1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_FORMAT_H
3 #define _BCACHEFS_FORMAT_H
6 * bcachefs on disk data structures
10 * There are three main types of on disk data structures in bcachefs (this is
11 * reduced from 5 in bcache)
17 * The btree is the primary structure; most metadata exists as keys in the
18 * various btrees. There are only a small number of btrees, they're not
19 * sharded - we have one btree for extents, another for inodes, et cetera.
23 * The superblock contains the location of the journal, the list of devices in
24 * the filesystem, and in general any metadata we need in order to decide
25 * whether we can start a filesystem or prior to reading the journal/btree
28 * The superblock is extensible, and most of the contents of the superblock are
29 * in variable length, type tagged fields; see struct bch_sb_field.
31 * Backup superblocks do not reside in a fixed location; also, superblocks do
32 * not have a fixed size. To locate backup superblocks we have struct
33 * bch_sb_layout; we store a copy of this inside every superblock, and also
34 * before the first superblock.
38 * The journal primarily records btree updates in the order they occurred;
39 * journal replay consists of just iterating over all the keys in the open
40 * journal entries and re-inserting them into the btrees.
42 * The journal also contains entry types for the btree roots, and blacklisted
43 * journal sequence numbers (see journal_seq_blacklist.c).
47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48 * 128k-256k) and log structured. We use struct btree_node for writing the first
49 * entry in a given node (offset 0), and struct btree_node_entry for all
52 * After the header, btree node entries contain a list of keys in sorted order.
53 * Values are stored inline with the keys; since values are variable length (and
54 * keys effectively are variable length too, due to packing) we can't do random
55 * access without building up additional in memory tables in the btree node read
58 * BTREE KEYS (struct bkey):
60 * The various btrees share a common format for the key - so as to avoid
61 * switching in fastpath lookup/comparison code - but define their own
62 * structures for the key values.
64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65 * size is just under 2k. The common part also contains a type tag for the
66 * value, and a format field indicating whether the key is packed or not (and
67 * also meant to allow adding new key fields in the future, if desired).
69 * bkeys, when stored within a btree node, may also be packed. In that case, the
70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71 * be generous with field sizes in the common part of the key format (64 bit
72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
75 #include <asm/types.h>
76 #include <asm/byteorder.h>
77 #include <linux/kernel.h>
78 #include <linux/uuid.h>
79 #include <uapi/linux/magic.h>
83 typedef uuid_t __uuid_t
;
86 #define BITMASK(name, type, field, offset, end) \
87 static const __maybe_unused unsigned name##_OFFSET = offset; \
88 static const __maybe_unused unsigned name##_BITS = (end - offset); \
90 static inline __u64 name(const type *k) \
92 return (k->field >> offset) & ~(~0ULL << (end - offset)); \
95 static inline void SET_##name(type *k, __u64 v) \
97 k->field &= ~(~(~0ULL << (end - offset)) << offset); \
98 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \
101 #define LE_BITMASK(_bits, name, type, field, offset, end) \
102 static const __maybe_unused unsigned name##_OFFSET = offset; \
103 static const __maybe_unused unsigned name##_BITS = (end - offset); \
104 static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\
106 static inline __u64 name(const type *k) \
108 return (__le##_bits##_to_cpu(k->field) >> offset) & \
109 ~(~0ULL << (end - offset)); \
112 static inline void SET_##name(type *k, __u64 v) \
114 __u##_bits new = __le##_bits##_to_cpu(k->field); \
116 new &= ~(~(~0ULL << (end - offset)) << offset); \
117 new |= (v & ~(~0ULL << (end - offset))) << offset; \
118 k->field = __cpu_to_le##_bits(new); \
121 #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e)
122 #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e)
123 #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e)
128 /* One unused slot for now: */
129 __u8 bits_per_field
[6];
130 __le64 field_offset
[6];
133 /* Btree keys - all units are in sectors */
137 * Word order matches machine byte order - btree code treats a bpos as a
138 * single large integer, for search/comparison purposes
140 * Note that wherever a bpos is embedded in another on disk data
141 * structure, it has to be byte swabbed when reading in metadata that
142 * wasn't written in native endian order:
144 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
148 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
150 __u64 offset
; /* Points to end of extent - sectors */
153 #error edit for your odd byteorder.
156 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
161 #define KEY_INODE_MAX ((__u64)~0ULL)
162 #define KEY_OFFSET_MAX ((__u64)~0ULL)
163 #define KEY_SNAPSHOT_MAX ((__u32)~0U)
164 #define KEY_SIZE_MAX ((__u32)~0U)
166 static inline struct bpos
SPOS(__u64 inode
, __u64 offset
, __u32 snapshot
)
168 return (struct bpos
) {
171 .snapshot
= snapshot
,
175 #define POS_MIN SPOS(0, 0, 0)
176 #define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
177 #define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
178 #define POS(_inode, _offset) SPOS(_inode, _offset, 0)
180 /* Empty placeholder struct, for container_of() */
186 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
189 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
194 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
200 /* Size of combined key and value, in u64s */
203 /* Format of key (0 for format local to btree node) */
204 #if defined(__LITTLE_ENDIAN_BITFIELD)
207 #elif defined (__BIG_ENDIAN_BITFIELD)
208 __u8 needs_whiteout
:1,
211 #error edit for your odd byteorder.
