Linux 6.13-rc4
[linux.git] / fs / bcachefs / bcachefs.h
blobe94a83b8113e93a4889812376ef0fac2790c2b62
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_H
3 #define _BCACHEFS_H
5 /*
6 * SOME HIGH LEVEL CODE DOCUMENTATION:
8 * Bcache mostly works with cache sets, cache devices, and backing devices.
10 * Support for multiple cache devices hasn't quite been finished off yet, but
11 * it's about 95% plumbed through. A cache set and its cache devices is sort of
12 * like a md raid array and its component devices. Most of the code doesn't care
13 * about individual cache devices, the main abstraction is the cache set.
15 * Multiple cache devices is intended to give us the ability to mirror dirty
16 * cached data and metadata, without mirroring clean cached data.
18 * Backing devices are different, in that they have a lifetime independent of a
19 * cache set. When you register a newly formatted backing device it'll come up
20 * in passthrough mode, and then you can attach and detach a backing device from
21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22 * invalidates any cached data for that backing device.
24 * A cache set can have multiple (many) backing devices attached to it.
26 * There's also flash only volumes - this is the reason for the distinction
27 * between struct cached_dev and struct bcache_device. A flash only volume
28 * works much like a bcache device that has a backing device, except the
29 * "cached" data is always dirty. The end result is that we get thin
30 * provisioning with very little additional code.
32 * Flash only volumes work but they're not production ready because the moving
33 * garbage collector needs more work. More on that later.
35 * BUCKETS/ALLOCATION:
37 * Bcache is primarily designed for caching, which means that in normal
38 * operation all of our available space will be allocated. Thus, we need an
39 * efficient way of deleting things from the cache so we can write new things to
40 * it.
42 * To do this, we first divide the cache device up into buckets. A bucket is the
43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44 * works efficiently.
46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47 * it. The gens and priorities for all the buckets are stored contiguously and
48 * packed on disk (in a linked list of buckets - aside from the superblock, all
49 * of bcache's metadata is stored in buckets).
51 * The priority is used to implement an LRU. We reset a bucket's priority when
52 * we allocate it or on cache it, and every so often we decrement the priority
53 * of each bucket. It could be used to implement something more sophisticated,
54 * if anyone ever gets around to it.
56 * The generation is used for invalidating buckets. Each pointer also has an 8
57 * bit generation embedded in it; for a pointer to be considered valid, its gen
58 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
59 * we have to do is increment its gen (and write its new gen to disk; we batch
60 * this up).
62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63 * contain metadata (including btree nodes).
65 * THE BTREE:
67 * Bcache is in large part design around the btree.
69 * At a high level, the btree is just an index of key -> ptr tuples.
71 * Keys represent extents, and thus have a size field. Keys also have a variable
72 * number of pointers attached to them (potentially zero, which is handy for
73 * invalidating the cache).
75 * The key itself is an inode:offset pair. The inode number corresponds to a
76 * backing device or a flash only volume. The offset is the ending offset of the
77 * extent within the inode - not the starting offset; this makes lookups
78 * slightly more convenient.
80 * Pointers contain the cache device id, the offset on that device, and an 8 bit
81 * generation number. More on the gen later.
83 * Index lookups are not fully abstracted - cache lookups in particular are
84 * still somewhat mixed in with the btree code, but things are headed in that
85 * direction.
87 * Updates are fairly well abstracted, though. There are two different ways of
88 * updating the btree; insert and replace.
90 * BTREE_INSERT will just take a list of keys and insert them into the btree -
91 * overwriting (possibly only partially) any extents they overlap with. This is
92 * used to update the index after a write.
94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95 * overwriting a key that matches another given key. This is used for inserting
96 * data into the cache after a cache miss, and for background writeback, and for
97 * the moving garbage collector.
99 * There is no "delete" operation; deleting things from the index is
100 * accomplished by either by invalidating pointers (by incrementing a bucket's
101 * gen) or by inserting a key with 0 pointers - which will overwrite anything
102 * previously present at that location in the index.
104 * This means that there are always stale/invalid keys in the btree. They're
105 * filtered out by the code that iterates through a btree node, and removed when
106 * a btree node is rewritten.
108 * BTREE NODES:
110 * Our unit of allocation is a bucket, and we can't arbitrarily allocate and
111 * free smaller than a bucket - so, that's how big our btree nodes are.
113 * (If buckets are really big we'll only use part of the bucket for a btree node
114 * - no less than 1/4th - but a bucket still contains no more than a single
115 * btree node. I'd actually like to change this, but for now we rely on the
116 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119 * btree implementation.
121 * The way this is solved is that btree nodes are internally log structured; we
122 * can append new keys to an existing btree node without rewriting it. This
123 * means each set of keys we write is sorted, but the node is not.
125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126 * be expensive, and we have to distinguish between the keys we have written and
127 * the keys we haven't. So to do a lookup in a btree node, we have to search
128 * each sorted set. But we do merge written sets together lazily, so the cost of
129 * these extra searches is quite low (normally most of the keys in a btree node
130 * will be in one big set, and then there'll be one or two sets that are much
131 * smaller).
133 * This log structure makes bcache's btree more of a hybrid between a
134 * conventional btree and a compacting data structure, with some of the
135 * advantages of both.
