1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
7 #include "block-group.h"
8 #include "space-info.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
17 #include "delalloc-space.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(const struct btrfs_block_group
*block_group
)
28 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
30 return (btrfs_test_opt(fs_info
, FRAGMENT_METADATA
) &&
31 block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) ||
32 (btrfs_test_opt(fs_info
, FRAGMENT_DATA
) &&
33 block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
);
38 * Return target flags in extended format or 0 if restripe for this chunk_type
41 * Should be called with balance_lock held
43 static u64
get_restripe_target(const struct btrfs_fs_info
*fs_info
, u64 flags
)
45 const struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
51 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
52 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
53 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
54 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
55 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
56 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
57 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
58 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
59 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
66 * @flags: available profiles in extended format (see ctree.h)
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
72 static u64
btrfs_reduce_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 flags
)
74 u64 num_devices
= fs_info
->fs_devices
->rw_devices
;
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
83 spin_lock(&fs_info
->balance_lock
);
84 target
= get_restripe_target(fs_info
, flags
);
86 spin_unlock(&fs_info
->balance_lock
);
87 return extended_to_chunk(target
);
89 spin_unlock(&fs_info
->balance_lock
);
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
93 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
94 allowed
|= btrfs_raid_array
[raid_type
].bg_flag
;
98 /* Select the highest-redundancy RAID level. */
99 if (allowed
& BTRFS_BLOCK_GROUP_RAID1C4
)
100 allowed
= BTRFS_BLOCK_GROUP_RAID1C4
;
101 else if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
102 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
103 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1C3
)
104 allowed
= BTRFS_BLOCK_GROUP_RAID1C3
;
105 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
106 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
107 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
108 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
109 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
110 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
111 else if (allowed
& BTRFS_BLOCK_GROUP_DUP
)
112 allowed
= BTRFS_BLOCK_GROUP_DUP
;
113 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
114 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
116 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
118 return extended_to_chunk(flags
| allowed
);
121 u64
btrfs_get_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 orig_flags
)
128 seq
= read_seqbegin(&fs_info
->profiles_lock
);
130 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
131 flags
|= fs_info
->avail_data_alloc_bits
;
132 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
133 flags
|= fs_info
->avail_system_alloc_bits
;
134 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
135 flags
|= fs_info
->avail_metadata_alloc_bits
;
136 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
138 return btrfs_reduce_alloc_profile(fs_info
, flags
);
141 void btrfs_get_block_group(struct btrfs_block_group
*cache
)
143 refcount_inc(&cache
->refs
);
146 void btrfs_put_block_group(struct btrfs_block_group
*cache
)
148 if (refcount_dec_and_test(&cache
->refs
)) {
149 WARN_ON(cache
->pinned
> 0);
151 * If there was a failure to cleanup a log tree, very likely due
152 * to an IO failure on a writeback attempt of one or more of its
153 * extent buffers, we could not do proper (and cheap) unaccounting
154 * of their reserved space, so don't warn on reserved > 0 in that
157 if (!(cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) ||
158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache
->fs_info
))
159 WARN_ON(cache
->reserved
> 0);
162 * A block_group shouldn't be on the discard_list anymore.
163 * Remove the block_group from the discard_list to prevent us
164 * from causing a panic due to NULL pointer dereference.
166 if (WARN_ON(!list_empty(&cache
->discard_list
)))
167 btrfs_discard_cancel_work(&cache
->fs_info
->discard_ctl
,
170 kfree(cache
->free_space_ctl
);
171 btrfs_free_chunk_map(cache
->physical_map
);
177 * This adds the block group to the fs_info rb tree for the block group cache
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
180 struct btrfs_block_group
*block_group
)
183 struct rb_node
*parent
= NULL
;
184 struct btrfs_block_group
*cache
;
185 bool leftmost
= true;
187 ASSERT(block_group
->length
!= 0);
189 write_lock(&info
->block_group_cache_lock
);
190 p
= &info
->block_group_cache_tree
.rb_root
.rb_node
;
194 cache
= rb_entry(parent
, struct btrfs_block_group
, cache_node
);
195 if (block_group
->start
< cache
->start
) {
197 } else if (block_group
->start
> cache
->start
) {
201 write_unlock(&info
->block_group_cache_lock
);
206 rb_link_node(&block_group
->cache_node
, parent
, p
);
207 rb_insert_color_cached(&block_group
->cache_node
,
208 &info
->block_group_cache_tree
, leftmost
);
210 write_unlock(&info
->block_group_cache_lock
);
216 * This will return the block group at or after bytenr if contains is 0, else
217 * it will return the block group that contains the bytenr
219 static struct btrfs_block_group
*block_group_cache_tree_search(
220 struct btrfs_fs_info
*info
, u64 bytenr
, int contains
)
222 struct btrfs_block_group
*cache
, *ret
= NULL
;
226 read_lock(&info
->block_group_cache_lock
);
227 n
= info
->block_group_cache_tree
.rb_root
.rb_node
;
230 cache
= rb_entry(n
, struct btrfs_block_group
, cache_node
);
231 end
= cache
->start
+ cache
->length
- 1;
232 start
= cache
->start
;
234 if (bytenr
< start
) {
235 if (!contains
&& (!ret
|| start
< ret
->start
))
238 } else if (bytenr
> start
) {
239 if (contains
&& bytenr
<= end
) {
250 btrfs_get_block_group(ret
);
251 read_unlock(&info
->block_group_cache_lock
);
257 * Return the block group that starts at or after bytenr
259 struct btrfs_block_group
*btrfs_lookup_first_block_group(
260 struct btrfs_fs_info
*info
, u64 bytenr
)
262 return block_group_cache_tree_search(info
, bytenr
, 0);
266 * Return the block group that contains the given bytenr
268 struct btrfs_block_group
*btrfs_lookup_block_group(
269 struct btrfs_fs_info
*info
, u64 bytenr
)
271 return block_group_cache_tree_search(info
, bytenr
, 1);
274 struct btrfs_block_group
*btrfs_next_block_group(
275 struct btrfs_block_group
*cache
)
277 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
278 struct rb_node
*node
;
280 read_lock(&fs_info
->block_group_cache_lock
);
282 /* If our block group was removed, we need a full search. */
283 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
284 const u64 next_bytenr
= cache
->start
+ cache
->length
;
286 read_unlock(&fs_info
->block_group_cache_lock
);
287 btrfs_put_block_group(cache
);
288 return btrfs_lookup_first_block_group(fs_info
, next_bytenr
);
290 node
= rb_next(&cache
->cache_node
);
291 btrfs_put_block_group(cache
);
293 cache
= rb_entry(node
, struct btrfs_block_group
, cache_node
);
294 btrfs_get_block_group(cache
);
297 read_unlock(&fs_info
->block_group_cache_lock
);
302 * Check if we can do a NOCOW write for a given extent.
304 * @fs_info: The filesystem information object.
305 * @bytenr: Logical start address of the extent.
307 * Check if we can do a NOCOW write for the given extent, and increments the
308 * number of NOCOW writers in the block group that contains the extent, as long
309 * as the block group exists and it's currently not in read-only mode.
311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312 * is responsible for calling btrfs_dec_nocow_writers() later.
314 * Or NULL if we can not do a NOCOW write
316 struct btrfs_block_group
*btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
,
319 struct btrfs_block_group
*bg
;
320 bool can_nocow
= true;
322 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
326 spin_lock(&bg
->lock
);
330 atomic_inc(&bg
->nocow_writers
);
331 spin_unlock(&bg
->lock
);
334 btrfs_put_block_group(bg
);
338 /* No put on block group, done by btrfs_dec_nocow_writers(). */
343 * Decrement the number of NOCOW writers in a block group.
345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346 * and on the block group returned by that call. Typically this is called after
347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
350 * After this call, the caller should not use the block group anymore. It it wants
351 * to use it, then it should get a reference on it before calling this function.
353 void btrfs_dec_nocow_writers(struct btrfs_block_group
*bg
)
355 if (atomic_dec_and_test(&bg
->nocow_writers
))
356 wake_up_var(&bg
->nocow_writers
);
358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 btrfs_put_block_group(bg
);
362 void btrfs_wait_nocow_writers(struct btrfs_block_group
*bg
)
364 wait_var_event(&bg
->nocow_writers
, !atomic_read(&bg
->nocow_writers
));
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
370 struct btrfs_block_group
*bg
;
372 bg
= btrfs_lookup_block_group(fs_info
, start
);
374 if (atomic_dec_and_test(&bg
->reservations
))
375 wake_up_var(&bg
->reservations
);
376 btrfs_put_block_group(bg
);
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group
*bg
)
381 struct btrfs_space_info
*space_info
= bg
->space_info
;
385 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
389 * Our block group is read only but before we set it to read only,
390 * some task might have had allocated an extent from it already, but it
391 * has not yet created a respective ordered extent (and added it to a
392 * root's list of ordered extents).
393 * Therefore wait for any task currently allocating extents, since the
394 * block group's reservations counter is incremented while a read lock
395 * on the groups' semaphore is held and decremented after releasing
396 * the read access on that semaphore and creating the ordered extent.
398 down_write(&space_info
->groups_sem
);
399 up_write(&space_info
->groups_sem
);
401 wait_var_event(&bg
->reservations
, !atomic_read(&bg
->reservations
));
404 struct btrfs_caching_control
*btrfs_get_caching_control(
405 struct btrfs_block_group
*cache
)
407 struct btrfs_caching_control
*ctl
;
409 spin_lock(&cache
->lock
);
410 if (!cache
->caching_ctl
) {
411 spin_unlock(&cache
->lock
);
415 ctl
= cache
->caching_ctl
;
416 refcount_inc(&ctl
->count
);
417 spin_unlock(&cache
->lock
);
421 static void btrfs_put_caching_control(struct btrfs_caching_control
*ctl
)
423 if (refcount_dec_and_test(&ctl
->count
))
428 * When we wait for progress in the block group caching, its because our
429 * allocation attempt failed at least once. So, we must sleep and let some
430 * progress happen before we try again.
432 * This function will sleep at least once waiting for new free space to show
433 * up, and then it will check the block group free space numbers for our min
434 * num_bytes. Another option is to have it go ahead and look in the rbtree for
435 * a free extent of a given size, but this is a good start.
437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438 * any of the information in this block group.
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group
*cache
,
443 struct btrfs_caching_control
*caching_ctl
;
446 caching_ctl
= btrfs_get_caching_control(cache
);
451 * We've already failed to allocate from this block group, so even if
452 * there's enough space in the block group it isn't contiguous enough to
453 * allow for an allocation, so wait for at least the next wakeup tick,
454 * or for the thing to be done.
456 progress
= atomic_read(&caching_ctl
->progress
);
458 wait_event(caching_ctl
->wait
, btrfs_block_group_done(cache
) ||
459 (progress
!= atomic_read(&caching_ctl
->progress
) &&
460 (cache
->free_space_ctl
->free_space
>= num_bytes
)));
462 btrfs_put_caching_control(caching_ctl
);
465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group
*cache
,
466 struct btrfs_caching_control
*caching_ctl
)
468 wait_event(caching_ctl
->wait
, btrfs_block_group_done(cache
));
469 return cache
->cached
== BTRFS_CACHE_ERROR
? -EIO
: 0;
472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group
*cache
)
474 struct btrfs_caching_control
*caching_ctl
;
477 caching_ctl
= btrfs_get_caching_control(cache
);
479 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
480 ret
= btrfs_caching_ctl_wait_done(cache
, caching_ctl
);
481 btrfs_put_caching_control(caching_ctl
);
485 #ifdef CONFIG_BTRFS_DEBUG
486 static void fragment_free_space(struct btrfs_block_group
*block_group
)
488 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
489 u64 start
= block_group
->start
;
490 u64 len
= block_group
->length
;
491 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
492 fs_info
->nodesize
: fs_info
->sectorsize
;
493 u64 step
= chunk
<< 1;
495 while (len
> chunk
) {
496 btrfs_remove_free_space(block_group
, start
, chunk
);
507 * Add a free space range to the in memory free space cache of a block group.
508 * This checks if the range contains super block locations and any such
509 * locations are not added to the free space cache.
511 * @block_group: The target block group.
512 * @start: Start offset of the range.
513 * @end: End offset of the range (exclusive).
514 * @total_added_ret: Optional pointer to return the total amount of space
515 * added to the block group's free space cache.
517 * Returns 0 on success or < 0 on error.
519 int btrfs_add_new_free_space(struct btrfs_block_group
*block_group
, u64 start
,
520 u64 end
, u64
*total_added_ret
)
522 struct btrfs_fs_info
*info
= block_group
->fs_info
;
523 u64 extent_start
, extent_end
, size
;
527 *total_added_ret
= 0;
529 while (start
< end
) {
530 if (!find_first_extent_bit(&info
->excluded_extents
, start
,
531 &extent_start
, &extent_end
,
532 EXTENT_DIRTY
| EXTENT_UPTODATE
,
536 if (extent_start
<= start
) {
537 start
= extent_end
+ 1;
538 } else if (extent_start
> start
&& extent_start
< end
) {
539 size
= extent_start
- start
;
540 ret
= btrfs_add_free_space_async_trimmed(block_group
,
545 *total_added_ret
+= size
;
546 start
= extent_end
+ 1;
554 ret
= btrfs_add_free_space_async_trimmed(block_group
, start
,
559 *total_added_ret
+= size
;
566 * Get an arbitrary extent item index / max_index through the block group
568 * @block_group the block group to sample from
569 * @index: the integral step through the block group to grab from
570 * @max_index: the granularity of the sampling
571 * @key: return value parameter for the item we find
573 * Pre-conditions on indices:
574 * 0 <= index <= max_index
577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578 * error code on error.
580 static int sample_block_group_extent_item(struct btrfs_caching_control
*caching_ctl
,
581 struct btrfs_block_group
*block_group
,
582 int index
, int max_index
,
583 struct btrfs_key
*found_key
)
585 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
586 struct btrfs_root
*extent_root
;
588 u64 search_end
= block_group
->start
+ block_group
->length
;
589 struct btrfs_path
*path
;
590 struct btrfs_key search_key
;
594 ASSERT(index
<= max_index
);
595 ASSERT(max_index
> 0);
596 lockdep_assert_held(&caching_ctl
->mutex
);
597 lockdep_assert_held_read(&fs_info
->commit_root_sem
);
599 path
= btrfs_alloc_path();
603 extent_root
= btrfs_extent_root(fs_info
, max_t(u64
, block_group
->start
,
604 BTRFS_SUPER_INFO_OFFSET
));
606 path
->skip_locking
= 1;
607 path
->search_commit_root
= 1;
608 path
->reada
= READA_FORWARD
;
610 search_offset
= index
* div_u64(block_group
->length
, max_index
);
611 search_key
.objectid
= block_group
->start
+ search_offset
;
612 search_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
613 search_key
.offset
= 0;
615 btrfs_for_each_slot(extent_root
, &search_key
, found_key
, path
, ret
) {
616 /* Success; sampled an extent item in the block group */
617 if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
&&
618 found_key
->objectid
>= block_group
->start
&&
619 found_key
->objectid
+ found_key
->offset
<= search_end
)
622 /* We can't possibly find a valid extent item anymore */
623 if (found_key
->objectid
>= search_end
) {
629 lockdep_assert_held(&caching_ctl
->mutex
);
630 lockdep_assert_held_read(&fs_info
->commit_root_sem
);
631 btrfs_free_path(path
);
636 * Best effort attempt to compute a block group's size class while caching it.
