rx/Tx and the rest four are for cross domain DMA paths.
40 #define MSIX_MIN_VECS 6
41 #define MSIX_MAX_VECS 16
43 #define NHI_MAILBOX_TIMEOUT 500 /* ms */
45 /* Host interface quirks */
46 #define QUIRK_AUTO_CLEAR_INT BIT(0)
47 #define QUIRK_E2E BIT(1)
49 static bool host_reset
= true;
50 module_param(host_reset
, bool, 0444);
51 MODULE_PARM_DESC(host_reset
, "reset USB4 host router (default: true)");
53 static int ring_interrupt_index(const struct tb_ring
*ring
)
57 bit
+= ring
->nhi
->hop_count
;
61 static void nhi_mask_interrupt(struct tb_nhi
*nhi
, int mask
, int ring
)
63 if (nhi
->quirks
& QUIRK_AUTO_CLEAR_INT
) {
66 val
= ioread32(nhi
->iobase
+ REG_RING_INTERRUPT_BASE
+ ring
);
67 iowrite32(val
& ~mask
, nhi
->iobase
+ REG_RING_INTERRUPT_BASE
+ ring
);
69 iowrite32(mask
, nhi
->iobase
+ REG_RING_INTERRUPT_MASK_CLEAR_BASE
+ ring
);
73 static void nhi_clear_interrupt(struct tb_nhi
*nhi
, int ring
)
75 if (nhi
->quirks
& QUIRK_AUTO_CLEAR_INT
)
76 ioread32(nhi
->iobase
+ REG_RING_NOTIFY_BASE
+ ring
);
78 iowrite32(~0, nhi
->iobase
+ REG_RING_INT_CLEAR
+ ring
);
82 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
84 * ring->nhi->lock must be held.
86 static void ring_interrupt_active(struct tb_ring
*ring
, bool active
)
88 int index
= ring_interrupt_index(ring
) / 32 * 4;
89 int reg
= REG_RING_INTERRUPT_BASE
+ index
;
90 int interrupt_bit
= ring_interrupt_index(ring
) & 31;
91 int mask
= 1 << interrupt_bit
;
95 u32 step
, shift
, ivr
, misc
;
96 void __iomem
*ivr_base
;
103 index
= ring
->hop
+ ring
->nhi
->hop_count
;
106 * Intel routers support a bit that isn't part of
107 * the USB4 spec to ask the hardware to clear
108 * interrupt status bits automatically since
109 * we already know which interrupt was triggered.
111 * Other routers explicitly disable auto-clear
112 * to prevent conditions that may occur where two
113 * MSIX interrupts are simultaneously active and
114 * reading the register clears both of them.
116 misc
= ioread32(ring
->nhi
->iobase
+ REG_DMA_MISC
);
117 if (ring
->nhi
->quirks
& QUIRK_AUTO_CLEAR_INT
)
118 auto_clear_bit
= REG_DMA_MISC_INT_AUTO_CLEAR
;
120 auto_clear_bit
= REG_DMA_MISC_DISABLE_AUTO_CLEAR
;
121 if (!(misc
& auto_clear_bit
))
122 iowrite32(misc
| auto_clear_bit
,
123 ring
->nhi
->iobase
+ REG_DMA_MISC
);
125 ivr_base
= ring
->nhi
->iobase
+ REG_INT_VEC_ALLOC_BASE
;
126 step
= index
/ REG_INT_VEC_ALLOC_REGS
* REG_INT_VEC_ALLOC_BITS
;
127 shift
= index
% REG_INT_VEC_ALLOC_REGS
* REG_INT_VEC_ALLOC_BITS
;
128 ivr
= ioread32(ivr_base
+ step
);
129 ivr
&= ~(REG_INT_VEC_ALLOC_MASK
<< shift
);
131 ivr
|= ring
->vector
<< shift
;
132 iowrite32(ivr
, ivr_base
+ step
);
135 old
= ioread32(ring
->nhi
->iobase
+ reg
);
141 dev_dbg(&ring
->nhi
->pdev
->dev
,
142 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
143 active
? "enabling" : "disabling", reg
, interrupt_bit
, old
, new);
146 dev_WARN(&ring
->nhi
->pdev
->dev
,
147 "interrupt for %s %d is already %s\n",
148 RING_TYPE(ring
), ring
->hop
,
149 active
? "enabled" : "disabled");
152 iowrite32(new, ring
->nhi
->iobase
+ reg
);
154 nhi_mask_interrupt(ring
->nhi
, mask
, index
);
158 * nhi_disable_interrupts() - disable interrupts for all rings
160 * Use only during init and shutdown.
162 static void nhi_disable_interrupts(struct tb_nhi
*nhi
)
165 /* disable interrupts */
166 for (i
= 0; i
< RING_INTERRUPT_REG_COUNT(nhi
); i
++)
167 nhi_mask_interrupt(nhi
, ~0, 4 * i
);
169 /* clear interrupt status bits */
170 for (i
= 0; i
< RING_NOTIFY_REG_COUNT(nhi
); i
++)
171 nhi_clear_interrupt(nhi
, 4 * i
);
174 /* ring helper methods */
176 static void __iomem
*ring_desc_base(struct tb_ring
*ring
)
178 void __iomem
*io
= ring
->nhi
->iobase
;
179 io
+= ring
->is_tx
? REG_TX_RING_BASE
: REG_RX_RING_BASE
;
180 io
+= ring
->hop
* 16;
184 static void __iomem
*ring_options_base(struct tb_ring
*ring
)
186 void __iomem
*io
= ring
->nhi
->iobase
;
187 io
+= ring
->is_tx
? REG_TX_OPTIONS_BASE
: REG_RX_OPTIONS_BASE
;
188 io
+= ring
->hop
* 32;
192 static void ring_iowrite_cons(struct tb_ring
*ring
, u16 cons
)
195 * The other 16-bits in the register is read-only and writes to it
196 * are ignored by the hardware so we can save one ioread32() by
197 * filling the read-only bits with zeroes.
