Linux 6.13-rc7
[linux.git] / fs / bcachefs / journal_reclaim.c
blobace291f175dd6b0f45d6fcabd3a30391b7a47911
1 // SPDX-License-Identifier: GPL-2.0
3 #include "bcachefs.h"
4 #include "btree_key_cache.h"
5 #include "btree_update.h"
6 #include "btree_write_buffer.h"
7 #include "buckets.h"
8 #include "errcode.h"
9 #include "error.h"
10 #include "journal.h"
11 #include "journal_io.h"
12 #include "journal_reclaim.h"
13 #include "replicas.h"
14 #include "sb-members.h"
15 #include "trace.h"
17 #include <linux/kthread.h>
18 #include <linux/sched/mm.h>
20 /* Free space calculations: */
22 static unsigned journal_space_from(struct journal_device *ja,
23 enum journal_space_from from)
25 switch (from) {
26 case journal_space_discarded:
27 return ja->discard_idx;
28 case journal_space_clean_ondisk:
29 return ja->dirty_idx_ondisk;
30 case journal_space_clean:
31 return ja->dirty_idx;
32 default:
33 BUG();
37 unsigned bch2_journal_dev_buckets_available(struct journal *j,
38 struct journal_device *ja,
39 enum journal_space_from from)
41 unsigned available = (journal_space_from(ja, from) -
42 ja->cur_idx - 1 + ja->nr) % ja->nr;
45 * Don't use the last bucket unless writing the new last_seq
46 * will make another bucket available:
48 if (available && ja->dirty_idx_ondisk == ja->dirty_idx)
49 --available;
51 return available;
54 void bch2_journal_set_watermark(struct journal *j)
56 struct bch_fs *c = container_of(j, struct bch_fs, journal);
57 bool low_on_space = j->space[journal_space_clean].total * 4 <=
58 j->space[journal_space_total].total;
59 bool low_on_pin = fifo_free(&j->pin) < j->pin.size / 4;
60 bool low_on_wb = bch2_btree_write_buffer_must_wait(c);
61 unsigned watermark = low_on_space || low_on_pin || low_on_wb
62 ? BCH_WATERMARK_reclaim
63 : BCH_WATERMARK_stripe;
65 if (track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_space], low_on_space) ||
66 track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_pin], low_on_pin) ||
67 track_event_change(&c->times[BCH_TIME_blocked_write_buffer_full], low_on_wb))
68 trace_and_count(c, journal_full, c);
70 mod_bit(JOURNAL_space_low, &j->flags, low_on_space || low_on_pin);
72 swap(watermark, j->watermark);
73 if (watermark > j->watermark)
74 journal_wake(j);
77 static struct journal_space
78 journal_dev_space_available(struct journal *j, struct bch_dev *ca,
79 enum journal_space_from from)
81 struct journal_device *ja = &ca->journal;
82 unsigned sectors, buckets, unwritten;
83 u64 seq;
85 if (from == journal_space_total)
86 return (struct journal_space) {
87 .next_entry = ca->mi.bucket_size,
88 .total = ca->mi.bucket_size * ja->nr,
91 buckets = bch2_journal_dev_buckets_available(j, ja, from);
92 sectors = ja->sectors_free;
95 * We that we don't allocate the space for a journal entry
96 * until we write it out - thus, account for it here:
98 for (seq = journal_last_unwritten_seq(j);
99 seq <= journal_cur_seq(j);
100 seq++) {
101 unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors;
103 if (!unwritten)
104 continue;
106 /* entry won't fit on this device, skip: */
107 if (unwritten > ca->mi.bucket_size)
108 continue;
110 if (unwritten >= sectors) {
111 if (!buckets) {
112 sectors = 0;
113 break;
116 buckets--;
117 sectors = ca->mi.bucket_size;
120 sectors -= unwritten;
123 if (sectors < ca->mi.bucket_size && buckets) {