638 * @block_group: the block group we are caching
640 * We cannot infer the size class while adding free space extents, because that
641 * logic doesn't care about contiguous file extents (it doesn't differentiate
642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643 * file extent items. Reading all of them is quite wasteful, because usually
644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645 * them at even steps through the block group and pick the smallest size class
646 * we see. Since size class is best effort, and not guaranteed in general,
647 * inaccuracy is acceptable.
649 * To be more explicit about why this algorithm makes sense:
651 * If we are caching in a block group from disk, then there are three major cases
653 * 1. the block group is well behaved and all extents in it are the same size
655 * 2. the block group is mostly one size class with rare exceptions for last
657 * 3. the block group was populated before size classes and can have a totally
658 * arbitrary mix of size classes.
660 * In case 1, looking at any extent in the block group will yield the correct
661 * result. For the mixed cases, taking the minimum size class seems like a good
662 * approximation, since gaps from frees will be usable to the size class. For
663 * 2., a small handful of file extents is likely to yield the right answer. For
664 * 3, we can either read every file extent, or admit that this is best effort
665 * anyway and try to stay fast.
667 * Returns: 0 on success, negative error code on error.
669 static int load_block_group_size_class(struct btrfs_caching_control
*caching_ctl
,
670 struct btrfs_block_group
*block_group
)
672 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
673 struct btrfs_key key
;
675 u64 min_size
= block_group
->length
;
676 enum btrfs_block_group_size_class size_class
= BTRFS_BG_SZ_NONE
;
679 if (!btrfs_block_group_should_use_size_class(block_group
))
682 lockdep_assert_held(&caching_ctl
->mutex
);
683 lockdep_assert_held_read(&fs_info
->commit_root_sem
);
684 for (i
= 0; i
< 5; ++i
) {
685 ret
= sample_block_group_extent_item(caching_ctl
, block_group
, i
, 5, &key
);
690 min_size
= min_t(u64
, min_size
, key
.offset
);
691 size_class
= btrfs_calc_block_group_size_class(min_size
);
693 if (size_class
!= BTRFS_BG_SZ_NONE
) {
694 spin_lock(&block_group
->lock
);
695 block_group
->size_class
= size_class
;
696 spin_unlock(&block_group
->lock
);
702 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
704 struct btrfs_block_group
*block_group
= caching_ctl
->block_group
;
705 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
706 struct btrfs_root
*extent_root
;
707 struct btrfs_path
*path
;
708 struct extent_buffer
*leaf
;
709 struct btrfs_key key
;
716 path
= btrfs_alloc_path();
720 last
= max_t(u64
, block_group
->start
, BTRFS_SUPER_INFO_OFFSET
);
721 extent_root
= btrfs_extent_root(fs_info
, last
);
723 #ifdef CONFIG_BTRFS_DEBUG
725 * If we're fragmenting we don't want to make anybody think we can
726 * allocate from this block group until we've had a chance to fragment
729 if (btrfs_should_fragment_free_space(block_group
))
733 * We don't want to deadlock with somebody trying to allocate a new
734 * extent for the extent root while also trying to search the extent
735 * root to add free space. So we skip locking and search the commit
736 * root, since its read-only
738 path
->skip_locking
= 1;
739 path
->search_commit_root
= 1;
740 path
->reada
= READA_FORWARD
;
744 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
747 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
751 leaf
= path
->nodes
[0];
752 nritems
= btrfs_header_nritems(leaf
);
755 if (btrfs_fs_closing(fs_info
) > 1) {
760 if (path
->slots
[0] < nritems
) {
761 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
763 ret
= btrfs_find_next_key(extent_root
, path
, &key
, 0, 0);
767 if (need_resched() ||
768 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
769 btrfs_release_path(path
);
770 up_read(&fs_info
->commit_root_sem
);
771 mutex_unlock(&caching_ctl
->mutex
);
773 mutex_lock(&caching_ctl
->mutex
);
774 down_read(&fs_info
->commit_root_sem
);
778 ret
= btrfs_next_leaf(extent_root
, path
);
783 leaf
= path
->nodes
[0];
784 nritems
= btrfs_header_nritems(leaf
);
788 if (key
.objectid
< last
) {
791 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
792 btrfs_release_path(path
);
796 if (key
.objectid
< block_group
->start
) {
801 if (key
.objectid
>= block_group
->start
+ block_group
->length
)
804 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
805 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
808 ret
= btrfs_add_new_free_space(block_group
, last
,
809 key
.objectid
, &space_added
);
812 total_found
+= space_added
;
813 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
814 last
= key
.objectid
+
817 last
= key
.objectid
+ key
.offset
;
819 if (total_found
> CACHING_CTL_WAKE_UP
) {
822 atomic_inc(&caching_ctl
->progress
);
823 wake_up(&caching_ctl
->wait
);
830 ret
= btrfs_add_new_free_space(block_group
, last
,
831 block_group
->start
+ block_group
->length
,
834 btrfs_free_path(path
);
838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group
*bg
)
840 clear_extent_bits(&bg
->fs_info
->excluded_extents
, bg
->start
,
841 bg
->start
+ bg
->length
- 1, EXTENT_UPTODATE
);
844 static noinline
void caching_thread(struct btrfs_work
*work
)
846 struct btrfs_block_group
*block_group
;
847 struct btrfs_fs_info
*fs_info
;
848 struct btrfs_caching_control
*caching_ctl
;
851 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
852 block_group
= caching_ctl
->block_group
;
853 fs_info
= block_group
->fs_info
;
855 mutex_lock(&caching_ctl
->mutex
);
856 down_read(&fs_info
->commit_root_sem
);
858 load_block_group_size_class(caching_ctl
, block_group
);
859 if (btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
860 ret
= load_free_space_cache(block_group
);
867 * We failed to load the space cache, set ourselves to
868 * CACHE_STARTED and carry on.
870 spin_lock(&block_group
->lock
);
871 block_group
->cached
= BTRFS_CACHE_STARTED
;
872 spin_unlock(&block_group
->lock
);
873 wake_up(&caching_ctl
->wait
);
877 * If we are in the transaction that populated the free space tree we
878 * can't actually cache from the free space tree as our commit root and
879 * real root are the same, so we could change the contents of the blocks
880 * while caching. Instead do the slow caching in this case, and after
881 * the transaction has committed we will be safe.
883 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED
, &fs_info
->flags
)))
885 ret
= load_free_space_tree(caching_ctl
);
887 ret
= load_extent_tree_free(caching_ctl
);
889 spin_lock(&block_group
->lock
);
890 block_group
->caching_ctl
= NULL
;
891 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
892 spin_unlock(&block_group
->lock
);
894 #ifdef CONFIG_BTRFS_DEBUG
895 if (btrfs_should_fragment_free_space(block_group
)) {
898 spin_lock(&block_group
->space_info
->lock
);
899 spin_lock(&block_group
->lock
);
900 bytes_used
= block_group
->length
- block_group
->used
;
901 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
902 spin_unlock(&block_group
->lock
);
903 spin_unlock(&block_group
->space_info
->lock
);
904 fragment_free_space(block_group
);
908 up_read(&fs_info
->commit_root_sem
);
909 btrfs_free_excluded_extents(block_group
);
910 mutex_unlock(&caching_ctl
->mutex
);
912 wake_up(&caching_ctl
->wait
);
914 btrfs_put_caching_control(caching_ctl
);
915 btrfs_put_block_group(block_group
);
918 int btrfs_cache_block_group(struct btrfs_block_group
*cache
, bool wait
)
920 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
921 struct btrfs_caching_control
*caching_ctl
= NULL
;
924 /* Allocator for zoned filesystems does not use the cache at all */
925 if (btrfs_is_zoned(fs_info
))
928 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
932 INIT_LIST_HEAD(&caching_ctl
->list
);
933 mutex_init(&caching_ctl
->mutex
);
934 init_waitqueue_head(&caching_ctl
->wait
);
935 caching_ctl
->block_group
= cache
;
936 refcount_set(&caching_ctl
->count
, 2);
937 atomic_set(&caching_ctl
->progress
, 0);
938 btrfs_init_work(&caching_ctl
->work
, caching_thread
, NULL
);
940 spin_lock(&cache
->lock
);
941 if (cache
->cached
!= BTRFS_CACHE_NO
) {
944 caching_ctl
= cache
->caching_ctl
;
946 refcount_inc(&caching_ctl
->count
);
947 spin_unlock(&cache
->lock
);
950 WARN_ON(cache
->caching_ctl
);
951 cache
->caching_ctl
= caching_ctl
;
952 cache
->cached
= BTRFS_CACHE_STARTED
;
953 spin_unlock(&cache
->lock
);
955 write_lock(&fs_info
->block_group_cache_lock
);
956 refcount_inc(&caching_ctl
->count
);
957 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
958 write_unlock(&fs_info
->block_group_cache_lock
);
960 btrfs_get_block_group(cache
);
962 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
964 if (wait
&& caching_ctl
)
965 ret
= btrfs_caching_ctl_wait_done(cache
, caching_ctl
);
967 btrfs_put_caching_control(caching_ctl
);
972 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
974 u64 extra_flags
= chunk_to_extended(flags
) &
975 BTRFS_EXTENDED_PROFILE_MASK
;
977 write_seqlock(&fs_info
->profiles_lock
);
978 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
979 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
980 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
981 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
982 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
983 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
984 write_sequnlock(&fs_info
->profiles_lock
);
988 * Clear incompat bits for the following feature(s):
990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991 * in the whole filesystem
993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
995 static void clear_incompat_bg_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
997 bool found_raid56
= false;
998 bool found_raid1c34
= false;
1000 if ((flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
) ||
1001 (flags
& BTRFS_BLOCK_GROUP_RAID1C3
) ||
1002 (flags
& BTRFS_BLOCK_GROUP_RAID1C4
)) {
1003 struct list_head
*head
= &fs_info
->space_info
;
1004 struct btrfs_space_info
*sinfo
;
1006 list_for_each_entry_rcu(sinfo
, head
, list
) {
1007 down_read(&sinfo
->groups_sem
);
1008 if (!list_empty(&sinfo
->block_groups
[BTRFS_RAID_RAID5
]))
1009 found_raid56
= true;
1010 if (!list_empty(&sinfo
->block_groups
[BTRFS_RAID_RAID6
]))
1011 found_raid56
= true;
1012 if (!list_empty(&sinfo
->block_groups
[BTRFS_RAID_RAID1C3
]))
1013 found_raid1c34
= true;
1014 if (!list_empty(&sinfo
->block_groups
[BTRFS_RAID_RAID1C4
]))
1015 found_raid1c34
= true;
1016 up_read(&sinfo
->groups_sem
);
1019 btrfs_clear_fs_incompat(fs_info
, RAID56
);
1020 if (!found_raid1c34
)
1021 btrfs_clear_fs_incompat(fs_info
, RAID1C34
);
1025 static struct btrfs_root
*btrfs_block_group_root(struct btrfs_fs_info
*fs_info
)
1027 if (btrfs_fs_compat_ro(fs_info
, BLOCK_GROUP_TREE
))
1028 return fs_info
->block_group_root
;
1029 return btrfs_extent_root(fs_info
, 0);
1032 static int remove_block_group_item(struct btrfs_trans_handle
*trans
,
1033 struct btrfs_path
*path
,
1034 struct btrfs_block_group
*block_group
)
1036 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1037 struct btrfs_root
*root
;
1038 struct btrfs_key key
;
1041 root
= btrfs_block_group_root(fs_info
);
1042 key
.objectid
= block_group
->start
;
1043 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
1044 key
.offset
= block_group
->length
;
1046 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1052 ret
= btrfs_del_item(trans
, root
, path
);
1056 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
1057 struct btrfs_chunk_map
*map
)
1059 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1060 struct btrfs_path
*path
;
1061 struct btrfs_block_group
*block_group
;
1062 struct btrfs_free_cluster
*cluster
;
1063 struct inode
*inode
;
1064 struct kobject
*kobj
= NULL
;
1068 struct btrfs_caching_control
*caching_ctl
= NULL
;
1070 bool remove_rsv
= false;
1072 block_group
= btrfs_lookup_block_group(fs_info
, map
->start
);
1076 BUG_ON(!block_group
->ro
);
1078 trace_btrfs_remove_block_group(block_group
);
1080 * Free the reserved super bytes from this block group before
1083 btrfs_free_excluded_extents(block_group
);
1084 btrfs_free_ref_tree_range(fs_info
, block_group
->start
,
1085 block_group
->length
);
1087 index
= btrfs_bg_flags_to_raid_index(block_group
->flags
);
1088 factor
= btrfs_bg_type_to_factor(block_group
->flags
);
1090 /* make sure this block group isn't part of an allocation cluster */
1091 cluster
= &fs_info
->data_alloc_cluster
;
1092 spin_lock(&cluster
->refill_lock
);
1093 btrfs_return_cluster_to_free_space(block_group
, cluster
);
1094 spin_unlock(&cluster
->refill_lock
);
1097 * make sure this block group isn't part of a metadata
1098 * allocation cluster
1100 cluster
= &fs_info
->meta_alloc_cluster
;
1101 spin_lock(&cluster
->refill_lock
);
1102 btrfs_return_cluster_to_free_space(block_group
, cluster
);
1103 spin_unlock(&cluster
->refill_lock
);
1105 btrfs_clear_treelog_bg(block_group
);
1106 btrfs_clear_data_reloc_bg(block_group
);
1108 path
= btrfs_alloc_path();
1115 * get the inode first so any iput calls done for the io_list
1116 * aren't the final iput (no unlinks allowed now)
1118 inode
= lookup_free_space_inode(block_group
, path
);
1120 mutex_lock(&trans
->transaction
->cache_write_mutex
);
1122 * Make sure our free space cache IO is done before removing the
1125 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1126 if (!list_empty(&block_group
->io_list
)) {
1127 list_del_init(&block_group
->io_list
);
1129 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
1131 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1132 btrfs_wait_cache_io(trans
, block_group
, path
);
1133 btrfs_put_block_group(block_group
);
1134 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1137 if (!list_empty(&block_group
->dirty_list
)) {
1138 list_del_init(&block_group
->dirty_list
);
1140 btrfs_put_block_group(block_group
);
1142 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1143 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
1145 ret
= btrfs_remove_free_space_inode(trans
, inode
, block_group
);
1149 write_lock(&fs_info
->block_group_cache_lock
);
1150 rb_erase_cached(&block_group
->cache_node
,
1151 &fs_info
->block_group_cache_tree
);
1152 RB_CLEAR_NODE(&block_group
->cache_node
);
1154 /* Once for the block groups rbtree */
1155 btrfs_put_block_group(block_group
);
1157 write_unlock(&fs_info
->block_group_cache_lock
);
1159 down_write(&block_group
->space_info
->groups_sem
);
1161 * we must use list_del_init so people can check to see if they
1162 * are still on the list after taking the semaphore
1164 list_del_init(&block_group
->list
);
1165 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
1166 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
1167 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
1168 clear_avail_alloc_bits(fs_info
, block_group
->flags
);
1170 up_write(&block_group
->space_info
->groups_sem
);
1171 clear_incompat_bg_bits(fs_info
, block_group
->flags
);
1177 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
1178 btrfs_wait_block_group_cache_done(block_group
);
1180 write_lock(&fs_info
->block_group_cache_lock
);
1181 caching_ctl
= btrfs_get_caching_control(block_group
);
1183 struct btrfs_caching_control
*ctl
;
1185 list_for_each_entry(ctl
, &fs_info
->caching_block_groups
, list
) {
1186 if (ctl
->block_group
== block_group
) {
1188 refcount_inc(&caching_ctl
->count
);
1194 list_del_init(&caching_ctl
->list
);
1195 write_unlock(&fs_info
->block_group_cache_lock
);
1198 /* Once for the caching bgs list and once for us. */
1199 btrfs_put_caching_control(caching_ctl
);
1200 btrfs_put_caching_control(caching_ctl
);
1203 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1204 WARN_ON(!list_empty(&block_group
->dirty_list
));
1205 WARN_ON(!list_empty(&block_group
->io_list
));
1206 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1208 btrfs_remove_free_space_cache(block_group
);
1210 spin_lock(&block_group
->space_info
->lock
);
1211 list_del_init(&block_group
->ro_list
);
1213 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
1214 WARN_ON(block_group
->space_info
->total_bytes
1215 < block_group
->length
);
1216 WARN_ON(block_group
->space_info
->bytes_readonly
1217 < block_group
->length
- block_group
->zone_unusable
);
1218 WARN_ON(block_group
->space_info
->bytes_zone_unusable
1219 < block_group
->zone_unusable
);
1220 WARN_ON(block_group
->space_info
->disk_total
1221 < block_group
->length
* factor
);
1223 block_group
->space_info
->total_bytes
-= block_group
->length
;
1224 block_group
->space_info
->bytes_readonly
-=
1225 (block_group
->length
- block_group
->zone_unusable
);
1226 btrfs_space_info_update_bytes_zone_unusable(fs_info
, block_group
->space_info
,
1227 -block_group
->zone_unusable
);
1228 block_group
->space_info
->disk_total
-= block_group
->length
* factor
;
1230 spin_unlock(&block_group
->space_info
->lock
);
1233 * Remove the free space for the block group from the free space tree
1234 * and the block group's item from the extent tree before marking the
1235 * block group as removed. This is to prevent races with tasks that
1236 * freeze and unfreeze a block group, this task and another task
1237 * allocating a new block group - the unfreeze task ends up removing
1238 * the block group's extent map before the task calling this function
1239 * deletes the block group item from the extent tree, allowing for
1240 * another task to attempt to create another block group with the same
1241 * item key (and failing with -EEXIST and a transaction abort).