199 iowrite32(cons
, ring_desc_base(ring
) + 8);
202 static void ring_iowrite_prod(struct tb_ring
*ring
, u16 prod
)
204 /* See ring_iowrite_cons() above for explanation */
205 iowrite32(prod
<< 16, ring_desc_base(ring
) + 8);
208 static void ring_iowrite32desc(struct tb_ring
*ring
, u32 value
, u32 offset
)
210 iowrite32(value
, ring_desc_base(ring
) + offset
);
213 static void ring_iowrite64desc(struct tb_ring
*ring
, u64 value
, u32 offset
)
215 iowrite32(value
, ring_desc_base(ring
) + offset
);
216 iowrite32(value
>> 32, ring_desc_base(ring
) + offset
+ 4);
219 static void ring_iowrite32options(struct tb_ring
*ring
, u32 value
, u32 offset
)
221 iowrite32(value
, ring_options_base(ring
) + offset
);
224 static bool ring_full(struct tb_ring
*ring
)
226 return ((ring
->head
+ 1) % ring
->size
) == ring
->tail
;
229 static bool ring_empty(struct tb_ring
*ring
)
231 return ring
->head
== ring
->tail
;
235 * ring_write_descriptors() - post frames from ring->queue to the controller
237 * ring->lock is held.
239 static void ring_write_descriptors(struct tb_ring
*ring
)
241 struct ring_frame
*frame
, *n
;
242 struct ring_desc
*descriptor
;
243 list_for_each_entry_safe(frame
, n
, &ring
->queue
, list
) {
246 list_move_tail(&frame
->list
, &ring
->in_flight
);
247 descriptor
= &ring
->descriptors
[ring
->head
];
248 descriptor
->phys
= frame
->buffer_phy
;
249 descriptor
->time
= 0;
250 descriptor
->flags
= RING_DESC_POSTED
| RING_DESC_INTERRUPT
;
252 descriptor
->length
= frame
->size
;
253 descriptor
->eof
= frame
->eof
;
254 descriptor
->sof
= frame
->sof
;
256 ring
->head
= (ring
->head
+ 1) % ring
->size
;
258 ring_iowrite_prod(ring
, ring
->head
);
260 ring_iowrite_cons(ring
, ring
->head
);
265 * ring_work() - progress completed frames
267 * If the ring is shutting down then all frames are marked as canceled and
268 * their callbacks are invoked.
270 * Otherwise we collect all completed frame from the ring buffer, write new
271 * frame to the ring buffer and invoke the callbacks for the completed frames.
273 static void ring_work(struct work_struct
*work
)
275 struct tb_ring
*ring
= container_of(work
, typeof(*ring
), work
);
276 struct ring_frame
*frame
;
277 bool canceled
= false;
281 spin_lock_irqsave(&ring
->lock
, flags
);
283 if (!ring
->running
) {
284 /* Move all frames to done and mark them as canceled. */
285 list_splice_tail_init(&ring
->in_flight
, &done
);
286 list_splice_tail_init(&ring
->queue
, &done
);
288 goto invoke_callback
;
291 while (!ring_empty(ring
)) {
292 if (!(ring
->descriptors
[ring
->tail
].flags
293 & RING_DESC_COMPLETED
))
295 frame
= list_first_entry(&ring
->in_flight
, typeof(*frame
),
297 list_move_tail(&frame
->list
, &done
);
299 frame
->size
= ring
->descriptors
[ring
->tail
].length
;
300 frame
->eof
= ring
->descriptors
[ring
->tail
].eof
;
301 frame
->sof
= ring
->descriptors
[ring
->tail
].sof
;
302 frame
->flags
= ring
->descriptors
[ring
->tail
].flags
;
304 ring
->tail
= (ring
->tail
+ 1) % ring
->size
;
306 ring_write_descriptors(ring
);
309 /* allow callbacks to schedule new work */
310 spin_unlock_irqrestore(&ring
->lock
, flags
);
311 while (!list_empty(&done
)) {
312 frame
= list_first_entry(&done
, typeof(*frame
), list
);
314 * The callback may reenqueue or delete frame.
315 * Do not hold on to it.
317 list_del_init(&frame
->list
);
319 frame
->callback(ring
, frame
, canceled
);
323 int __tb_ring_enqueue(struct tb_ring
*ring
, struct ring_frame
*frame
)
328 spin_lock_irqsave(&ring
->lock
, flags
);
330 list_add_tail(&frame
->list
, &ring
->queue
);
331 ring_write_descriptors(ring
);
335 spin_unlock_irqrestore(&ring
->lock
, flags
);
338 EXPORT_SYMBOL_GPL(__tb_ring_enqueue
);
341 * tb_ring_poll() - Poll one completed frame from the ring
342 * @ring: Ring to poll
344 * This function can be called when @start_poll callback of the @ring
345 * has been called. It will read one completed frame from the ring and
346 * return it to the caller. Returns %NULL if there is no more completed
349 struct ring_frame
*tb_ring_poll(struct tb_ring
*ring
)
351 struct ring_frame
*frame
= NULL
;
354 spin_lock_irqsave(&ring
->lock
, flags
);
357 if (ring_empty(ring
))
360 if (ring
->descriptors
[ring
->tail
].flags
& RING_DESC_COMPLETED
) {
361 frame
= list_first_entry(&ring
->in_flight
, typeof(*frame
),
363 list_del_init(&frame
->list
);
366 frame
->size
= ring
->descriptors
[ring
->tail
].length
;
367 frame
->eof
= ring
->descriptors
[ring
->tail
].eof
;
368 frame
->sof
= ring
->descriptors
[ring
->tail
].sof
;
369 frame
->flags
= ring
->descriptors
[ring
->tail
].flags
;
372 ring
->tail
= (ring
->tail
+ 1) % ring
->size
;
376 spin_unlock_irqrestore(&ring
->lock
