1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
3 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
5 * Copyright (C) 2004-2013 Synopsys, Inc.
9 * This file contains the functions to manage Queue Heads and Queue
10 * Transfer Descriptors for Host mode
12 #include <linux/gcd.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/dma-mapping.h>
19 #include <linux/seq_buf.h>
20 #include <linux/slab.h>
21 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/usb/ch11.h>
29 /* Wait this long before releasing periodic reservation */
30 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
32 /* If we get a NAK, wait this long before retrying */
33 #define DWC2_RETRY_WAIT_DELAY (1 * NSEC_PER_MSEC)
36 * dwc2_periodic_channel_available() - Checks that a channel is available for a
39 * @hsotg: The HCD state structure for the DWC OTG controller
41 * Return: 0 if successful, negative error code otherwise
43 static int dwc2_periodic_channel_available(struct dwc2_hsotg
*hsotg
)
46 * Currently assuming that there is a dedicated host channel for
47 * each periodic transaction plus at least one host channel for
48 * non-periodic transactions
53 num_channels
= hsotg
->params
.host_channels
;
54 if ((hsotg
->periodic_channels
+ hsotg
->non_periodic_channels
<
55 num_channels
) && (hsotg
->periodic_channels
< num_channels
- 1)) {
59 "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
60 __func__
, num_channels
,
61 hsotg
->periodic_channels
, hsotg
->non_periodic_channels
);
69 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
70 * for the specified QH in the periodic schedule
72 * @hsotg: The HCD state structure for the DWC OTG controller
73 * @qh: QH containing periodic bandwidth required
75 * Return: 0 if successful, negative error code otherwise
77 * For simplicity, this calculation assumes that all the transfers in the
78 * periodic schedule may occur in the same (micro)frame
80 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg
*hsotg
,
84 s16 max_claimed_usecs
;
88 if (qh
->dev_speed
== USB_SPEED_HIGH
|| qh
->do_split
) {
91 * Max periodic usecs is 80% x 125 usec = 100 usec
93 max_claimed_usecs
= 100 - qh
->host_us
;
97 * Max periodic usecs is 90% x 1000 usec = 900 usec
99 max_claimed_usecs
= 900 - qh
->host_us
;
102 if (hsotg
->periodic_usecs
> max_claimed_usecs
) {
104 "%s: already claimed usecs %d, required usecs %d\n",
105 __func__
, hsotg
->periodic_usecs
, qh
->host_us
);
113 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
115 * @map: The bitmap representing the schedule; will be updated
117 * @bits_per_period: The schedule represents several periods. This is how many
118 * bits are in each period. It's assumed that the beginning
119 * of the schedule will repeat after its end.
120 * @periods_in_map: The number of periods in the schedule.
121 * @num_bits: The number of bits we need per period we want to reserve
122 * in this function call.
123 * @interval: How often we need to be scheduled for the reservation this
124 * time. 1 means every period. 2 means every other period.
125 * ...you get the picture?
126 * @start: The bit number to start at. Normally 0. Must be within
127 * the interval or we return failure right away.
128 * @only_one_period: Normally we'll allow picking a start anywhere within the
129 * first interval, since we can still make all repetition
130 * requirements by doing that. However, if you pass true
131 * here then we'll return failure if we can't fit within
132 * the period that "start" is in.
134 * The idea here is that we want to schedule time for repeating events that all
135 * want the same resource. The resource is divided into fixed-sized periods
136 * and the events want to repeat every "interval" periods. The schedule
137 * granularity is one bit.
139 * To keep things "simple", we'll represent our schedule with a bitmap that
140 * contains a fixed number of periods. This gets rid of a lot of complexity
141 * but does mean that we need to handle things specially (and non-ideally) if
142 * the number of the periods in the schedule doesn't match well with the
143 * intervals that we're trying to schedule.
145 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
146 * - If interval is 1, we need to take up space in each of the 8
147 * periods we're scheduling. Easy.
148 * - If interval is 2, we need to take up space in half of the
149 * periods. Again, easy.
150 * - If interval is 3, we actually need to fall back to interval 1.
151 * Why? Because we might need time in any period. AKA for the
152 * first 8 periods, we'll be in slot 0, 3, 6. Then we'll be
153 * in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to
154 * 0, 3, and 6. Since we could be in any frame we need to reserve
155 * for all of them. Sucks, but that's what you gotta do. Note that
156 * if we were instead scheduling 8 * 3 = 24 we'd do much better, but
157 * then we need more memory and time to do scheduling.
158 * - If interval is 4, easy.
159 * - If interval is 5, we again need interval 1. The schedule will be
160 * 0, 5, 2, 7, 4, 1, 6, 3, 0
161 * - If interval is 6, we need interval 2. 0, 6, 4, 2.
162 * - If interval is 7, we need interval 1.
163 * - If interval is 8, we need interval 8.
165 * If you do the math, you'll see that we need to pretend that interval is
166 * equal to the greatest_common_divisor(interval, periods_in_map).
168 * Note that at the moment this function tends to front-pack the schedule.
169 * In some cases that's really non-ideal (it's hard to schedule things that
170 * need to repeat every period). In other cases it's perfect (you can easily
171 * schedule bigger, less often repeating things).
173 * Here's the algorithm in action (8 periods, 5 bits per period):
174 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
175 * |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2
176 * |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5
177 * |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2
178 * |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2
179 * |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3
180 * |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6
181 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4
182 * |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
183 * | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0
184 * | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5
185 * | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2
186 * | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3
187 * | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6
188 * | | | | | | | | | Remv 1 bits, intv 1 at 4
189 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
190 * |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2
191 * |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3
192 * |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5
193 * |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6
194 * |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8
195 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12
197 * This function is pretty generic and could be easily abstracted if anything
198 * needed similar scheduling.
200 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
201 * unschedule routine. The map bitmap will be updated on a non-error result.
203 static int pmap_schedule(unsigned long *map
, int bits_per_period
,
204 int periods_in_map
, int num_bits
,
205 int interval
, int start
, bool only_one_period
)
212 if (num_bits
> bits_per_period
)
215 /* Adjust interval as per description */
216 interval
= gcd(interval
, periods_in_map
);
218 interval_bits
= bits_per_period
* interval
;
219 to_reserve
= periods_in_map
/ interval
;
221 /* If start has gotten us past interval then we can't schedule */
222 if (start
>= interval_bits
)
226 /* Must fit within same period as start; end at begin of next */
227 first_end
= (start
/ bits_per_period
+ 1) * bits_per_period
;
229 /* Can fit anywhere in the first interval */
230 first_end
= interval_bits
;
233 * We'll try to pick the first repetition, then see if that time
234 * is free for each of the subsequent repetitions. If it's not
235 * we'll adjust the start time for the next search of the first
238 while (start
+ num_bits
<= first_end
) {
241 /* Need to stay within this period */
242 end
= (start
/ bits_per_period
+ 1) * bits_per_period
;
244 /* Look for num_bits us in this microframe starting at start */
245 start
= bitmap_find_next_zero_area(map
, end
, start
, num_bits
,
249 * We should get start >= end if we fail. We might be
250 * able to check the next microframe depending on the
251 * interval, so continue on (start already updated).
258 /* At this point we have a valid point for first one */
259 for (i
= 1; i
< to_reserve
; i
++) {
260 int ith_start
= start
+ interval_bits
* i
;
261 int ith_end
= end
+ interval_bits
* i
;
264 /* Use this as a dumb "check if bits are 0" */
265 ret
= bitmap_find_next_zero_area(
266 map
, ith_start
+ num_bits
, ith_start
, num_bits
,
269 /* We got the right place, continue checking */
270 if (ret
== ith_start
)
273 /* Move start up for next time and exit for loop */
274 ith_start
= bitmap_find_next_zero_area(
275 map
, ith_end
, ith_start
, num_bits
, 0);
276 if (ith_start
>= ith_end
)
277 /* Need a while new period next time */
280 start
= ith_start
- interval_bits
* i
;
284 /* If didn't exit the for loop with a break, we have success */
289 if (start
+ num_bits
> first_end
)
292 for (i
= 0; i
< to_reserve
; i
++) {
293 int ith_start
= start
+ interval_bits
* i
;
295 bitmap_set(map
, ith_start
, num_bits
);
302 * pmap_unschedule() - Undo work done by pmap_schedule()
304 * @map: See pmap_schedule().