137 * GARBAGE COLLECTION:
139 * We can't just invalidate any bucket - it might contain dirty data or
140 * metadata. If it once contained dirty data, other writes might overwrite it
141 * later, leaving no valid pointers into that bucket in the index.
143 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144 * It also counts how much valid data it each bucket currently contains, so that
145 * allocation can reuse buckets sooner when they've been mostly overwritten.
147 * It also does some things that are really internal to the btree
148 * implementation. If a btree node contains pointers that are stale by more than
149 * some threshold, it rewrites the btree node to avoid the bucket's generation
150 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
152 * THE JOURNAL:
154 * Bcache's journal is not necessary for consistency; we always strictly
155 * order metadata writes so that the btree and everything else is consistent on
156 * disk in the event of an unclean shutdown, and in fact bcache had writeback
157 * caching (with recovery from unclean shutdown) before journalling was
158 * implemented.
160 * Rather, the journal is purely a performance optimization; we can't complete a
161 * write until we've updated the index on disk, otherwise the cache would be
162 * inconsistent in the event of an unclean shutdown. This means that without the
163 * journal, on random write workloads we constantly have to update all the leaf
164 * nodes in the btree, and those writes will be mostly empty (appending at most
165 * a few keys each) - highly inefficient in terms of amount of metadata writes,
166 * and it puts more strain on the various btree resorting/compacting code.
168 * The journal is just a log of keys we've inserted; on startup we just reinsert
169 * all the keys in the open journal entries. That means that when we're updating
170 * a node in the btree, we can wait until a 4k block of keys fills up before
171 * writing them out.
173 * For simplicity, we only journal updates to leaf nodes; updates to parent
174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175 * the complexity to deal with journalling them (in particular, journal replay)
176 * - updates to non leaf nodes just happen synchronously (see btree_split()).
179 #undef pr_fmt
180 #ifdef __KERNEL__
181 #define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__
182 #else
183 #define pr_fmt(fmt) "%s() " fmt "\n", __func__
184 #endif
186 #include <linux/backing-dev-defs.h>
187 #include <linux/bug.h>
188 #include <linux/bio.h>
189 #include <linux/closure.h>
190 #include <linux/kobject.h>
191 #include <linux/list.h>
192 #include <linux/math64.h>
193 #include <linux/mutex.h>
194 #include <linux/percpu-refcount.h>
195 #include <linux/percpu-rwsem.h>
196 #include <linux/refcount.h>
197 #include <linux/rhashtable.h>
198 #include <linux/rwsem.h>
199 #include <linux/semaphore.h>
200 #include <linux/seqlock.h>
201 #include <linux/shrinker.h>
202 #include <linux/srcu.h>
203 #include <linux/types.h>
204 #include <linux/workqueue.h>
205 #include <linux/zstd.h>
207 #include "bcachefs_format.h"
208 #include "disk_accounting_types.h"
209 #include "errcode.h"
210 #include "fifo.h"
211 #include "nocow_locking_types.h"
212 #include "opts.h"
213 #include "recovery_passes_types.h"
214 #include "sb-errors_types.h"
215 #include "seqmutex.h"
216 #include "time_stats.h"
217 #include "util.h"
219 #ifdef CONFIG_BCACHEFS_DEBUG
220 #define BCH_WRITE_REF_DEBUG
221 #endif
223 #ifndef dynamic_fault
224 #define dynamic_fault(...) 0
225 #endif
227 #define race_fault(...) dynamic_fault("bcachefs:race")
229 #define count_event(_c, _name) this_cpu_inc((_c)->counters[BCH_COUNTER_##_name])
231 #define trace_and_count(_c, _name, ...) \
232 do { \
233 count_event(_c, _name); \
234 trace_##_name(__VA_ARGS__); \
235 } while (0)
237 #define bch2_fs_init_fault(name) \
238 dynamic_fault("bcachefs:bch_fs_init:" name)
239 #define bch2_meta_read_fault(name) \
240 dynamic_fault("bcachefs:meta:read:" name)
241 #define bch2_meta_write_fault(name) \
242 dynamic_fault("bcachefs:meta:write:" name)
244 #ifdef __KERNEL__
245 #define BCACHEFS_LOG_PREFIX
246 #endif
248 #ifdef BCACHEFS_LOG_PREFIX
250 #define bch2_log_msg(_c, fmt) "bcachefs (%s): " fmt, ((_c)->name)
251 #define bch2_fmt_dev(_ca, fmt) "bcachefs (%s): " fmt "\n", ((_ca)->name)
252 #define bch2_fmt_dev_offset(_ca, _offset, fmt) "bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset)
253 #define bch2_fmt_inum(_c, _inum, fmt) "bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum)
254 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \
255 "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset)
257 #else
259 #define bch2_log_msg(_c, fmt) fmt
260 #define bch2_fmt_dev(_ca, fmt) "%s: " fmt "\n", ((_ca)->name)
261 #define bch2_fmt_dev_offset(_ca, _offset, fmt) "%s sector %llu: " fmt "\n", ((_ca)->name), (_offset)