124 buckets--;
125 sectors = ca->mi.bucket_size;
128 return (struct journal_space) {
129 .next_entry = sectors,
130 .total = sectors + buckets * ca->mi.bucket_size,
134 static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want,
135 enum journal_space_from from)
137 struct bch_fs *c = container_of(j, struct bch_fs, journal);
138 unsigned pos, nr_devs = 0;
139 struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX];
141 BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space));
143 rcu_read_lock();
144 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) {
145 if (!ca->journal.nr)
146 continue;
148 space = journal_dev_space_available(j, ca, from);
149 if (!space.next_entry)
150 continue;
152 for (pos = 0; pos < nr_devs; pos++)
153 if (space.total > dev_space[pos].total)
154 break;
156 array_insert_item(dev_space, nr_devs, pos, space);
158 rcu_read_unlock();
160 if (nr_devs < nr_devs_want)
161 return (struct journal_space) { 0, 0 };
164 * We sorted largest to smallest, and we want the smallest out of the
165 * @nr_devs_want largest devices:
167 return dev_space[nr_devs_want - 1];
170 void bch2_journal_space_available(struct journal *j)
172 struct bch_fs *c = container_of(j, struct bch_fs, journal);
173 unsigned clean, clean_ondisk, total;
174 unsigned max_entry_size = min(j->buf[0].buf_size >> 9,
175 j->buf[1].buf_size >> 9);
176 unsigned nr_online = 0, nr_devs_want;
177 bool can_discard = false;
178 int ret = 0;
180 lockdep_assert_held(&j->lock);
182 rcu_read_lock();
183 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) {
184 struct journal_device *ja = &ca->journal;
186 if (!ja->nr)
187 continue;
189 while (ja->dirty_idx != ja->cur_idx &&
190 ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j))
191 ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr;
193 while (ja->dirty_idx_ondisk != ja->dirty_idx &&
194 ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk)
195 ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr;
197 if (ja->discard_idx != ja->dirty_idx_ondisk)
198 can_discard = true;
200 max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size);
201 nr_online++;
203 rcu_read_unlock();
205 j->can_discard = can_discard;
207 if (nr_online < metadata_replicas_required(c)) {
208 struct printbuf buf = PRINTBUF;
209 buf.atomic++;
210 prt_printf(&buf, "insufficient writeable journal devices available: have %u, need %u\n"
211 "rw journal devs:", nr_online, metadata_replicas_required(c));
213 rcu_read_lock();
214 for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal])
215 prt_printf(&buf, " %s", ca->name);
216 rcu_read_unlock();
218 bch_err(c, "%s", buf.buf);
219 printbuf_exit(&buf);
220 ret = JOURNAL_ERR_insufficient_devices;
221 goto out;
224 nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas);
226 for (unsigned i = 0; i < journal_space_nr; i++)
227 j->space[i] = __journal_space_available(j, nr_devs_want, i);
229 clean_ondisk = j->space[journal_space_clean_ondisk].total;
230 clean = j->space[journal_space_clean].total;
231 total = j->space[journal_space_total].total;
233 if (!j->space[journal_space_discarded].next_entry)
234 ret = JOURNAL_ERR_journal_full;
236 if ((j->space[journal_space_clean_ondisk].next_entry <
237 j->space[journal_space_clean_ondisk].total) &&
238 (clean - clean_ondisk <= total / 8) &&