305 * @bits_per_period: See pmap_schedule().
306 * @periods_in_map: See pmap_schedule().
307 * @num_bits: The number of bits that was passed to schedule.
308 * @interval: The interval that was passed to schedule.
309 * @start: The return value from pmap_schedule().
311 static void pmap_unschedule(unsigned long *map
, int bits_per_period
,
312 int periods_in_map
, int num_bits
,
313 int interval
, int start
)
319 /* Adjust interval as per description in pmap_schedule() */
320 interval
= gcd(interval
, periods_in_map
);
322 interval_bits
= bits_per_period
* interval
;
323 to_release
= periods_in_map
/ interval
;
325 for (i
= 0; i
< to_release
; i
++) {
326 int ith_start
= start
+ interval_bits
* i
;
328 bitmap_clear(map
, ith_start
, num_bits
);
333 * dwc2_get_ls_map() - Get the map used for the given qh
335 * @hsotg: The HCD state structure for the DWC OTG controller.
336 * @qh: QH for the periodic transfer.
338 * We'll always get the periodic map out of our TT. Note that even if we're
339 * running the host straight in low speed / full speed mode it appears as if
340 * a TT is allocated for us, so we'll use it. If that ever changes we can
341 * add logic here to get a map out of "hsotg" if !qh->do_split.
343 * Returns: the map or NULL if a map couldn't be found.
345 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg
*hsotg
,
350 /* Don't expect to be missing a TT and be doing low speed scheduling */
351 if (WARN_ON(!qh
->dwc_tt
))
354 /* Get the map and adjust if this is a multi_tt hub */
355 map
= qh
->dwc_tt
->periodic_bitmaps
;
356 if (qh
->dwc_tt
->usb_tt
->multi
)
357 map
+= DWC2_ELEMENTS_PER_LS_BITMAP
* (qh
->ttport
- 1);
362 #ifdef DWC2_PRINT_SCHEDULE
364 * pmap_print() - Print the given periodic map
366 * Will attempt to print out the periodic schedule.
368 * @map: See pmap_schedule().
369 * @bits_per_period: See pmap_schedule().
370 * @periods_in_map: See pmap_schedule().
371 * @period_name: The name of 1 period, like "uFrame"
372 * @units: The name of the units, like "us".
373 * @print_fn: The function to call for printing.
374 * @print_data: Opaque data to pass to the print function.
376 static void pmap_print(unsigned long *map
, int bits_per_period
,
377 int periods_in_map
, const char *period_name
,
379 void (*print_fn
)(const char *str
, void *data
),
384 for (period
= 0; period
< periods_in_map
; period
++) {
385 DECLARE_SEQ_BUF(buf
, 64);
386 int period_start
= period
* bits_per_period
;
387 int period_end
= period_start
+ bits_per_period
;
390 bool printed
= false;
393 for (i
= period_start
; i
< period_end
+ 1; i
++) {
394 /* Handle case when ith bit is set */
395 if (i
< period_end
&&
396 bitmap_find_next_zero_area(map
, i
+ 1,
399 start
= i
- period_start
;
404 /* ith bit isn't set; don't care if count == 0 */
409 seq_buf_printf(&buf
, "%s %d: ",
410 period_name
, period
);
412 seq_buf_puts(&buf
, ", ");
415 seq_buf_printf(&buf
, "%d %s -%3d %s", start
,
416 units
, start
+ count
- 1, units
);
421 print_fn(seq_buf_str(&buf
), print_data
);
425 struct dwc2_qh_print_data
{
426 struct dwc2_hsotg
*hsotg
;
431 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
433 * @str: The string to print
434 * @data: A pointer to a struct dwc2_qh_print_data
436 static void dwc2_qh_print(const char *str
, void *data
)
438 struct dwc2_qh_print_data
*print_data
= data
;
440 dwc2_sch_dbg(print_data
->hsotg
, "QH=%p ...%s\n", print_data
->qh
, str
);
444 * dwc2_qh_schedule_print() - Print the periodic schedule
446 * @hsotg: The HCD state structure for the DWC OTG controller.
449 static void dwc2_qh_schedule_print(struct dwc2_hsotg
*hsotg
,
452 struct dwc2_qh_print_data print_data
= { hsotg
, qh
};
456 * The printing functions are quite slow and inefficient.
457 * If we don't have tracing turned on, don't run unless the special
458 * define is turned on.
461 if (qh
->schedule_low_speed
) {
462 unsigned long *map
= dwc2_get_ls_map(hsotg
, qh
);
464 dwc2_sch_dbg(hsotg
, "QH=%p LS/FS trans: %d=>%d us @ %d us",
466 DWC2_ROUND_US_TO_SLICE(qh
->device_us
),
467 DWC2_US_PER_SLICE
* qh
->ls_start_schedule_slice
);
471 "QH=%p Whole low/full speed map %p now:\n",
473 pmap_print(map
, DWC2_LS_PERIODIC_SLICES_PER_FRAME
,
474 DWC2_LS_SCHEDULE_FRAMES
, "Frame ", "slices",
475 dwc2_qh_print
, &print_data
);
479 for (i
= 0; i
< qh
->num_hs_transfers
; i
++) {
480 struct dwc2_hs_transfer_time
*trans_time
= qh
->hs_transfers
+ i
;
481 int uframe
= trans_time
->start_schedule_us
/
482 DWC2_HS_PERIODIC_US_PER_UFRAME
;
483 int rel_us
= trans_time
->start_schedule_us
%
484 DWC2_HS_PERIODIC_US_PER_UFRAME
;
487 "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
488 qh
, i
, trans_time
->duration_us
, uframe
, rel_us
);
490 if (qh
->num_hs_transfers
) {
491 dwc2_sch_dbg(hsotg
, "QH=%p Whole high speed map now:\n", qh
);
492 pmap_print(hsotg
->hs_periodic_bitmap
,
493 DWC2_HS_PERIODIC_US_PER_UFRAME
,
494 DWC2_HS_SCHEDULE_UFRAMES
, "uFrame", "us",
495 dwc2_qh_print
, &print_data
);
499 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg
*hsotg
,
500 struct dwc2_qh
*qh
) {};
504 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
506 * @hsotg: The HCD state structure for the DWC OTG controller.
507 * @qh: QH for the periodic transfer.
508 * @search_slice: We'll start trying to schedule at the passed slice.
509 * Remember that slices are the units of the low speed
510 * schedule (think 25us or so).
512 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
514 * Normally we schedule low speed devices on the map associated with the TT.
516 * Returns: 0 for success or an error code.
518 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
521 int slices
= DIV_ROUND_UP(qh
->device_us
, DWC2_US_PER_SLICE
);
522 unsigned long *map
= dwc2_get_ls_map(hsotg
, qh
);
529 * Schedule on the proper low speed map with our low speed scheduling
530 * parameters. Note that we use the "device_interval" here since
531 * we want the low speed interval and the only way we'd be in this
532 * function is if the device is low speed.
534 * If we happen to be doing low speed and high speed scheduling for the
535 * same transaction (AKA we have a split) we always do low speed first.
536 * That means we can always pass "false" for only_one_period (that
537 * parameters is only useful when we're trying to get one schedule to
538 * match what we already planned in the other schedule).
540 slice
= pmap_schedule(map
, DWC2_LS_PERIODIC_SLICES_PER_FRAME
,
541 DWC2_LS_SCHEDULE_FRAMES
, slices
,
542 qh
->device_interval
, search_slice
, false);
547 qh
->ls_start_schedule_slice
= slice
;
552 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
554 * @hsotg: The HCD state structure for the DWC OTG controller.
555 * @qh: QH for the periodic transfer.