262 #define bch2_fmt_inum(_c, _inum, fmt) "inum %llu: " fmt "\n", (_inum)
263 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \
264 "inum %llu offset %llu: " fmt "\n", (_inum), (_offset)
266 #endif
268 #define bch2_fmt(_c, fmt) bch2_log_msg(_c, fmt "\n")
270 void bch2_print_str(struct bch_fs *, const char *);
272 __printf(2, 3)
273 void bch2_print_opts(struct bch_opts *, const char *, ...);
275 __printf(2, 3)
276 void __bch2_print(struct bch_fs *c, const char *fmt, ...);
278 #define maybe_dev_to_fs(_c) _Generic((_c), \
279 struct bch_dev *: ((struct bch_dev *) (_c))->fs, \
280 struct bch_fs *: (_c))
282 #define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__)
284 #define bch2_print_ratelimited(_c, ...) \
285 do { \
286 static DEFINE_RATELIMIT_STATE(_rs, \
287 DEFAULT_RATELIMIT_INTERVAL, \
288 DEFAULT_RATELIMIT_BURST); \
290 if (__ratelimit(&_rs)) \
291 bch2_print(_c, __VA_ARGS__); \
292 } while (0)
294 #define bch_info(c, fmt, ...) \
295 bch2_print(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__)
296 #define bch_notice(c, fmt, ...) \
297 bch2_print(c, KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__)
298 #define bch_warn(c, fmt, ...) \
299 bch2_print(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
300 #define bch_warn_ratelimited(c, fmt, ...) \
301 bch2_print_ratelimited(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
303 #define bch_err(c, fmt, ...) \
304 bch2_print(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
305 #define bch_err_dev(ca, fmt, ...) \
306 bch2_print(c, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
307 #define bch_err_dev_offset(ca, _offset, fmt, ...) \
308 bch2_print(c, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
309 #define bch_err_inum(c, _inum, fmt, ...) \
310 bch2_print(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
311 #define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \
312 bch2_print(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
314 #define bch_err_ratelimited(c, fmt, ...) \
315 bch2_print_ratelimited(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
316 #define bch_err_dev_ratelimited(ca, fmt, ...) \
317 bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
318 #define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \
319 bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
320 #define bch_err_inum_ratelimited(c, _inum, fmt, ...) \
321 bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
322 #define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \
323 bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
325 static inline bool should_print_err(int err)
327 return err && !bch2_err_matches(err, BCH_ERR_transaction_restart);
330 #define bch_err_fn(_c, _ret) \
331 do { \
332 if (should_print_err(_ret)) \
333 bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
334 } while (0)
336 #define bch_err_fn_ratelimited(_c, _ret) \
337 do { \
338 if (should_print_err(_ret)) \
339 bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
340 } while (0)
342 #define bch_err_msg(_c, _ret, _msg, ...) \
343 do { \
344 if (should_print_err(_ret)) \
345 bch_err(_c, "%s(): error " _msg " %s", __func__, \
346 ##__VA_ARGS__, bch2_err_str(_ret)); \
347 } while (0)
349 #define bch_verbose(c, fmt, ...) \
350 do { \
351 if ((c)->opts.verbose) \
352 bch_info(c, fmt, ##__VA_ARGS__); \
353 } while (0)
355 #define pr_verbose_init(opts, fmt, ...) \
356 do { \
357 if (opt_get(opts, verbose)) \
358 pr_info(fmt, ##__VA_ARGS__); \
359 } while (0)
361 /* Parameters that are useful for debugging, but should always be compiled in: */
362 #define BCH_DEBUG_PARAMS_ALWAYS() \
363 BCH_DEBUG_PARAM(key_merging_disabled, \
364 "Disables merging of extents") \
365 BCH_DEBUG_PARAM(btree_node_merging_disabled, \
366 "Disables merging of btree nodes") \
367 BCH_DEBUG_PARAM(btree_gc_always_rewrite, \
368 "Causes mark and sweep to compact and rewrite every " \
369 "btree node it traverses") \
370 BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \
371 "Disables rewriting of btree nodes during mark and sweep")\
372 BCH_DEBUG_PARAM(btree_shrinker_disabled, \
373 "Disables the shrinker callback for the btree node cache")\
374 BCH_DEBUG_PARAM(verify_btree_ondisk, \
375 "Reread btree nodes at various points to verify the " \
376 "mergesort in the read path against modifications " \
377 "done in memory") \
378 BCH_DEBUG_PARAM(verify_all_btree_replicas, \
379 "When reading btree nodes, read all replicas and " \
380 "compare them") \
381 BCH_DEBUG_PARAM(backpointers_no_use_write_buffer, \
382 "Don't use the write buffer for backpointers, enabling "\
383 "extra runtime checks")
385 /* Parameters that should only be compiled in debug mode: */
386 #define BCH_DEBUG_PARAMS_DEBUG() \
387 BCH_DEBUG_PARAM(expensive_debug_checks, \
388 "Enables various runtime debugging checks that " \
389 "significantly affect performance") \
390 BCH_DEBUG_PARAM(debug_check_iterators, \
