1 // SPDX-License-Identifier: GPL-2.0
3 * Functions for incremental mean and variance.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * Copyright © 2022 Daniel B. Hill
16 * Author: Daniel B. Hill <daniel@gluo.nz>
20 * This is includes some incremental algorithms for mean and variance calculation
22 * Derived from the paper: https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf
24 * Create a struct and if it's the weighted variant set the w field (weight = 2^k).
26 * Use mean_and_variance[_weighted]_update() on the struct to update it's state.
28 * Use the mean_and_variance[_weighted]_get_* functions to calculate the mean and variance, some computation
29 * is deferred to these functions for performance reasons.
31 * see lib/math/mean_and_variance_test.c for examples of usage.
33 * DO NOT access the mean and variance fields of the weighted variants directly.
34 * DO NOT change the weight after calling update.
37 #include <linux/bug.h>
38 #include <linux/compiler.h>
39 #include <linux/export.h>
40 #include <linux/limits.h>
41 #include <linux/math.h>
42 #include <linux/math64.h>
43 #include <linux/module.h>
45 #include "mean_and_variance.h"
47 u128_u
u128_div(u128_u n
, u64 d
)
53 u64 h
= hi
& ((u64
) U32_MAX
<< 32);
54 u64 l
= (hi
& (u64
) U32_MAX
) << 32;
56 r
= u128_shl(u64_to_u128(div64_u64_rem(h
, d
, &rem
)), 64);
57 r
= u128_add(r
, u128_shl(u64_to_u128(div64_u64_rem(l
+ (rem
<< 32), d
, &rem
)), 32));
58 r
= u128_add(r
, u64_to_u128(div64_u64_rem(lo
+ (rem
<< 32), d
, &rem
)));
61 EXPORT_SYMBOL_GPL(u128_div
);
64 * mean_and_variance_get_mean() - get mean from @s
65 * @s: mean and variance number of samples and their sums
67 s64
mean_and_variance_get_mean(struct mean_and_variance s
)
69 return s
.n
? div64_u64(s
.sum
, s
.n
) : 0;
71 EXPORT_SYMBOL_GPL(mean_and_variance_get_mean
);
74 * mean_and_variance_get_variance() - get variance from @s1
75 * @s1: mean and variance number of samples and sums
77 * see linked pdf equation 12.
79 u64
mean_and_variance_get_variance(struct mean_and_variance s1
)
82 u128_u s2
= u128_div(s1
.sum_squares
, s1
.n
);
83 u64 s3
= abs(mean_and_variance_get_mean(s1
));
85 return u128_lo(u128_sub(s2
, u128_square(s3
)));
90 EXPORT_SYMBOL_GPL(mean_and_variance_get_variance
);
93 * mean_and_variance_get_stddev() - get standard deviation from @s
94 * @s: mean and variance number of samples and their sums
96 u32
mean_and_variance_get_stddev(struct mean_and_variance s
)
98 return int_sqrt64(mean_and_variance_get_variance(s
));
100 EXPORT_SYMBOL_GPL(mean_and_variance_get_stddev
);
103 * mean_and_variance_weighted_update() - exponentially weighted variant of mean_and_variance_update()
104 * @s: mean and variance number of samples and their sums
105 * @x: new value to include in the &mean_and_variance_weighted
106 * @initted: caller must track whether this is the first use or not
107 * @weight: ewma weight
109 * see linked pdf: function derived from equations 140-143 where alpha = 2^w.
110 * values are stored bitshifted for performance and added precision.
112 void mean_and_variance_weighted_update(struct mean_and_variance_weighted
*s
,
113 s64 x
, bool initted
, u8 weight
)
115 // previous weighted variance.
117 u64 var_w0
= s
->variance
;
118 // new value weighted.
120 s64 diff_w
= x_w
- s
->mean
;
121 s64 diff
= fast_divpow2(diff_w
, w
);
122 // new mean weighted.
123 s64 u_w1
= s
->mean
+ diff
;
130 s
->variance
= ((var_w0
<< w
) - var_w0
+ ((diff_w
* (x_w
- u_w1
)) >> w
)) >> w
;
133 EXPORT_SYMBOL_GPL(mean_and_variance_weighted_update
);
136 * mean_and_variance_weighted_get_mean() - get mean from @s
137 * @s: mean and variance number of samples and their sums
138 * @weight: ewma weight
140 s64
mean_and_variance_weighted_get_mean(struct mean_and_variance_weighted s
,
143 return fast_divpow2(s
.mean
, weight
);
145 EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_mean
);
148 * mean_and_variance_weighted_get_variance() -- get variance from @s
149 * @s: mean and variance number of samples and their sums
150 * @weight: ewma weight
152 u64
mean_and_variance_weighted_get_variance(struct mean_and_variance_weighted s
,
155 // always positive don't need fast divpow2
156 return s
.variance
>> weight
;
158 EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_variance
);
161 * mean_and_variance_weighted_get_stddev() - get standard deviation from @s
162 * @s: mean and variance number of samples and their sums
163 * @weight: ewma weight
165 u32
mean_and_variance_weighted_get_stddev(struct mean_and_variance_weighted s
,
168 return int_sqrt64(mean_and_variance_weighted_get_variance(s
, weight
));
170 EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_stddev
);
172 MODULE_AUTHOR("Daniel B. Hill");
173 MODULE_LICENSE("GPL");