557 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg
*hsotg
,
560 int slices
= DIV_ROUND_UP(qh
->device_us
, DWC2_US_PER_SLICE
);
561 unsigned long *map
= dwc2_get_ls_map(hsotg
, qh
);
563 /* Schedule should have failed, so no worries about no error code */
567 pmap_unschedule(map
, DWC2_LS_PERIODIC_SLICES_PER_FRAME
,
568 DWC2_LS_SCHEDULE_FRAMES
, slices
, qh
->device_interval
,
569 qh
->ls_start_schedule_slice
);
573 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
575 * This will schedule something on the main dwc2 schedule.
577 * We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll
578 * update this with the result upon success. We also use the duration from
579 * the same structure.
581 * @hsotg: The HCD state structure for the DWC OTG controller.
582 * @qh: QH for the periodic transfer.
583 * @only_one_period: If true we will limit ourselves to just looking at
584 * one period (aka one 100us chunk). This is used if we have
585 * already scheduled something on the low speed schedule and
586 * need to find something that matches on the high speed one.
587 * @index: The index into qh->hs_transfers that we're working with.
589 * Returns: 0 for success or an error code. Upon success the
590 * dwc2_hs_transfer_time specified by "index" will be updated.
592 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
593 bool only_one_period
, int index
)
595 struct dwc2_hs_transfer_time
*trans_time
= qh
->hs_transfers
+ index
;
598 us
= pmap_schedule(hsotg
->hs_periodic_bitmap
,
599 DWC2_HS_PERIODIC_US_PER_UFRAME
,
600 DWC2_HS_SCHEDULE_UFRAMES
, trans_time
->duration_us
,
601 qh
->host_interval
, trans_time
->start_schedule_us
,
607 trans_time
->start_schedule_us
= us
;
612 * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
614 * @hsotg: The HCD state structure for the DWC OTG controller.
615 * @qh: QH for the periodic transfer.
616 * @index: Transfer index
618 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg
*hsotg
,
619 struct dwc2_qh
*qh
, int index
)
621 struct dwc2_hs_transfer_time
*trans_time
= qh
->hs_transfers
+ index
;
623 pmap_unschedule(hsotg
->hs_periodic_bitmap
,
624 DWC2_HS_PERIODIC_US_PER_UFRAME
,
625 DWC2_HS_SCHEDULE_UFRAMES
, trans_time
->duration_us
,
626 qh
->host_interval
, trans_time
->start_schedule_us
);
630 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
632 * This is the most complicated thing in USB. We have to find matching time
633 * in both the global high speed schedule for the port and the low speed
634 * schedule for the TT associated with the given device.
636 * Being here means that the host must be running in high speed mode and the
637 * device is in low or full speed mode (and behind a hub).
639 * @hsotg: The HCD state structure for the DWC OTG controller.
640 * @qh: QH for the periodic transfer.
642 static int dwc2_uframe_schedule_split(struct dwc2_hsotg
*hsotg
,
645 int bytecount
= qh
->maxp_mult
* qh
->maxp
;
648 int host_interval_in_sched
;
651 * The interval (how often to repeat) in the actual host schedule.
652 * See pmap_schedule() for gcd() explanation.
654 host_interval_in_sched
= gcd(qh
->host_interval
,
655 DWC2_HS_SCHEDULE_UFRAMES
);
658 * We always try to find space in the low speed schedule first, then
659 * try to find high speed time that matches. If we don't, we'll bump
660 * up the place we start searching in the low speed schedule and try
661 * again. To start we'll look right at the beginning of the low speed
664 * Note that this will tend to front-load the high speed schedule.
665 * We may eventually want to try to avoid this by either considering
666 * both schedules together or doing some sort of round robin.
670 while (ls_search_slice
< DWC2_LS_SCHEDULE_SLICES
) {
678 int first_data_bytes
;
679 int other_data_bytes
;
682 if (qh
->schedule_low_speed
) {
683 err
= dwc2_ls_pmap_schedule(hsotg
, qh
, ls_search_slice
);
686 * If we got an error here there's no other magic we
687 * can do, so bail. All the looping above is only
688 * helpful to redo things if we got a low speed slot
689 * and then couldn't find a matching high speed slot.
694 /* Must be missing the tt structure? Why? */
699 * This will give us a number 0 - 7 if
700 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
702 start_s_uframe
= qh
->ls_start_schedule_slice
/
703 DWC2_SLICES_PER_UFRAME
;
705 /* Get a number that's always 0 - 7 */
706 rel_uframe
= (start_s_uframe
% 8);
709 * If we were going to start in uframe 7 then we would need to
710 * issue a start split in uframe 6, which spec says is not OK.
711 * Move on to the next full frame (assuming there is one).
713 * See 11.18.4 Host Split Transaction Scheduling Requirements
716 if (rel_uframe
== 7) {
717 if (qh
->schedule_low_speed
)
718 dwc2_ls_pmap_unschedule(hsotg
, qh
);
720 (qh
->ls_start_schedule_slice
/
721 DWC2_LS_PERIODIC_SLICES_PER_FRAME
+ 1) *
722 DWC2_LS_PERIODIC_SLICES_PER_FRAME
;
728 * - start split (frame -1)
729 * - complete split w/ data (frame +1)
730 * - complete split w/ data (frame +2)
732 * - complete split w/ data (frame +num_data_packets)
733 * - complete split w/ data (frame +num_data_packets+1)
734 * - complete split w/ data (frame +num_data_packets+2, max 8)
735 * ...though if frame was "0" then max is 7...
737 * For ISOC out we might need to do:
738 * - start split w/ data (frame -1)
739 * - start split w/ data (frame +0)
741 * - start split w/ data (frame +num_data_packets-2)
743 * For INTERRUPT in we might need to do:
744 * - start split (frame -1)
745 * - complete split w/ data (frame +1)
746 * - complete split w/ data (frame +2)
747 * - complete split w/ data (frame +3, max 8)
749 * For INTERRUPT out we might need to do:
750 * - start split w/ data (frame -1)
751 * - complete split (frame +1)
752 * - complete split (frame +2)
753 * - complete split (frame +3, max 8)
757 ssplit_s_uframe
= (start_s_uframe
+
758 host_interval_in_sched
- 1) %
759 host_interval_in_sched
;
760 if (qh
->ep_type
== USB_ENDPOINT_XFER_ISOC
&& !qh
->ep_is_in
)
761 second_s_uframe
= start_s_uframe
;
763 second_s_uframe
= start_s_uframe
+ 1;
765 /* First data transfer might not be all 188 bytes. */
766 first_data_bytes
= 188 -
767 DIV_ROUND_UP(188 * (qh
->ls_start_schedule_slice
%
768 DWC2_SLICES_PER_UFRAME
),
769 DWC2_SLICES_PER_UFRAME
);
770 if (first_data_bytes
> bytecount
)
771 first_data_bytes
= bytecount
;
772 other_data_bytes
= bytecount
- first_data_bytes
;
775 * For now, skip OUT xfers where first xfer is partial
777 * Main dwc2 code assumes:
778 * - INT transfers never get split in two.
779 * - ISOC transfers can always transfer 188 bytes the first
782 * Until that code is fixed, try again if the first transfer
783 * couldn't transfer everything.
785 * This code can be removed if/when the rest of dwc2 handles
786 * the above cases. Until it's fixed we just won't be able
787 * to schedule quite as tightly.
790 (first_data_bytes
!= min_t(int, 188, bytecount
))) {
792 "QH=%p avoiding broken 1st xfer (%d, %d)\n",
793 qh
, first_data_bytes
, bytecount
);
794 if (qh
->schedule_low_speed
)
795 dwc2_ls_pmap_unschedule(hsotg
, qh
);
796 ls_search_slice
= (start_s_uframe
+ 1) *
797 DWC2_SLICES_PER_UFRAME
;
801 /* Start by assuming transfers for the bytes */
802 qh
->num_hs_transfers
= 1 + DIV_ROUND_UP(other_data_bytes
, 188);
805 * Everything except ISOC OUT has extra transfers. Rules are
806 * complicated. See 11.18.4 Host Split Transaction Scheduling
807 * Requirements bullet 3.