214 /* Type of the value */
217 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
220 struct bversion bversion
;
221 __u32 size
; /* extent size, in sectors */
223 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
225 __u32 size
; /* extent size, in sectors */
226 struct bversion bversion
;
231 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
233 * The big-endian version of bkey can't be compiled by rustc with the "aligned"
234 * attr since it doesn't allow types to have both "packed" and "aligned" attrs.
235 * So for Rust compatibility, don't include this. It can be included in the LE
236 * version because the "packed" attr is redundant in that case.
238 * History: (quoting Kent)
240 * Specifically, when i was designing bkey, I wanted the header to be no
241 * bigger than necessary so that bkey_packed could use the rest. That means that
242 * decently offten extent keys will fit into only 8 bytes, instead of spilling over
245 * But packed_bkey treats the part after the header - the packed section -
246 * as a single multi word, variable length integer. And bkey, the unpacked
247 * version, is just a special case version of a bkey_packed; all the packed
248 * bkey code will work on keys in any packed format, the in-memory
249 * representation of an unpacked key also is just one type of packed key...
251 * So that constrains the key part of a bkig endian bkey to start right
254 * If we ever do a bkey_v2 and need to expand the hedaer by another byte for
255 * some reason - that will clean up this wart.
264 /* Size of combined key and value, in u64s */
267 /* Format of key (0 for format local to btree node) */
270 * XXX: next incompat on disk format change, switch format and
271 * needs_whiteout - bkey_packed() will be cheaper if format is the high
272 * bits of the bitfield
274 #if defined(__LITTLE_ENDIAN_BITFIELD)
277 #elif defined (__BIG_ENDIAN_BITFIELD)
278 __u8 needs_whiteout
:1,
282 /* Type of the value */
287 * We copy bkeys with struct assignment in various places, and while
288 * that shouldn't be done with packed bkeys we can't disallow it in C,
289 * and it's legal to cast a bkey to a bkey_packed - so padding it out
290 * to the same size as struct bkey should hopefully be safest.
292 __u8 pad
[sizeof(struct bkey
) - 3];
293 } __packed
__aligned(8);
300 #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64))
301 #define BKEY_U64s_MAX U8_MAX
302 #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s)
304 #define KEY_PACKED_BITS_START 24
306 #define KEY_FORMAT_LOCAL_BTREE 0
307 #define KEY_FORMAT_CURRENT 1
309 enum bch_bkey_fields
{
314 BKEY_FIELD_VERSION_HI
,
315 BKEY_FIELD_VERSION_LO
,
319 #define bkey_format_field(name, field) \
320 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
322 #define BKEY_FORMAT_CURRENT \
323 ((struct bkey_format) { \
324 .key_u64s = BKEY_U64s, \
325 .nr_fields = BKEY_NR_FIELDS, \
326 .bits_per_field = { \
327 bkey_format_field(INODE, p.inode), \
328 bkey_format_field(OFFSET, p.offset), \
329 bkey_format_field(SNAPSHOT, p.snapshot), \
330 bkey_format_field(SIZE, size), \
331 bkey_format_field(VERSION_HI, bversion.hi), \
332 bkey_format_field(VERSION_LO, bversion.lo), \
336 /* bkey with inline value */
344 #define POS_KEY(_pos) \
347 .format = KEY_FORMAT_CURRENT, \
351 #define KEY(_inode, _offset, _size) \
354 .format = KEY_FORMAT_CURRENT, \
355 .p = POS(_inode, _offset), \
359 static inline void bkey_init(struct bkey
*k
)
364 #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64))
366 #define __BKEY_PADDED(key, pad) \
367 struct bkey_i key; __u64 key ## _pad[pad]
370 * - DELETED keys are used internally to mark keys that should be ignored but
371 * override keys in composition order. Their version number is ignored.
373 * - DISCARDED keys indicate that the data is all 0s because it has been
374 * discarded. DISCARDs may have a version; if the version is nonzero the key
375 * will be persistent, otherwise the key will be dropped whenever the btree
376 * node is rewritten (like DELETED keys).