239 (clean_ondisk * 2 > clean))
240 set_bit(JOURNAL_may_skip_flush, &j->flags);
241 else
242 clear_bit(JOURNAL_may_skip_flush, &j->flags);
244 bch2_journal_set_watermark(j);
245 out:
246 j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0;
247 j->cur_entry_error = ret;
249 if (!ret)
250 journal_wake(j);
253 /* Discards - last part of journal reclaim: */
255 static bool should_discard_bucket(struct journal *j, struct journal_device *ja)
257 bool ret;
259 spin_lock(&j->lock);
260 ret = ja->discard_idx != ja->dirty_idx_ondisk;
261 spin_unlock(&j->lock);
263 return ret;
267 * Advance ja->discard_idx as long as it points to buckets that are no longer
268 * dirty, issuing discards if necessary:
270 void bch2_journal_do_discards(struct journal *j)
272 struct bch_fs *c = container_of(j, struct bch_fs, journal);
274 mutex_lock(&j->discard_lock);
276 for_each_rw_member(c, ca) {
277 struct journal_device *ja = &ca->journal;
279 while (should_discard_bucket(j, ja)) {
280 if (!c->opts.nochanges &&
281 ca->mi.discard &&
282 bdev_max_discard_sectors(ca->disk_sb.bdev))
283 blkdev_issue_discard(ca->disk_sb.bdev,
284 bucket_to_sector(ca,
285 ja->buckets[ja->discard_idx]),
286 ca->mi.bucket_size, GFP_NOFS);
288 spin_lock(&j->lock);
289 ja->discard_idx = (ja->discard_idx + 1) % ja->nr;
291 bch2_journal_space_available(j);
292 spin_unlock(&j->lock);
296 mutex_unlock(&j->discard_lock);
300 * Journal entry pinning - machinery for holding a reference on a given journal
301 * entry, holding it open to ensure it gets replayed during recovery:
304 void bch2_journal_reclaim_fast(struct journal *j)
306 bool popped = false;
308 lockdep_assert_held(&j->lock);
311 * Unpin journal entries whose reference counts reached zero, meaning
312 * all btree nodes got written out
314 while (!fifo_empty(&j->pin) &&
315 j->pin.front <= j->seq_ondisk &&
316 !atomic_read(&fifo_peek_front(&j->pin).count)) {
317 j->pin.front++;
318 popped = true;
321 if (popped)
322 bch2_journal_space_available(j);
325 bool __bch2_journal_pin_put(struct journal *j, u64 seq)
327 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq);
329 return atomic_dec_and_test(&pin_list->count);
332 void bch2_journal_pin_put(struct journal *j, u64 seq)
334 if (__bch2_journal_pin_put(j, seq)) {
335 spin_lock(&j->lock);
336 bch2_journal_reclaim_fast(j);
337 spin_unlock(&j->lock);
341 static inline bool __journal_pin_drop(struct journal *j,
342 struct journal_entry_pin *pin)
344 struct journal_entry_pin_list *pin_list;
346 if (!journal_pin_active(pin))
347 return false;
349 if (j->flush_in_progress == pin)
350 j->flush_in_progress_dropped = true;
352 pin_list = journal_seq_pin(j, pin->seq);
353 pin->seq = 0;
354 list_del_init(&pin->list);
357 * Unpinning a journal entry may make journal_next_bucket() succeed, if
358 * writing a new last_seq will now make another bucket available:
360 return atomic_dec_and_test(&pin_list->count) &&
361 pin_list == &fifo_peek_front(&j->pin);
364 void bch2_journal_pin_drop(struct journal *j,
365 struct journal_entry_pin *pin)
367 spin_lock(&j->lock);
368 if (__journal_pin_drop(j, pin))
369 bch2_journal_reclaim_fast(j);
370 spin_unlock(&j->lock);
373 static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn)
375 if (fn == bch2_btree_node_flush0 ||
376 fn == bch2_btree_node_flush1)
377 return JOURNAL_PIN_btree;