391 "Enables extra verification for btree iterators") \
392 BCH_DEBUG_PARAM(debug_check_btree_accounting, \
393 "Verify btree accounting for keys within a node") \
394 BCH_DEBUG_PARAM(journal_seq_verify, \
395 "Store the journal sequence number in the version " \
396 "number of every btree key, and verify that btree " \
397 "update ordering is preserved during recovery") \
398 BCH_DEBUG_PARAM(inject_invalid_keys, \
399 "Store the journal sequence number in the version " \
400 "number of every btree key, and verify that btree " \
401 "update ordering is preserved during recovery") \
402 BCH_DEBUG_PARAM(test_alloc_startup, \
403 "Force allocator startup to use the slowpath where it" \
404 "can't find enough free buckets without invalidating" \
405 "cached data") \
406 BCH_DEBUG_PARAM(force_reconstruct_read, \
407 "Force reads to use the reconstruct path, when reading" \
408 "from erasure coded extents") \
409 BCH_DEBUG_PARAM(test_restart_gc, \
410 "Test restarting mark and sweep gc when bucket gens change")
412 #define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG()
414 #ifdef CONFIG_BCACHEFS_DEBUG
415 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL()
416 #else
417 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS()
418 #endif
420 #define BCH_DEBUG_PARAM(name, description) extern bool bch2_##name;
421 BCH_DEBUG_PARAMS()
422 #undef BCH_DEBUG_PARAM
424 #ifndef CONFIG_BCACHEFS_DEBUG
425 #define BCH_DEBUG_PARAM(name, description) static const __maybe_unused bool bch2_##name;
426 BCH_DEBUG_PARAMS_DEBUG()
427 #undef BCH_DEBUG_PARAM
428 #endif
430 #define BCH_TIME_STATS() \
431 x(btree_node_mem_alloc) \
432 x(btree_node_split) \
433 x(btree_node_compact) \
434 x(btree_node_merge) \
435 x(btree_node_sort) \
436 x(btree_node_read) \
437 x(btree_node_read_done) \
438 x(btree_interior_update_foreground) \
439 x(btree_interior_update_total) \
440 x(btree_gc) \
441 x(data_write) \
442 x(data_read) \
443 x(data_promote) \
444 x(journal_flush_write) \
445 x(journal_noflush_write) \
446 x(journal_flush_seq) \
447 x(blocked_journal_low_on_space) \
448 x(blocked_journal_low_on_pin) \
449 x(blocked_journal_max_in_flight) \
450 x(blocked_key_cache_flush) \
451 x(blocked_allocate) \
452 x(blocked_allocate_open_bucket) \
453 x(blocked_write_buffer_full) \
454 x(nocow_lock_contended)
456 enum bch_time_stats {
457 #define x(name) BCH_TIME_##name,
458 BCH_TIME_STATS()
459 #undef x
460 BCH_TIME_STAT_NR
463 #include "alloc_types.h"
464 #include "btree_gc_types.h"
465 #include "btree_types.h"
466 #include "btree_node_scan_types.h"
467 #include "btree_write_buffer_types.h"
468 #include "buckets_types.h"
469 #include "buckets_waiting_for_journal_types.h"
470 #include "clock_types.h"
471 #include "disk_groups_types.h"
472 #include "ec_types.h"
473 #include "journal_types.h"
474 #include "keylist_types.h"
475 #include "quota_types.h"
476 #include "rebalance_types.h"
477 #include "replicas_types.h"
478 #include "sb-members_types.h"
479 #include "subvolume_types.h"
480 #include "super_types.h"
481 #include "thread_with_file_types.h"
483 /* Number of nodes btree coalesce will try to coalesce at once */
484 #define GC_MERGE_NODES 4U
486 /* Maximum number of nodes we might need to allocate atomically: */
487 #define BTREE_RESERVE_MAX (BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1))
489 /* Size of the freelist we allocate btree nodes from: */
490 #define BTREE_NODE_RESERVE (BTREE_RESERVE_MAX * 4)
492 #define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX)
494 struct btree;
496 struct io_count {
497 u64 sectors[2][BCH_DATA_NR];
500 struct discard_in_flight {
501 bool in_progress:1;
502 u64 bucket:63;
505 struct bch_dev {
506 struct kobject kobj;
507 #ifdef CONFIG_BCACHEFS_DEBUG
508 atomic_long_t ref;
509 bool dying;
510 unsigned long last_put;
511 #else
512 struct percpu_ref ref;
513 #endif
514 struct completion ref_completion;
515 struct percpu_ref io_ref;
516 struct completion io_ref_completion;
518 struct bch_fs *fs;
520 u8 dev_idx;
522 * Cached version of this device's member info from superblock
523 * Committed by bch2_write_super() -> bch_fs_mi_update()
525 struct bch_member_cpu mi;
526 atomic64_t errors[BCH_MEMBER_ERROR_NR];
528 __uuid_t uuid;
529 char name[BDEVNAME_SIZE];
531 struct bch_sb_handle disk_sb;
532 struct bch_sb *sb_read_scratch;
533 int sb_write_error;
534 dev_t dev;
535 atomic_t flush_seq;
537 struct bch_devs_mask self;
540 * Buckets:
541 * Per-bucket arrays are protected by c->mark_lock, bucket_lock and
542 * gc_gens_lock, for device resize - holding any is sufficient for
543 * access: Or rcu_read_lock(), but only for dev_ptr_stale():
545 GENRADIX(struct bucket) buckets_gc;
546 struct bucket_gens __rcu *bucket_gens;
547 u8 *oldest_gen;
548 unsigned long *buckets_nouse;
549 struct rw_semaphore bucket_lock;
551 struct bch_dev_usage __percpu *usage;
553 /* Allocator: */
554 u64 new_fs_bucket_idx;