809 if (qh
->ep_type
== USB_ENDPOINT_XFER_INT
) {
811 qh
->num_hs_transfers
+= 2;
813 qh
->num_hs_transfers
+= 3;
817 * First is start split, middle/end is data.
818 * Allocate full data bytes for all data.
821 middle_count
= bytecount
;
822 end_count
= bytecount
;
825 * First is data, middle/end is complete.
826 * First transfer and second can have data.
827 * Rest should just have complete split.
829 first_count
= first_data_bytes
;
830 middle_count
= max_t(int, 4, other_data_bytes
);
837 /* Account for the start split */
838 qh
->num_hs_transfers
++;
840 /* Calculate "L" value from spec */
841 last
= rel_uframe
+ qh
->num_hs_transfers
+ 1;
843 /* Start with basic case */
845 qh
->num_hs_transfers
+= 2;
847 qh
->num_hs_transfers
+= 1;
849 /* Adjust downwards */
850 if (last
>= 6 && rel_uframe
== 0)
851 qh
->num_hs_transfers
--;
853 /* 1st = start; rest can contain data */
855 middle_count
= min_t(int, 188, bytecount
);
856 end_count
= middle_count
;
858 /* All contain data, last might be smaller */
859 first_count
= first_data_bytes
;
860 middle_count
= min_t(int, 188,
862 end_count
= other_data_bytes
% 188;
866 /* Assign durations per uFrame */
867 qh
->hs_transfers
[0].duration_us
= HS_USECS_ISO(first_count
);
868 for (i
= 1; i
< qh
->num_hs_transfers
- 1; i
++)
869 qh
->hs_transfers
[i
].duration_us
=
870 HS_USECS_ISO(middle_count
);
871 if (qh
->num_hs_transfers
> 1)
872 qh
->hs_transfers
[qh
->num_hs_transfers
- 1].duration_us
=
873 HS_USECS_ISO(end_count
);
876 * Assign start us. The call below to dwc2_hs_pmap_schedule()
877 * will start with these numbers but may adjust within the same
880 qh
->hs_transfers
[0].start_schedule_us
=
881 ssplit_s_uframe
* DWC2_HS_PERIODIC_US_PER_UFRAME
;
882 for (i
= 1; i
< qh
->num_hs_transfers
; i
++)
883 qh
->hs_transfers
[i
].start_schedule_us
=
884 ((second_s_uframe
+ i
- 1) %
885 DWC2_HS_SCHEDULE_UFRAMES
) *
886 DWC2_HS_PERIODIC_US_PER_UFRAME
;
888 /* Try to schedule with filled in hs_transfers above */
889 for (i
= 0; i
< qh
->num_hs_transfers
; i
++) {
890 err
= dwc2_hs_pmap_schedule(hsotg
, qh
, true, i
);
895 /* If we scheduled all w/out breaking out then we're all good */
896 if (i
== qh
->num_hs_transfers
)
900 dwc2_hs_pmap_unschedule(hsotg
, qh
, i
);
902 if (qh
->schedule_low_speed
)
903 dwc2_ls_pmap_unschedule(hsotg
, qh
);
905 /* Try again starting in the next microframe */
906 ls_search_slice
= (start_s_uframe
+ 1) * DWC2_SLICES_PER_UFRAME
;
909 if (ls_search_slice
>= DWC2_LS_SCHEDULE_SLICES
)
916 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
918 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
921 * @hsotg: The HCD state structure for the DWC OTG controller.
922 * @qh: QH for the periodic transfer.
924 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
926 /* In non-split host and device time are the same */
927 WARN_ON(qh
->host_us
!= qh
->device_us
);
928 WARN_ON(qh
->host_interval
!= qh
->device_interval
);
929 WARN_ON(qh
->num_hs_transfers
!= 1);
931 /* We'll have one transfer; init start to 0 before calling scheduler */
932 qh
->hs_transfers
[0].start_schedule_us
= 0;
933 qh
->hs_transfers
[0].duration_us
= qh
->host_us
;
935 return dwc2_hs_pmap_schedule(hsotg
, qh
, false, 0);
939 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
941 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
944 * @hsotg: The HCD state structure for the DWC OTG controller.
945 * @qh: QH for the periodic transfer.
947 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
949 /* In non-split host and device time are the same */
950 WARN_ON(qh
->host_us
!= qh
->device_us
);
951 WARN_ON(qh
->host_interval
!= qh
->device_interval
);
952 WARN_ON(!qh
->schedule_low_speed
);
954 /* Run on the main low speed schedule (no split = no hub = no TT) */
955 return dwc2_ls_pmap_schedule(hsotg
, qh
, 0);
959 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
961 * Calls one of the 3 sub-function depending on what type of transfer this QH
962 * is for. Also adds some printing.
964 * @hsotg: The HCD state structure for the DWC OTG controller.
965 * @qh: QH for the periodic transfer.
967 static int dwc2_uframe_schedule(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
971 if (qh
->dev_speed
== USB_SPEED_HIGH
)
972 ret
= dwc2_uframe_schedule_hs(hsotg
, qh
);
973 else if (!qh
->do_split
)
974 ret
= dwc2_uframe_schedule_ls(hsotg
, qh
);
976 ret
= dwc2_uframe_schedule_split(hsotg
, qh
);
979 dwc2_sch_dbg(hsotg
, "QH=%p Failed to schedule %d\n", qh
, ret
);
981 dwc2_qh_schedule_print(hsotg
, qh
);
987 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
989 * @hsotg: The HCD state structure for the DWC OTG controller.
990 * @qh: QH for the periodic transfer.
992 static void dwc2_uframe_unschedule(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
996 for (i
= 0; i
< qh
->num_hs_transfers
; i
++)
997 dwc2_hs_pmap_unschedule(hsotg
, qh
, i
);
999 if (qh
->schedule_low_speed
)
1000 dwc2_ls_pmap_unschedule(hsotg
, qh
);
1002 dwc2_sch_dbg(hsotg
, "QH=%p Unscheduled\n", qh
);
1006 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1008 * Takes a qh that has already been scheduled (which means we know we have the
1009 * bandwdith reserved for us) and set the next_active_frame and the
1010 * start_active_frame.
1012 * This is expected to be called on qh's that weren't previously actively
1013 * running. It just picks the next frame that we can fit into without any
1014 * thought about the past.
1016 * @hsotg: The HCD state structure for the DWC OTG controller
1017 * @qh: QH for a periodic endpoint
1020 static void dwc2_pick_first_frame(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1024 u16 next_active_frame
;
1029 * Use the real frame number rather than the cached value as of the
1030 * last SOF to give us a little extra slop.
1032 frame_number
= dwc2_hcd_get_frame_number(hsotg
);
1035 * We wouldn't want to start any earlier than the next frame just in
1036 * case the frame number ticks as we're doing this calculation.
1038 * NOTE: if we could quantify how long till we actually get scheduled
1039 * we might be able to avoid the "+ 1" by looking at the upper part of
1040 * HFNUM (the FRREM field). For now we'll just use the + 1 though.
1042 earliest_frame
= dwc2_frame_num_inc(frame_number
, 1);
1043 next_active_frame
= earliest_frame
;
1045 /* Get the "no microframe scheduler" out of the way... */
1046 if (!hsotg
->params
.uframe_sched
) {
1048 /* Splits are active at microframe 0 minus 1 */
1049 next_active_frame
|= 0x7;
1053 if (qh
->dev_speed
== USB_SPEED_HIGH
|| qh
->do_split
) {
1055 * We're either at high speed or we're doing a split (which
1056 * means we're talking high speed to a hub). In any case
1057 * the first frame should be based on when the first scheduled
1060 WARN_ON(qh
->num_hs_transfers
< 1);
1062 relative_frame
= qh
->hs_transfers
[0].start_schedule_us
/
1063 DWC2_HS_PERIODIC_US_PER_UFRAME
;
1065 /* Adjust interval as per high speed schedule */
1066 interval
= gcd(qh
->host_interval
, DWC2_HS_SCHEDULE_UFRAMES
);
1070 * Low or full speed directly on dwc2. Just about the same
1071 * as high speed but on a different schedule and with slightly
1072 * different adjustments. Note that this works because when
1073 * the host and device are both low speed then frames in the
1074 * controller tick at low speed.