378 else if (fn == bch2_btree_key_cache_journal_flush)
379 return JOURNAL_PIN_key_cache;
380 else
381 return JOURNAL_PIN_other;
384 static inline void bch2_journal_pin_set_locked(struct journal *j, u64 seq,
385 struct journal_entry_pin *pin,
386 journal_pin_flush_fn flush_fn,
387 enum journal_pin_type type)
389 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq);
392 * flush_fn is how we identify journal pins in debugfs, so must always
393 * exist, even if it doesn't do anything:
395 BUG_ON(!flush_fn);
397 atomic_inc(&pin_list->count);
398 pin->seq = seq;
399 pin->flush = flush_fn;
400 list_add(&pin->list, &pin_list->list[type]);
403 void bch2_journal_pin_copy(struct journal *j,
404 struct journal_entry_pin *dst,
405 struct journal_entry_pin *src,
406 journal_pin_flush_fn flush_fn)
408 spin_lock(&j->lock);
410 u64 seq = READ_ONCE(src->seq);
412 if (seq < journal_last_seq(j)) {
414 * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on
415 * the src pin - with the pin dropped, the entry to pin might no
416 * longer to exist, but that means there's no longer anything to
417 * copy and we can bail out here:
419 spin_unlock(&j->lock);
420 return;
423 bool reclaim = __journal_pin_drop(j, dst);
425 bch2_journal_pin_set_locked(j, seq, dst, flush_fn, journal_pin_type(flush_fn));
427 if (reclaim)
428 bch2_journal_reclaim_fast(j);
431 * If the journal is currently full, we might want to call flush_fn
432 * immediately:
434 if (seq == journal_last_seq(j))
435 journal_wake(j);
436 spin_unlock(&j->lock);
439 void bch2_journal_pin_set(struct journal *j, u64 seq,
440 struct journal_entry_pin *pin,
441 journal_pin_flush_fn flush_fn)
443 spin_lock(&j->lock);
445 BUG_ON(seq < journal_last_seq(j));
447 bool reclaim = __journal_pin_drop(j, pin);
449 bch2_journal_pin_set_locked(j, seq, pin, flush_fn, journal_pin_type(flush_fn));
451 if (reclaim)
452 bch2_journal_reclaim_fast(j);
454 * If the journal is currently full, we might want to call flush_fn
455 * immediately:
457 if (seq == journal_last_seq(j))
458 journal_wake(j);
460 spin_unlock(&j->lock);
464 * bch2_journal_pin_flush: ensure journal pin callback is no longer running
465 * @j: journal object
466 * @pin: pin to flush
468 void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin)
470 BUG_ON(journal_pin_active(pin));
472 wait_event(j->pin_flush_wait, j->flush_in_progress != pin);
476 * Journal reclaim: flush references to open journal entries to reclaim space in
477 * the journal
479 * May be done by the journal code in the background as needed to free up space
480 * for more journal entries, or as part of doing a clean shutdown, or to migrate
481 * data off of a specific device:
484 static struct journal_entry_pin *
485 journal_get_next_pin(struct journal *j,
486 u64 seq_to_flush,
487 unsigned allowed_below_seq,
488 unsigned allowed_above_seq,
489 u64 *seq)
491 struct journal_entry_pin_list *pin_list;
492 struct journal_entry_pin *ret = NULL;
493 unsigned i;
495 fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) {
496 if (*seq > seq_to_flush && !allowed_above_seq)
497 break;
499 for (i = 0; i < JOURNAL_PIN_NR; i++)
500 if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) ||
501 ((1U << i) & allowed_above_seq)) {
502 ret = list_first_entry_or_null(&pin_list->list[i],
503 struct journal_entry_pin, list);