, flags
);
379 EXPORT_SYMBOL_GPL(tb_ring_poll
);
381 static void __ring_interrupt_mask(struct tb_ring
*ring
, bool mask
)
383 int idx
= ring_interrupt_index(ring
);
384 int reg
= REG_RING_INTERRUPT_BASE
+ idx
/ 32 * 4;
388 val
= ioread32(ring
->nhi
->iobase
+ reg
);
393 iowrite32(val
, ring
->nhi
->iobase
+ reg
);
396 /* Both @nhi->lock and @ring->lock should be held */
397 static void __ring_interrupt(struct tb_ring
*ring
)
402 if (ring
->start_poll
) {
403 __ring_interrupt_mask(ring
, true);
404 ring
->start_poll(ring
->poll_data
);
406 schedule_work(&ring
->work
);
411 * tb_ring_poll_complete() - Re-start interrupt for the ring
412 * @ring: Ring to re-start the interrupt
414 * This will re-start (unmask) the ring interrupt once the user is done
417 void tb_ring_poll_complete(struct tb_ring
*ring
)
421 spin_lock_irqsave(&ring
->nhi
->lock
, flags
);
422 spin_lock(&ring
->lock
);
423 if (ring
->start_poll
)
424 __ring_interrupt_mask(ring
, false);
425 spin_unlock(&ring
->lock
);
426 spin_unlock_irqrestore(&ring
->nhi
->lock
, flags
);
428 EXPORT_SYMBOL_GPL(tb_ring_poll_complete
);
430 static void ring_clear_msix(const struct tb_ring
*ring
)
434 if (ring
->nhi
->quirks
& QUIRK_AUTO_CLEAR_INT
)
437 bit
= ring_interrupt_index(ring
) & 31;
439 iowrite32(BIT(bit
), ring
->nhi
->iobase
+ REG_RING_INT_CLEAR
);
441 iowrite32(BIT(bit
), ring
->nhi
->iobase
+ REG_RING_INT_CLEAR
+
442 4 * (ring
->nhi
->hop_count
/ 32));
445 static irqreturn_t
ring_msix(int irq
, void *data
)
447 struct tb_ring
*ring
= data
;
449 spin_lock(&ring
->nhi
->lock
);
450 ring_clear_msix(ring
);
451 spin_lock(&ring
->lock
);
452 __ring_interrupt(ring
);
453 spin_unlock(&ring
->lock
);
454 spin_unlock(&ring
->nhi
->lock
);
459 static int ring_request_msix(struct tb_ring
*ring
, bool no_suspend
)
461 struct tb_nhi
*nhi
= ring
->nhi
;
462 unsigned long irqflags
;
465 if (!nhi
->pdev
->msix_enabled
)
468 ret
= ida_alloc_max(&nhi
->msix_ida
, MSIX_MAX_VECS
- 1, GFP_KERNEL
);
474 ret
= pci_irq_vector(ring
->nhi
->pdev
, ring
->vector
);
480 irqflags
= no_suspend
? IRQF_NO_SUSPEND
: 0;
481 ret
= request_irq(ring
->irq
, ring_msix
, irqflags
, "thunderbolt", ring
);
488 ida_free(&nhi
->msix_ida
, ring
->vector
);
493 static void ring_release_msix(struct tb_ring
*ring
)
498 free_irq(ring
->irq
, ring
);
499 ida_free(&ring
->nhi
->msix_ida
, ring
->vector
);
504 static int nhi_alloc_hop(struct tb_nhi
*nhi
, struct tb_ring
*ring
)
506 unsigned int start_hop
= RING_FIRST_USABLE_HOPID
;
509 if (nhi
->quirks
& QUIRK_E2E
) {
510 start_hop
= RING_FIRST_USABLE_HOPID
+ 1;
511 if (ring
->flags
& RING_FLAG_E2E
&& !ring
->is_tx
) {
512 dev_dbg(&nhi
->pdev
->dev
, "quirking E2E TX HopID %u -> %u\n",
513 ring
->e2e_tx_hop
, RING_E2E_RESERVED_HOPID
);
514 ring
->e2e_tx_hop
= RING_E2E_RESERVED_HOPID
;
518 spin_lock_irq(&nhi
->lock
);
524 * Automatically allocate HopID from the non-reserved
525 * range 1 .. hop_count - 1.
527 for (i
= start_hop
; i
< nhi
->hop_count
; i
++) {
529 if (!nhi
->tx_rings
[i
]) {
534 if (!nhi
->rx_rings
[i
]) {
542 if (ring
->hop
> 0 && ring
->hop
< start_hop
) {
543 dev_warn(&nhi
->pdev
->dev
, "invalid hop: %d\n", ring
->hop
);
547 if (ring
->hop
< 0 || ring
->hop
>= nhi
->hop_count
) {
548 dev_warn(&nhi
->pdev
->dev
, "invalid hop: %d\n", ring
->hop
);
552 if (ring
->is_tx
&& nhi
->tx_rings
[ring
->hop
]) {
553 dev_warn(&nhi
->pdev
->dev
, "TX hop %d already allocated\n",
558 if (!ring
->is_tx
&& nhi
->rx_rings
[ring
->hop
]) {
559 dev_warn(&nhi
->pdev
->dev
, "RX hop %d already allocated\n",
566 nhi
->tx_rings
[ring
->hop
] = ring
;
568 nhi
->rx_rings
[ring
->hop
] = ring
;
571 spin_unlock_irq(&nhi
->lock
);
576 static struct tb_ring
*tb_ring_alloc(struct tb_nhi
*nhi
, u32 hop
, int size
,
577 bool transmit
, unsigned int flags
,
578 int e2e_tx_hop
, u16 sof_mask
, u16 eof_mask
,
579 void (*start_poll
)(void *),
582 struct tb_ring
*ring
= NULL
;
584 dev_dbg(&nhi
->pdev
->dev
, "allocating %s ring %d of size %d\n",
585 transmit
? "TX" : "RX", hop
, size
);
587 ring
= kzalloc(sizeof(*ring
), GFP_KERNEL
);
591 spin_lock_init(&ring
->lock
);
592 INIT_LIST_HEAD(&ring
->queue
);
593 INIT_LIST_HEAD(&ring
->in_flight
);
594 INIT_WORK(&ring
->work
, ring_work
);
598 ring
->is_tx
= transmit
;
601 ring
->e2e_tx_hop
= e2e_tx_hop
;
602 ring
->sof_mask
= sof_mask
;
603 ring
->eof_mask
= eof_mask
;
606 ring
->running
= false;
607 ring
->start_poll
= start_poll
;
608 ring
->poll_data
= poll_data
;
610 ring
->descriptors
= dma_alloc_coherent(&ring
->nhi
->pdev
->dev
,
611 size
* sizeof(*ring
->descriptors
),
612 &ring
->descriptors_dma
, GFP_KERNEL
| __GFP_ZERO
);
613 if (!ring
->descriptors
)
616 if (ring_request_msix(ring
, flags