1076 relative_frame
= qh
->ls_start_schedule_slice
/
1077 DWC2_LS_PERIODIC_SLICES_PER_FRAME
;
1078 interval
= gcd(qh
->host_interval
, DWC2_LS_SCHEDULE_FRAMES
);
1081 /* Scheduler messed up if frame is past interval */
1082 WARN_ON(relative_frame
>= interval
);
1085 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1086 * done the gcd(), so it's safe to move to the beginning of the current
1087 * interval like this.
1089 * After this we might be before earliest_frame, but don't worry,
1092 next_active_frame
= (next_active_frame
/ interval
) * interval
;
1095 * Actually choose to start at the frame number we've been
1098 next_active_frame
= dwc2_frame_num_inc(next_active_frame
,
1102 * We actually need 1 frame before since the next_active_frame is
1103 * the frame number we'll be put on the ready list and we won't be on
1104 * the bus until 1 frame later.
1106 next_active_frame
= dwc2_frame_num_dec(next_active_frame
, 1);
1109 * By now we might actually be before the earliest_frame. Let's move
1110 * up intervals until we're not.
1112 while (dwc2_frame_num_gt(earliest_frame
, next_active_frame
))
1113 next_active_frame
= dwc2_frame_num_inc(next_active_frame
,
1117 qh
->next_active_frame
= next_active_frame
;
1118 qh
->start_active_frame
= next_active_frame
;
1120 dwc2_sch_vdbg(hsotg
, "QH=%p First fn=%04x nxt=%04x\n",
1121 qh
, frame_number
, qh
->next_active_frame
);
1125 * dwc2_do_reserve() - Make a periodic reservation
1127 * Try to allocate space in the periodic schedule. Depending on parameters
1128 * this might use the microframe scheduler or the dumb scheduler.
1130 * @hsotg: The HCD state structure for the DWC OTG controller
1131 * @qh: QH for the periodic transfer.
1133 * Returns: 0 upon success; error upon failure.
1135 static int dwc2_do_reserve(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1139 if (hsotg
->params
.uframe_sched
) {
1140 status
= dwc2_uframe_schedule(hsotg
, qh
);
1142 status
= dwc2_periodic_channel_available(hsotg
);
1144 dev_info(hsotg
->dev
,
1145 "%s: No host channel available for periodic transfer\n",
1150 status
= dwc2_check_periodic_bandwidth(hsotg
, qh
);
1155 "%s: Insufficient periodic bandwidth for periodic transfer\n",
1160 if (!hsotg
->params
.uframe_sched
)
1161 /* Reserve periodic channel */
1162 hsotg
->periodic_channels
++;
1164 /* Update claimed usecs per (micro)frame */
1165 hsotg
->periodic_usecs
+= qh
->host_us
;
1167 dwc2_pick_first_frame(hsotg
, qh
);
1173 * dwc2_do_unreserve() - Actually release the periodic reservation
1175 * This function actually releases the periodic bandwidth that was reserved
1178 * @hsotg: The HCD state structure for the DWC OTG controller
1179 * @qh: QH for the periodic transfer.
1181 static void dwc2_do_unreserve(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1183 assert_spin_locked(&hsotg
->lock
);
1185 WARN_ON(!qh
->unreserve_pending
);
1187 /* No more unreserve pending--we're doing it */
1188 qh
->unreserve_pending
= false;
1190 if (WARN_ON(!list_empty(&qh
->qh_list_entry
)))
1191 list_del_init(&qh
->qh_list_entry
);
1193 /* Update claimed usecs per (micro)frame */
1194 hsotg
->periodic_usecs
-= qh
->host_us
;
1196 if (hsotg
->params
.uframe_sched
) {
1197 dwc2_uframe_unschedule(hsotg
, qh
);
1199 /* Release periodic channel reservation */
1200 hsotg
->periodic_channels
--;
1205 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1207 * According to the kernel doc for usb_submit_urb() (specifically the part about
1208 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1209 * long as a device driver keeps submitting. Since we're using HCD_BH to give
1210 * back the URB we need to give the driver a little bit of time before we
1211 * release the reservation. This worker is called after the appropriate
1214 * @t: Address to a qh unreserve_work.
1216 static void dwc2_unreserve_timer_fn(struct timer_list
*t
)
1218 struct dwc2_qh
*qh
= from_timer(qh
, t
, unreserve_timer
);
1219 struct dwc2_hsotg
*hsotg
= qh
->hsotg
;
1220 unsigned long flags
;
1223 * Wait for the lock, or for us to be scheduled again. We
1224 * could be scheduled again if:
1225 * - We started executing but didn't get the lock yet.
1226 * - A new reservation came in, but cancel didn't take effect
1227 * because we already started executing.
1228 * - The timer has been kicked again.
1229 * In that case cancel and wait for the next call.
1231 while (!spin_trylock_irqsave(&hsotg
->lock
, flags
)) {
1232 if (timer_pending(&qh
->unreserve_timer
))
1237 * Might be no more unreserve pending if:
1238 * - We started executing but didn't get the lock yet.
1239 * - A new reservation came in, but cancel didn't take effect
1240 * because we already started executing.
1242 * We can't put this in the loop above because unreserve_pending needs
1243 * to be accessed under lock, so we can only check it once we got the
1246 if (qh
->unreserve_pending
)
1247 dwc2_do_unreserve(hsotg
, qh
);
1249 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1253 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1254 * host channel is large enough to handle the maximum data transfer in a single
1255 * (micro)frame for a periodic transfer
1257 * @hsotg: The HCD state structure for the DWC OTG controller
1258 * @qh: QH for a periodic endpoint
1260 * Return: 0 if successful, negative error code otherwise
1262 static int dwc2_check_max_xfer_size(struct dwc2_hsotg
*hsotg
,
1266 u32 max_channel_xfer_size
;
1269 max_xfer_size
= qh
->maxp
* qh
->maxp_mult
;
1270 max_channel_xfer_size
= hsotg
->params
.max_transfer_size
;
1272 if (max_xfer_size
> max_channel_xfer_size
) {
1274 "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1275 __func__
, max_xfer_size
, max_channel_xfer_size
);
1283 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1284 * the periodic schedule
1286 * @hsotg: The HCD state structure for the DWC OTG controller
1287 * @qh: QH for the periodic transfer. The QH should already contain the
1288 * scheduling information.
1290 * Return: 0 if successful, negative error code otherwise
1292 static int dwc2_schedule_periodic(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1296 status
= dwc2_check_max_xfer_size(hsotg
, qh
);
1299 "%s: Channel max transfer size too small for periodic transfer\n",
1304 /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1305 if (del_timer(&qh
->unreserve_timer
))
1306 WARN_ON(!qh
->unreserve_pending
);
1309 * Only need to reserve if there's not an unreserve pending, since if an
1310 * unreserve is pending then by definition our old reservation is still
1311 * valid. Unreserve might still be pending even if we didn't cancel if
1312 * dwc2_unreserve_timer_fn() already started. Code in the timer handles
1315 if (!qh
->unreserve_pending
) {
1316 status
= dwc2_do_reserve(hsotg
, qh
);
1321 * It might have been a while, so make sure that frame_number
1322 * is still good. Note: we could also try to use the similar
1323 * dwc2_next_periodic_start() but that schedules much more
1324 * tightly and we might need to hurry and queue things up.