1243 ret
= remove_block_group_free_space(trans
, block_group
);
1247 ret
= remove_block_group_item(trans
, path
, block_group
);
1251 spin_lock(&block_group
->lock
);
1252 set_bit(BLOCK_GROUP_FLAG_REMOVED
, &block_group
->runtime_flags
);
1255 * At this point trimming or scrub can't start on this block group,
1256 * because we removed the block group from the rbtree
1257 * fs_info->block_group_cache_tree so no one can't find it anymore and
1258 * even if someone already got this block group before we removed it
1259 * from the rbtree, they have already incremented block_group->frozen -
1260 * if they didn't, for the trimming case they won't find any free space
1261 * entries because we already removed them all when we called
1262 * btrfs_remove_free_space_cache().
1264 * And we must not remove the chunk map from the fs_info->mapping_tree
1265 * to prevent the same logical address range and physical device space
1266 * ranges from being reused for a new block group. This is needed to
1267 * avoid races with trimming and scrub.
1269 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1270 * completely transactionless, so while it is trimming a range the
1271 * currently running transaction might finish and a new one start,
1272 * allowing for new block groups to be created that can reuse the same
1273 * physical device locations unless we take this special care.
1275 * There may also be an implicit trim operation if the file system
1276 * is mounted with -odiscard. The same protections must remain
1277 * in place until the extents have been discarded completely when
1278 * the transaction commit has completed.
1280 remove_map
= (atomic_read(&block_group
->frozen
) == 0);
1281 spin_unlock(&block_group
->lock
);
1284 btrfs_remove_chunk_map(fs_info
, map
);
1287 /* Once for the lookup reference */
1288 btrfs_put_block_group(block_group
);
1290 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info
);
1291 btrfs_free_path(path
);
1295 struct btrfs_trans_handle
*btrfs_start_trans_remove_block_group(
1296 struct btrfs_fs_info
*fs_info
, const u64 chunk_offset
)
1298 struct btrfs_root
*root
= btrfs_block_group_root(fs_info
);
1299 struct btrfs_chunk_map
*map
;
1300 unsigned int num_items
;
1302 map
= btrfs_find_chunk_map(fs_info
, chunk_offset
, 1);
1303 ASSERT(map
!= NULL
);
1304 ASSERT(map
->start
== chunk_offset
);
1307 * We need to reserve 3 + N units from the metadata space info in order
1308 * to remove a block group (done at btrfs_remove_chunk() and at
1309 * btrfs_remove_block_group()), which are used for:
1311 * 1 unit for adding the free space inode's orphan (located in the tree
1313 * 1 unit for deleting the block group item (located in the extent
1315 * 1 unit for deleting the free space item (located in tree of tree
1317 * N units for deleting N device extent items corresponding to each
1318 * stripe (located in the device tree).
1320 * In order to remove a block group we also need to reserve units in the
1321 * system space info in order to update the chunk tree (update one or
1322 * more device items and remove one chunk item), but this is done at
1323 * btrfs_remove_chunk() through a call to check_system_chunk().
1325 num_items
= 3 + map
->num_stripes
;
1326 btrfs_free_chunk_map(map
);
1328 return btrfs_start_transaction_fallback_global_rsv(root
, num_items
);
1332 * Mark block group @cache read-only, so later write won't happen to block
1335 * If @force is not set, this function will only mark the block group readonly
1336 * if we have enough free space (1M) in other metadata/system block groups.
1337 * If @force is not set, this function will mark the block group readonly
1338 * without checking free space.
1340 * NOTE: This function doesn't care if other block groups can contain all the
1341 * data in this block group. That check should be done by relocation routine,
1342 * not this function.
1344 static int inc_block_group_ro(struct btrfs_block_group
*cache
, int force
)
1346 struct btrfs_space_info
*sinfo
= cache
->space_info
;
1350 spin_lock(&sinfo
->lock
);
1351 spin_lock(&cache
->lock
);
1353 if (cache
->swap_extents
) {
1364 num_bytes
= cache
->length
- cache
->reserved
- cache
->pinned
-
1365 cache
->bytes_super
- cache
->zone_unusable
- cache
->used
;
1368 * Data never overcommits, even in mixed mode, so do just the straight
1369 * check of left over space in how much we have allocated.
1373 } else if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
) {
1374 u64 sinfo_used
= btrfs_space_info_used(sinfo
, true);
1377 * Here we make sure if we mark this bg RO, we still have enough
1378 * free space as buffer.
1380 if (sinfo_used
+ num_bytes
<= sinfo
->total_bytes
)
1384 * We overcommit metadata, so we need to do the
1385 * btrfs_can_overcommit check here, and we need to pass in
1386 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1387 * leeway to allow us to mark this block group as read only.
1389 if (btrfs_can_overcommit(cache
->fs_info
, sinfo
, num_bytes
,
1390 BTRFS_RESERVE_NO_FLUSH
))
1395 sinfo
->bytes_readonly
+= num_bytes
;
1396 if (btrfs_is_zoned(cache
->fs_info
)) {
1397 /* Migrate zone_unusable bytes to readonly */
1398 sinfo
->bytes_readonly
+= cache
->zone_unusable
;
1399 btrfs_space_info_update_bytes_zone_unusable(cache
->fs_info
, sinfo
,
1400 -cache
->zone_unusable
);
1401 cache
->zone_unusable
= 0;
1404 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
1407 spin_unlock(&cache
->lock
);
1408 spin_unlock(&sinfo
->lock
);
1409 if (ret
== -ENOSPC
&& btrfs_test_opt(cache
->fs_info
, ENOSPC_DEBUG
)) {
1410 btrfs_info(cache
->fs_info
,
1411 "unable to make block group %llu ro", cache
->start
);
1412 btrfs_dump_space_info(cache
->fs_info
, cache
->space_info
, 0, 0);
1417 static bool clean_pinned_extents(struct btrfs_trans_handle
*trans
,
1418 const struct btrfs_block_group
*bg
)
1420 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1421 struct btrfs_transaction
*prev_trans
= NULL
;
1422 const u64 start
= bg
->start
;
1423 const u64 end
= start
+ bg
->length
- 1;
1426 spin_lock(&fs_info
->trans_lock
);
1427 if (trans
->transaction
->list
.prev
!= &fs_info
->trans_list
) {
1428 prev_trans
= list_last_entry(&trans
->transaction
->list
,
1429 struct btrfs_transaction
, list
);
1430 refcount_inc(&prev_trans
->use_count
);
1432 spin_unlock(&fs_info
->trans_lock
);
1435 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1436 * btrfs_finish_extent_commit(). If we are at transaction N, another
1437 * task might be running finish_extent_commit() for the previous
1438 * transaction N - 1, and have seen a range belonging to the block
1439 * group in pinned_extents before we were able to clear the whole block
1440 * group range from pinned_extents. This means that task can lookup for
1441 * the block group after we unpinned it from pinned_extents and removed
1442 * it, leading to an error at unpin_extent_range().
1444 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
1446 ret
= clear_extent_bits(&prev_trans
->pinned_extents
, start
, end
,
1452 ret
= clear_extent_bits(&trans
->transaction
->pinned_extents
, start
, end
,
1455 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
1457 btrfs_put_transaction(prev_trans
);
1463 * Process the unused_bgs list and remove any that don't have any allocated
1464 * space inside of them.
1466 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
1468 LIST_HEAD(retry_list
);
1469 struct btrfs_block_group
*block_group
;
1470 struct btrfs_space_info
*space_info
;
1471 struct btrfs_trans_handle
*trans
;
1472 const bool async_trim_enabled
= btrfs_test_opt(fs_info
, DISCARD_ASYNC
);
1475 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1478 if (btrfs_fs_closing(fs_info
))
1482 * Long running balances can keep us blocked here for eternity, so
1483 * simply skip deletion if we're unable to get the mutex.
1485 if (!mutex_trylock(&fs_info
->reclaim_bgs_lock
))
1488 spin_lock(&fs_info
->unused_bgs_lock
);
1489 while (!list_empty(&fs_info
->unused_bgs
)) {
1493 block_group
= list_first_entry(&fs_info
->unused_bgs
,
1494 struct btrfs_block_group
,
1496 list_del_init(&block_group
->bg_list
);
1498 space_info
= block_group
->space_info
;
1500 if (ret
|| btrfs_mixed_space_info(space_info
)) {
1501 btrfs_put_block_group(block_group
);
1504 spin_unlock(&fs_info
->unused_bgs_lock
);
1506 btrfs_discard_cancel_work(&fs_info
->discard_ctl
, block_group
);
1508 /* Don't want to race with allocators so take the groups_sem */
1509 down_write(&space_info
->groups_sem
);
1512 * Async discard moves the final block group discard to be prior
1513 * to the unused_bgs code path. Therefore, if it's not fully
1514 * trimmed, punt it back to the async discard lists.
1516 if (btrfs_test_opt(fs_info
, DISCARD_ASYNC
) &&
1517 !btrfs_is_free_space_trimmed(block_group
)) {
1518 trace_btrfs_skip_unused_block_group(block_group
);
1519 up_write(&space_info
->groups_sem
);
1520 /* Requeue if we failed because of async discard */
1521 btrfs_discard_queue_work(&fs_info
->discard_ctl
,
1526 spin_lock(&space_info
->lock
);
1527 spin_lock(&block_group
->lock
);
1528 if (btrfs_is_block_group_used(block_group
) || block_group
->ro
||
1529 list_is_singular(&block_group
->list
)) {
1531 * We want to bail if we made new allocations or have
1532 * outstanding allocations in this block group. We do
1533 * the ro check in case balance is currently acting on
1536 * Also bail out if this is the only block group for its
1537 * type, because otherwise we would lose profile
1538 * information from fs_info->avail_*_alloc_bits and the
1539 * next block group of this type would be created with a
1540 * "single" profile (even if we're in a raid fs) because
1541 * fs_info->avail_*_alloc_bits would be 0.
1543 trace_btrfs_skip_unused_block_group(block_group
);
1544 spin_unlock(&block_group
->lock
);
1545 spin_unlock(&space_info
->lock
);
1546 up_write(&space_info
->groups_sem
);
1551 * The block group may be unused but there may be space reserved
1552 * accounting with the existence of that block group, that is,
1553 * space_info->bytes_may_use was incremented by a task but no
1554 * space was yet allocated from the block group by the task.
1555 * That space may or may not be allocated, as we are generally
1556 * pessimistic about space reservation for metadata as well as
1557 * for data when using compression (as we reserve space based on
1558 * the worst case, when data can't be compressed, and before
1559 * actually attempting compression, before starting writeback).
1561 * So check if the total space of the space_info minus the size
1562 * of this block group is less than the used space of the
1563 * space_info - if that's the case, then it means we have tasks
1564 * that might be relying on the block group in order to allocate
1565 * extents, and add back the block group to the unused list when
1566 * we finish, so that we retry later in case no tasks ended up
1567 * needing to allocate extents from the block group.
1569 used
= btrfs_space_info_used(space_info
, true);
1570 if (space_info
->total_bytes
- block_group
->length
< used
&&
1571 block_group
->zone_unusable
< block_group
->length
) {
1573 * Add a reference for the list, compensate for the ref
1574 * drop under the "next" label for the
1575 * fs_info->unused_bgs list.
1577 btrfs_get_block_group(block_group
);
1578 list_add_tail(&block_group
->bg_list
, &retry_list
);
1580 trace_btrfs_skip_unused_block_group(block_group
);
1581 spin_unlock(&block_group
->lock
);
1582 spin_unlock(&space_info
->lock
);
1583 up_write(&space_info
->groups_sem
);
1587 spin_unlock(&block_group
->lock
);
1588 spin_unlock(&space_info
->lock
);
1590 /* We don't want to force the issue, only flip if it's ok. */
1591 ret
= inc_block_group_ro(block_group
, 0);
1592 up_write(&space_info
->groups_sem
);
1598 ret
= btrfs_zone_finish(block_group
);
1600 btrfs_dec_block_group_ro(block_group
);
1607 * Want to do this before we do anything else so we can recover
1608 * properly if we fail to join the transaction.
1610 trans
= btrfs_start_trans_remove_block_group(fs_info
,
1611 block_group
->start
);
1612 if (IS_ERR(trans
)) {
1613 btrfs_dec_block_group_ro(block_group
);
1614 ret
= PTR_ERR(trans
);
1619 * We could have pending pinned extents for this block group,
1620 * just delete them, we don't care about them anymore.
1622 if (!clean_pinned_extents(trans
, block_group
)) {
1623 btrfs_dec_block_group_ro(block_group
);
1628 * At this point, the block_group is read only and should fail
1629 * new allocations. However, btrfs_finish_extent_commit() can
1630 * cause this block_group to be placed back on the discard
1631 * lists because now the block_group isn't fully discarded.
1632 * Bail here and try again later after discarding everything.
1634 spin_lock(&fs_info
->discard_ctl
.lock
);
1635 if (!list_empty(&block_group
->discard_list
)) {
1636 spin_unlock(&fs_info
->discard_ctl
.lock
);
1637 btrfs_dec_block_group_ro(block_group
);
1638 btrfs_discard_queue_work(&fs_info
->discard_ctl
,
1642 spin_unlock(&fs_info
->discard_ctl
.lock
);
1644 /* Reset pinned so btrfs_put_block_group doesn't complain */
1645 spin_lock(&space_info
->lock
);
1646 spin_lock(&block_group
->lock
);
1648 btrfs_space_info_update_bytes_pinned(fs_info
, space_info
,
1649 -block_group
->pinned
);
1650 space_info
->bytes_readonly
+= block_group
->pinned
;
1651 block_group
->pinned
= 0;
1653 spin_unlock(&block_group
->lock
);
1654 spin_unlock(&space_info
->lock
);
1657 * The normal path here is an unused block group is passed here,
1658 * then trimming is handled in the transaction commit path.