504 if (ret)
505 return ret;
509 return NULL;
512 /* returns true if we did work */
513 static size_t journal_flush_pins(struct journal *j,
514 u64 seq_to_flush,
515 unsigned allowed_below_seq,
516 unsigned allowed_above_seq,
517 unsigned min_any,
518 unsigned min_key_cache)
520 struct journal_entry_pin *pin;
521 size_t nr_flushed = 0;
522 journal_pin_flush_fn flush_fn;
523 u64 seq;
524 int err;
526 lockdep_assert_held(&j->reclaim_lock);
528 while (1) {
529 unsigned allowed_above = allowed_above_seq;
530 unsigned allowed_below = allowed_below_seq;
532 if (min_any) {
533 allowed_above |= ~0;
534 allowed_below |= ~0;
537 if (min_key_cache) {
538 allowed_above |= 1U << JOURNAL_PIN_key_cache;
539 allowed_below |= 1U << JOURNAL_PIN_key_cache;
542 cond_resched();
544 j->last_flushed = jiffies;
546 spin_lock(&j->lock);
547 pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq);
548 if (pin) {
549 BUG_ON(j->flush_in_progress);
550 j->flush_in_progress = pin;
551 j->flush_in_progress_dropped = false;
552 flush_fn = pin->flush;
554 spin_unlock(&j->lock);
556 if (!pin)
557 break;
559 if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush)
560 min_key_cache--;
562 if (min_any)
563 min_any--;
565 err = flush_fn(j, pin, seq);
567 spin_lock(&j->lock);
568 /* Pin might have been dropped or rearmed: */
569 if (likely(!err && !j->flush_in_progress_dropped))
570 list_move(&pin->list, &journal_seq_pin(j, seq)->flushed);
571 j->flush_in_progress = NULL;
572 j->flush_in_progress_dropped = false;
573 spin_unlock(&j->lock);
575 wake_up(&j->pin_flush_wait);
577 if (err)
578 break;
580 nr_flushed++;
583 return nr_flushed;
586 static u64 journal_seq_to_flush(struct journal *j)
588 struct bch_fs *c = container_of(j, struct bch_fs, journal);
589 u64 seq_to_flush = 0;
591 spin_lock(&j->lock);
593 for_each_rw_member(c, ca) {
594 struct journal_device *ja = &ca->journal;
595 unsigned nr_buckets, bucket_to_flush;
597 if (!ja->nr)
598 continue;
600 /* Try to keep the journal at most half full: */
601 nr_buckets = ja->nr / 2;
603 nr_buckets = min(nr_buckets, ja->nr);
605 bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr;
606 seq_to_flush = max(seq_to_flush,
607 ja->bucket_seq[bucket_to_flush]);
610 /* Also flush if the pin fifo is more than half full */
611 seq_to_flush = max_t(s64, seq_to_flush,
612 (s64) journal_cur_seq(j) -
613 (j->pin.size >> 1));
614 spin_unlock(&j->lock);
616 return seq_to_flush;
620 * __bch2_journal_reclaim - free up journal buckets
621 * @j: journal object
622 * @direct: direct or background reclaim?
623 * @kicked: requested to run since we last ran?
624 * Returns: 0 on success, or -EIO if the journal has been shutdown
626 * Background journal reclaim writes out btree nodes. It should be run
627 * early enough so that we never completely run out of journal buckets.
629 * High watermarks for triggering background reclaim:
630 * - FIFO has fewer than 512 entries left
631 * - fewer than 25% journal buckets free
633 * Background reclaim runs until low watermarks are reached:
634 * - FIFO has more than 1024 entries left
635 * - more than 50% journal buckets free
637 * As long as a reclaim can complete in the time it takes to fill up
638 * 512 journal entries or 25% of all journal buckets, then
639 * journal_next_bucket() should not stall.