555 u64 alloc_cursor[3];
557 unsigned nr_open_buckets;
558 unsigned nr_partial_buckets;
559 unsigned nr_btree_reserve;
561 size_t inc_gen_needs_gc;
562 size_t inc_gen_really_needs_gc;
563 size_t buckets_waiting_on_journal;
565 struct work_struct invalidate_work;
566 struct work_struct discard_work;
567 struct mutex discard_buckets_in_flight_lock;
568 DARRAY(struct discard_in_flight) discard_buckets_in_flight;
569 struct work_struct discard_fast_work;
571 atomic64_t rebalance_work;
573 struct journal_device journal;
574 u64 prev_journal_sector;
576 struct work_struct io_error_work;
578 /* The rest of this all shows up in sysfs */
579 atomic64_t cur_latency[2];
580 struct bch2_time_stats_quantiles io_latency[2];
582 #define CONGESTED_MAX 1024
583 atomic_t congested;
584 u64 congested_last;
586 struct io_count __percpu *io_done;
590 * initial_gc_unfixed
591 * error
592 * topology error
595 #define BCH_FS_FLAGS() \
596 x(new_fs) \
597 x(started) \
598 x(clean_recovery) \
599 x(btree_running) \
600 x(accounting_replay_done) \
601 x(may_go_rw) \
602 x(rw) \
603 x(was_rw) \
604 x(stopping) \
605 x(emergency_ro) \
606 x(going_ro) \
607 x(write_disable_complete) \
608 x(clean_shutdown) \
609 x(fsck_running) \
610 x(initial_gc_unfixed) \
611 x(need_delete_dead_snapshots) \
612 x(error) \
613 x(topology_error) \
614 x(errors_fixed) \
615 x(errors_not_fixed) \
616 x(no_invalid_checks)
618 enum bch_fs_flags {
619 #define x(n) BCH_FS_##n,
620 BCH_FS_FLAGS()
621 #undef x
624 struct btree_debug {
625 unsigned id;
628 #define BCH_TRANSACTIONS_NR 128
630 struct btree_transaction_stats {
631 struct bch2_time_stats duration;
632 struct bch2_time_stats lock_hold_times;
633 struct mutex lock;
634 unsigned nr_max_paths;
635 unsigned journal_entries_size;
636 unsigned max_mem;
637 char *max_paths_text;
640 struct bch_fs_pcpu {
641 u64 sectors_available;
644 struct journal_seq_blacklist_table {
645 size_t nr;
646 struct journal_seq_blacklist_table_entry {
647 u64 start;
648 u64 end;
649 bool dirty;
650 } entries[];
653 struct journal_keys {
654 /* must match layout in darray_types.h */
655 size_t nr, size;
656 struct journal_key {
657 u64 journal_seq;
658 u32 journal_offset;
659 enum btree_id btree_id:8;
660 unsigned level:8;
661 bool allocated;
662 bool overwritten;
663 struct bkey_i *k;
664 } *data;
666 * Gap buffer: instead of all the empty space in the array being at the
667 * end of the buffer - from @nr to @size - the empty space is at @gap.
668 * This means that sequential insertions are O(n) instead of O(n^2).
670 size_t gap;
671 atomic_t ref;
672 bool initial_ref_held;
675 struct btree_trans_buf {
676 struct btree_trans *trans;
679 #define BCACHEFS_ROOT_SUBVOL_INUM \
680 ((subvol_inum) { BCACHEFS_ROOT_SUBVOL, BCACHEFS_ROOT_INO })
682 #define BCH_WRITE_REFS() \
683 x(trans) \
684 x(write) \
685 x(promote) \
686 x(node_rewrite) \
687 x(stripe_create) \
688 x(stripe_delete) \
689 x(reflink) \
690 x(fallocate) \
691 x(fsync) \
692 x(dio_write) \
693 x(discard) \
694 x(discard_fast) \
695 x(invalidate) \
696 x(delete_dead_snapshots) \
697 x(gc_gens) \
698 x(snapshot_delete_pagecache) \
699 x(sysfs) \
700 x(btree_write_buffer)
702 enum bch_write_ref {
703 #define x(n) BCH_WRITE_REF_##n,
704 BCH_WRITE_REFS()
705 #undef x
706 BCH_WRITE_REF_NR,
709 struct bch_fs {
710 struct closure cl;
712 struct list_head list;
713 struct kobject kobj;
714 struct kobject counters_kobj;
715 struct kobject internal;
716 struct kobject opts_dir;
717 struct kobject time_stats;
718 unsigned long flags;
720 int minor;
721 struct device *chardev;
722 struct super_block *vfs_sb;
723 dev_t dev;
724 char name[40];
725 struct stdio_redirect *stdio;
726 struct task_struct *stdio_filter;
728 /* ro/rw, add/remove/resize devices: */
729 struct rw_semaphore state_lock;
731 /* Counts outstanding writes, for clean transition to read-only */
732 #ifdef BCH_WRITE_REF_DEBUG
733 atomic_long_t writes[BCH_WRITE_REF_NR];
734 #else
735 struct percpu_ref writes;
736 #endif
738 * Analagous to c->writes, for asynchronous ops that don't necessarily
739 * need fs to be read-write
741 refcount_t ro_ref;
742 wait_queue_head_t ro_ref_wait;
744 struct work_struct read_only_work;
746 struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX];
748 struct bch_accounting_mem accounting;
750 struct bch_replicas_cpu replicas;
751 struct bch_replicas_cpu replicas_gc;
752 struct mutex replicas_gc_lock;
754 struct journal_entry_res btree_root_journal_res;
755 struct journal_entry_res clock_journal_res;
757 struct bch_disk_groups_cpu __rcu *disk_groups;
759 struct bch_opts opts;
761 /* Updated by bch2_sb_update():*/
762 struct {
763 __uuid_t uuid;
764 __uuid_t user_uuid;
766 u16 version;
767 u16 version_min;
768 u16 version_upgrade_complete;
770 u8 nr_devices;
771 u8 clean;
773 u8 encryption_type;
775 u64 time_base_lo;
776 u32 time_base_hi;
777 unsigned time_units_per_sec;
778 unsigned nsec_per_time_unit;