1326 if (dwc2_frame_num_le(qh
->next_active_frame
,
1327 hsotg
->frame_number
))
1328 dwc2_pick_first_frame(hsotg
, qh
);
1331 qh
->unreserve_pending
= 0;
1333 if (hsotg
->params
.dma_desc_enable
)
1334 /* Don't rely on SOF and start in ready schedule */
1335 list_add_tail(&qh
->qh_list_entry
, &hsotg
->periodic_sched_ready
);
1337 /* Always start in inactive schedule */
1338 list_add_tail(&qh
->qh_list_entry
,
1339 &hsotg
->periodic_sched_inactive
);
1345 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1346 * from the periodic schedule
1348 * @hsotg: The HCD state structure for the DWC OTG controller
1349 * @qh: QH for the periodic transfer
1351 static void dwc2_deschedule_periodic(struct dwc2_hsotg
*hsotg
,
1356 assert_spin_locked(&hsotg
->lock
);
1359 * Schedule the unreserve to happen in a little bit. Cases here:
1360 * - Unreserve worker might be sitting there waiting to grab the lock.
1361 * In this case it will notice it's been schedule again and will
1363 * - Unreserve worker might not be scheduled.
1365 * We should never already be scheduled since dwc2_schedule_periodic()
1366 * should have canceled the scheduled unreserve timer (hence the
1367 * warning on did_modify).
1369 * We add + 1 to the timer to guarantee that at least 1 jiffy has
1370 * passed (otherwise if the jiffy counter might tick right after we
1371 * read it and we'll get no delay).
1373 did_modify
= mod_timer(&qh
->unreserve_timer
,
1374 jiffies
+ DWC2_UNRESERVE_DELAY
+ 1);
1375 WARN_ON(did_modify
);
1376 qh
->unreserve_pending
= 1;
1378 list_del_init(&qh
->qh_list_entry
);
1382 * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
1384 * As per the spec, a NAK indicates that "a function is temporarily unable to
1385 * transmit or receive data, but will eventually be able to do so without need
1386 * of host intervention".
1388 * That means that when we encounter a NAK we're supposed to retry.
1390 * ...but if we retry right away (from the interrupt handler that saw the NAK)
1391 * then we can end up with an interrupt storm (if the other side keeps NAKing
1392 * us) because on slow enough CPUs it could take us longer to get out of the
1393 * interrupt routine than it takes for the device to send another NAK. That
1394 * leads to a constant stream of NAK interrupts and the CPU locks.
1396 * ...so instead of retrying right away in the case of a NAK we'll set a timer
1397 * to retry some time later. This function handles that timer and moves the
1398 * qh back to the "inactive" list, then queues transactions.
1400 * @t: Pointer to wait_timer in a qh.
1402 * Return: HRTIMER_NORESTART to not automatically restart this timer.
1404 static enum hrtimer_restart
dwc2_wait_timer_fn(struct hrtimer
*t
)
1406 struct dwc2_qh
*qh
= container_of(t
, struct dwc2_qh
, wait_timer
);
1407 struct dwc2_hsotg
*hsotg
= qh
->hsotg
;
1408 unsigned long flags
;
1410 spin_lock_irqsave(&hsotg
->lock
, flags
);
1413 * We'll set wait_timer_cancel to true if we want to cancel this
1414 * operation in dwc2_hcd_qh_unlink().
1416 if (!qh
->wait_timer_cancel
) {
1417 enum dwc2_transaction_type tr_type
;
1419 qh
->want_wait
= false;
1421 list_move(&qh
->qh_list_entry
,
1422 &hsotg
->non_periodic_sched_inactive
);
1424 tr_type
= dwc2_hcd_select_transactions(hsotg
);
1425 if (tr_type
!= DWC2_TRANSACTION_NONE
)
1426 dwc2_hcd_queue_transactions(hsotg
, tr_type
);
1429 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1430 return HRTIMER_NORESTART
;
1434 * dwc2_qh_init() - Initializes a QH structure
1436 * @hsotg: The HCD state structure for the DWC OTG controller
1437 * @qh: The QH to init
1438 * @urb: Holds the information about the device/endpoint needed to initialize
1440 * @mem_flags: Flags for allocating memory.
1442 static void dwc2_qh_init(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
1443 struct dwc2_hcd_urb
*urb
, gfp_t mem_flags
)
1445 int dev_speed
= dwc2_host_get_speed(hsotg
, urb
->priv
);
1446 u8 ep_type
= dwc2_hcd_get_pipe_type(&urb
->pipe_info
);
1447 bool ep_is_in
= !!dwc2_hcd_is_pipe_in(&urb
->pipe_info
);
1448 bool ep_is_isoc
= (ep_type
== USB_ENDPOINT_XFER_ISOC
);
1449 bool ep_is_int
= (ep_type
== USB_ENDPOINT_XFER_INT
);
1450 u32 hprt
= dwc2_readl(hsotg
, HPRT0
);
1451 u32 prtspd
= (hprt
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
;
1452 bool do_split
= (prtspd
== HPRT0_SPD_HIGH_SPEED
&&
1453 dev_speed
!= USB_SPEED_HIGH
);
1454 int maxp
= dwc2_hcd_get_maxp(&urb
->pipe_info
);
1455 int maxp_mult
= dwc2_hcd_get_maxp_mult(&urb
->pipe_info
);
1456 int bytecount
= maxp_mult
* maxp
;
1461 timer_setup(&qh
->unreserve_timer
, dwc2_unreserve_timer_fn
, 0);
1462 hrtimer_init(&qh
->wait_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1463 qh
->wait_timer
.function
= &dwc2_wait_timer_fn
;
1464 qh
->ep_type
= ep_type
;
1465 qh
->ep_is_in
= ep_is_in
;
1467 qh
->data_toggle
= DWC2_HC_PID_DATA0
;
1469 qh
->maxp_mult
= maxp_mult
;
1470 INIT_LIST_HEAD(&qh
->qtd_list
);
1471 INIT_LIST_HEAD(&qh
->qh_list_entry
);
1473 qh
->do_split
= do_split
;
1474 qh
->dev_speed
= dev_speed
;
1476 if (ep_is_int
|| ep_is_isoc
) {
1477 /* Compute scheduling parameters once and save them */
1478 int host_speed
= do_split
? USB_SPEED_HIGH
: dev_speed
;
1479 struct dwc2_tt
*dwc_tt
= dwc2_host_get_tt_info(hsotg
, urb
->priv
,
1484 qh
->dwc_tt
= dwc_tt
;
1486 qh
->host_us
= NS_TO_US(usb_calc_bus_time(host_speed
, ep_is_in
,
1487 ep_is_isoc
, bytecount
));
1488 device_ns
= usb_calc_bus_time(dev_speed
, ep_is_in
,
1489 ep_is_isoc
, bytecount
);
1491 if (do_split
&& dwc_tt
)
1492 device_ns
+= dwc_tt
->usb_tt
->think_time
;
1493 qh
->device_us
= NS_TO_US(device_ns
);
1495 qh
->device_interval
= urb
->interval
;
1496 qh
->host_interval
= urb
->interval
* (do_split
? 8 : 1);
1499 * Schedule low speed if we're running the host in low or
1500 * full speed OR if we've got a "TT" to deal with to access this
1503 qh
->schedule_low_speed
= prtspd
!= HPRT0_SPD_HIGH_SPEED
||
1507 /* We won't know num transfers until we schedule */
1508 qh
->num_hs_transfers
= -1;
1509 } else if (dev_speed
== USB_SPEED_HIGH
) {
1510 qh
->num_hs_transfers
= 1;
1512 qh
->num_hs_transfers
= 0;
1515 /* We'll schedule later when we have something to do */
1518 switch (dev_speed
) {
1522 case USB_SPEED_FULL
:
1525 case USB_SPEED_HIGH
:
1533 switch (qh
->ep_type
) {
1534 case USB_ENDPOINT_XFER_ISOC
:
1535 type
= "isochronous";
1537 case USB_ENDPOINT_XFER_INT
:
1540 case USB_ENDPOINT_XFER_CONTROL
:
1543 case USB_ENDPOINT_XFER_BULK
:
1551 dwc2_sch_dbg(hsotg
, "QH=%p Init %s, %s speed, %d bytes:\n", qh
, type
,
1553 dwc2_sch_dbg(hsotg
, "QH=%p ...addr=%d, ep=%d, %s\n", qh
,
1554 dwc2_hcd_get_dev_addr(&urb
->pipe_info
),
1555 dwc2_hcd_get_ep_num(&urb
->pipe_info
),
1556 ep_is_in
? "IN" : "OUT");
1557 if (ep_is_int
|| ep_is_isoc
) {
1559 "QH=%p ...duration: host=%d us, device=%d us\n",
1560 qh
, qh
->host_us
, qh
->device_us
);
1561 dwc2_sch_dbg(hsotg
, "QH=%p ...interval: host=%d, device=%d\n",
1562 qh
, qh
->host_interval
, qh
->device_interval
);
1563 if (qh
->schedule_low_speed
)
1564 dwc2_sch_dbg(hsotg
, "QH=%p ...low speed schedule=%p\n",
1565 qh
, dwc2_get_ls_map(hsotg
, qh
));
1570 * dwc2_hcd_qh_create() - Allocates and initializes a QH
1572 * @hsotg: The HCD state structure for the DWC OTG controller
1573 * @urb: Holds the information about the device/endpoint needed
1574 * to initialize the QH
1575 * @mem_flags: Flags for allocating memory.