& RING_FLAG_NO_SUSPEND
))
619 if (nhi_alloc_hop(nhi
, ring
))
620 goto err_release_msix
;
625 ring_release_msix(ring
);
627 dma_free_coherent(&ring
->nhi
->pdev
->dev
,
628 ring
->size
* sizeof(*ring
->descriptors
),
629 ring
->descriptors
, ring
->descriptors_dma
);
637 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
638 * @nhi: Pointer to the NHI the ring is to be allocated
639 * @hop: HopID (ring) to allocate
640 * @size: Number of entries in the ring
641 * @flags: Flags for the ring
643 struct tb_ring
*tb_ring_alloc_tx(struct tb_nhi
*nhi
, int hop
, int size
,
646 return tb_ring_alloc(nhi
, hop
, size
, true, flags
, 0, 0, 0, NULL
, NULL
);
648 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx
);
651 * tb_ring_alloc_rx() - Allocate DMA ring for receive
652 * @nhi: Pointer to the NHI the ring is to be allocated
653 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
654 * @size: Number of entries in the ring
655 * @flags: Flags for the ring
656 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
657 * @sof_mask: Mask of PDF values that start a frame
658 * @eof_mask: Mask of PDF values that end a frame
659 * @start_poll: If not %NULL the ring will call this function when an
660 * interrupt is triggered and masked, instead of callback
662 * @poll_data: Optional data passed to @start_poll
664 struct tb_ring
*tb_ring_alloc_rx(struct tb_nhi
*nhi
, int hop
, int size
,
665 unsigned int flags
, int e2e_tx_hop
,
666 u16 sof_mask
, u16 eof_mask
,
667 void (*start_poll
)(void *), void *poll_data
)
669 return tb_ring_alloc(nhi
, hop
, size
, false, flags
, e2e_tx_hop
, sof_mask
, eof_mask
,
670 start_poll
, poll_data
);
672 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx
);
675 * tb_ring_start() - enable a ring
676 * @ring: Ring to start
678 * Must not be invoked in parallel with tb_ring_stop().
680 void tb_ring_start(struct tb_ring
*ring
)
685 spin_lock_irq(&ring
->nhi
->lock
);
686 spin_lock(&ring
->lock
);
687 if (ring
->nhi
->going_away
)
690 dev_WARN(&ring
->nhi
->pdev
->dev
, "ring already started\n");
693 dev_dbg(&ring
->nhi
->pdev
->dev
, "starting %s %d\n",
694 RING_TYPE(ring
), ring
->hop
);
696 if (ring
->flags
& RING_FLAG_FRAME
) {
699 flags
= RING_FLAG_ENABLE
;
701 frame_size
= TB_FRAME_SIZE
;
702 flags
= RING_FLAG_ENABLE
| RING_FLAG_RAW
;
705 ring_iowrite64desc(ring
, ring
->descriptors_dma
, 0);
707 ring_iowrite32desc(ring
, ring
->size
, 12);
708 ring_iowrite32options(ring
, 0, 4); /* time releated ? */
709 ring_iowrite32options(ring
, flags
, 0);
711 u32 sof_eof_mask
= ring
->sof_mask
<< 16 | ring
->eof_mask
;
713 ring_iowrite32desc(ring
, (frame_size
<< 16) | ring
->size
, 12);
714 ring_iowrite32options(ring
, sof_eof_mask
, 4);
715 ring_iowrite32options(ring
, flags
, 0);
719 * Now that the ring valid bit is set we can configure E2E if
720 * enabled for the ring.
722 if (ring
->flags
& RING_FLAG_E2E
) {
726 hop
= ring
->e2e_tx_hop
<< REG_RX_OPTIONS_E2E_HOP_SHIFT
;
727 hop
&= REG_RX_OPTIONS_E2E_HOP_MASK
;
730 dev_dbg(&ring
->nhi
->pdev
->dev
,
731 "enabling E2E for %s %d with TX HopID %d\n",
732 RING_TYPE(ring
), ring
->hop
, ring
->e2e_tx_hop
);
734 dev_dbg(&ring
->nhi
->pdev
->dev
, "enabling E2E for %s %d\n",
735 RING_TYPE(ring
), ring
->hop
);
738 flags
|= RING_FLAG_E2E_FLOW_CONTROL
;
739 ring_iowrite32options(ring
, flags
, 0);
742 ring_interrupt_active(ring
, true);
743 ring
->running
= true;
745 spin_unlock(&ring
->lock
);
746 spin_unlock_irq(&ring
->nhi
->lock
);
748 EXPORT_SYMBOL_GPL(tb_ring_start
);
751 * tb_ring_stop() - shutdown a ring
752 * @ring: Ring to stop
754 * Must not be invoked from a callback.
756 * This method will disable the ring. Further calls to
757 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
760 * All enqueued frames will be canceled and their callbacks will be executed
761 * with frame->canceled set to true (on the callback thread). This method
762 * returns only after all callback invocations have finished.
764 void tb_ring_stop(struct tb_ring
*ring
)
766 spin_lock_irq(&ring
->nhi
->lock
);
767 spin_lock(&ring
->lock
);
768 dev_dbg(&ring
->nhi
->pdev
->dev
, "stopping %s %d\n",
769 RING_TYPE(ring
), ring
->hop
);
770 if (ring
->nhi
->going_away
)
772 if (!ring
->running
) {
773 dev_WARN(&ring
->nhi
->pdev
->dev
, "%s %d already stopped\n",
774 RING_TYPE(ring
), ring
->hop
);
777 ring_interrupt_active(ring
, false);
779 ring_iowrite32options(ring
, 0, 0);
780 ring_iowrite64desc(ring
, 0, 0);
781 ring_iowrite32desc(ring
, 0, 8);
782 ring_iowrite32desc(ring
, 0, 12);
785 ring
->running
= false;
788 spin_unlock(&ring
->lock
);
789 spin_unlock_irq(&ring
->nhi
->lock
);
792 * schedule ring->work to invoke callbacks on all remaining frames.