779 u64 features;
780 u64 compat;
781 unsigned long errors_silent[BITS_TO_LONGS(BCH_FSCK_ERR_MAX)];
782 u64 btrees_lost_data;
783 } sb;
786 struct bch_sb_handle disk_sb;
788 unsigned short block_bits; /* ilog2(block_size) */
790 u16 btree_foreground_merge_threshold;
792 struct closure sb_write;
793 struct mutex sb_lock;
795 /* snapshot.c: */
796 struct snapshot_table __rcu *snapshots;
797 struct mutex snapshot_table_lock;
798 struct rw_semaphore snapshot_create_lock;
800 struct work_struct snapshot_delete_work;
801 struct work_struct snapshot_wait_for_pagecache_and_delete_work;
802 snapshot_id_list snapshots_unlinked;
803 struct mutex snapshots_unlinked_lock;
805 /* BTREE CACHE */
806 struct bio_set btree_bio;
807 struct workqueue_struct *btree_read_complete_wq;
808 struct workqueue_struct *btree_write_submit_wq;
810 struct btree_root btree_roots_known[BTREE_ID_NR];
811 DARRAY(struct btree_root) btree_roots_extra;
812 struct mutex btree_root_lock;
814 struct btree_cache btree_cache;
817 * Cache of allocated btree nodes - if we allocate a btree node and
818 * don't use it, if we free it that space can't be reused until going
819 * _all_ the way through the allocator (which exposes us to a livelock
820 * when allocating btree reserves fail halfway through) - instead, we
821 * can stick them here:
823 struct btree_alloc btree_reserve_cache[BTREE_NODE_RESERVE * 2];
824 unsigned btree_reserve_cache_nr;
825 struct mutex btree_reserve_cache_lock;
827 mempool_t btree_interior_update_pool;
828 struct list_head btree_interior_update_list;
829 struct list_head btree_interior_updates_unwritten;
830 struct mutex btree_interior_update_lock;
831 struct closure_waitlist btree_interior_update_wait;
833 struct workqueue_struct *btree_interior_update_worker;
834 struct work_struct btree_interior_update_work;
836 struct workqueue_struct *btree_node_rewrite_worker;
838 struct list_head pending_node_rewrites;
839 struct mutex pending_node_rewrites_lock;
841 /* btree_io.c: */
842 spinlock_t btree_write_error_lock;
843 struct btree_write_stats {
844 atomic64_t nr;
845 atomic64_t bytes;
846 } btree_write_stats[BTREE_WRITE_TYPE_NR];
848 /* btree_iter.c: */
849 struct seqmutex btree_trans_lock;
850 struct list_head btree_trans_list;
851 mempool_t btree_trans_pool;
852 mempool_t btree_trans_mem_pool;
853 struct btree_trans_buf __percpu *btree_trans_bufs;
855 struct srcu_struct btree_trans_barrier;
856 bool btree_trans_barrier_initialized;
858 struct btree_key_cache btree_key_cache;
859 unsigned btree_key_cache_btrees;
861 struct btree_write_buffer btree_write_buffer;
863 struct workqueue_struct *btree_update_wq;
864 struct workqueue_struct *btree_io_complete_wq;
865 /* copygc needs its own workqueue for index updates.. */
866 struct workqueue_struct *copygc_wq;
868 * Use a dedicated wq for write ref holder tasks. Required to avoid
869 * dependency problems with other wq tasks that can block on ref
870 * draining, such as read-only transition.
872 struct workqueue_struct *write_ref_wq;
874 /* ALLOCATION */
875 struct bch_devs_mask rw_devs[BCH_DATA_NR];
876 unsigned long rw_devs_change_count;
878 u64 capacity; /* sectors */
879 u64 reserved; /* sectors */
882 * When capacity _decreases_ (due to a disk being removed), we
883 * increment capacity_gen - this invalidates outstanding reservations
884 * and forces them to be revalidated
886 u32 capacity_gen;
887 unsigned bucket_size_max;
889 atomic64_t sectors_available;
890 struct mutex sectors_available_lock;
892 struct bch_fs_pcpu __percpu *pcpu;
894 struct percpu_rw_semaphore mark_lock;
896 seqcount_t usage_lock;
897 struct bch_fs_usage_base __percpu *usage;
898 u64 __percpu *online_reserved;
900 unsigned long allocator_last_stuck;
902 struct io_clock io_clock[2];
904 /* JOURNAL SEQ BLACKLIST */
905 struct journal_seq_blacklist_table *
906 journal_seq_blacklist_table;
908 /* ALLOCATOR */
909 spinlock_t freelist_lock;
910 struct closure_waitlist freelist_wait;
912 open_bucket_idx_t open_buckets_freelist;
913 open_bucket_idx_t open_buckets_nr_free;
914 struct closure_waitlist open_buckets_wait;
915 struct open_bucket open_buckets[OPEN_BUCKETS_COUNT];
916 open_bucket_idx_t open_buckets_hash[OPEN_BUCKETS_COUNT];
918 open_bucket_idx_t open_buckets_partial[OPEN_BUCKETS_COUNT];
919 open_bucket_idx_t open_buckets_partial_nr;
921 struct write_point btree_write_point;
922 struct write_point rebalance_write_point;
924 struct write_point write_points[WRITE_POINT_MAX];
925 struct hlist_head write_points_hash[WRITE_POINT_HASH_NR];
926 struct mutex write_points_hash_lock;
927 unsigned write_points_nr;
929 struct buckets_waiting_for_journal buckets_waiting_for_journal;
931 /* GARBAGE COLLECTION */
932 struct work_struct gc_gens_work;
933 unsigned long gc_count;
935 enum btree_id gc_gens_btree;
936 struct bpos gc_gens_pos;
939 * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos]
940 * has been marked by GC.