378 * - ERROR: any read of the data returns a read error, as the data was lost due
379 * to a failing device. Like DISCARDED keys, they can be removed (overridden)
380 * by new writes or cluster-wide GC. Node repair can also overwrite them with
381 * the same or a more recent version number, but not with an older version
384 * - WHITEOUT: for hash table btrees
386 #define BCH_BKEY_TYPES() \
391 x(hash_whiteout, 4) \
396 x(inode_generation, 9) \
405 x(btree_ptr_v2, 18) \
406 x(indirect_inline_data, 19) \
418 x(snapshot_tree, 31) \
419 x(logged_op_truncate, 32) \
420 x(logged_op_finsert, 33) \
424 #define x(name, nr) KEY_TYPE_##name = nr,
434 struct bch_whiteout
{
447 struct bch_hash_whiteout
{
455 /* 128 bits, sufficient for cryptographic MACs: */
459 } __packed
__aligned(8);
461 struct bch_backpointer
{
466 __u64 bucket_offset
:40;
469 } __packed
__aligned(8);
471 /* Optional/variable size superblock sections: */
473 struct bch_sb_field
{
479 #define BCH_SB_FIELDS() \
488 x(journal_seq_blacklist, 8) \
496 #include "alloc_background_format.h"
497 #include "dirent_format.h"
498 #include "disk_accounting_format.h"
499 #include "disk_groups_format.h"
500 #include "extents_format.h"
501 #include "ec_format.h"
502 #include "dirent_format.h"
503 #include "disk_groups_format.h"
504 #include "inode_format.h"
505 #include "journal_seq_blacklist_format.h"
506 #include "logged_ops_format.h"
507 #include "lru_format.h"
508 #include "quota_format.h"
509 #include "reflink_format.h"
510 #include "replicas_format.h"
511 #include "snapshot_format.h"
512 #include "subvolume_format.h"
513 #include "sb-counters_format.h"
514 #include "sb-downgrade_format.h"
515 #include "sb-errors_format.h"
516 #include "sb-members_format.h"
517 #include "xattr_format.h"
519 enum bch_sb_field_type
{
520 #define x(f, nr) BCH_SB_FIELD_##f = nr,
527 * Most superblock fields are replicated in all device's superblocks - a few are
530 #define BCH_SINGLE_DEVICE_SB_FIELDS \
531 ((1U << BCH_SB_FIELD_journal)| \
532 (1U << BCH_SB_FIELD_journal_v2))
534 /* BCH_SB_FIELD_journal: */
536 struct bch_sb_field_journal
{
537 struct bch_sb_field field
;
541 struct bch_sb_field_journal_v2
{
542 struct bch_sb_field field
;
544 struct bch_sb_field_journal_v2_entry
{
550 /* BCH_SB_FIELD_crypt: */
560 #define BCH_KEY_MAGIC \
561 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \
562 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \
563 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \
564 ((__u64) 'e' << 48)|((__u64) 'y' << 56))
566 struct bch_encrypted_key
{
572 * If this field is present in the superblock, it stores an encryption key which
573 * is used encrypt all other data/metadata. The key will normally be encrypted
574 * with the key userspace provides, but if encryption has been turned off we'll
575 * just store the master key unencrypted in the superblock so we can access the
576 * previously encrypted data.
578 struct bch_sb_field_crypt
{
579 struct bch_sb_field field
;
583 struct bch_encrypted_key key
;
586 LE64_BITMASK(BCH_CRYPT_KDF_TYPE
, struct bch_sb_field_crypt
, flags
, 0, 4);
593 /* stored as base 2 log of scrypt params: */
594 LE64_BITMASK(BCH_KDF_SCRYPT_N
, struct bch_sb_field_crypt
, kdf_flags
, 0, 16);
595 LE64_BITMASK(BCH_KDF_SCRYPT_R
, struct bch_sb_field_crypt
, kdf_flags
, 16, 32);
596 LE64_BITMASK(BCH_KDF_SCRYPT_P
, struct bch_sb_field_crypt
, kdf_flags
, 32, 48);
599 * On clean shutdown, store btree roots and current journal sequence number in
606 __u8 type
; /* designates what this jset holds */
609 struct bkey_i start
[0];
613 struct bch_sb_field_clean
{
614 struct bch_sb_field field
;
617 __le16 _read_clock
; /* no longer used */
621 struct jset_entry start
[0];
625 struct bch_sb_field_ext
{
626 struct bch_sb_field field
;
627 __le64 recovery_passes_required
[2];
628 __le64 errors_silent
[8];
629 __le64 btrees_lost_data
;
635 * New versioning scheme:
636 * One common version number for all on disk data structures - superblock, btree
637 * nodes, journal entries
639 #define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10))
640 #define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10)))
641 #define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0)
644 * field 1: version name
645 * field 2: BCH_VERSION(major, minor)
646 * field 3: recovery passess required on upgrade
648 #define BCH_METADATA_VERSIONS() \
649 x(bkey_renumber, BCH_VERSION(0, 10)) \