794 schedule_work(&ring
->work
);
795 flush_work(&ring
->work
);
797 EXPORT_SYMBOL_GPL(tb_ring_stop
);
800 * tb_ring_free() - free ring
802 * When this method returns all invocations of ring->callback will have
805 * Ring must be stopped.
807 * Must NOT be called from ring_frame->callback!
809 void tb_ring_free(struct tb_ring
*ring
)
811 spin_lock_irq(&ring
->nhi
->lock
);
813 * Dissociate the ring from the NHI. This also ensures that
814 * nhi_interrupt_work cannot reschedule ring->work.
817 ring
->nhi
->tx_rings
[ring
->hop
] = NULL
;
819 ring
->nhi
->rx_rings
[ring
->hop
] = NULL
;
822 dev_WARN(&ring
->nhi
->pdev
->dev
, "%s %d still running\n",
823 RING_TYPE(ring
), ring
->hop
);
825 spin_unlock_irq(&ring
->nhi
->lock
);
827 ring_release_msix(ring
);
829 dma_free_coherent(&ring
->nhi
->pdev
->dev
,
830 ring
->size
* sizeof(*ring
->descriptors
),
831 ring
->descriptors
, ring
->descriptors_dma
);
833 ring
->descriptors
= NULL
;
834 ring
->descriptors_dma
= 0;
837 dev_dbg(&ring
->nhi
->pdev
->dev
, "freeing %s %d\n", RING_TYPE(ring
),
841 * ring->work can no longer be scheduled (it is scheduled only
842 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
843 * to finish before freeing the ring.
845 flush_work(&ring
->work
);
848 EXPORT_SYMBOL_GPL(tb_ring_free
);
851 * nhi_mailbox_cmd() - Send a command through NHI mailbox
852 * @nhi: Pointer to the NHI structure
853 * @cmd: Command to send
854 * @data: Data to be send with the command
856 * Sends mailbox command to the firmware running on NHI. Returns %0 in
857 * case of success and negative errno in case of failure.
859 int nhi_mailbox_cmd(struct tb_nhi
*nhi
, enum nhi_mailbox_cmd cmd
, u32 data
)
864 iowrite32(data
, nhi
->iobase
+ REG_INMAIL_DATA
);
866 val
= ioread32(nhi
->iobase
+ REG_INMAIL_CMD
);
867 val
&= ~(REG_INMAIL_CMD_MASK
| REG_INMAIL_ERROR
);
868 val
|= REG_INMAIL_OP_REQUEST
| cmd
;
869 iowrite32(val
, nhi
->iobase
+ REG_INMAIL_CMD
);
871 timeout
= ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT
);
873 val
= ioread32(nhi
->iobase
+ REG_INMAIL_CMD
);
874 if (!(val
& REG_INMAIL_OP_REQUEST
))
876 usleep_range(10, 20);
877 } while (ktime_before(ktime_get(), timeout
));
879 if (val
& REG_INMAIL_OP_REQUEST
)
881 if (val
& REG_INMAIL_ERROR
)
888 * nhi_mailbox_mode() - Return current firmware operation mode
889 * @nhi: Pointer to the NHI structure
891 * The function reads current firmware operation mode using NHI mailbox
892 * registers and returns it to the caller.
894 enum nhi_fw_mode
nhi_mailbox_mode(struct tb_nhi
*nhi
)
898 val
= ioread32(nhi
->iobase
+ REG_OUTMAIL_CMD
);
899 val
&= REG_OUTMAIL_CMD_OPMODE_MASK
;
900 val
>>= REG_OUTMAIL_CMD_OPMODE_SHIFT
;
902 return (enum nhi_fw_mode
)val
;
905 static void nhi_interrupt_work(struct work_struct
*work
)
907 struct tb_nhi
*nhi
= container_of(work
, typeof(*nhi
), interrupt_work
);
908 int value
= 0; /* Suppress uninitialized usage warning. */
911 int type
= 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
912 struct tb_ring
*ring
;
914 spin_lock_irq(&nhi
->lock
);
917 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
918 * (TX, RX, RX overflow). We iterate over the bits and read a new
919 * dwords as required. The registers are cleared on read.
921 for (bit
= 0; bit
< 3 * nhi
->hop_count
; bit
++) {
923 value
= ioread32(nhi
->iobase
924 + REG_RING_NOTIFY_BASE
926 if (++hop
== nhi
->hop_count
) {
930 if ((value
& (1 << (bit
% 32))) == 0)
933 dev_warn(&nhi
->pdev
->dev
,
934 "RX overflow for ring %d\n",
939 ring
= nhi
->tx_rings
[hop
];
941 ring
= nhi
->rx_rings
[hop
];
943 dev_warn(&nhi
->pdev
->dev
,
944 "got interrupt for inactive %s ring %d\n",
950 spin_lock(&ring
->lock
);
951 __ring_interrupt(ring
);
952 spin_unlock(&ring
->lock
);
954 spin_unlock_irq(&nhi
->lock
);
957 static irqreturn_t
nhi_msi(int irq
, void *data
)
959 struct tb_nhi
*nhi
= data
;
960 schedule_work(&nhi
->interrupt_work
);
964 static int __nhi_suspend_noirq(struct device
*dev
, bool wakeup
)
966 struct pci_dev
*pdev
= to_pci_dev(dev
);
967 struct tb
*tb
= pci_get_drvdata(pdev
);
968 struct tb_nhi
*nhi
= tb
->nhi
;
971 ret
= tb_domain_suspend_noirq(tb
);
975 if (nhi
->ops
&& nhi
->ops
->suspend_noirq
) {
976 ret
= nhi
->ops
->suspend_noirq(tb
->nhi
, wakeup
);
984 static int nhi_suspend_noirq(struct device
*dev
)
986 return __nhi_suspend_noirq(dev
, device_may_wakeup(dev
));
989 static int nhi_freeze_noirq(struct device
*dev
)
991 struct pci_dev
*pdev
= to_pci_dev(dev
);
992 struct tb
*tb
= pci_get_drvdata(pdev
);
994 return tb_domain_freeze_noirq(tb
);
997 static int nhi_thaw_noirq(struct device
*dev
)
999 struct pci_dev
*pdev
= to_pci_dev(dev
);
1000 struct tb
*tb
= pci_get_drvdata(pdev
);
1002 return tb_domain_thaw_noirq(tb
);
1005 static bool nhi_wake_supported(struct pci_dev
*pdev
)
1010 * If power rails are sustainable for wakeup from S4 this
1011 * property is set by the BIOS.