942 * gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.)
944 * Protected by gc_pos_lock. Only written to by GC thread, so GC thread
945 * can read without a lock.
947 seqcount_t gc_pos_lock;
948 struct gc_pos gc_pos;
951 * The allocation code needs gc_mark in struct bucket to be correct, but
952 * it's not while a gc is in progress.
954 struct rw_semaphore gc_lock;
955 struct mutex gc_gens_lock;
957 /* IO PATH */
958 struct semaphore io_in_flight;
959 struct bio_set bio_read;
960 struct bio_set bio_read_split;
961 struct bio_set bio_write;
962 struct bio_set replica_set;
963 struct mutex bio_bounce_pages_lock;
964 mempool_t bio_bounce_pages;
965 struct bucket_nocow_lock_table
966 nocow_locks;
967 struct rhashtable promote_table;
969 mempool_t compression_bounce[2];
970 mempool_t compress_workspace[BCH_COMPRESSION_TYPE_NR];
971 mempool_t decompress_workspace;
972 size_t zstd_workspace_size;
974 struct crypto_shash *sha256;
975 struct crypto_sync_skcipher *chacha20;
976 struct crypto_shash *poly1305;
978 atomic64_t key_version;
980 mempool_t large_bkey_pool;
982 /* MOVE.C */
983 struct list_head moving_context_list;
984 struct mutex moving_context_lock;
986 /* REBALANCE */
987 struct bch_fs_rebalance rebalance;
989 /* COPYGC */
990 struct task_struct *copygc_thread;
991 struct write_point copygc_write_point;
992 s64 copygc_wait_at;
993 s64 copygc_wait;
994 bool copygc_running;
995 wait_queue_head_t copygc_running_wq;
997 /* STRIPES: */
998 GENRADIX(struct stripe) stripes;
999 GENRADIX(struct gc_stripe) gc_stripes;
1001 struct hlist_head ec_stripes_new[32];
1002 spinlock_t ec_stripes_new_lock;
1004 ec_stripes_heap ec_stripes_heap;
1005 struct mutex ec_stripes_heap_lock;
1007 /* ERASURE CODING */
1008 struct list_head ec_stripe_head_list;
1009 struct mutex ec_stripe_head_lock;
1011 struct list_head ec_stripe_new_list;
1012 struct mutex ec_stripe_new_lock;
1013 wait_queue_head_t ec_stripe_new_wait;
1015 struct work_struct ec_stripe_create_work;
1016 u64 ec_stripe_hint;
1018 struct work_struct ec_stripe_delete_work;
1020 struct bio_set ec_bioset;
1022 /* REFLINK */
1023 reflink_gc_table reflink_gc_table;
1024 size_t reflink_gc_nr;
1026 /* fs.c */
1027 struct list_head vfs_inodes_list;
1028 struct mutex vfs_inodes_lock;
1029 struct rhashtable vfs_inodes_table;
1031 /* VFS IO PATH - fs-io.c */
1032 struct bio_set writepage_bioset;
1033 struct bio_set dio_write_bioset;
1034 struct bio_set dio_read_bioset;
1035 struct bio_set nocow_flush_bioset;
1037 /* QUOTAS */
1038 struct bch_memquota_type quotas[QTYP_NR];
1040 /* RECOVERY */
1041 u64 journal_replay_seq_start;
1042 u64 journal_replay_seq_end;
1044 * Two different uses:
1045 * "Has this fsck pass?" - i.e. should this type of error be an
1046 * emergency read-only
1047 * And, in certain situations fsck will rewind to an earlier pass: used
1048 * for signaling to the toplevel code which pass we want to run now.