650 x(inode_btree_change, BCH_VERSION(0, 11)) \
651 x(snapshot, BCH_VERSION(0, 12)) \
652 x(inode_backpointers, BCH_VERSION(0, 13)) \
653 x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \
654 x(snapshot_2, BCH_VERSION(0, 15)) \
655 x(reflink_p_fix, BCH_VERSION(0, 16)) \
656 x(subvol_dirent, BCH_VERSION(0, 17)) \
657 x(inode_v2, BCH_VERSION(0, 18)) \
658 x(freespace, BCH_VERSION(0, 19)) \
659 x(alloc_v4, BCH_VERSION(0, 20)) \
660 x(new_data_types, BCH_VERSION(0, 21)) \
661 x(backpointers, BCH_VERSION(0, 22)) \
662 x(inode_v3, BCH_VERSION(0, 23)) \
663 x(unwritten_extents, BCH_VERSION(0, 24)) \
664 x(bucket_gens, BCH_VERSION(0, 25)) \
665 x(lru_v2, BCH_VERSION(0, 26)) \
666 x(fragmentation_lru, BCH_VERSION(0, 27)) \
667 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \
668 x(snapshot_trees, BCH_VERSION(0, 29)) \
669 x(major_minor, BCH_VERSION(1, 0)) \
670 x(snapshot_skiplists, BCH_VERSION(1, 1)) \
671 x(deleted_inodes, BCH_VERSION(1, 2)) \
672 x(rebalance_work, BCH_VERSION(1, 3)) \
673 x(member_seq, BCH_VERSION(1, 4)) \
674 x(subvolume_fs_parent, BCH_VERSION(1, 5)) \
675 x(btree_subvolume_children, BCH_VERSION(1, 6)) \
676 x(mi_btree_bitmap, BCH_VERSION(1, 7)) \
677 x(bucket_stripe_sectors, BCH_VERSION(1, 8)) \
678 x(disk_accounting_v2, BCH_VERSION(1, 9)) \
679 x(disk_accounting_v3, BCH_VERSION(1, 10)) \
680 x(disk_accounting_inum, BCH_VERSION(1, 11)) \
681 x(rebalance_work_acct_fix, BCH_VERSION(1, 12)) \
682 x(inode_has_child_snapshots, BCH_VERSION(1, 13))
684 enum bcachefs_metadata_version
{
685 bcachefs_metadata_version_min
= 9,
686 #define x(t, n) bcachefs_metadata_version_##t = n,
687 BCH_METADATA_VERSIONS()
689 bcachefs_metadata_version_max
692 static const __maybe_unused
693 unsigned bcachefs_metadata_required_upgrade_below
= bcachefs_metadata_version_rebalance_work
;
695 #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1)
697 #define BCH_SB_SECTOR 8
699 #define BCH_SB_LAYOUT_SIZE_BITS_MAX 16 /* 32 MB */
701 struct bch_sb_layout
{
702 __uuid_t magic
; /* bcachefs superblock UUID */
704 __u8 sb_max_size_bits
; /* base 2 of 512 byte sectors */
707 __le64 sb_offset
[61];
708 } __packed
__aligned(8);
710 #define BCH_SB_LAYOUT_SECTOR 7
713 * @offset - sector where this sb was written
714 * @version - on disk format version
715 * @version_min - Oldest metadata version this filesystem contains; so we can
716 * safely drop compatibility code and refuse to mount filesystems
718 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC)
719 * @seq - incremented each time superblock is written
720 * @uuid - used for generating various magic numbers and identifying
721 * member devices, never changes
722 * @user_uuid - user visible UUID, may be changed
723 * @label - filesystem label
724 * @seq - identifies most recent superblock, incremented each time
725 * superblock is written
726 * @features - enabled incompatible features
729 struct bch_csum csum
;
736 __u8 label
[BCH_SB_LABEL_SIZE
];
747 __le32 time_precision
;
754 struct bch_sb_layout layout
;
756 struct bch_sb_field start
[0];
758 } __packed
__aligned(8);
762 * BCH_SB_INITALIZED - set on first mount
763 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect
764 * behaviour of mount/recovery path:
765 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits
766 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80
767 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
768 * DATA/META_CSUM_TYPE. Also indicates encryption
769 * algorithm in use, if/when we get more than one
772 LE16_BITMASK(BCH_SB_BLOCK_SIZE
, struct bch_sb
, block_size
, 0, 16);
774 LE64_BITMASK(BCH_SB_INITIALIZED
, struct bch_sb
, flags
[0], 0, 1);
775 LE64_BITMASK(BCH_SB_CLEAN
, struct bch_sb
, flags
[0], 1, 2);
776 LE64_BITMASK(BCH_SB_CSUM_TYPE
, struct bch_sb
, flags
[0], 2, 8);
777 LE64_BITMASK(BCH_SB_ERROR_ACTION
, struct bch_sb
, flags
[0], 8, 12);
779 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE
, struct bch_sb
, flags
[0], 12, 28);
781 LE64_BITMASK(BCH_SB_GC_RESERVE
, struct bch_sb
, flags
[0], 28, 33);
782 LE64_BITMASK(BCH_SB_ROOT_RESERVE
, struct bch_sb
, flags
[0], 33, 40);
784 LE64_BITMASK(BCH_SB_META_CSUM_TYPE
, struct bch_sb
, flags
[0], 40, 44);
785 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE
, struct bch_sb
, flags
[0], 44, 48);
787 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT
, struct bch_sb
, flags
[0], 48, 52);
788 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT
, struct bch_sb
, flags
[0], 52, 56);
790 LE64_BITMASK(BCH_SB_POSIX_ACL
, struct bch_sb
, flags
[0], 56, 57);
791 LE64_BITMASK(BCH_SB_USRQUOTA
, struct bch_sb
, flags
[0], 57, 58);
792 LE64_BITMASK(BCH_SB_GRPQUOTA
, struct bch_sb
, flags
[0], 58, 59);
793 LE64_BITMASK(BCH_SB_PRJQUOTA
, struct bch_sb
, flags
[0], 59, 60);
795 LE64_BITMASK(BCH_SB_HAS_ERRORS
, struct bch_sb
, flags
[0], 60, 61);
796 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS
,struct bch_sb
, flags
[0], 61, 62);
798 LE64_BITMASK(BCH_SB_BIG_ENDIAN
, struct bch_sb
, flags
[0], 62, 63);
799 LE64_BITMASK(BCH_SB_PROMOTE_WHOLE_EXTENTS
,
800 struct bch_sb
, flags
[0], 63, 64);
802 LE64_BITMASK(BCH_SB_STR_HASH_TYPE
, struct bch_sb
, flags
[1], 0, 4);
803 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO
,struct bch_sb
, flags
[1], 4, 8);
804 LE64_BITMASK(BCH_SB_INODE_32BIT
, struct bch_sb
, flags
[1], 8, 9);
806 LE64_BITMASK(BCH_SB_128_BIT_MACS
, struct bch_sb
, flags
[1], 9, 10);
807 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE
, struct bch_sb
, flags
[1], 10, 14);
810 * Max size of an extent that may require bouncing to read or write
811 * (checksummed, compressed): 64k
813 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS
,
814 struct bch_sb
, flags
[1], 14, 20);
816 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ
, struct bch_sb
, flags
[1], 20, 24);
817 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ
, struct bch_sb
, flags
[1], 24, 28);
819 LE64_BITMASK(BCH_SB_PROMOTE_TARGET
, struct bch_sb
, flags
[1], 28, 40);
820 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET
, struct bch_sb
, flags
[1], 40, 52);
821 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET
, struct bch_sb
, flags
[1], 52, 64);
823 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO
,
824 struct bch_sb
, flags
[2], 0, 4);
825 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES
, struct bch_sb
, flags
[2], 4, 64);
827 LE64_BITMASK(BCH_SB_ERASURE_CODE
, struct bch_sb
, flags
[3], 0, 16);
828 LE64_BITMASK(BCH_SB_METADATA_TARGET
, struct bch_sb
, flags
[3], 16, 28);
829 LE64_BITMASK(BCH_SB_SHARD_INUMS
, struct bch_sb
, flags
[3], 28, 29);
830 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE
,struct bch_sb
, flags
[3], 29, 30);
831 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY
,struct bch_sb
, flags
[3], 30, 62);
832 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED
,struct bch_sb
, flags
[3], 62, 63);
833 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY
,struct bch_sb
, flags
[4], 0, 32);
834 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES
,struct bch_sb
, flags
[4], 32, 33);
835 LE64_BITMASK(BCH_SB_NOCOW
, struct bch_sb
, flags
[4], 33, 34);
836 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE
, struct bch_sb
, flags
[4], 34, 54);
837 LE64_BITMASK(BCH_SB_VERSION_UPGRADE
, struct bch_sb
, flags
[4], 54, 56);
839 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI
,struct bch_sb
, flags
[4], 56, 60);
840 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI
,
841 struct bch_sb
, flags
[4], 60, 64);
843 LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE
,
844 struct bch_sb
, flags
[5], 0, 16);
845 LE64_BITMASK(BCH_SB_ALLOCATOR_STUCK_TIMEOUT
,
846 struct bch_sb
, flags
[5], 16, 32);
848 static inline __u64
BCH_SB_COMPRESSION_TYPE(const struct bch_sb
*sb
)
850 return BCH_SB_COMPRESSION_TYPE_LO(sb
) | (BCH_SB_COMPRESSION_TYPE_HI(sb
) << 4);
853 static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb
*sb
, __u64 v
)
855 SET_BCH_SB_COMPRESSION_TYPE_LO(sb
, v
);
856 SET_BCH_SB_COMPRESSION_TYPE_HI(sb
, v
>> 4);
859 static inline __u64
BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb
*sb
)
861 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb
) |
862 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb
) << 4);
865 static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb
*sb
, __u64 v
)
867 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb
, v
);
868 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb
, v
>> 4);
874 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist
875 * reflink: gates KEY_TYPE_reflink
876 * inline_data: gates KEY_TYPE_inline_data
877 * new_siphash: gates BCH_STR_HASH_siphash
878 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE
880 #define BCH_SB_FEATURES() \
886 x(journal_seq_blacklist_v3, 5) \
890 x(new_extent_overwrite, 9) \
891 x(incompressible, 10) \