1013 if (device_property_read_u8(&pdev
->dev
, "WAKE_SUPPORTED", &val
))
1019 static int nhi_poweroff_noirq(struct device
*dev
)
1021 struct pci_dev
*pdev
= to_pci_dev(dev
);
1024 wakeup
= device_may_wakeup(dev
) && nhi_wake_supported(pdev
);
1025 return __nhi_suspend_noirq(dev
, wakeup
);
1028 static void nhi_enable_int_throttling(struct tb_nhi
*nhi
)
1030 /* Throttling is specified in 256ns increments */
1031 u32 throttle
= DIV_ROUND_UP(128 * NSEC_PER_USEC
, 256);
1035 * Configure interrupt throttling for all vectors even if we
1038 for (i
= 0; i
< MSIX_MAX_VECS
; i
++) {
1039 u32 reg
= REG_INT_THROTTLING_RATE
+ i
* 4;
1040 iowrite32(throttle
, nhi
->iobase
+ reg
);
1044 static int nhi_resume_noirq(struct device
*dev
)
1046 struct pci_dev
*pdev
= to_pci_dev(dev
);
1047 struct tb
*tb
= pci_get_drvdata(pdev
);
1048 struct tb_nhi
*nhi
= tb
->nhi
;
1052 * Check that the device is still there. It may be that the user
1053 * unplugged last device which causes the host controller to go
1056 if (!pci_device_is_present(pdev
)) {
1057 nhi
->going_away
= true;
1059 if (nhi
->ops
&& nhi
->ops
->resume_noirq
) {
1060 ret
= nhi
->ops
->resume_noirq(nhi
);
1064 nhi_enable_int_throttling(tb
->nhi
);
1067 return tb_domain_resume_noirq(tb
);
1070 static int nhi_suspend(struct device
*dev
)
1072 struct pci_dev
*pdev
= to_pci_dev(dev
);
1073 struct tb
*tb
= pci_get_drvdata(pdev
);
1075 return tb_domain_suspend(tb
);
1078 static void nhi_complete(struct device
*dev
)
1080 struct pci_dev
*pdev
= to_pci_dev(dev
);
1081 struct tb
*tb
= pci_get_drvdata(pdev
);
1084 * If we were runtime suspended when system suspend started,
1085 * schedule runtime resume now. It should bring the domain back
1086 * to functional state.
1088 if (pm_runtime_suspended(&pdev
->dev
))
1089 pm_runtime_resume(&pdev
->dev
);
1091 tb_domain_complete(tb
);
1094 static int nhi_runtime_suspend(struct device
*dev
)
1096 struct pci_dev
*pdev
= to_pci_dev(dev
);
1097 struct tb
*tb
= pci_get_drvdata(pdev
);
1098 struct tb_nhi
*nhi
= tb
->nhi
;
1101 ret
= tb_domain_runtime_suspend(tb
);
1105 if (nhi
->ops
&& nhi
->ops
->runtime_suspend
) {
1106 ret
= nhi
->ops
->runtime_suspend(tb
->nhi
);
1113 static int nhi_runtime_resume(struct device
*dev
)
1115 struct pci_dev
*pdev
= to_pci_dev(dev
);
1116 struct tb
*tb
= pci_get_drvdata(pdev
);
1117 struct tb_nhi
*nhi
= tb
->nhi
;
1120 if (nhi
->ops
&& nhi
->ops
->runtime_resume
) {
1121 ret
= nhi
->ops
->runtime_resume(nhi
);
1126 nhi_enable_int_throttling(nhi
);
1127 return tb_domain_runtime_resume(tb
);
1130 static void nhi_shutdown(struct tb_nhi
*nhi
)
1134 dev_dbg(&nhi
->pdev
->dev
, "shutdown\n");
1136 for (i
= 0; i
< nhi
->hop_count
; i
++) {
1137 if (nhi
->tx_rings
[i
])
1138 dev_WARN(&nhi
->pdev
->dev
,
1139 "TX ring %d is still active\n", i
);
1140 if (nhi
->rx_rings
[i
])
1141 dev_WARN(&nhi
->pdev
->dev
,
1142 "RX ring %d is still active\n", i
);
1144 nhi_disable_interrupts(nhi
);
1146 * We have to release the irq before calling flush_work. Otherwise an
1147 * already executing IRQ handler could call schedule_work again.
1149 if (!nhi
->pdev
->msix_enabled
) {
1150 devm_free_irq(&nhi
->pdev
->dev
, nhi
->pdev
->irq
, nhi
);
1151 flush_work(&nhi
->interrupt_work
);
1153 ida_destroy(&nhi
->msix_ida
);
1155 if (nhi
->ops
&& nhi
->ops
->shutdown
)
1156 nhi
->ops
->shutdown(nhi
);
1159 static void nhi_check_quirks(struct tb_nhi
*nhi
)
1161 if (nhi
->pdev
->vendor
== PCI_VENDOR_ID_INTEL
) {
1163 * Intel hardware supports auto clear of the interrupt
1164 * status register right after interrupt is being
1167 nhi
->quirks
|= QUIRK_AUTO_CLEAR_INT
;
1169 switch (nhi
->pdev
->device
) {
1170 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI
:
1171 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI
:
1173 * Falcon Ridge controller needs the end-to-end
1174 * flow control workaround to avoid losing Rx
1175 * packets when RING_FLAG_E2E is set.