1659 * Async discard interposes before this to do the trimming
1660 * before coming down the unused block group path as trimming
1661 * will no longer be done later in the transaction commit path.
1663 if (!async_trim_enabled
&& btrfs_test_opt(fs_info
, DISCARD_ASYNC
))
1667 * DISCARD can flip during remount. On zoned filesystems, we
1668 * need to reset sequential-required zones.
1670 trimming
= btrfs_test_opt(fs_info
, DISCARD_SYNC
) ||
1671 btrfs_is_zoned(fs_info
);
1673 /* Implicit trim during transaction commit. */
1675 btrfs_freeze_block_group(block_group
);
1678 * Btrfs_remove_chunk will abort the transaction if things go
1681 ret
= btrfs_remove_chunk(trans
, block_group
->start
);
1685 btrfs_unfreeze_block_group(block_group
);
1690 * If we're not mounted with -odiscard, we can just forget
1691 * about this block group. Otherwise we'll need to wait
1692 * until transaction commit to do the actual discard.
1695 spin_lock(&fs_info
->unused_bgs_lock
);
1697 * A concurrent scrub might have added us to the list
1698 * fs_info->unused_bgs, so use a list_move operation
1699 * to add the block group to the deleted_bgs list.
1701 list_move(&block_group
->bg_list
,
1702 &trans
->transaction
->deleted_bgs
);
1703 spin_unlock(&fs_info
->unused_bgs_lock
);
1704 btrfs_get_block_group(block_group
);
1707 btrfs_end_transaction(trans
);
1709 btrfs_put_block_group(block_group
);
1710 spin_lock(&fs_info
->unused_bgs_lock
);
1712 list_splice_tail(&retry_list
, &fs_info
->unused_bgs
);
1713 spin_unlock(&fs_info
->unused_bgs_lock
);
1714 mutex_unlock(&fs_info
->reclaim_bgs_lock
);
1718 btrfs_end_transaction(trans
);
1719 spin_lock(&fs_info
->unused_bgs_lock
);
1720 list_splice_tail(&retry_list
, &fs_info
->unused_bgs
);
1721 spin_unlock(&fs_info
->unused_bgs_lock
);
1722 mutex_unlock(&fs_info
->reclaim_bgs_lock
);
1723 btrfs_put_block_group(block_group
);
1724 btrfs_discard_punt_unused_bgs_list(fs_info
);
1727 void btrfs_mark_bg_unused(struct btrfs_block_group
*bg
)
1729 struct btrfs_fs_info
*fs_info
= bg
->fs_info
;
1731 spin_lock(&fs_info
->unused_bgs_lock
);
1732 if (list_empty(&bg
->bg_list
)) {
1733 btrfs_get_block_group(bg
);
1734 trace_btrfs_add_unused_block_group(bg
);
1735 list_add_tail(&bg
->bg_list
, &fs_info
->unused_bgs
);
1736 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW
, &bg
->runtime_flags
)) {
1737 /* Pull out the block group from the reclaim_bgs list. */
1738 trace_btrfs_add_unused_block_group(bg
);
1739 list_move_tail(&bg
->bg_list
, &fs_info
->unused_bgs
);
1741 spin_unlock(&fs_info
->unused_bgs_lock
);
1745 * We want block groups with a low number of used bytes to be in the beginning
1746 * of the list, so they will get reclaimed first.
1748 static int reclaim_bgs_cmp(void *unused
, const struct list_head
*a
,
1749 const struct list_head
*b
)
1751 const struct btrfs_block_group
*bg1
, *bg2
;
1753 bg1
= list_entry(a
, struct btrfs_block_group
, bg_list
);
1754 bg2
= list_entry(b
, struct btrfs_block_group
, bg_list
);
1756 return bg1
->used
> bg2
->used
;
1759 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info
*fs_info
)
1761 if (btrfs_is_zoned(fs_info
))
1762 return btrfs_zoned_should_reclaim(fs_info
);
1766 static bool should_reclaim_block_group(const struct btrfs_block_group
*bg
, u64 bytes_freed
)
1768 const int thresh_pct
= btrfs_calc_reclaim_threshold(bg
->space_info
);
1769 u64 thresh_bytes
= mult_perc(bg
->length
, thresh_pct
);
1770 const u64 new_val
= bg
->used
;
1771 const u64 old_val
= new_val
+ bytes_freed
;
1773 if (thresh_bytes
== 0)
1777 * If we were below the threshold before don't reclaim, we are likely a
1778 * brand new block group and we don't want to relocate new block groups.
1780 if (old_val
< thresh_bytes
)
1782 if (new_val
>= thresh_bytes
)
1787 void btrfs_reclaim_bgs_work(struct work_struct
*work
)
1789 struct btrfs_fs_info
*fs_info
=
1790 container_of(work
, struct btrfs_fs_info
, reclaim_bgs_work
);
1791 struct btrfs_block_group
*bg
;
1792 struct btrfs_space_info
*space_info
;
1793 LIST_HEAD(retry_list
);
1795 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1798 if (btrfs_fs_closing(fs_info
))
1801 if (!btrfs_should_reclaim(fs_info
))
1804 sb_start_write(fs_info
->sb
);
1806 if (!btrfs_exclop_start(fs_info
, BTRFS_EXCLOP_BALANCE
)) {
1807 sb_end_write(fs_info
->sb
);
1812 * Long running balances can keep us blocked here for eternity, so
1813 * simply skip reclaim if we're unable to get the mutex.
1815 if (!mutex_trylock(&fs_info
->reclaim_bgs_lock
)) {
1816 btrfs_exclop_finish(fs_info
);
1817 sb_end_write(fs_info
->sb
);
1821 spin_lock(&fs_info
->unused_bgs_lock
);
1823 * Sort happens under lock because we can't simply splice it and sort.
1824 * The block groups might still be in use and reachable via bg_list,
1825 * and their presence in the reclaim_bgs list must be preserved.
1827 list_sort(NULL
, &fs_info
->reclaim_bgs
, reclaim_bgs_cmp
);
1828 while (!list_empty(&fs_info
->reclaim_bgs
)) {
1833 bg
= list_first_entry(&fs_info
->reclaim_bgs
,
1834 struct btrfs_block_group
,
1836 list_del_init(&bg
->bg_list
);
1838 space_info
= bg
->space_info
;
1839 spin_unlock(&fs_info
->unused_bgs_lock
);
1841 /* Don't race with allocators so take the groups_sem */
1842 down_write(&space_info
->groups_sem
);
1844 spin_lock(&space_info
->lock
);
1845 spin_lock(&bg
->lock
);
1846 if (bg
->reserved
|| bg
->pinned
|| bg
->ro
) {
1848 * We want to bail if we made new allocations or have
1849 * outstanding allocations in this block group. We do
1850 * the ro check in case balance is currently acting on
1853 spin_unlock(&bg
->lock
);
1854 spin_unlock(&space_info
->lock
);
1855 up_write(&space_info
->groups_sem
);
1858 if (bg
->used
== 0) {
1860 * It is possible that we trigger relocation on a block
1861 * group as its extents are deleted and it first goes
1862 * below the threshold, then shortly after goes empty.
1864 * In this case, relocating it does delete it, but has
1865 * some overhead in relocation specific metadata, looking
1866 * for the non-existent extents and running some extra
1867 * transactions, which we can avoid by using one of the
1868 * other mechanisms for dealing with empty block groups.
1870 if (!btrfs_test_opt(fs_info
, DISCARD_ASYNC
))
1871 btrfs_mark_bg_unused(bg
);
1872 spin_unlock(&bg
->lock
);
1873 spin_unlock(&space_info
->lock
);
1874 up_write(&space_info
->groups_sem
);
1879 * The block group might no longer meet the reclaim condition by
1880 * the time we get around to reclaiming it, so to avoid
1881 * reclaiming overly full block_groups, skip reclaiming them.
1883 * Since the decision making process also depends on the amount
1884 * being freed, pass in a fake giant value to skip that extra
1885 * check, which is more meaningful when adding to the list in
1888 if (!should_reclaim_block_group(bg
, bg
->length
)) {
1889 spin_unlock(&bg
->lock
);
1890 spin_unlock(&space_info
->lock
);
1891 up_write(&space_info
->groups_sem
);
1894 spin_unlock(&bg
->lock
);
1895 spin_unlock(&space_info
->lock
);
1898 * Get out fast, in case we're read-only or unmounting the
1899 * filesystem. It is OK to drop block groups from the list even
1900 * for the read-only case. As we did sb_start_write(),
1901 * "mount -o remount,ro" won't happen and read-only filesystem
1902 * means it is forced read-only due to a fatal error. So, it
1903 * never gets back to read-write to let us reclaim again.
1905 if (btrfs_need_cleaner_sleep(fs_info
)) {
1906 up_write(&space_info
->groups_sem
);
1911 * Cache the zone_unusable value before turning the block group
1912 * to read only. As soon as the blog group is read only it's
1913 * zone_unusable value gets moved to the block group's read-only
1914 * bytes and isn't available for calculations anymore.
1916 zone_unusable
= bg
->zone_unusable
;
1917 ret
= inc_block_group_ro(bg
, 0);
1918 up_write(&space_info
->groups_sem
);
1923 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1925 div64_u64(bg
->used
* 100, bg
->length
),
1926 div64_u64(zone_unusable
* 100, bg
->length
));
1927 trace_btrfs_reclaim_block_group(bg
);
1928 reclaimed
= bg
->used
;
1929 ret
= btrfs_relocate_chunk(fs_info
, bg
->start
);
1931 btrfs_dec_block_group_ro(bg
);
1932 btrfs_err(fs_info
, "error relocating chunk %llu",
1935 spin_lock(&space_info
->lock
);
1936 space_info
->reclaim_errors
++;
1937 if (READ_ONCE(space_info
->periodic_reclaim
))
1938 space_info
->periodic_reclaim_ready
= false;
1939 spin_unlock(&space_info
->lock
);
1941 spin_lock(&space_info
->lock
);
1942 space_info
->reclaim_count
++;
1943 space_info
->reclaim_bytes
+= reclaimed
;
1944 spin_unlock(&space_info
->lock
);
1947 if (ret
&& !READ_ONCE(space_info
->periodic_reclaim
)) {
1948 /* Refcount held by the reclaim_bgs list after splice. */
1949 spin_lock(&fs_info
->unused_bgs_lock
);
1951 * This block group might be added to the unused list
1952 * during the above process. Move it back to the
1953 * reclaim list otherwise.
1955 if (list_empty(&bg
->bg_list
)) {
1956 btrfs_get_block_group(bg
);
1957 list_add_tail(&bg
->bg_list
, &retry_list
);
1959 spin_unlock(&fs_info
->unused_bgs_lock
);
1961 btrfs_put_block_group(bg
);
1963 mutex_unlock(&fs_info
->reclaim_bgs_lock
);
1965 * Reclaiming all the block groups in the list can take really
1966 * long. Prioritize cleaning up unused block groups.
1968 btrfs_delete_unused_bgs(fs_info
);
1970 * If we are interrupted by a balance, we can just bail out. The
1971 * cleaner thread restart again if necessary.
1973 if (!mutex_trylock(&fs_info
->reclaim_bgs_lock
))
1975 spin_lock(&fs_info
->unused_bgs_lock
);
1977 spin_unlock(&fs_info
->unused_bgs_lock
);
1978 mutex_unlock(&fs_info
->reclaim_bgs_lock
);
1980 spin_lock(&fs_info
->unused_bgs_lock
);
1981 list_splice_tail(&retry_list
, &fs_info
->reclaim_bgs
);
1982 spin_unlock(&fs_info
->unused_bgs_lock
);
1983 btrfs_exclop_finish(fs_info
);
1984 sb_end_write(fs_info
->sb
);
1987 void btrfs_reclaim_bgs(struct btrfs_fs_info
*fs_info
)
1989 btrfs_reclaim_sweep(fs_info
);
1990 spin_lock(&fs_info
->unused_bgs_lock
);
1991 if (!list_empty(&fs_info
->reclaim_bgs
))
1992 queue_work(system_unbound_wq
, &fs_info
->reclaim_bgs_work
);
1993 spin_unlock(&fs_info
->unused_bgs_lock
);
1996 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group
*bg
)
1998 struct btrfs_fs_info
*fs_info
= bg
->fs_info
;
2000 spin_lock(&fs_info
->unused_bgs_lock
);
2001 if (list_empty(&bg
->bg_list
)) {
2002 btrfs_get_block_group(bg
);
2003 trace_btrfs_add_reclaim_block_group(bg
);
2004 list_add_tail(&bg
->bg_list
, &fs_info
->reclaim_bgs
);
2006 spin_unlock(&fs_info
->unused_bgs_lock
);
2009 static int read_bg_from_eb(struct btrfs_fs_info
*fs_info
, const struct btrfs_key
*key
,
2010 const struct btrfs_path
*path
)
2012 struct btrfs_chunk_map
*map
;
2013 struct btrfs_block_group_item bg
;
2014 struct extent_buffer
*leaf
;
2019 slot
= path
->slots
[0];
2020 leaf
= path
->nodes
[0];
2022 map
= btrfs_find_chunk_map(fs_info
, key
->objectid
, key
->offset
);
2025 "logical %llu len %llu found bg but no related chunk",
2026 key
->objectid
, key
->offset
);
2030 if (map
->start
!= key
->objectid
|| map
->chunk_len
!= key
->offset
) {
2032 "block group %llu len %llu mismatch with chunk %llu len %llu",
2033 key
->objectid
, key
->offset
, map
->start
, map
->chunk_len
);
2038 read_extent_buffer(leaf
, &bg
, btrfs_item_ptr_offset(leaf
, slot
),
2040 flags
= btrfs_stack_block_group_flags(&bg
) &
2041 BTRFS_BLOCK_GROUP_TYPE_MASK
;
2043 if (flags
!= (map
->type
& BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
2045 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2046 key
->objectid
, key
->offset
, flags
,
2047 (BTRFS_BLOCK_GROUP_TYPE_MASK
& map
->type
));
2052 btrfs_free_chunk_map(map
);
2056 static int find_first_block_group(struct btrfs_fs_info
*fs_info
,
2057 struct btrfs_path
*path
,
2058 const struct btrfs_key
*key
)
2060 struct btrfs_root
*root
= btrfs_block_group_root(fs_info
);
2062 struct btrfs_key found_key
;
2064 btrfs_for_each_slot(root
, key
, &found_key
, path
, ret
) {
2065 if (found_key
.objectid
>= key
->objectid
&&
2066 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
2067 return read_bg_from_eb(fs_info
, &found_key
, path
);
2073 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
2075 u64 extra_flags
= chunk_to_extended(flags
) &
2076 BTRFS_EXTENDED_PROFILE_MASK
;
2078 write_seqlock(&fs_info
->profiles_lock
);
2079 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2080 fs_info
->avail_data_alloc_bits
|= extra_flags
;
2081 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
2082 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
2083 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2084 fs_info
->avail_system_alloc_bits
|= extra_flags
;
2085 write_sequnlock(&fs_info
->profiles_lock
);
2089 * Map a physical disk address to a list of logical addresses.