1577 * Return: Pointer to the newly allocated QH, or NULL on error
1579 struct dwc2_qh
*dwc2_hcd_qh_create(struct dwc2_hsotg
*hsotg
,
1580 struct dwc2_hcd_urb
*urb
,
1588 /* Allocate memory */
1589 qh
= kzalloc(sizeof(*qh
), mem_flags
);
1593 dwc2_qh_init(hsotg
, qh
, urb
, mem_flags
);
1595 if (hsotg
->params
.dma_desc_enable
&&
1596 dwc2_hcd_qh_init_ddma(hsotg
, qh
, mem_flags
) < 0) {
1597 dwc2_hcd_qh_free(hsotg
, qh
);
1605 * dwc2_hcd_qh_free() - Frees the QH
1607 * @hsotg: HCD instance
1608 * @qh: The QH to free
1610 * QH should already be removed from the list. QTD list should already be empty
1611 * if called from URB Dequeue.
1613 * Must NOT be called with interrupt disabled or spinlock held
1615 void dwc2_hcd_qh_free(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1617 /* Make sure any unreserve work is finished. */
1618 if (del_timer_sync(&qh
->unreserve_timer
)) {
1619 unsigned long flags
;
1621 spin_lock_irqsave(&hsotg
->lock
, flags
);
1622 dwc2_do_unreserve(hsotg
, qh
);
1623 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1627 * We don't have the lock so we can safely wait until the wait timer
1628 * finishes. Of course, at this point in time we'd better have set
1629 * wait_timer_active to false so if this timer was still pending it
1630 * won't do anything anyway, but we want it to finish before we free
1633 hrtimer_cancel(&qh
->wait_timer
);
1635 dwc2_host_put_tt_info(hsotg
, qh
->dwc_tt
);
1638 dwc2_hcd_qh_free_ddma(hsotg
, qh
);
1639 else if (hsotg
->unaligned_cache
&& qh
->dw_align_buf
)
1640 kmem_cache_free(hsotg
->unaligned_cache
, qh
->dw_align_buf
);
1646 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1647 * schedule if it is not already in the schedule. If the QH is already in
1648 * the schedule, no action is taken.
1650 * @hsotg: The HCD state structure for the DWC OTG controller
1651 * @qh: The QH to add
1653 * Return: 0 if successful, negative error code otherwise
1655 int dwc2_hcd_qh_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1662 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1664 if (!list_empty(&qh
->qh_list_entry
))
1665 /* QH already in a schedule */
1668 /* Add the new QH to the appropriate schedule */
1669 if (dwc2_qh_is_non_per(qh
)) {
1670 /* Schedule right away */
1671 qh
->start_active_frame
= hsotg
->frame_number
;
1672 qh
->next_active_frame
= qh
->start_active_frame
;
1674 if (qh
->want_wait
) {
1675 list_add_tail(&qh
->qh_list_entry
,
1676 &hsotg
->non_periodic_sched_waiting
);
1677 qh
->wait_timer_cancel
= false;
1678 delay
= ktime_set(0, DWC2_RETRY_WAIT_DELAY
);
1679 hrtimer_start(&qh
->wait_timer
, delay
, HRTIMER_MODE_REL
);
1681 list_add_tail(&qh
->qh_list_entry
,
1682 &hsotg
->non_periodic_sched_inactive
);
1687 status
= dwc2_schedule_periodic(hsotg
, qh
);
1690 if (!hsotg
->periodic_qh_count
) {
1691 intr_mask
= dwc2_readl(hsotg
, GINTMSK
);
1692 intr_mask
|= GINTSTS_SOF
;
1693 dwc2_writel(hsotg
, intr_mask
, GINTMSK
);
1695 hsotg
->periodic_qh_count
++;
1701 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1702 * schedule. Memory is not freed.
1704 * @hsotg: The HCD state structure
1705 * @qh: QH to remove from schedule
1707 void dwc2_hcd_qh_unlink(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1711 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1713 /* If the wait_timer is pending, this will stop it from acting */
1714 qh
->wait_timer_cancel
= true;
1716 if (list_empty(&qh
->qh_list_entry
))
1717 /* QH is not in a schedule */
1720 if (dwc2_qh_is_non_per(qh
)) {
1721 if (hsotg
->non_periodic_qh_ptr
== &qh
->qh_list_entry
)
1722 hsotg
->non_periodic_qh_ptr
=
1723 hsotg
->non_periodic_qh_ptr
->next
;
1724 list_del_init(&qh
->qh_list_entry
);
1728 dwc2_deschedule_periodic(hsotg
, qh
);
1729 hsotg
->periodic_qh_count
--;
1730 if (!hsotg
->periodic_qh_count
&&
1731 !hsotg
->params
.dma_desc_enable
) {
1732 intr_mask
= dwc2_readl(hsotg
, GINTMSK
);
1733 intr_mask
&= ~GINTSTS_SOF
;
1734 dwc2_writel(hsotg
, intr_mask
, GINTMSK
);
1739 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1741 * This is called for setting next_active_frame for periodic splits for all but
1742 * the first packet of the split. Confusing? I thought so...
1744 * Periodic splits are single low/full speed transfers that we end up splitting
1745 * up into several high speed transfers. They always fit into one full (1 ms)
1746 * frame but might be split over several microframes (125 us each). We to put
1747 * each of the parts on a very specific high speed frame.
1749 * This function figures out where the next active uFrame needs to be.
1751 * @hsotg: The HCD state structure
1752 * @qh: QH for the periodic transfer.
1753 * @frame_number: The current frame number.
1755 * Return: number missed by (or 0 if we didn't miss).
1757 static int dwc2_next_for_periodic_split(struct dwc2_hsotg
*hsotg
,
1758 struct dwc2_qh
*qh
, u16 frame_number
)
1760 u16 old_frame
= qh
->next_active_frame
;
1761 u16 prev_frame_number
= dwc2_frame_num_dec(frame_number
, 1);
1766 * See dwc2_uframe_schedule_split() for split scheduling.
1768 * Basically: increment 1 normally, but 2 right after the start split
1769 * (except for ISOC out).
1771 if (old_frame
== qh
->start_active_frame
&&
1772 !(qh
->ep_type
== USB_ENDPOINT_XFER_ISOC
&& !qh
->ep_is_in
))
1777 qh
->next_active_frame
= dwc2_frame_num_inc(old_frame
, incr
);
1780 * Note that it's OK for frame_number to be 1 frame past
1781 * next_active_frame. Remember that next_active_frame is supposed to
1782 * be 1 frame _before_ when we want to be scheduled. If we're 1 frame
1783 * past it just means schedule ASAP.
1785 * It's _not_ OK, however, if we're more than one frame past.
1787 if (dwc2_frame_num_gt(prev_frame_number
, qh
->next_active_frame
)) {
1789 * OOPS, we missed. That's actually pretty bad since
1790 * the hub will be unhappy; try ASAP I guess.
1792 missed
= dwc2_frame_num_dec(prev_frame_number
,
1793 qh
->next_active_frame
);
1794 qh
->next_active_frame
= frame_number
;
1801 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1803 * This is called for setting next_active_frame for a periodic transfer for
1804 * all cases other than midway through a periodic split. This will also update
1805 * start_active_frame.