1177 nhi
->quirks
|= QUIRK_E2E
;
1183 static int nhi_check_iommu_pdev(struct pci_dev
*pdev
, void *data
)
1185 if (!pdev
->external_facing
||
1186 !device_iommu_capable(&pdev
->dev
, IOMMU_CAP_PRE_BOOT_PROTECTION
))
1188 *(bool *)data
= true;
1189 return 1; /* Stop walking */
1192 static void nhi_check_iommu(struct tb_nhi
*nhi
)
1194 struct pci_bus
*bus
= nhi
->pdev
->bus
;
1195 bool port_ok
= false;
1198 * Ideally what we'd do here is grab every PCI device that
1199 * represents a tunnelling adapter for this NHI and check their
1200 * status directly, but unfortunately USB4 seems to make it
1201 * obnoxiously difficult to reliably make any correlation.
1203 * So for now we'll have to bodge it... Hoping that the system
1204 * is at least sane enough that an adapter is in the same PCI
1205 * segment as its NHI, if we can find *something* on that segment
1206 * which meets the requirements for Kernel DMA Protection, we'll
1207 * take that to imply that firmware is aware and has (hopefully)
1208 * done the right thing in general. We need to know that the PCI
1209 * layer has seen the ExternalFacingPort property which will then
1210 * inform the IOMMU layer to enforce the complete "untrusted DMA"
1211 * flow, but also that the IOMMU driver itself can be trusted not
1212 * to have been subverted by a pre-boot DMA attack.
1217 pci_walk_bus(bus
, nhi_check_iommu_pdev
, &port_ok
);
1219 nhi
->iommu_dma_protection
= port_ok
;
1220 dev_dbg(&nhi
->pdev
->dev
, "IOMMU DMA protection is %s\n",
1221 str_enabled_disabled(port_ok
));
1224 static void nhi_reset(struct tb_nhi
*nhi
)
1229 val
= ioread32(nhi
->iobase
+ REG_CAPS
);
1230 /* Reset only v2 and later routers */
1231 if (FIELD_GET(REG_CAPS_VERSION_MASK
, val
) < REG_CAPS_VERSION_2
)
1235 dev_dbg(&nhi
->pdev
->dev
, "skipping host router reset\n");
1239 iowrite32(REG_RESET_HRR
, nhi
->iobase
+ REG_RESET
);
1242 timeout
= ktime_add_ms(ktime_get(), 500);
1244 val
= ioread32(nhi
->iobase
+ REG_RESET
);
1245 if (!(val
& REG_RESET_HRR
)) {
1246 dev_warn(&nhi
->pdev
->dev
, "host router reset successful\n");
1249 usleep_range(10, 20);
1250 } while (ktime_before(ktime_get(), timeout
));
1252 dev_warn(&nhi
->pdev
->dev
, "timeout resetting host router\n");
1255 static int nhi_init_msi(struct tb_nhi
*nhi
)
1257 struct pci_dev
*pdev
= nhi
->pdev
;
1258 struct device
*dev
= &pdev
->dev
;
1261 /* In case someone left them on. */
1262 nhi_disable_interrupts(nhi
);
1264 nhi_enable_int_throttling(nhi
);
1266 ida_init(&nhi
->msix_ida
);
1269 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1270 * get all MSI-X vectors and if we succeed, each ring will have
1271 * one MSI-X. If for some reason that does not work out, we
1272 * fallback to a single MSI.
1274 nvec
= pci_alloc_irq_vectors(pdev
, MSIX_MIN_VECS
, MSIX_MAX_VECS
,
1277 nvec
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_MSI
);
1281 INIT_WORK(&nhi
->interrupt_work
, nhi_interrupt_work
);
1283 irq
= pci_irq_vector(nhi
->pdev
, 0);
1287 res
= devm_request_irq(&pdev
->dev
, irq
, nhi_msi
,
1288 IRQF_NO_SUSPEND
, "thunderbolt", nhi
);
1290 return dev_err_probe(dev
, res
, "request_irq failed, aborting\n");
1296 static bool nhi_imr_valid(struct pci_dev
*pdev
)
1300 if (!device_property_read_u8(&pdev
->dev
, "IMR_VALID", &val
))
1306 static struct tb
*nhi_select_cm(struct tb_nhi
*nhi
)
1311 * USB4 case is simple. If we got control of any of the
1312 * capabilities, we use software CM.
1314 if (tb_acpi_is_native())
1315 return tb_probe(nhi
);
1318 * Either firmware based CM is running (we did not get control
1319 * from the firmware) or this is pre-USB4 PC so try first
1320 * firmware CM and then fallback to software CM.
1322 tb
= icm_probe(nhi
);
1329 static int nhi_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1331 struct device
*dev
= &pdev
->dev
;
1336 if (!nhi_imr_valid(pdev
))
1337 return dev_err_probe(dev
, -ENODEV
, "firmware image not valid, aborting\n");
1339 res
= pcim_enable_device(pdev
);
1341 return dev_err_probe(dev
, res
, "cannot enable PCI device, aborting\n");
1343 nhi
= devm_kzalloc(&pdev
->dev
, sizeof(*nhi
), GFP_KERNEL
);
1348 nhi
->ops
= (const struct tb_nhi_ops
*)id
->driver_data
;
1350 nhi
->iobase
= pcim_iomap_region(pdev
, 0, "thunderbolt");
1351 res
= PTR_ERR_OR_ZERO(nhi
->iobase
);
1353 return dev_err_probe(dev
, res
, "cannot obtain PCI resources, aborting\n");
1355 nhi
->hop_count
= ioread32(nhi
->iobase
+ REG_CAPS
) & 0x3ff;
1356 dev_dbg(dev
, "total paths: %d\n", nhi
->hop_count
);
1358 nhi
->tx_rings
= devm_kcalloc(&pdev
->dev
, nhi
->hop_count
,
1359 sizeof(*nhi
->tx_rings
), GFP_KERNEL
);
1360 nhi
->rx_rings
= devm_kcalloc(&pdev
->dev
, nhi
->hop_count
,
1361 sizeof(*nhi
->rx_rings
), GFP_KERNEL
);
1362 if (!nhi
->tx_rings
|| !nhi
->rx_rings
)
1365 nhi_check_quirks(nhi
);
1366 nhi_check_iommu(nhi
);
1369 res
= nhi_init_msi(nhi
);
1371 return dev_err_probe(dev
, res
, "cannot enable MSI, aborting\n");
1373 spin_lock_init(&nhi
->lock
);
1375 res
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
1377 return dev_err_probe(dev
, res
, "failed to set DMA mask\n");
1379 pci_set_master(pdev
);
1381 if (nhi
->ops
&& nhi
->ops
->init
) {
1382 res
= nhi
->ops
->init(nhi
);
1387 tb
= nhi_select_cm(nhi
);
1389 return dev_err_probe(dev
, -ENODEV
,
1390 "failed to determine connection manager, aborting\n");
1392 dev_dbg(dev
, "NHI initialized, starting thunderbolt\n");
1394 res
= tb_domain_add(tb
, host_reset
);
1397 * At this point the RX/TX rings might already have been
1398 * activated. Do a proper shutdown.