2091 * @fs_info: the filesystem
2092 * @chunk_start: logical address of block group
2093 * @physical: physical address to map to logical addresses
2094 * @logical: return array of logical addresses which map to @physical
2095 * @naddrs: length of @logical
2096 * @stripe_len: size of IO stripe for the given block group
2098 * Maps a particular @physical disk address to a list of @logical addresses.
2099 * Used primarily to exclude those portions of a block group that contain super
2102 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
, u64 chunk_start
,
2103 u64 physical
, u64
**logical
, int *naddrs
, int *stripe_len
)
2105 struct btrfs_chunk_map
*map
;
2108 u64 data_stripe_length
;
2113 map
= btrfs_get_chunk_map(fs_info
, chunk_start
, 1);
2117 data_stripe_length
= map
->stripe_size
;
2118 io_stripe_size
= BTRFS_STRIPE_LEN
;
2119 chunk_start
= map
->start
;
2121 /* For RAID5/6 adjust to a full IO stripe length */
2122 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
2123 io_stripe_size
= btrfs_stripe_nr_to_offset(nr_data_stripes(map
));
2125 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
2131 for (i
= 0; i
< map
->num_stripes
; i
++) {
2132 bool already_inserted
= false;
2137 if (!in_range(physical
, map
->stripes
[i
].physical
,
2138 data_stripe_length
))
2141 stripe_nr
= (physical
- map
->stripes
[i
].physical
) >>
2142 BTRFS_STRIPE_LEN_SHIFT
;
2143 offset
= (physical
- map
->stripes
[i
].physical
) &
2144 BTRFS_STRIPE_LEN_MASK
;
2146 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
2147 BTRFS_BLOCK_GROUP_RAID10
))
2148 stripe_nr
= div_u64(stripe_nr
* map
->num_stripes
+ i
,
2151 * The remaining case would be for RAID56, multiply by
2152 * nr_data_stripes(). Alternatively, just use rmap_len below
2153 * instead of map->stripe_len
2155 bytenr
= chunk_start
+ stripe_nr
* io_stripe_size
+ offset
;
2157 /* Ensure we don't add duplicate addresses */
2158 for (j
= 0; j
< nr
; j
++) {
2159 if (buf
[j
] == bytenr
) {
2160 already_inserted
= true;
2165 if (!already_inserted
)
2171 *stripe_len
= io_stripe_size
;
2173 btrfs_free_chunk_map(map
);
2177 static int exclude_super_stripes(struct btrfs_block_group
*cache
)
2179 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
2180 const bool zoned
= btrfs_is_zoned(fs_info
);
2186 if (cache
->start
< BTRFS_SUPER_INFO_OFFSET
) {
2187 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->start
;
2188 cache
->bytes_super
+= stripe_len
;
2189 ret
= set_extent_bit(&fs_info
->excluded_extents
, cache
->start
,
2190 cache
->start
+ stripe_len
- 1,
2191 EXTENT_UPTODATE
, NULL
);
2196 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
2197 bytenr
= btrfs_sb_offset(i
);
2198 ret
= btrfs_rmap_block(fs_info
, cache
->start
,
2199 bytenr
, &logical
, &nr
, &stripe_len
);
2203 /* Shouldn't have super stripes in sequential zones */
2207 "zoned: block group %llu must not contain super block",
2213 u64 len
= min_t(u64
, stripe_len
,
2214 cache
->start
+ cache
->length
- logical
[nr
]);
2216 cache
->bytes_super
+= len
;
2217 ret
= set_extent_bit(&fs_info
->excluded_extents
, logical
[nr
],
2218 logical
[nr
] + len
- 1,
2219 EXTENT_UPTODATE
, NULL
);
2231 static struct btrfs_block_group
*btrfs_create_block_group_cache(
2232 struct btrfs_fs_info
*fs_info
, u64 start
)
2234 struct btrfs_block_group
*cache
;
2236 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
2240 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
2242 if (!cache
->free_space_ctl
) {
2247 cache
->start
= start
;
2249 cache
->fs_info
= fs_info
;
2250 cache
->full_stripe_len
= btrfs_full_stripe_len(fs_info
, start
);
2252 cache
->discard_index
= BTRFS_DISCARD_INDEX_UNUSED
;
2254 refcount_set(&cache
->refs
, 1);
2255 spin_lock_init(&cache
->lock
);
2256 init_rwsem(&cache
->data_rwsem
);
2257 INIT_LIST_HEAD(&cache
->list
);
2258 INIT_LIST_HEAD(&cache
->cluster_list
);
2259 INIT_LIST_HEAD(&cache
->bg_list
);
2260 INIT_LIST_HEAD(&cache
->ro_list
);
2261 INIT_LIST_HEAD(&cache
->discard_list
);
2262 INIT_LIST_HEAD(&cache
->dirty_list
);
2263 INIT_LIST_HEAD(&cache
->io_list
);
2264 INIT_LIST_HEAD(&cache
->active_bg_list
);
2265 btrfs_init_free_space_ctl(cache
, cache
->free_space_ctl
);
2266 atomic_set(&cache
->frozen
, 0);
2267 mutex_init(&cache
->free_space_lock
);
2273 * Iterate all chunks and verify that each of them has the corresponding block
2276 static int check_chunk_block_group_mappings(struct btrfs_fs_info
*fs_info
)
2282 struct btrfs_chunk_map
*map
;
2283 struct btrfs_block_group
*bg
;
2286 * btrfs_find_chunk_map() will return the first chunk map
2287 * intersecting the range, so setting @length to 1 is enough to
2288 * get the first chunk.
2290 map
= btrfs_find_chunk_map(fs_info
, start
, 1);
2294 bg
= btrfs_lookup_block_group(fs_info
, map
->start
);
2297 "chunk start=%llu len=%llu doesn't have corresponding block group",
2298 map
->start
, map
->chunk_len
);
2300 btrfs_free_chunk_map(map
);
2303 if (bg
->start
!= map
->start
|| bg
->length
!= map
->chunk_len
||
2304 (bg
->flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
) !=
2305 (map
->type
& BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
2307 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2308 map
->start
, map
->chunk_len
,
2309 map
->type
& BTRFS_BLOCK_GROUP_TYPE_MASK
,
2310 bg
->start
, bg
->length
,
2311 bg
->flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
);
2313 btrfs_free_chunk_map(map
);
2314 btrfs_put_block_group(bg
);
2317 start
= map
->start
+ map
->chunk_len
;
2318 btrfs_free_chunk_map(map
);
2319 btrfs_put_block_group(bg
);
2324 static int read_one_block_group(struct btrfs_fs_info
*info
,
2325 struct btrfs_block_group_item
*bgi
,
2326 const struct btrfs_key
*key
,
2329 struct btrfs_block_group
*cache
;
2330 const bool mixed
= btrfs_fs_incompat(info
, MIXED_GROUPS
);
2333 ASSERT(key
->type
== BTRFS_BLOCK_GROUP_ITEM_KEY
);
2335 cache
= btrfs_create_block_group_cache(info
, key
->objectid
);
2339 cache
->length
= key
->offset
;
2340 cache
->used
= btrfs_stack_block_group_used(bgi
);
2341 cache
->commit_used
= cache
->used
;
2342 cache
->flags
= btrfs_stack_block_group_flags(bgi
);
2343 cache
->global_root_id
= btrfs_stack_block_group_chunk_objectid(bgi
);
2345 set_free_space_tree_thresholds(cache
);
2349 * When we mount with old space cache, we need to
2350 * set BTRFS_DC_CLEAR and set dirty flag.
2352 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2353 * truncate the old free space cache inode and
2355 * b) Setting 'dirty flag' makes sure that we flush
2356 * the new space cache info onto disk.
2358 if (btrfs_test_opt(info
, SPACE_CACHE
))
2359 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
2361 if (!mixed
&& ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
2362 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
2364 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2370 ret
= btrfs_load_block_group_zone_info(cache
, false);
2372 btrfs_err(info
, "zoned: failed to load zone info of bg %llu",
2378 * We need to exclude the super stripes now so that the space info has
2379 * super bytes accounted for, otherwise we'll think we have more space
2380 * than we actually do.
2382 ret
= exclude_super_stripes(cache
);
2384 /* We may have excluded something, so call this just in case. */
2385 btrfs_free_excluded_extents(cache
);
2390 * For zoned filesystem, space after the allocation offset is the only
2391 * free space for a block group. So, we don't need any caching work.
2392 * btrfs_calc_zone_unusable() will set the amount of free space and
2393 * zone_unusable space.
2395 * For regular filesystem, check for two cases, either we are full, and
2396 * therefore don't need to bother with the caching work since we won't
2397 * find any space, or we are empty, and we can just add all the space
2398 * in and be done with it. This saves us _a_lot_ of time, particularly
2401 if (btrfs_is_zoned(info
)) {
2402 btrfs_calc_zone_unusable(cache
);
2403 /* Should not have any excluded extents. Just in case, though. */
2404 btrfs_free_excluded_extents(cache
);
2405 } else if (cache
->length
== cache
->used
) {
2406 cache
->cached
= BTRFS_CACHE_FINISHED
;
2407 btrfs_free_excluded_extents(cache
);
2408 } else if (cache
->used
== 0) {
2409 cache
->cached
= BTRFS_CACHE_FINISHED
;
2410 ret
= btrfs_add_new_free_space(cache
, cache
->start
,
2411 cache
->start
+ cache
->length
, NULL
);
2412 btrfs_free_excluded_extents(cache
);
2417 ret
= btrfs_add_block_group_cache(info
, cache
);
2419 btrfs_remove_free_space_cache(cache
);
2422 trace_btrfs_add_block_group(info
, cache
, 0);
2423 btrfs_add_bg_to_space_info(info
, cache
);
2425 set_avail_alloc_bits(info
, cache
->flags
);
2426 if (btrfs_chunk_writeable(info
, cache
->start
)) {
2427 if (cache
->used
== 0) {
2428 ASSERT(list_empty(&cache
->bg_list
));
2429 if (btrfs_test_opt(info
, DISCARD_ASYNC
))
2430 btrfs_discard_queue_work(&info
->discard_ctl
, cache
);
2432 btrfs_mark_bg_unused(cache
);
2435 inc_block_group_ro(cache
, 1);
2440 btrfs_put_block_group(cache
);
2444 static int fill_dummy_bgs(struct btrfs_fs_info
*fs_info
)
2446 struct rb_node
*node
;
2449 for (node
= rb_first_cached(&fs_info
->mapping_tree
); node
; node
= rb_next(node
)) {
2450 struct btrfs_chunk_map
*map
;
2451 struct btrfs_block_group
*bg
;
2453 map
= rb_entry(node
, struct btrfs_chunk_map
, rb_node
);
2454 bg
= btrfs_create_block_group_cache(fs_info
, map
->start
);
2460 /* Fill dummy cache as FULL */
2461 bg
->length
= map
->chunk_len
;
2462 bg
->flags
= map
->type
;
2463 bg
->cached
= BTRFS_CACHE_FINISHED
;
2464 bg
->used
= map
->chunk_len
;
2465 bg
->flags
= map
->type
;
2466 ret
= btrfs_add_block_group_cache(fs_info
, bg
);
2468 * We may have some valid block group cache added already, in
2469 * that case we skip to the next one.
2471 if (ret
== -EEXIST
) {
2473 btrfs_put_block_group(bg
);
2478 btrfs_remove_free_space_cache(bg
);
2479 btrfs_put_block_group(bg
);
2483 btrfs_add_bg_to_space_info(fs_info
, bg
);
2485 set_avail_alloc_bits(fs_info
, bg
->flags
);
2488 btrfs_init_global_block_rsv(fs_info
);
2492 int btrfs_read_block_groups(struct btrfs_fs_info
*info
)
2494 struct btrfs_root
*root
= btrfs_block_group_root(info
);
2495 struct btrfs_path
*path
;
2497 struct btrfs_block_group
*cache
;
2498 struct btrfs_space_info
*space_info
;
2499 struct btrfs_key key
;
2504 * Either no extent root (with ibadroots rescue option) or we have
2505 * unsupported RO options. The fs can never be mounted read-write, so no
2506 * need to waste time searching block group items.
2508 * This also allows new extent tree related changes to be RO compat,
2509 * no need for a full incompat flag.
2511 if (!root
|| (btrfs_super_compat_ro_flags(info
->super_copy
) &
2512 ~BTRFS_FEATURE_COMPAT_RO_SUPP
))
2513 return fill_dummy_bgs(info
);
2517 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
2518 path
= btrfs_alloc_path();
2522 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
2523 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
2524 btrfs_super_generation(info
->super_copy
) != cache_gen
)
2526 if (btrfs_test_opt(info
, CLEAR_CACHE
))
2530 struct btrfs_block_group_item bgi
;
2531 struct extent_buffer
*leaf
;
2534 ret
= find_first_block_group(info
, path
, &key
);
2540 leaf
= path
->nodes
[0];
2541 slot
= path
->slots
[0];
2543 read_extent_buffer(leaf
, &bgi
, btrfs_item_ptr_offset(leaf
, slot
),
2546 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2547 btrfs_release_path(path
);
2548 ret
= read_one_block_group(info
, &bgi
, &key
, need_clear
);
2551 key
.objectid
+= key
.offset
;
2554 btrfs_release_path(path
);
2556 list_for_each_entry(space_info
, &info
->space_info
, list
) {
2559 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
2560 if (list_empty(&space_info
->block_groups
[i
]))
2562 cache
= list_first_entry(&space_info
->block_groups
[i
],
2563 struct btrfs_block_group
,
2565 btrfs_sysfs_add_block_group_type(cache
);
2568 if (!(btrfs_get_alloc_profile(info
, space_info
->flags
) &
2569 (BTRFS_BLOCK_GROUP_RAID10
|
2570 BTRFS_BLOCK_GROUP_RAID1_MASK
|
2571 BTRFS_BLOCK_GROUP_RAID56_MASK
|
2572 BTRFS_BLOCK_GROUP_DUP
)))
2575 * Avoid allocating from un-mirrored block group if there are
2576 * mirrored block groups.
2578 list_for_each_entry(cache
,
2579 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
2581 inc_block_group_ro(cache
, 1);
2582 list_for_each_entry(cache
,
2583 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
2585 inc_block_group_ro(cache
, 1);
2588 btrfs_init_global_block_rsv(info
);
2589 ret
= check_chunk_block_group_mappings(info
);
2591 btrfs_free_path(path
);
2593 * We've hit some error while reading the extent tree, and have
2594 * rescue=ibadroots mount option.
2595 * Try to fill the tree using dummy block groups so that the user can
2596 * continue to mount and grab their data.