892 x(btree_ptr_v2, 11) \
893 x(extents_above_btree_updates, 12) \
894 x(btree_updates_journalled, 13) \
895 x(reflink_inline_data, 14) \
897 x(journal_no_flush, 16) \
899 x(extents_across_btree_nodes, 18)
901 #define BCH_SB_FEATURES_ALWAYS \
902 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \
903 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
904 (1ULL << BCH_FEATURE_btree_updates_journalled)|\
905 (1ULL << BCH_FEATURE_alloc_v2)|\
906 (1ULL << BCH_FEATURE_extents_across_btree_nodes))
908 #define BCH_SB_FEATURES_ALL \
909 (BCH_SB_FEATURES_ALWAYS| \
910 (1ULL << BCH_FEATURE_new_siphash)| \
911 (1ULL << BCH_FEATURE_btree_ptr_v2)| \
912 (1ULL << BCH_FEATURE_new_varint)| \
913 (1ULL << BCH_FEATURE_journal_no_flush))
915 enum bch_sb_feature
{
916 #define x(f, n) BCH_FEATURE_##f,
922 #define BCH_SB_COMPAT() \
924 x(alloc_metadata, 1) \
925 x(extents_above_btree_updates_done, 2) \
926 x(bformat_overflow_done, 3)
929 #define x(f, n) BCH_COMPAT_##f,
937 #define BCH_VERSION_UPGRADE_OPTS() \
942 enum bch_version_upgrade_opts
{
943 #define x(t, n) BCH_VERSION_UPGRADE_##t = n,
944 BCH_VERSION_UPGRADE_OPTS()
948 #define BCH_REPLICAS_MAX 4U
950 #define BCH_BKEY_PTRS_MAX 16U
952 #define BCH_ERROR_ACTIONS() \
958 enum bch_error_actions
{
959 #define x(t, n) BCH_ON_ERROR_##t = n,
965 #define BCH_STR_HASH_TYPES() \
971 enum bch_str_hash_type
{
972 #define x(t, n) BCH_STR_HASH_##t = n,
978 #define BCH_STR_HASH_OPTS() \
983 enum bch_str_hash_opts
{
984 #define x(t, n) BCH_STR_HASH_OPT_##t = n,
990 #define BCH_CSUM_TYPES() \
992 x(crc32c_nonzero, 1) \
993 x(crc64_nonzero, 2) \
994 x(chacha20_poly1305_80, 3) \
995 x(chacha20_poly1305_128, 4) \
1000 enum bch_csum_type
{
1001 #define x(t, n) BCH_CSUM_##t = n,
1007 static const __maybe_unused
unsigned bch_crc_bytes
[] = {
1008 [BCH_CSUM_none
] = 0,
1009 [BCH_CSUM_crc32c_nonzero
] = 4,
1010 [BCH_CSUM_crc32c
] = 4,
1011 [BCH_CSUM_crc64_nonzero
] = 8,
1012 [BCH_CSUM_crc64
] = 8,
1013 [BCH_CSUM_xxhash
] = 8,
1014 [BCH_CSUM_chacha20_poly1305_80
] = 10,
1015 [BCH_CSUM_chacha20_poly1305_128
] = 16,
1018 static inline _Bool
bch2_csum_type_is_encryption(enum bch_csum_type type
)
1021 case BCH_CSUM_chacha20_poly1305_80
:
1022 case BCH_CSUM_chacha20_poly1305_128
:
1029 #define BCH_CSUM_OPTS() \
1035 enum bch_csum_opts
{
1036 #define x(t, n) BCH_CSUM_OPT_##t = n,
1042 #define BCH_COMPRESSION_TYPES() \
1048 x(incompressible, 5)
1050 enum bch_compression_type
{
1051 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1052 BCH_COMPRESSION_TYPES()
1054 BCH_COMPRESSION_TYPE_NR
1057 #define BCH_COMPRESSION_OPTS() \
1063 enum bch_compression_opts
{
1064 #define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1065 BCH_COMPRESSION_OPTS()
1067 BCH_COMPRESSION_OPT_NR
1073 * The various other data structures have their own magic numbers, which are
1074 * xored with the first part of the cache set's UUID
1077 #define BCACHE_MAGIC \
1078 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \
1079 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
1080 #define BCHFS_MAGIC \
1081 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \
1082 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
1084 #define BCACHEFS_STATFS_MAGIC BCACHEFS_SUPER_MAGIC
1086 #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL)
1087 #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL)
1089 static inline __le64
__bch2_sb_magic(struct bch_sb
*sb
)
1093 memcpy(&ret
, &sb
->uuid
, sizeof(ret
));
1097 static inline __u64
__jset_magic(struct bch_sb
*sb
)
1099 return __le64_to_cpu(__bch2_sb_magic(sb
) ^ JSET_MAGIC
);
1102 static inline __u64
__bset_magic(struct bch_sb
*sb
)
1104 return __le64_to_cpu(__bch2_sb_magic(sb
) ^ BSET_MAGIC
);
1109 #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64))
1111 #define BCH_JSET_ENTRY_TYPES() \
1116 x(blacklist_v2, 4) \
1123 x(write_buffer_keys, 11) \
1126 enum bch_jset_entry_type
{
1127 #define x(f, nr) BCH_JSET_ENTRY_##f = nr,
1128 BCH_JSET_ENTRY_TYPES()
1133 static inline bool jset_entry_is_key(struct jset_entry
*e
)
1136 case BCH_JSET_ENTRY_btree_keys
:
1137 case BCH_JSET_ENTRY_btree_root
:
1138 case BCH_JSET_ENTRY_write_buffer_keys
:
1146 * Journal sequence numbers can be blacklisted: bsets record the max sequence
1147 * number of all the journal entries they contain updates for, so that on
1148 * recovery we can ignore those bsets that contain index updates newer that what
1149 * made it into the journal.