1404 pci_set_drvdata(pdev
, tb
);
1406 device_wakeup_enable(&pdev
->dev
);
1408 pm_runtime_allow(&pdev
->dev
);
1409 pm_runtime_set_autosuspend_delay(&pdev
->dev
, TB_AUTOSUSPEND_DELAY
);
1410 pm_runtime_use_autosuspend(&pdev
->dev
);
1411 pm_runtime_put_autosuspend(&pdev
->dev
);
1416 static void nhi_remove(struct pci_dev
*pdev
)
1418 struct tb
*tb
= pci_get_drvdata(pdev
);
1419 struct tb_nhi
*nhi
= tb
->nhi
;
1421 pm_runtime_get_sync(&pdev
->dev
);
1422 pm_runtime_dont_use_autosuspend(&pdev
->dev
);
1423 pm_runtime_forbid(&pdev
->dev
);
1425 tb_domain_remove(tb
);
1430 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1431 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1432 * resume_noirq until we are done.
1434 static const struct dev_pm_ops nhi_pm_ops
= {
1435 .suspend_noirq
= nhi_suspend_noirq
,
1436 .resume_noirq
= nhi_resume_noirq
,
1437 .freeze_noirq
= nhi_freeze_noirq
, /*
1438 * we just disable hotplug, the
1439 * pci-tunnels stay alive.
1441 .thaw_noirq
= nhi_thaw_noirq
,
1442 .restore_noirq
= nhi_resume_noirq
,
1443 .suspend
= nhi_suspend
,
1444 .poweroff_noirq
= nhi_poweroff_noirq
,
1445 .poweroff
= nhi_suspend
,
1446 .complete
= nhi_complete
,
1447 .runtime_suspend
= nhi_runtime_suspend
,
1448 .runtime_resume
= nhi_runtime_resume
,
1451 static struct pci_device_id nhi_ids
[] = {
1453 * We have to specify class, the TB bridges use the same device and
1454 * vendor (sub)id on gen 1 and gen 2 controllers.
1457 .class = PCI_CLASS_SYSTEM_OTHER
<< 8, .class_mask
= ~0,
1458 .vendor
= PCI_VENDOR_ID_INTEL
,
1459 .device
= PCI_DEVICE_ID_INTEL_LIGHT_RIDGE
,
1460 .subvendor
= 0x2222, .subdevice
= 0x1111,
1463 .class = PCI_CLASS_SYSTEM_OTHER
<< 8, .class_mask
= ~0,
1464 .vendor
= PCI_VENDOR_ID_INTEL
,
1465 .device
= PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C
,
1466 .subvendor
= 0x2222, .subdevice
= 0x1111,
1469 .class = PCI_CLASS_SYSTEM_OTHER
<< 8, .class_mask
= ~0,
1470 .vendor
= PCI_VENDOR_ID_INTEL
,
1471 .device
= PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI
,
1472 .subvendor
= PCI_ANY_ID
, .subdevice
= PCI_ANY_ID
,
1475 .class = PCI_CLASS_SYSTEM_OTHER
<< 8, .class_mask
= ~0,
1476 .vendor
= PCI_VENDOR_ID_INTEL
,
1477 .device
= PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI
,
1478 .subvendor
= PCI_ANY_ID
, .subdevice
= PCI_ANY_ID
,
1482 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI
) },
1483 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI
) },
1484 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI
) },
1485 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI
) },
1486 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI
) },
1487 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI
) },
1488 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI
) },
1489 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI
) },
1490 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI
) },
1491 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI
) },
1492 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ICL_NHI0
),
1493 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1494 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ICL_NHI1
),
1495 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1497 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_TGL_NHI0
),
1498 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1499 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_TGL_NHI1
),
1500 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1501 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_TGL_H_NHI0
),
1502 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1503 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_TGL_H_NHI1
),
1504 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1505 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ADL_NHI0
),
1506 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1507 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_ADL_NHI1
),
1508 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1509 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_RPL_NHI0
),
1510 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1511 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_RPL_NHI1
),
1512 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1513 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_MTL_M_NHI0
),
1514 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1515 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_MTL_P_NHI0
),
1516 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1517 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_MTL_P_NHI1
),
1518 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1519 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_LNL_NHI0
),
1520 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1521 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_LNL_NHI1
),
1522 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1523 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_PTL_M_NHI0
),
1524 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1525 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_PTL_M_NHI1
),
1526 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1527 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_PTL_P_NHI0
),
1528 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1529 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_PTL_P_NHI1
),
1530 .driver_data
= (kernel_ulong_t
)&icl_nhi_ops
},
1531 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_80G_NHI
) },
1532 { PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_40G_NHI
) },
1534 /* Any USB4 compliant host */
1535 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4
, ~0) },
1540 MODULE_DEVICE_TABLE(pci
, nhi_ids
);
1541 MODULE_DESCRIPTION("Thunderbolt/USB4 core driver");
1542 MODULE_LICENSE("GPL");
1544 static struct pci_driver nhi_driver
= {
1545 .name
= "thunderbolt",
1546 .id_table
= nhi_ids
,
1548 .remove
= nhi_remove
,
1549 .shutdown
= nhi_remove
,
1550 .driver
.pm
= &nhi_pm_ops
,
1553 static int __init
nhi_init(void)
1557 ret
= tb_domain_init();
1560 ret
= pci_register_driver(&nhi_driver
);
1566 static void __exit
nhi_unload(void)
1568 pci_unregister_driver(&nhi_driver
);
1572 rootfs_initcall(nhi_init
);
1573 module_exit(nhi_unload
);