2598 if (ret
&& btrfs_test_opt(info
, IGNOREBADROOTS
))
2599 ret
= fill_dummy_bgs(info
);
2604 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2607 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2610 static int insert_block_group_item(struct btrfs_trans_handle
*trans
,
2611 struct btrfs_block_group
*block_group
)
2613 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2614 struct btrfs_block_group_item bgi
;
2615 struct btrfs_root
*root
= btrfs_block_group_root(fs_info
);
2616 struct btrfs_key key
;
2617 u64 old_commit_used
;
2620 spin_lock(&block_group
->lock
);
2621 btrfs_set_stack_block_group_used(&bgi
, block_group
->used
);
2622 btrfs_set_stack_block_group_chunk_objectid(&bgi
,
2623 block_group
->global_root_id
);
2624 btrfs_set_stack_block_group_flags(&bgi
, block_group
->flags
);
2625 old_commit_used
= block_group
->commit_used
;
2626 block_group
->commit_used
= block_group
->used
;
2627 key
.objectid
= block_group
->start
;
2628 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
2629 key
.offset
= block_group
->length
;
2630 spin_unlock(&block_group
->lock
);
2632 ret
= btrfs_insert_item(trans
, root
, &key
, &bgi
, sizeof(bgi
));
2634 spin_lock(&block_group
->lock
);
2635 block_group
->commit_used
= old_commit_used
;
2636 spin_unlock(&block_group
->lock
);
2642 static int insert_dev_extent(struct btrfs_trans_handle
*trans
,
2643 const struct btrfs_device
*device
, u64 chunk_offset
,
2644 u64 start
, u64 num_bytes
)
2646 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2647 struct btrfs_root
*root
= fs_info
->dev_root
;
2648 struct btrfs_path
*path
;
2649 struct btrfs_dev_extent
*extent
;
2650 struct extent_buffer
*leaf
;
2651 struct btrfs_key key
;
2654 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
2655 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
2656 path
= btrfs_alloc_path();
2660 key
.objectid
= device
->devid
;
2661 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2663 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, sizeof(*extent
));
2667 leaf
= path
->nodes
[0];
2668 extent
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_extent
);
2669 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, BTRFS_CHUNK_TREE_OBJECTID
);
2670 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
2671 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
2672 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
2674 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
2675 btrfs_mark_buffer_dirty(trans
, leaf
);
2677 btrfs_free_path(path
);
2682 * This function belongs to phase 2.
2684 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2687 static int insert_dev_extents(struct btrfs_trans_handle
*trans
,
2688 u64 chunk_offset
, u64 chunk_size
)
2690 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2691 struct btrfs_device
*device
;
2692 struct btrfs_chunk_map
*map
;
2697 map
= btrfs_get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
2699 return PTR_ERR(map
);
2702 * Take the device list mutex to prevent races with the final phase of
2703 * a device replace operation that replaces the device object associated
2704 * with the map's stripes, because the device object's id can change
2705 * at any time during that final phase of the device replace operation
2706 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2707 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2708 * resulting in persisting a device extent item with such ID.
2710 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2711 for (i
= 0; i
< map
->num_stripes
; i
++) {
2712 device
= map
->stripes
[i
].dev
;
2713 dev_offset
= map
->stripes
[i
].physical
;
2715 ret
= insert_dev_extent(trans
, device
, chunk_offset
, dev_offset
,
2720 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2722 btrfs_free_chunk_map(map
);
2727 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2730 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2733 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
)
2735 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2736 struct btrfs_block_group
*block_group
;
2739 while (!list_empty(&trans
->new_bgs
)) {
2742 block_group
= list_first_entry(&trans
->new_bgs
,
2743 struct btrfs_block_group
,
2748 index
= btrfs_bg_flags_to_raid_index(block_group
->flags
);
2750 ret
= insert_block_group_item(trans
, block_group
);
2752 btrfs_abort_transaction(trans
, ret
);
2753 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED
,
2754 &block_group
->runtime_flags
)) {
2755 mutex_lock(&fs_info
->chunk_mutex
);
2756 ret
= btrfs_chunk_alloc_add_chunk_item(trans
, block_group
);
2757 mutex_unlock(&fs_info
->chunk_mutex
);
2759 btrfs_abort_transaction(trans
, ret
);
2761 ret
= insert_dev_extents(trans
, block_group
->start
,
2762 block_group
->length
);
2764 btrfs_abort_transaction(trans
, ret
);
2765 add_block_group_free_space(trans
, block_group
);
2768 * If we restriped during balance, we may have added a new raid
2769 * type, so now add the sysfs entries when it is safe to do so.
2770 * We don't have to worry about locking here as it's handled in
2771 * btrfs_sysfs_add_block_group_type.
2773 if (block_group
->space_info
->block_group_kobjs
[index
] == NULL
)
2774 btrfs_sysfs_add_block_group_type(block_group
);
2776 /* Already aborted the transaction if it failed. */
2778 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info
);
2779 list_del_init(&block_group
->bg_list
);
2780 clear_bit(BLOCK_GROUP_FLAG_NEW
, &block_group
->runtime_flags
);
2783 * If the block group is still unused, add it to the list of
2784 * unused block groups. The block group may have been created in
2785 * order to satisfy a space reservation, in which case the
2786 * extent allocation only happens later. But often we don't
2787 * actually need to allocate space that we previously reserved,
2788 * so the block group may become unused for a long time. For
2789 * example for metadata we generally reserve space for a worst
2790 * possible scenario, but then don't end up allocating all that
2791 * space or none at all (due to no need to COW, extent buffers
2792 * were already COWed in the current transaction and still
2793 * unwritten, tree heights lower than the maximum possible
2794 * height, etc). For data we generally reserve the axact amount
2795 * of space we are going to allocate later, the exception is
2796 * when using compression, as we must reserve space based on the
2797 * uncompressed data size, because the compression is only done
2798 * when writeback triggered and we don't know how much space we
2799 * are actually going to need, so we reserve the uncompressed
2800 * size because the data may be incompressible in the worst case.
2805 spin_lock(&block_group
->lock
);
2806 used
= btrfs_is_block_group_used(block_group
);
2807 spin_unlock(&block_group
->lock
);
2810 btrfs_mark_bg_unused(block_group
);
2813 btrfs_trans_release_chunk_metadata(trans
);
2817 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2818 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2820 static u64
calculate_global_root_id(const struct btrfs_fs_info
*fs_info
, u64 offset
)
2825 if (!btrfs_fs_incompat(fs_info
, EXTENT_TREE_V2
))
2826 return BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2828 /* If we have a smaller fs index based on 128MiB. */
2829 if (btrfs_super_total_bytes(fs_info
->super_copy
) <= (SZ_1G
* 10ULL))
2832 offset
= div64_u64(offset
, div
);
2833 div64_u64_rem(offset
, fs_info
->nr_global_roots
, &index
);
2837 struct btrfs_block_group
*btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
2839 u64 chunk_offset
, u64 size
)
2841 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2842 struct btrfs_block_group
*cache
;
2845 btrfs_set_log_full_commit(trans
);
2847 cache
= btrfs_create_block_group_cache(fs_info
, chunk_offset
);
2849 return ERR_PTR(-ENOMEM
);
2852 * Mark it as new before adding it to the rbtree of block groups or any
2853 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2854 * before the new flag is set.
2856 set_bit(BLOCK_GROUP_FLAG_NEW
, &cache
->runtime_flags
);
2858 cache
->length
= size
;
2859 set_free_space_tree_thresholds(cache
);
2860 cache
->flags
= type
;
2861 cache
->cached
= BTRFS_CACHE_FINISHED
;
2862 cache
->global_root_id
= calculate_global_root_id(fs_info
, cache
->start
);
2864 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
2865 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE
, &cache
->runtime_flags
);
2867 ret
= btrfs_load_block_group_zone_info(cache
, true);
2869 btrfs_put_block_group(cache
);
2870 return ERR_PTR(ret
);
2873 ret
= exclude_super_stripes(cache
);
2875 /* We may have excluded something, so call this just in case */
2876 btrfs_free_excluded_extents(cache
);
2877 btrfs_put_block_group(cache
);
2878 return ERR_PTR(ret
);
2881 ret
= btrfs_add_new_free_space(cache
, chunk_offset
, chunk_offset
+ size
, NULL
);
2882 btrfs_free_excluded_extents(cache
);
2884 btrfs_put_block_group(cache
);
2885 return ERR_PTR(ret
);
2889 * Ensure the corresponding space_info object is created and
2890 * assigned to our block group. We want our bg to be added to the rbtree
2891 * with its ->space_info set.
2893 cache
->space_info
= btrfs_find_space_info(fs_info
, cache
->flags
);
2894 ASSERT(cache
->space_info
);
2896 ret
= btrfs_add_block_group_cache(fs_info
, cache
);
2898 btrfs_remove_free_space_cache(cache
);
2899 btrfs_put_block_group(cache
);
2900 return ERR_PTR(ret
);
2904 * Now that our block group has its ->space_info set and is inserted in
2905 * the rbtree, update the space info's counters.
2907 trace_btrfs_add_block_group(fs_info
, cache
, 1);
2908 btrfs_add_bg_to_space_info(fs_info
, cache
);
2909 btrfs_update_global_block_rsv(fs_info
);
2911 #ifdef CONFIG_BTRFS_DEBUG
2912 if (btrfs_should_fragment_free_space(cache
)) {
2913 cache
->space_info
->bytes_used
+= size
>> 1;
2914 fragment_free_space(cache
);
2918 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
2919 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info
);
2921 set_avail_alloc_bits(fs_info
, type
);
2926 * Mark one block group RO, can be called several times for the same block
2929 * @cache: the destination block group
2930 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2931 * ensure we still have some free space after marking this
2934 int btrfs_inc_block_group_ro(struct btrfs_block_group
*cache
,
2935 bool do_chunk_alloc
)
2937 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
2938 struct btrfs_trans_handle
*trans
;
2939 struct btrfs_root
*root
= btrfs_block_group_root(fs_info
);
2942 bool dirty_bg_running
;
2945 * This can only happen when we are doing read-only scrub on read-only
2947 * In that case we should not start a new transaction on read-only fs.
2948 * Thus here we skip all chunk allocations.
2950 if (sb_rdonly(fs_info
->sb
)) {
2951 mutex_lock(&fs_info
->ro_block_group_mutex
);
2952 ret
= inc_block_group_ro(cache
, 0);
2953 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2958 trans
= btrfs_join_transaction(root
);
2960 return PTR_ERR(trans
);
2962 dirty_bg_running
= false;
2965 * We're not allowed to set block groups readonly after the dirty
2966 * block group cache has started writing. If it already started,
2967 * back off and let this transaction commit.
2969 mutex_lock(&fs_info
->ro_block_group_mutex
);
2970 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
2971 u64 transid
= trans
->transid
;
2973 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2974 btrfs_end_transaction(trans
);
2976 ret
= btrfs_wait_for_commit(fs_info
, transid
);
2979 dirty_bg_running
= true;
2981 } while (dirty_bg_running
);
2983 if (do_chunk_alloc
) {
2985 * If we are changing raid levels, try to allocate a
2986 * corresponding block group with the new raid level.
2988 alloc_flags
= btrfs_get_alloc_profile(fs_info
, cache
->flags
);
2989 if (alloc_flags
!= cache
->flags
) {
2990 ret
= btrfs_chunk_alloc(trans
, alloc_flags
,
2993 * ENOSPC is allowed here, we may have enough space
2994 * already allocated at the new raid level to carry on
3003 ret
= inc_block_group_ro(cache
, 0);
3006 if (ret
== -ETXTBSY
)
3010 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3011 * chunk allocation storm to exhaust the system chunk array. Otherwise
3012 * we still want to try our best to mark the block group read-only.
3014 if (!do_chunk_alloc
&& ret
== -ENOSPC
&&
3015 (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
))
3018 alloc_flags
= btrfs_get_alloc_profile(fs_info
, cache
->space_info
->flags
);
3019 ret
= btrfs_chunk_alloc(trans
, alloc_flags
, CHUNK_ALLOC_FORCE
);
3023 * We have allocated a new chunk. We also need to activate that chunk to
3024 * grant metadata tickets for zoned filesystem.
3026 ret
= btrfs_zoned_activate_one_bg(fs_info
, cache
->space_info
, true);
3030 ret
= inc_block_group_ro(cache
, 0);
3031 if (ret
== -ETXTBSY
)
3034 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3035 alloc_flags
= btrfs_get_alloc_profile(fs_info
, cache
->flags
);
3036 mutex_lock(&fs_info
->chunk_mutex
);
3037 check_system_chunk(trans
, alloc_flags
);
3038 mutex_unlock(&fs_info
->chunk_mutex
);
3041 mutex_unlock(&fs_info
->ro_block_group_mutex
);
3043 btrfs_end_transaction(trans
);
3047 void btrfs_dec_block_group_ro(struct btrfs_block_group
*cache
)
3049 struct btrfs_space_info
*sinfo
= cache
->space_info
;
3054 spin_lock(&sinfo
->lock
);
3055 spin_lock(&cache
->lock
);
3057 if (btrfs_is_zoned(cache
->fs_info
)) {
3058 /* Migrate zone_unusable bytes back */
3059 cache
->zone_unusable
=
3060 (cache
->alloc_offset
- cache
->used
- cache
->pinned
-
3062 (cache
->length
- cache
->zone_capacity
);
3063 btrfs_space_info_update_bytes_zone_unusable(cache
->fs_info
, sinfo
,
3064 cache
->zone_unusable
);
3065 sinfo
->bytes_readonly
-= cache
->zone_unusable
;
3067 num_bytes
= cache
->length
- cache
->reserved
-
3068 cache
->pinned
- cache
->bytes_super
-
3069 cache
->zone_unusable
- cache
->used
;
3070 sinfo
->bytes_readonly
-= num_bytes
;
3071 list_del_init(&cache
->ro_list
);
3073 spin_unlock(&cache
->lock
);
3074 spin_unlock(&sinfo
->lock
);
3077 static int update_block_group_item(struct btrfs_trans_handle
*trans
,
3078 struct btrfs_path
*path
,
3079 struct btrfs_block_group
*cache
)
3081 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3083 struct btrfs_root
*root
= btrfs_block_group_root(fs_info
);
3085 struct extent_buffer
*leaf
;
3086 struct btrfs_block_group_item bgi
;
3087 struct btrfs_key key
;
3088 u64 old_commit_used
;
3092 * Block group items update can be triggered out of commit transaction
3093 * critical section, thus we need a consistent view of used bytes.
3094 * We cannot use cache->used directly outside of the spin lock, as it
3097 spin_lock(&cache
->lock
);
3098 old_commit_used
= cache
->commit_used
;
3100 /* No change in used bytes, can safely skip it. */
3101 if (cache
->commit_used
== used
) {
3102 spin_unlock(&cache
->lock
);
3105 cache
->commit_used
= used
;
3106 spin_unlock(&cache
->lock
);
3108 key
.objectid
= cache
->start
;
3109 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
3110 key
.offset
= cache
->length
;
3112 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
3119 leaf
= path
->nodes
[0];
3120 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3121 btrfs_set_stack_block_group_used(&bgi
, used
);
3122 btrfs_set_stack_block_group_chunk_objectid(&bgi
,
3123 cache
->global_root_id
);
3124 btrfs_set_stack_block_group_flags(&bgi
, cache
->flags
);
3125 write_extent_buffer(leaf
, &bgi
, bi
, sizeof(bgi
));
3126 btrfs_mark_buffer_dirty(trans
, leaf
);
3128 btrfs_release_path(path
);
3130 * We didn't update the block group item, need to revert commit_used
3131 * unless the block group item didn't exist yet - this is to prevent a
3132 * race with a concurrent insertion of the block group item, with
3133 * insert_block_group_item(), that happened just after we attempted to
3134 * update. In that case we would reset commit_used to 0 just after the
3135 * insertion set it to a value greater than 0 - if the block group later
3136 * becomes with 0 used bytes, we would incorrectly skip its update.