641 static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked)
643 struct bch_fs *c = container_of(j, struct bch_fs, journal);
644 struct btree_cache *bc = &c->btree_cache;
645 bool kthread = (current->flags & PF_KTHREAD) != 0;
646 u64 seq_to_flush;
647 size_t min_nr, min_key_cache, nr_flushed;
648 unsigned flags;
649 int ret = 0;
652 * We can't invoke memory reclaim while holding the reclaim_lock -
653 * journal reclaim is required to make progress for memory reclaim
654 * (cleaning the caches), so we can't get stuck in memory reclaim while
655 * we're holding the reclaim lock:
657 lockdep_assert_held(&j->reclaim_lock);
658 flags = memalloc_noreclaim_save();
660 do {
661 if (kthread && kthread_should_stop())
662 break;
664 if (bch2_journal_error(j)) {
665 ret = -EIO;
666 break;
669 bch2_journal_do_discards(j);
671 seq_to_flush = journal_seq_to_flush(j);
672 min_nr = 0;
675 * If it's been longer than j->reclaim_delay_ms since we last flushed,
676 * make sure to flush at least one journal pin:
678 if (time_after(jiffies, j->last_flushed +
679 msecs_to_jiffies(c->opts.journal_reclaim_delay)))
680 min_nr = 1;
682 if (j->watermark != BCH_WATERMARK_stripe)
683 min_nr = 1;
685 size_t btree_cache_live = bc->live[0].nr + bc->live[1].nr;
686 if (atomic_long_read(&bc->nr_dirty) * 2 > btree_cache_live)
687 min_nr = 1;
689 min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128);
691 trace_and_count(c, journal_reclaim_start, c,
692 direct, kicked,
693 min_nr, min_key_cache,
694 atomic_long_read(&bc->nr_dirty), btree_cache_live,
695 atomic_long_read(&c->btree_key_cache.nr_dirty),
696 atomic_long_read(&c->btree_key_cache.nr_keys));
698 nr_flushed = journal_flush_pins(j, seq_to_flush,
699 ~0, 0,
700 min_nr, min_key_cache);
702 if (direct)
703 j->nr_direct_reclaim += nr_flushed;
704 else
705 j->nr_background_reclaim += nr_flushed;
706 trace_and_count(c, journal_reclaim_finish, c, nr_flushed);
708 if (nr_flushed)
709 wake_up(&j->reclaim_wait);
710 } while ((min_nr || min_key_cache) && nr_flushed && !direct);
712 memalloc_noreclaim_restore(flags);
714 return ret;
717 int bch2_journal_reclaim(struct journal *j)
719 return __bch2_journal_reclaim(j, true, true);
722 static int bch2_journal_reclaim_thread(void *arg)
724 struct journal *j = arg;
725 struct bch_fs *c = container_of(j, struct bch_fs, journal);
726 unsigned long delay, now;
727 bool journal_empty;
728 int ret = 0;
730 set_freezable();
732 j->last_flushed = jiffies;
734 while (!ret && !kthread_should_stop()) {
735 bool kicked = j->reclaim_kicked;
737 j->reclaim_kicked = false;
739 mutex_lock(&j->reclaim_lock);
740 ret = __bch2_journal_reclaim(j, false, kicked);
741 mutex_unlock(&j->reclaim_lock);
743 now = jiffies;
744 delay = msecs_to_jiffies(c->opts.journal_reclaim_delay);
745 j->next_reclaim = j->last_flushed + delay;
747 if (!time_in_range(j->next_reclaim, now, now + delay))
748 j->next_reclaim = now + delay;
750 while (1) {
751 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
752 if (kthread_should_stop())
753 break;
754 if (j->reclaim_kicked)
755 break;
757 spin_lock(&j->lock);
758 journal_empty = fifo_empty(&j->pin);
759 spin_unlock(&j->lock);
761 if (journal_empty)
762 schedule();
763 else if (time_after(j->next_reclaim, jiffies))
764 schedule_timeout(j->next_reclaim - jiffies);
765 else
766 break;
768 __set_current_state(TASK_RUNNING);
771 return 0;
774 void bch2_journal_reclaim_stop(struct journal *j)