1050 enum bch_recovery_pass curr_recovery_pass;
1051 /* bitmask of recovery passes that we actually ran */
1052 u64 recovery_passes_complete;
1053 /* never rewinds version of curr_recovery_pass */
1054 enum bch_recovery_pass recovery_pass_done;
1055 struct semaphore online_fsck_mutex;
1057 /* DEBUG JUNK */
1058 struct dentry *fs_debug_dir;
1059 struct dentry *btree_debug_dir;
1060 struct btree_debug btree_debug[BTREE_ID_NR];
1061 struct btree *verify_data;
1062 struct btree_node *verify_ondisk;
1063 struct mutex verify_lock;
1065 u64 *unused_inode_hints;
1066 unsigned inode_shard_bits;
1069 * A btree node on disk could have too many bsets for an iterator to fit
1070 * on the stack - have to dynamically allocate them
1072 mempool_t fill_iter;
1074 mempool_t btree_bounce_pool;
1076 struct journal journal;
1077 GENRADIX(struct journal_replay *) journal_entries;
1078 u64 journal_entries_base_seq;
1079 struct journal_keys journal_keys;
1080 struct list_head journal_iters;
1082 struct find_btree_nodes found_btree_nodes;
1084 u64 last_bucket_seq_cleanup;
1086 u64 counters_on_mount[BCH_COUNTER_NR];
1087 u64 __percpu *counters;
1089 unsigned copy_gc_enabled:1;
1091 struct bch2_time_stats times[BCH_TIME_STAT_NR];
1093 struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR];
1095 /* ERRORS */
1096 struct list_head fsck_error_msgs;
1097 struct mutex fsck_error_msgs_lock;
1098 bool fsck_alloc_msgs_err;
1100 bch_sb_errors_cpu fsck_error_counts;
1101 struct mutex fsck_error_counts_lock;
1104 extern struct wait_queue_head bch2_read_only_wait;
1106 static inline void bch2_write_ref_get(struct bch_fs *c, enum bch_write_ref ref)
1108 #ifdef BCH_WRITE_REF_DEBUG
1109 atomic_long_inc(&c->writes[ref]);
1110 #else
1111 percpu_ref_get(&c->writes);
1112 #endif
1115 static inline bool __bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref)
1117 #ifdef BCH_WRITE_REF_DEBUG
1118 return !test_bit(BCH_FS_going_ro, &c->flags) &&
1119 atomic_long_inc_not_zero(&c->writes[ref]);
1120 #else
1121 return percpu_ref_tryget(&c->writes);
1122 #endif
1125 static inline bool bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref)
1127 #ifdef BCH_WRITE_REF_DEBUG
1128 return !test_bit(BCH_FS_going_ro, &c->flags) &&
1129 atomic_long_inc_not_zero(&c->writes[ref]);
1130 #else
1131 return percpu_ref_tryget_live(&c->writes);
1132 #endif
1135 static inline void bch2_write_ref_put(struct bch_fs *c, enum bch_write_ref ref)
1137 #ifdef BCH_WRITE_REF_DEBUG
1138 long v = atomic_long_dec_return(&c->writes[ref]);
1140 BUG_ON(v < 0);
1141 if (v)
1142 return;
1143 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
1144 if (atomic_long_read(&c->writes[i]))
1145 return;
1147 set_bit(BCH_FS_write_disable_complete, &c->flags);
1148 wake_up(&bch2_read_only_wait);
1149 #else
1150 percpu_ref_put(&c->writes);
1151 #endif
1154 static inline bool bch2_ro_ref_tryget(struct bch_fs *c)
1156 if (test_bit(BCH_FS_stopping, &c->flags))
1157 return false;
1159 return refcount_inc_not_zero(&c->ro_ref);
1162 static inline void bch2_ro_ref_put(struct bch_fs *c)
1164 if (refcount_dec_and_test(&c->ro_ref))
1165 wake_up(&c->ro_ref_wait);
1168 static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages)
1170 #ifndef NO_BCACHEFS_FS
1171 if (c->vfs_sb)
1172 c->vfs_sb->s_bdi->ra_pages = ra_pages;
1173 #endif
1176 static inline unsigned bucket_bytes(const struct bch_dev *ca)
1178 return ca->mi.bucket_size << 9;
1181 static inline unsigned block_bytes(const struct bch_fs *c)
1183 return c->opts.block_size;
1186 static inline unsigned block_sectors(const struct bch_fs *c)
1188 return c->opts.block_size >> 9;
1191 static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree)
1193 return c->btree_key_cache_btrees & (1U << btree);
1196 static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time)
1198 struct timespec64 t;
1199 s64 sec;
1200 s32 rem;
1202 time += c->sb.time_base_lo;
1204 sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem);
1206 set_normalized_timespec64(&t, sec, rem * (s64)c->sb.nsec_per_time_unit);
1208 return t;
1211 static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts)
1213 return (ts.tv_sec * c->sb.time_units_per_sec +
1214 (int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo;
1217 static inline s64 bch2_current_time(const struct bch_fs *c)
1219 struct timespec64 now;
1221 ktime_get_coarse_real_ts64(&now);
1222 return timespec_to_bch2_time(c, now);
1225 static inline u64 bch2_current_io_time(const struct bch_fs *c, int rw)
1227 return max(1ULL, (u64) atomic64_read(&c->io_clock[rw].now) & LRU_TIME_MAX);
1230 static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c)
1232 struct stdio_redirect *stdio = c->stdio;
1234 if (c->stdio_filter && c->stdio_filter != current)
1235 stdio = NULL;
1236 return stdio;
1239 static inline unsigned metadata_replicas_required(struct bch_fs *c)
1241 return min(c->opts.metadata_replicas,
1242 c->opts.metadata_replicas_required);
1245 static inline unsigned data_replicas_required(struct bch_fs *c)
1247 return min(c->opts.data_replicas,
1248 c->opts.data_replicas_required);
1251 #define BKEY_PADDED_ONSTACK(key, pad) \
1252 struct { struct bkey_i key; __u64 key ## _pad[pad]; }
1254 #endif /* _BCACHEFS_H */