3138 if (ret
< 0 && ret
!= -ENOENT
) {
3139 spin_lock(&cache
->lock
);
3140 cache
->commit_used
= old_commit_used
;
3141 spin_unlock(&cache
->lock
);
3147 static int cache_save_setup(struct btrfs_block_group
*block_group
,
3148 struct btrfs_trans_handle
*trans
,
3149 struct btrfs_path
*path
)
3151 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3152 struct inode
*inode
= NULL
;
3153 struct extent_changeset
*data_reserved
= NULL
;
3155 int dcs
= BTRFS_DC_ERROR
;
3160 if (!btrfs_test_opt(fs_info
, SPACE_CACHE
))
3164 * If this block group is smaller than 100 megs don't bother caching the
3167 if (block_group
->length
< (100 * SZ_1M
)) {
3168 spin_lock(&block_group
->lock
);
3169 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3170 spin_unlock(&block_group
->lock
);
3174 if (TRANS_ABORTED(trans
))
3177 inode
= lookup_free_space_inode(block_group
, path
);
3178 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3179 ret
= PTR_ERR(inode
);
3180 btrfs_release_path(path
);
3184 if (IS_ERR(inode
)) {
3188 if (block_group
->ro
)
3191 ret
= create_free_space_inode(trans
, block_group
, path
);
3198 * We want to set the generation to 0, that way if anything goes wrong
3199 * from here on out we know not to trust this cache when we load up next
3202 BTRFS_I(inode
)->generation
= 0;
3203 ret
= btrfs_update_inode(trans
, BTRFS_I(inode
));
3206 * So theoretically we could recover from this, simply set the
3207 * super cache generation to 0 so we know to invalidate the
3208 * cache, but then we'd have to keep track of the block groups
3209 * that fail this way so we know we _have_ to reset this cache
3210 * before the next commit or risk reading stale cache. So to
3211 * limit our exposure to horrible edge cases lets just abort the
3212 * transaction, this only happens in really bad situations
3215 btrfs_abort_transaction(trans
, ret
);
3220 /* We've already setup this transaction, go ahead and exit */
3221 if (block_group
->cache_generation
== trans
->transid
&&
3222 i_size_read(inode
)) {
3223 dcs
= BTRFS_DC_SETUP
;
3227 if (i_size_read(inode
) > 0) {
3228 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
3229 &fs_info
->global_block_rsv
);
3233 ret
= btrfs_truncate_free_space_cache(trans
, NULL
, inode
);
3238 spin_lock(&block_group
->lock
);
3239 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3240 !btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
3242 * don't bother trying to write stuff out _if_
3243 * a) we're not cached,
3244 * b) we're with nospace_cache mount option,
3245 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3247 dcs
= BTRFS_DC_WRITTEN
;
3248 spin_unlock(&block_group
->lock
);
3251 spin_unlock(&block_group
->lock
);
3254 * We hit an ENOSPC when setting up the cache in this transaction, just
3255 * skip doing the setup, we've already cleared the cache so we're safe.
3257 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3263 * Try to preallocate enough space based on how big the block group is.
3264 * Keep in mind this has to include any pinned space which could end up
3265 * taking up quite a bit since it's not folded into the other space
3268 cache_size
= div_u64(block_group
->length
, SZ_256M
);
3273 cache_size
*= fs_info
->sectorsize
;
3275 ret
= btrfs_check_data_free_space(BTRFS_I(inode
), &data_reserved
, 0,
3280 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, cache_size
,
3281 cache_size
, cache_size
,
3284 * Our cache requires contiguous chunks so that we don't modify a bunch
3285 * of metadata or split extents when writing the cache out, which means
3286 * we can enospc if we are heavily fragmented in addition to just normal
3287 * out of space conditions. So if we hit this just skip setting up any
3288 * other block groups for this transaction, maybe we'll unpin enough
3289 * space the next time around.
3292 dcs
= BTRFS_DC_SETUP
;
3293 else if (ret
== -ENOSPC
)
3294 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3299 btrfs_release_path(path
);
3301 spin_lock(&block_group
->lock
);
3302 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3303 block_group
->cache_generation
= trans
->transid
;
3304 block_group
->disk_cache_state
= dcs
;
3305 spin_unlock(&block_group
->lock
);
3307 extent_changeset_free(data_reserved
);
3311 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
)
3313 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3314 struct btrfs_block_group
*cache
, *tmp
;
3315 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3316 struct btrfs_path
*path
;
3318 if (list_empty(&cur_trans
->dirty_bgs
) ||
3319 !btrfs_test_opt(fs_info
, SPACE_CACHE
))
3322 path
= btrfs_alloc_path();
3326 /* Could add new block groups, use _safe just in case */
3327 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3329 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3330 cache_save_setup(cache
, trans
, path
);
3333 btrfs_free_path(path
);
3338 * Transaction commit does final block group cache writeback during a critical
3339 * section where nothing is allowed to change the FS. This is required in
3340 * order for the cache to actually match the block group, but can introduce a
3341 * lot of latency into the commit.
3343 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3344 * There's a chance we'll have to redo some of it if the block group changes
3345 * again during the commit, but it greatly reduces the commit latency by
3346 * getting rid of the easy block groups while we're still allowing others to
3349 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
)
3351 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3352 struct btrfs_block_group
*cache
;
3353 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3356 struct btrfs_path
*path
= NULL
;
3358 struct list_head
*io
= &cur_trans
->io_bgs
;
3361 spin_lock(&cur_trans
->dirty_bgs_lock
);
3362 if (list_empty(&cur_trans
->dirty_bgs
)) {
3363 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3366 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3367 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3370 /* Make sure all the block groups on our dirty list actually exist */
3371 btrfs_create_pending_block_groups(trans
);
3374 path
= btrfs_alloc_path();
3382 * cache_write_mutex is here only to save us from balance or automatic
3383 * removal of empty block groups deleting this block group while we are
3384 * writing out the cache
3386 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3387 while (!list_empty(&dirty
)) {
3388 bool drop_reserve
= true;
3390 cache
= list_first_entry(&dirty
, struct btrfs_block_group
,
3393 * This can happen if something re-dirties a block group that
3394 * is already under IO. Just wait for it to finish and then do
3397 if (!list_empty(&cache
->io_list
)) {
3398 list_del_init(&cache
->io_list
);
3399 btrfs_wait_cache_io(trans
, cache
, path
);
3400 btrfs_put_block_group(cache
);
3405 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3406 * it should update the cache_state. Don't delete until after
3409 * Since we're not running in the commit critical section
3410 * we need the dirty_bgs_lock to protect from update_block_group
3412 spin_lock(&cur_trans
->dirty_bgs_lock
);
3413 list_del_init(&cache
->dirty_list
);
3414 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3418 cache_save_setup(cache
, trans
, path
);
3420 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3421 cache
->io_ctl
.inode
= NULL
;
3422 ret
= btrfs_write_out_cache(trans
, cache
, path
);
3423 if (ret
== 0 && cache
->io_ctl
.inode
) {
3427 * The cache_write_mutex is protecting the
3428 * io_list, also refer to the definition of
3429 * btrfs_transaction::io_bgs for more details
3431 list_add_tail(&cache
->io_list
, io
);
3434 * If we failed to write the cache, the
3435 * generation will be bad and life goes on
3441 ret
= update_block_group_item(trans
, path
, cache
);
3443 * Our block group might still be attached to the list
3444 * of new block groups in the transaction handle of some
3445 * other task (struct btrfs_trans_handle->new_bgs). This
3446 * means its block group item isn't yet in the extent
3447 * tree. If this happens ignore the error, as we will
3448 * try again later in the critical section of the
3449 * transaction commit.
3451 if (ret
== -ENOENT
) {
3453 spin_lock(&cur_trans
->dirty_bgs_lock
);
3454 if (list_empty(&cache
->dirty_list
)) {
3455 list_add_tail(&cache
->dirty_list
,
3456 &cur_trans
->dirty_bgs
);
3457 btrfs_get_block_group(cache
);
3458 drop_reserve
= false;
3460 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3462 btrfs_abort_transaction(trans
, ret
);
3466 /* If it's not on the io list, we need to put the block group */
3468 btrfs_put_block_group(cache
);
3470 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info
);
3472 * Avoid blocking other tasks for too long. It might even save
3473 * us from writing caches for block groups that are going to be
3476 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3479 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3481 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3484 * Go through delayed refs for all the stuff we've just kicked off
3485 * and then loop back (just once)
3488 ret
= btrfs_run_delayed_refs(trans
, 0);
3489 if (!ret
&& loops
== 0) {
3491 spin_lock(&cur_trans
->dirty_bgs_lock
);
3492 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3494 * dirty_bgs_lock protects us from concurrent block group
3495 * deletes too (not just cache_write_mutex).
3497 if (!list_empty(&dirty
)) {
3498 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3501 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3505 spin_lock(&cur_trans
->dirty_bgs_lock
);
3506 list_splice_init(&dirty
, &cur_trans
->dirty_bgs
);
3507 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3508 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
3511 btrfs_free_path(path
);
3515 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
)
3517 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3518 struct btrfs_block_group
*cache
;
3519 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3522 struct btrfs_path
*path
;
3523 struct list_head
*io
= &cur_trans
->io_bgs
;
3525 path
= btrfs_alloc_path();
3530 * Even though we are in the critical section of the transaction commit,
3531 * we can still have concurrent tasks adding elements to this
3532 * transaction's list of dirty block groups. These tasks correspond to
3533 * endio free space workers started when writeback finishes for a
3534 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3535 * allocate new block groups as a result of COWing nodes of the root
3536 * tree when updating the free space inode. The writeback for the space
3537 * caches is triggered by an earlier call to
3538 * btrfs_start_dirty_block_groups() and iterations of the following
3540 * Also we want to do the cache_save_setup first and then run the
3541 * delayed refs to make sure we have the best chance at doing this all
3544 spin_lock(&cur_trans
->dirty_bgs_lock
);
3545 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3546 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3547 struct btrfs_block_group
,
3551 * This can happen if cache_save_setup re-dirties a block group
3552 * that is already under IO. Just wait for it to finish and
3553 * then do it all again
3555 if (!list_empty(&cache
->io_list
)) {
3556 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3557 list_del_init(&cache
->io_list
);
3558 btrfs_wait_cache_io(trans
, cache
, path
);
3559 btrfs_put_block_group(cache
);
3560 spin_lock(&cur_trans
->dirty_bgs_lock
);
3564 * Don't remove from the dirty list until after we've waited on
3567 list_del_init(&cache
->dirty_list
);
3568 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3571 cache_save_setup(cache
, trans
, path
);
3574 ret
= btrfs_run_delayed_refs(trans
, U64_MAX
);
3576 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3577 cache
->io_ctl
.inode
= NULL
;
3578 ret
= btrfs_write_out_cache(trans
, cache
, path
);
3579 if (ret
== 0 && cache
->io_ctl
.inode
) {
3581 list_add_tail(&cache
->io_list
, io
);
3584 * If we failed to write the cache, the
3585 * generation will be bad and life goes on
3591 ret
= update_block_group_item(trans
, path
, cache
);
3593 * One of the free space endio workers might have
3594 * created a new block group while updating a free space
3595 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3596 * and hasn't released its transaction handle yet, in
3597 * which case the new block group is still attached to
3598 * its transaction handle and its creation has not
3599 * finished yet (no block group item in the extent tree
3600 * yet, etc). If this is the case, wait for all free
3601 * space endio workers to finish and retry. This is a
3602 * very rare case so no need for a more efficient and
3605 if (ret
== -ENOENT
) {
3606 wait_event(cur_trans
->writer_wait
,
3607 atomic_read(&cur_trans
->num_writers
) == 1);
3608 ret
= update_block_group_item(trans
, path
, cache
);
3611 btrfs_abort_transaction(trans
, ret
);
3614 /* If its not on the io list, we need to put the block group */
3616 btrfs_put_block_group(cache
);
3617 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info
);
3618 spin_lock(&cur_trans
->dirty_bgs_lock
);
3620 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3623 * Refer to the definition of io_bgs member for details why it's safe
3624 * to use it without any locking
3626 while (!list_empty(io
)) {
3627 cache
= list_first_entry(io
, struct btrfs_block_group
,
3629 list_del_init(&cache
->io_list
);
3630 btrfs_wait_cache_io(trans
, cache
, path
);
3631 btrfs_put_block_group(cache
);
3634 btrfs_free_path(path
);
3638 int btrfs_update_block_group(struct btrfs_trans_handle
*trans
,
3639 u64 bytenr
, u64 num_bytes
, bool alloc
)
3641 struct btrfs_fs_info
*info
= trans
->fs_info
;
3642 struct btrfs_space_info
*space_info
;
3643 struct btrfs_block_group
*cache
;
3645 bool reclaim
= false;
3646 bool bg_already_dirty
= true;
3649 /* Block accounting for super block */
3650 spin_lock(&info
->delalloc_root_lock
);
3651 old_val
= btrfs_super_bytes_used(info
->super_copy
);
3653 old_val
+= num_bytes
;
3655 old_val
-= num_bytes
;
3656 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
3657 spin_unlock(&info
->delalloc_root_lock
);
3659 cache
= btrfs_lookup_block_group(info
, bytenr
);
3663 /* An extent can not span multiple block groups. */
3664 ASSERT(bytenr
+ num_bytes
<= cache
->start
+ cache
->length
);
3666 space_info
= cache
->space_info
;
3667 factor
= btrfs_bg_type_to_factor(cache
->flags
);
3670 * If this block group has free space cache written out, we need to make
3671 * sure to load it if we are removing space. This is because we need
3672 * the unpinning stage to actually add the space back to the block group,
3673 * otherwise we will leak space.
3675 if (!alloc
&& !btrfs_block_group_done(cache
))
3676 btrfs_cache_block_group(cache
, true);
3678 spin_lock(&space_info
->lock
);
3679 spin_lock(&cache
->lock
);
3681 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
3682 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
3683 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
3685 old_val
= cache
->used
;
3687 old_val
+= num_bytes
;
3688 cache
->used
= old_val
;
3689 cache
->reserved
-= num_bytes
;
3690 cache
->reclaim_mark
= 0;
3691 space_info
->bytes_reserved
-= num_bytes
;
3692 space_info
->bytes_used
+= num_bytes
;
3693 space_info
->disk_used
+= num_bytes
* factor
;
3694 if (READ_ONCE(space_info
->periodic_reclaim
))
3695 btrfs_space_info_update_reclaimable(space_info
, -num_bytes
);
3696 spin_unlock(&cache
->lock
);
3697 spin_unlock(&space_info
->lock
);
3699 old_val
-= num_bytes
;
3700 cache
->used
= old_val
;
3701 cache
->pinned
+= num_bytes
;
3702 btrfs_space_info_update_bytes_pinned(info
, space_info
, num_bytes
);
3703 space_info
->bytes_used
-= num_bytes
;
3704 space_info
->disk_used
-= num_bytes
* factor
;
3705 if (READ_ONCE(space_info
->periodic_reclaim
))
3706 btrfs_space_info_update_reclaimable(space_info
, num_bytes
);
3708 reclaim
= should_reclaim_block_group(cache
, num_bytes
);
3710 spin_unlock(&cache
->lock
);
3711 spin_unlock(&space_info
->lock
);
3713 set_extent_bit(&trans
->transaction
->pinned_extents
, bytenr
,
3714 bytenr
+ num_bytes
- 1, EXTENT_DIRTY
, NULL
);
3717 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
3718 if (list_empty(&cache
->dirty_list
)) {
3719 list_add_tail(&cache
->dirty_list
, &trans
->transaction
->dirty_bgs
);
3720 bg_already_dirty
= false;
3721 btrfs_get_block_group(cache
);
3723 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
3726 * No longer have used bytes in this block group, queue it for deletion.
3727 * We do this after adding the block group to the dirty list to avoid
3728 * races between cleaner kthread and space cache writeout.