776 struct task_struct *p = j->reclaim_thread;
778 j->reclaim_thread = NULL;
780 if (p) {
781 kthread_stop(p);
782 put_task_struct(p);
786 int bch2_journal_reclaim_start(struct journal *j)
788 struct bch_fs *c = container_of(j, struct bch_fs, journal);
789 struct task_struct *p;
790 int ret;
792 if (j->reclaim_thread)
793 return 0;
795 p = kthread_create(bch2_journal_reclaim_thread, j,
796 "bch-reclaim/%s", c->name);
797 ret = PTR_ERR_OR_ZERO(p);
798 bch_err_msg(c, ret, "creating journal reclaim thread");
799 if (ret)
800 return ret;
802 get_task_struct(p);
803 j->reclaim_thread = p;
804 wake_up_process(p);
805 return 0;
808 static int journal_flush_done(struct journal *j, u64 seq_to_flush,
809 bool *did_work)
811 int ret;
813 ret = bch2_journal_error(j);
814 if (ret)
815 return ret;
817 mutex_lock(&j->reclaim_lock);
819 if (journal_flush_pins(j, seq_to_flush,
820 (1U << JOURNAL_PIN_key_cache)|
821 (1U << JOURNAL_PIN_other), 0, 0, 0) ||
822 journal_flush_pins(j, seq_to_flush,
823 (1U << JOURNAL_PIN_btree), 0, 0, 0))
824 *did_work = true;
826 if (seq_to_flush > journal_cur_seq(j))
827 bch2_journal_entry_close(j);
829 spin_lock(&j->lock);
831 * If journal replay hasn't completed, the unreplayed journal entries
832 * hold refs on their corresponding sequence numbers
834 ret = !test_bit(JOURNAL_replay_done, &j->flags) ||
835 journal_last_seq(j) > seq_to_flush ||
836 !fifo_used(&j->pin);
838 spin_unlock(&j->lock);
839 mutex_unlock(&j->reclaim_lock);
841 return ret;
844 bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush)
846 /* time_stats this */
847 bool did_work = false;
849 if (!test_bit(JOURNAL_running, &j->flags))
850 return false;
852 closure_wait_event(&j->async_wait,
853 journal_flush_done(j, seq_to_flush, &did_work));
855 return did_work;
858 int bch2_journal_flush_device_pins(struct journal *j, int dev_idx)
860 struct bch_fs *c = container_of(j, struct bch_fs, journal);
861 struct journal_entry_pin_list *p;
862 u64 iter, seq = 0;
863 int ret = 0;
865 spin_lock(&j->lock);
866 fifo_for_each_entry_ptr(p, &j->pin, iter)
867 if (dev_idx >= 0
868 ? bch2_dev_list_has_dev(p->devs, dev_idx)
869 : p->devs.nr < c->opts.metadata_replicas)
870 seq = iter;
871 spin_unlock(&j->lock);
873 bch2_journal_flush_pins(j, seq);
875 ret = bch2_journal_error(j);
876 if (ret)
877 return ret;
879 mutex_lock(&c->replicas_gc_lock);
880 bch2_replicas_gc_start(c, 1 << BCH_DATA_journal);
883 * Now that we've populated replicas_gc, write to the journal to mark
884 * active journal devices. This handles the case where the journal might
885 * be empty. Otherwise we could clear all journal replicas and
886 * temporarily put the fs into an unrecoverable state. Journal recovery
887 * expects to find devices marked for journal data on unclean mount.
889 ret = bch2_journal_meta(&c->journal);
890 if (ret)
891 goto err;
893 seq = 0;
894 spin_lock(&j->lock);
895 while (!ret) {
896 struct bch_replicas_padded replicas;
898 seq = max(seq, journal_last_seq(j));
899 if (seq >= j->pin.back)
900 break;
901 bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal,
902 journal_seq_pin(j, seq)->devs);
903 seq++;
905 if (replicas.e.nr_devs) {
906 spin_unlock(&j->lock);
907 ret = bch2_mark_replicas(c, &replicas.e);
908 spin_lock(&j->lock);
911 spin_unlock(&j->lock);
912 err:
913 ret = bch2_replicas_gc_end(c, ret);
914 mutex_unlock(&c->replicas_gc_lock);
916 return ret;