1151 * This means that we can't reuse that journal_seq - we have to skip it, and
1152 * then record that we skipped it so that the next time we crash and recover we
1153 * don't think there was a missing journal entry.
1155 struct jset_entry_blacklist
{
1156 struct jset_entry entry
;
1160 struct jset_entry_blacklist_v2
{
1161 struct jset_entry entry
;
1166 #define BCH_FS_USAGE_TYPES() \
1171 enum bch_fs_usage_type
{
1172 #define x(f, nr) BCH_FS_USAGE_##f = nr,
1173 BCH_FS_USAGE_TYPES()
1178 struct jset_entry_usage
{
1179 struct jset_entry entry
;
1183 struct jset_entry_data_usage
{
1184 struct jset_entry entry
;
1186 struct bch_replicas_entry_v1 r
;
1189 struct jset_entry_clock
{
1190 struct jset_entry entry
;
1196 struct jset_entry_dev_usage_type
{
1202 struct jset_entry_dev_usage
{
1203 struct jset_entry entry
;
1207 __le64 _buckets_ec
; /* No longer used */
1208 __le64 _buckets_unavailable
; /* No longer used */
1210 struct jset_entry_dev_usage_type d
[];
1213 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage
*u
)
1215 return (vstruct_bytes(&u
->entry
) - sizeof(struct jset_entry_dev_usage
)) /
1216 sizeof(struct jset_entry_dev_usage_type
);
1219 struct jset_entry_log
{
1220 struct jset_entry entry
;
1222 } __packed
__aligned(8);
1224 struct jset_entry_datetime
{
1225 struct jset_entry entry
;
1227 } __packed
__aligned(8);
1230 * On disk format for a journal entry:
1231 * seq is monotonically increasing; every journal entry has its own unique
1234 * last_seq is the oldest journal entry that still has keys the btree hasn't
1235 * flushed to disk yet.
1237 * version is for on disk format changes.
1240 struct bch_csum csum
;
1247 __le32 u64s
; /* size of d[] in u64s */
1249 __u8 encrypted_start
[0];
1251 __le16 _read_clock
; /* no longer used */
1252 __le16 _write_clock
;
1254 /* Sequence number of oldest dirty journal entry */
1258 struct jset_entry start
[0];
1260 } __packed
__aligned(8);
1262 LE32_BITMASK(JSET_CSUM_TYPE
, struct jset
, flags
, 0, 4);
1263 LE32_BITMASK(JSET_BIG_ENDIAN
, struct jset
, flags
, 4, 5);
1264 LE32_BITMASK(JSET_NO_FLUSH
, struct jset
, flags
, 5, 6);
1266 #define BCH_JOURNAL_BUCKETS_MIN 8
1270 enum btree_id_flags
{
1271 BTREE_ID_EXTENTS
= BIT(0),
1272 BTREE_ID_SNAPSHOTS
= BIT(1),
1273 BTREE_ID_SNAPSHOT_FIELD
= BIT(2),
1274 BTREE_ID_DATA
= BIT(3),
1277 #define BCH_BTREE_IDS() \
1278 x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\
1279 BIT_ULL(KEY_TYPE_whiteout)| \
1280 BIT_ULL(KEY_TYPE_error)| \
1281 BIT_ULL(KEY_TYPE_cookie)| \
1282 BIT_ULL(KEY_TYPE_extent)| \
1283 BIT_ULL(KEY_TYPE_reservation)| \
1284 BIT_ULL(KEY_TYPE_reflink_p)| \
1285 BIT_ULL(KEY_TYPE_inline_data)) \
1286 x(inodes, 1, BTREE_ID_SNAPSHOTS, \
1287 BIT_ULL(KEY_TYPE_whiteout)| \
1288 BIT_ULL(KEY_TYPE_inode)| \
1289 BIT_ULL(KEY_TYPE_inode_v2)| \
1290 BIT_ULL(KEY_TYPE_inode_v3)| \
1291 BIT_ULL(KEY_TYPE_inode_generation)) \
1292 x(dirents, 2, BTREE_ID_SNAPSHOTS, \
1293 BIT_ULL(KEY_TYPE_whiteout)| \
1294 BIT_ULL(KEY_TYPE_hash_whiteout)| \
1295 BIT_ULL(KEY_TYPE_dirent)) \
1296 x(xattrs, 3, BTREE_ID_SNAPSHOTS, \
1297 BIT_ULL(KEY_TYPE_whiteout)| \
1298 BIT_ULL(KEY_TYPE_cookie)| \
1299 BIT_ULL(KEY_TYPE_hash_whiteout)| \
1300 BIT_ULL(KEY_TYPE_xattr)) \
1302 BIT_ULL(KEY_TYPE_alloc)| \
1303 BIT_ULL(KEY_TYPE_alloc_v2)| \
1304 BIT_ULL(KEY_TYPE_alloc_v3)| \
1305 BIT_ULL(KEY_TYPE_alloc_v4)) \
1307 BIT_ULL(KEY_TYPE_quota)) \
1309 BIT_ULL(KEY_TYPE_stripe)) \
1310 x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \
1311 BIT_ULL(KEY_TYPE_reflink_v)| \
1312 BIT_ULL(KEY_TYPE_indirect_inline_data)| \