1807 * Since we _always_ keep start_active_frame as the start of the previous
1808 * transfer this is normally pretty easy: we just add our interval to
1809 * start_active_frame and we've got our answer.
1811 * The tricks come into play if we miss. In that case we'll look for the next
1812 * slot we can fit into.
1814 * @hsotg: The HCD state structure
1815 * @qh: QH for the periodic transfer.
1816 * @frame_number: The current frame number.
1818 * Return: number missed by (or 0 if we didn't miss).
1820 static int dwc2_next_periodic_start(struct dwc2_hsotg
*hsotg
,
1821 struct dwc2_qh
*qh
, u16 frame_number
)
1824 u16 interval
= qh
->host_interval
;
1825 u16 prev_frame_number
= dwc2_frame_num_dec(frame_number
, 1);
1827 qh
->start_active_frame
= dwc2_frame_num_inc(qh
->start_active_frame
,
1831 * The dwc2_frame_num_gt() function used below won't work terribly well
1832 * with if we just incremented by a really large intervals since the
1833 * frame counter only goes to 0x3fff. It's terribly unlikely that we
1834 * will have missed in this case anyway. Just go to exit. If we want
1835 * to try to do better we'll need to keep track of a bigger counter
1836 * somewhere in the driver and handle overflows.
1838 if (interval
>= 0x1000)
1842 * Test for misses, which is when it's too late to schedule.
1844 * A few things to note:
1845 * - We compare against prev_frame_number since start_active_frame
1846 * and next_active_frame are always 1 frame before we want things
1847 * to be active and we assume we can still get scheduled in the
1848 * current frame number.
1849 * - It's possible for start_active_frame (now incremented) to be
1850 * next_active_frame if we got an EO MISS (even_odd miss) which
1851 * basically means that we detected there wasn't enough time for
1852 * the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1853 * at the last second. We want to make sure we don't schedule
1854 * another transfer for the same frame. My test webcam doesn't seem
1855 * terribly upset by missing a transfer but really doesn't like when
1856 * we do two transfers in the same frame.
1857 * - Some misses are expected. Specifically, in order to work
1858 * perfectly dwc2 really needs quite spectacular interrupt latency
1859 * requirements. It needs to be able to handle its interrupts
1860 * completely within 125 us of them being asserted. That not only
1861 * means that the dwc2 interrupt handler needs to be fast but it
1862 * means that nothing else in the system has to block dwc2 for a long
1863 * time. We can help with the dwc2 parts of this, but it's hard to
1864 * guarantee that a system will have interrupt latency < 125 us, so
1865 * we have to be robust to some misses.
1867 if (qh
->start_active_frame
== qh
->next_active_frame
||
1868 dwc2_frame_num_gt(prev_frame_number
, qh
->start_active_frame
)) {
1869 u16 ideal_start
= qh
->start_active_frame
;
1873 * Adjust interval as per gcd with map size.
1874 * See pmap_schedule() for more details here.
1876 if (qh
->do_split
|| qh
->dev_speed
== USB_SPEED_HIGH
)
1877 periods_in_map
= DWC2_HS_SCHEDULE_UFRAMES
;
1879 periods_in_map
= DWC2_LS_SCHEDULE_FRAMES
;
1880 interval
= gcd(interval
, periods_in_map
);
1883 qh
->start_active_frame
= dwc2_frame_num_inc(
1884 qh
->start_active_frame
, interval
);
1885 } while (dwc2_frame_num_gt(prev_frame_number
,
1886 qh
->start_active_frame
));
1888 missed
= dwc2_frame_num_dec(qh
->start_active_frame
,
1893 qh
->next_active_frame
= qh
->start_active_frame
;
1899 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1900 * non-periodic schedule. The QH is added to the inactive non-periodic
1901 * schedule if any QTDs are still attached to the QH.
1903 * For periodic QHs, the QH is removed from the periodic queued schedule. If
1904 * there are any QTDs still attached to the QH, the QH is added to either the
1905 * periodic inactive schedule or the periodic ready schedule and its next
1906 * scheduled frame is calculated. The QH is placed in the ready schedule if
1907 * the scheduled frame has been reached already. Otherwise it's placed in the
1908 * inactive schedule. If there are no QTDs attached to the QH, the QH is
1909 * completely removed from the periodic schedule.
1911 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
1912 int sched_next_periodic_split
)
1914 u16 old_frame
= qh
->next_active_frame
;
1919 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1921 if (dwc2_qh_is_non_per(qh
)) {
1922 dwc2_hcd_qh_unlink(hsotg
, qh
);
1923 if (!list_empty(&qh
->qtd_list
))
1924 /* Add back to inactive/waiting non-periodic schedule */
1925 dwc2_hcd_qh_add(hsotg
, qh
);
1930 * Use the real frame number rather than the cached value as of the
1931 * last SOF just to get us a little closer to reality. Note that
1932 * means we don't actually know if we've already handled the SOF
1933 * interrupt for this frame.
1935 frame_number
= dwc2_hcd_get_frame_number(hsotg
);
1937 if (sched_next_periodic_split
)
1938 missed
= dwc2_next_for_periodic_split(hsotg
, qh
, frame_number
);
1940 missed
= dwc2_next_periodic_start(hsotg
, qh
, frame_number
);
1942 dwc2_sch_vdbg(hsotg
,
1943 "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1944 qh
, sched_next_periodic_split
, frame_number
, old_frame
,
1945 qh
->next_active_frame
,
1946 dwc2_frame_num_dec(qh
->next_active_frame
, old_frame
),
1947 missed
, missed
? "MISS" : "");
1949 if (list_empty(&qh
->qtd_list
)) {
1950 dwc2_hcd_qh_unlink(hsotg
, qh
);
1955 * Remove from periodic_sched_queued and move to
1958 * Note: we purposely use the frame_number from the "hsotg" structure
1959 * since we know SOF interrupt will handle future frames.
1961 if (dwc2_frame_num_le(qh
->next_active_frame
, hsotg
->frame_number
))
1962 list_move_tail(&qh
->qh_list_entry
,
1963 &hsotg
->periodic_sched_ready
);
1965 list_move_tail(&qh
->qh_list_entry
,
1966 &hsotg
->periodic_sched_inactive
);
1970 * dwc2_hcd_qtd_init() - Initializes a QTD structure
1972 * @qtd: The QTD to initialize
1973 * @urb: The associated URB
1975 void dwc2_hcd_qtd_init(struct dwc2_qtd
*qtd
, struct dwc2_hcd_urb
*urb
)
1978 if (dwc2_hcd_get_pipe_type(&urb
->pipe_info
) ==
1979 USB_ENDPOINT_XFER_CONTROL
) {
1981 * The only time the QTD data toggle is used is on the data
1982 * phase of control transfers. This phase always starts with
1985 qtd
->data_toggle
= DWC2_HC_PID_DATA1
;
1986 qtd
->control_phase
= DWC2_CONTROL_SETUP
;
1990 qtd
->complete_split
= 0;
1991 qtd
->isoc_split_pos
= DWC2_HCSPLT_XACTPOS_ALL
;
1992 qtd
->isoc_split_offset
= 0;
1993 qtd
->in_process
= 0;
1995 /* Store the qtd ptr in the urb to reference the QTD */
2000 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
2001 * Caller must hold driver lock.
2003 * @hsotg: The DWC HCD structure
2004 * @qtd: The QTD to add
2005 * @qh: Queue head to add qtd to
2007 * Return: 0 if successful, negative error code otherwise
2009 * If the QH to which the QTD is added is not currently scheduled, it is placed
2010 * into the proper schedule based on its EP type.
2012 int dwc2_hcd_qtd_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
2017 if (unlikely(!qh
)) {
2018 dev_err(hsotg
->dev
, "%s: Invalid QH\n", __func__
);
2023 retval
= dwc2_hcd_qh_add(hsotg
, qh
);
2028 list_add_tail(&qtd
->qtd_list_entry
, &qh
->qtd_list
);