1313 BIT_ULL(KEY_TYPE_error)) \
1314 x(subvolumes, 8, 0, \
1315 BIT_ULL(KEY_TYPE_subvolume)) \
1316 x(snapshots, 9, 0, \
1317 BIT_ULL(KEY_TYPE_snapshot)) \
1319 BIT_ULL(KEY_TYPE_set)) \
1320 x(freespace, 11, BTREE_ID_EXTENTS, \
1321 BIT_ULL(KEY_TYPE_set)) \
1322 x(need_discard, 12, 0, \
1323 BIT_ULL(KEY_TYPE_set)) \
1324 x(backpointers, 13, 0, \
1325 BIT_ULL(KEY_TYPE_backpointer)) \
1326 x(bucket_gens, 14, 0, \
1327 BIT_ULL(KEY_TYPE_bucket_gens)) \
1328 x(snapshot_trees, 15, 0, \
1329 BIT_ULL(KEY_TYPE_snapshot_tree)) \
1330 x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \
1331 BIT_ULL(KEY_TYPE_set)) \
1332 x(logged_ops, 17, 0, \
1333 BIT_ULL(KEY_TYPE_logged_op_truncate)| \
1334 BIT_ULL(KEY_TYPE_logged_op_finsert)) \
1335 x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \
1336 BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \
1337 x(subvolume_children, 19, 0, \
1338 BIT_ULL(KEY_TYPE_set)) \
1339 x(accounting, 20, BTREE_ID_SNAPSHOT_FIELD, \
1340 BIT_ULL(KEY_TYPE_accounting)) \
1343 #define x(name, nr, ...) BTREE_ID_##name = nr,
1350 * Maximum number of btrees that we will _ever_ have under the current scheme,
1351 * where we refer to them with 64 bit bitfields - and we also need a bit for
1352 * the interior btree node type:
1354 #define BTREE_ID_NR_MAX 63
1356 static inline bool btree_id_is_alloc(enum btree_id id
)
1359 case BTREE_ID_alloc
:
1360 case BTREE_ID_backpointers
:
1361 case BTREE_ID_need_discard
:
1362 case BTREE_ID_freespace
:
1363 case BTREE_ID_bucket_gens
:
1370 #define BTREE_MAX_DEPTH 4U
1377 * On disk a btree node is a list/log of these; within each set the keys are
1384 * Highest journal entry this bset contains keys for.
1385 * If on recovery we don't see that journal entry, this bset is ignored:
1386 * this allows us to preserve the order of all index updates after a
1387 * crash, since the journal records a total order of all index updates
1388 * and anything that didn't make it to the journal doesn't get used.
1394 __le16 u64s
; /* count of d[] in u64s */
1396 struct bkey_packed start
[0];
1398 } __packed
__aligned(8);
1400 LE32_BITMASK(BSET_CSUM_TYPE
, struct bset
, flags
, 0, 4);
1402 LE32_BITMASK(BSET_BIG_ENDIAN
, struct bset
, flags
, 4, 5);
1403 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS
,
1404 struct bset
, flags
, 5, 6);
1406 /* Sector offset within the btree node: */
1407 LE32_BITMASK(BSET_OFFSET
, struct bset
, flags
, 16, 32);
1410 struct bch_csum csum
;
1413 /* this flags field is encrypted, unlike bset->flags: */
1416 /* Closed interval: */
1417 struct bpos min_key
;
1418 struct bpos max_key
;
1419 struct bch_extent_ptr _ptr
; /* not used anymore */
1420 struct bkey_format format
;
1431 } __packed
__aligned(8);
1433 LE64_BITMASK(BTREE_NODE_ID_LO
, struct btree_node
, flags
, 0, 4);
1434 LE64_BITMASK(BTREE_NODE_LEVEL
, struct btree_node
, flags
, 4, 8);
1435 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE
,
1436 struct btree_node
, flags
, 8, 9);
1437 LE64_BITMASK(BTREE_NODE_ID_HI
, struct btree_node
, flags
, 9, 25);
1439 LE64_BITMASK(BTREE_NODE_SEQ
, struct btree_node
, flags
, 32, 64);
1441 static inline __u64
BTREE_NODE_ID(struct btree_node
*n
)
1443 return BTREE_NODE_ID_LO(n
) | (BTREE_NODE_ID_HI(n
) << 4);
1446 static inline void SET_BTREE_NODE_ID(struct btree_node
*n
, __u64 v
)
1448 SET_BTREE_NODE_ID_LO(n
, v
);
1449 SET_BTREE_NODE_ID_HI(n
, v
>> 4);
1452 struct btree_node_entry
{
1453 struct bch_csum csum
;
1463 } __packed
__aligned(8);
1465 #endif /* _BCACHEFS_FORMAT_H */