3730 if (!alloc
&& old_val
== 0) {
3731 if (!btrfs_test_opt(info
, DISCARD_ASYNC
))
3732 btrfs_mark_bg_unused(cache
);
3733 } else if (!alloc
&& reclaim
) {
3734 btrfs_mark_bg_to_reclaim(cache
);
3737 btrfs_put_block_group(cache
);
3739 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3740 if (!bg_already_dirty
)
3741 btrfs_inc_delayed_refs_rsv_bg_updates(info
);
3747 * Update the block_group and space info counters.
3749 * @cache: The cache we are manipulating
3750 * @ram_bytes: The number of bytes of file content, and will be same to
3751 * @num_bytes except for the compress path.
3752 * @num_bytes: The number of bytes in question
3753 * @delalloc: The blocks are allocated for the delalloc write
3755 * This is called by the allocator when it reserves space. If this is a
3756 * reservation and the block group has become read only we cannot make the
3757 * reservation and return -EAGAIN, otherwise this function always succeeds.
3759 int btrfs_add_reserved_bytes(struct btrfs_block_group
*cache
,
3760 u64 ram_bytes
, u64 num_bytes
, int delalloc
,
3761 bool force_wrong_size_class
)
3763 struct btrfs_space_info
*space_info
= cache
->space_info
;
3764 enum btrfs_block_group_size_class size_class
;
3767 spin_lock(&space_info
->lock
);
3768 spin_lock(&cache
->lock
);
3774 if (btrfs_block_group_should_use_size_class(cache
)) {
3775 size_class
= btrfs_calc_block_group_size_class(num_bytes
);
3776 ret
= btrfs_use_block_group_size_class(cache
, size_class
, force_wrong_size_class
);
3780 cache
->reserved
+= num_bytes
;
3781 space_info
->bytes_reserved
+= num_bytes
;
3782 trace_btrfs_space_reservation(cache
->fs_info
, "space_info",
3783 space_info
->flags
, num_bytes
, 1);
3784 btrfs_space_info_update_bytes_may_use(cache
->fs_info
,
3785 space_info
, -ram_bytes
);
3787 cache
->delalloc_bytes
+= num_bytes
;
3790 * Compression can use less space than we reserved, so wake tickets if
3793 if (num_bytes
< ram_bytes
)
3794 btrfs_try_granting_tickets(cache
->fs_info
, space_info
);
3796 spin_unlock(&cache
->lock
);
3797 spin_unlock(&space_info
->lock
);
3802 * Update the block_group and space info counters.
3804 * @cache: The cache we are manipulating
3805 * @num_bytes: The number of bytes in question
3806 * @delalloc: The blocks are allocated for the delalloc write
3808 * This is called by somebody who is freeing space that was never actually used
3809 * on disk. For example if you reserve some space for a new leaf in transaction
3810 * A and before transaction A commits you free that leaf, you call this with
3811 * reserve set to 0 in order to clear the reservation.
3813 void btrfs_free_reserved_bytes(struct btrfs_block_group
*cache
,
3814 u64 num_bytes
, int delalloc
)
3816 struct btrfs_space_info
*space_info
= cache
->space_info
;
3818 spin_lock(&space_info
->lock
);
3819 spin_lock(&cache
->lock
);
3821 space_info
->bytes_readonly
+= num_bytes
;
3822 else if (btrfs_is_zoned(cache
->fs_info
))
3823 space_info
->bytes_zone_unusable
+= num_bytes
;
3824 cache
->reserved
-= num_bytes
;
3825 space_info
->bytes_reserved
-= num_bytes
;
3826 space_info
->max_extent_size
= 0;
3829 cache
->delalloc_bytes
-= num_bytes
;
3830 spin_unlock(&cache
->lock
);
3832 btrfs_try_granting_tickets(cache
->fs_info
, space_info
);
3833 spin_unlock(&space_info
->lock
);
3836 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3838 struct list_head
*head
= &info
->space_info
;
3839 struct btrfs_space_info
*found
;
3841 list_for_each_entry(found
, head
, list
) {
3842 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3843 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3847 static int should_alloc_chunk(const struct btrfs_fs_info
*fs_info
,
3848 const struct btrfs_space_info
*sinfo
, int force
)
3850 u64 bytes_used
= btrfs_space_info_used(sinfo
, false);
3853 if (force
== CHUNK_ALLOC_FORCE
)
3857 * in limited mode, we want to have some free space up to
3858 * about 1% of the FS size.
3860 if (force
== CHUNK_ALLOC_LIMITED
) {
3861 thresh
= btrfs_super_total_bytes(fs_info
->super_copy
);
3862 thresh
= max_t(u64
, SZ_64M
, mult_perc(thresh
, 1));
3864 if (sinfo
->total_bytes
- bytes_used
< thresh
)
3868 if (bytes_used
+ SZ_2M
< mult_perc(sinfo
->total_bytes
, 80))
3873 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
, u64 type
)
3875 u64 alloc_flags
= btrfs_get_alloc_profile(trans
->fs_info
, type
);
3877 return btrfs_chunk_alloc(trans
, alloc_flags
, CHUNK_ALLOC_FORCE
);
3880 static struct btrfs_block_group
*do_chunk_alloc(struct btrfs_trans_handle
*trans
, u64 flags
)
3882 struct btrfs_block_group
*bg
;
3886 * Check if we have enough space in the system space info because we
3887 * will need to update device items in the chunk btree and insert a new
3888 * chunk item in the chunk btree as well. This will allocate a new
3889 * system block group if needed.
3891 check_system_chunk(trans
, flags
);
3893 bg
= btrfs_create_chunk(trans
, flags
);
3899 ret
= btrfs_chunk_alloc_add_chunk_item(trans
, bg
);
3901 * Normally we are not expected to fail with -ENOSPC here, since we have
3902 * previously reserved space in the system space_info and allocated one
3903 * new system chunk if necessary. However there are three exceptions:
3905 * 1) We may have enough free space in the system space_info but all the
3906 * existing system block groups have a profile which can not be used
3907 * for extent allocation.
3909 * This happens when mounting in degraded mode. For example we have a
3910 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3911 * using the other device in degraded mode. If we then allocate a chunk,
3912 * we may have enough free space in the existing system space_info, but
3913 * none of the block groups can be used for extent allocation since they
3914 * have a RAID1 profile, and because we are in degraded mode with a
3915 * single device, we are forced to allocate a new system chunk with a
3916 * SINGLE profile. Making check_system_chunk() iterate over all system
3917 * block groups and check if they have a usable profile and enough space
3918 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3919 * try again after forcing allocation of a new system chunk. Like this
3920 * we avoid paying the cost of that search in normal circumstances, when
3921 * we were not mounted in degraded mode;
3923 * 2) We had enough free space info the system space_info, and one suitable
3924 * block group to allocate from when we called check_system_chunk()
3925 * above. However right after we called it, the only system block group
3926 * with enough free space got turned into RO mode by a running scrub,
3927 * and in this case we have to allocate a new one and retry. We only
3928 * need do this allocate and retry once, since we have a transaction
3929 * handle and scrub uses the commit root to search for block groups;
3931 * 3) We had one system block group with enough free space when we called
3932 * check_system_chunk(), but after that, right before we tried to
3933 * allocate the last extent buffer we needed, a discard operation came
3934 * in and it temporarily removed the last free space entry from the
3935 * block group (discard removes a free space entry, discards it, and
3936 * then adds back the entry to the block group cache).
3938 if (ret
== -ENOSPC
) {
3939 const u64 sys_flags
= btrfs_system_alloc_profile(trans
->fs_info
);
3940 struct btrfs_block_group
*sys_bg
;
3942 sys_bg
= btrfs_create_chunk(trans
, sys_flags
);
3943 if (IS_ERR(sys_bg
)) {
3944 ret
= PTR_ERR(sys_bg
);
3945 btrfs_abort_transaction(trans
, ret
);
3949 ret
= btrfs_chunk_alloc_add_chunk_item(trans
, sys_bg
);
3951 btrfs_abort_transaction(trans
, ret
);
3955 ret
= btrfs_chunk_alloc_add_chunk_item(trans
, bg
);
3957 btrfs_abort_transaction(trans
, ret
);
3961 btrfs_abort_transaction(trans
, ret
);
3965 btrfs_trans_release_chunk_metadata(trans
);
3968 return ERR_PTR(ret
);
3970 btrfs_get_block_group(bg
);
3975 * Chunk allocation is done in 2 phases:
3977 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3978 * the chunk, the chunk mapping, create its block group and add the items
3979 * that belong in the chunk btree to it - more specifically, we need to
3980 * update device items in the chunk btree and add a new chunk item to it.
3982 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3983 * group item to the extent btree and the device extent items to the devices
3986 * This is done to prevent deadlocks. For example when COWing a node from the
3987 * extent btree we are holding a write lock on the node's parent and if we
3988 * trigger chunk allocation and attempted to insert the new block group item
3989 * in the extent btree right way, we could deadlock because the path for the
3990 * insertion can include that parent node. At first glance it seems impossible
3991 * to trigger chunk allocation after starting a transaction since tasks should
3992 * reserve enough transaction units (metadata space), however while that is true
3993 * most of the time, chunk allocation may still be triggered for several reasons:
3995 * 1) When reserving metadata, we check if there is enough free space in the
3996 * metadata space_info and therefore don't trigger allocation of a new chunk.
3997 * However later when the task actually tries to COW an extent buffer from
3998 * the extent btree or from the device btree for example, it is forced to
3999 * allocate a new block group (chunk) because the only one that had enough
4000 * free space was just turned to RO mode by a running scrub for example (or
4001 * device replace, block group reclaim thread, etc), so we can not use it
4002 * for allocating an extent and end up being forced to allocate a new one;
4004 * 2) Because we only check that the metadata space_info has enough free bytes,
4005 * we end up not allocating a new metadata chunk in that case. However if
4006 * the filesystem was mounted in degraded mode, none of the existing block
4007 * groups might be suitable for extent allocation due to their incompatible
4008 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
4009 * use a RAID1 profile, in degraded mode using a single device). In this case
4010 * when the task attempts to COW some extent buffer of the extent btree for
4011 * example, it will trigger allocation of a new metadata block group with a
4012 * suitable profile (SINGLE profile in the example of the degraded mount of
4013 * the RAID1 filesystem);
4015 * 3) The task has reserved enough transaction units / metadata space, but when
4016 * it attempts to COW an extent buffer from the extent or device btree for
4017 * example, it does not find any free extent in any metadata block group,
4018 * therefore forced to try to allocate a new metadata block group.
4019 * This is because some other task allocated all available extents in the
4020 * meanwhile - this typically happens with tasks that don't reserve space
4021 * properly, either intentionally or as a bug. One example where this is
4022 * done intentionally is fsync, as it does not reserve any transaction units
4023 * and ends up allocating a variable number of metadata extents for log
4024 * tree extent buffers;
4026 * 4) The task has reserved enough transaction units / metadata space, but right
4027 * before it tries to allocate the last extent buffer it needs, a discard
4028 * operation comes in and, temporarily, removes the last free space entry from
4029 * the only metadata block group that had free space (discard starts by
4030 * removing a free space entry from a block group, then does the discard
4031 * operation and, once it's done, it adds back the free space entry to the
4034 * We also need this 2 phases setup when adding a device to a filesystem with
4035 * a seed device - we must create new metadata and system chunks without adding
4036 * any of the block group items to the chunk, extent and device btrees. If we
4037 * did not do it this way, we would get ENOSPC when attempting to update those
4038 * btrees, since all the chunks from the seed device are read-only.
4040 * Phase 1 does the updates and insertions to the chunk btree because if we had
4041 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4042 * parallel, we risk having too many system chunks allocated by many tasks if
4043 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4044 * extreme case this leads to exhaustion of the system chunk array in the
4045 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4046 * and with RAID filesystems (so we have more device items in the chunk btree).
4047 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4048 * the system chunk array due to concurrent allocations") provides more details.
4050 * Allocation of system chunks does not happen through this function. A task that
4051 * needs to update the chunk btree (the only btree that uses system chunks), must
4052 * preallocate chunk space by calling either check_system_chunk() or
4053 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4054 * metadata chunk or when removing a chunk, while the later is used before doing
4055 * a modification to the chunk btree - use cases for the later are adding,
4056 * removing and resizing a device as well as relocation of a system chunk.
4057 * See the comment below for more details.
4059 * The reservation of system space, done through check_system_chunk(), as well
4060 * as all the updates and insertions into the chunk btree must be done while
4061 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4062 * an extent buffer from the chunks btree we never trigger allocation of a new
4063 * system chunk, which would result in a deadlock (trying to lock twice an
4064 * extent buffer of the chunk btree, first time before triggering the chunk
4065 * allocation and the second time during chunk allocation while attempting to
4066 * update the chunks btree). The system chunk array is also updated while holding
4067 * that mutex. The same logic applies to removing chunks - we must reserve system
4068 * space, update the chunk btree and the system chunk array in the superblock
4069 * while holding fs_info->chunk_mutex.
4071 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4073 * If @force is CHUNK_ALLOC_FORCE:
4074 * - return 1 if it successfully allocates a chunk,
4075 * - return errors including -ENOSPC otherwise.
4076 * If @force is NOT CHUNK_ALLOC_FORCE:
4077 * - return 0 if it doesn't need to allocate a new chunk,
4078 * - return 1 if it successfully allocates a chunk,
4079 * - return errors including -ENOSPC otherwise.
4081 int btrfs_chunk_alloc(struct btrfs_trans_handle
*trans
, u64 flags
,
4082 enum btrfs_chunk_alloc_enum force
)
4084 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4085 struct btrfs_space_info
*space_info
;
4086 struct btrfs_block_group
*ret_bg
;
4087 bool wait_for_alloc
= false;
4088 bool should_alloc
= false;
4089 bool from_extent_allocation
= false;
4092 if (force
== CHUNK_ALLOC_FORCE_FOR_EXTENT
) {
4093 from_extent_allocation
= true;
4094 force
= CHUNK_ALLOC_FORCE
;
4097 /* Don't re-enter if we're already allocating a chunk */
4098 if (trans
->allocating_chunk
)
4101 * Allocation of system chunks can not happen through this path, as we
4102 * could end up in a deadlock if we are allocating a data or metadata
4103 * chunk and there is another task modifying the chunk btree.
4105 * This is because while we are holding the chunk mutex, we will attempt
4106 * to add the new chunk item to the chunk btree or update an existing
4107 * device item in the chunk btree, while the other task that is modifying
4108 * the chunk btree is attempting to COW an extent buffer while holding a
4109 * lock on it and on its parent - if the COW operation triggers a system
4110 * chunk allocation, then we can deadlock because we are holding the
4111 * chunk mutex and we may need to access that extent buffer or its parent
4112 * in order to add the chunk item or update a device item.
4114 * Tasks that want to modify the chunk tree should reserve system space
4115 * before updating the chunk btree, by calling either
4116 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4117 * It's possible that after a task reserves the space, it still ends up
4118 * here - this happens in the cases described above at do_chunk_alloc().
4119 * The task will have to either retry or fail.
4121 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4124 space_info
= btrfs_find_space_info(fs_info
, flags
);
4128 spin_lock(&space_info
->lock
);
4129 if (force
< space_info
->force_alloc
)
4130 force
= space_info
->force_alloc
;
4131 should_alloc
= should_alloc_chunk(fs_info
, space_info
, force
);
4132 if (space_info
->full
) {
4133 /* No more free physical space */
4138 spin_unlock(&space_info
->lock
);
4140 } else if (!should_alloc
) {
4141 spin_unlock(&space_info
->lock
);
4143 } else if (space_info
->chunk_alloc
) {
4145 * Someone is already allocating, so we need to block
4146 * until this someone is finished and then loop to
4147 * recheck if we should continue with our allocation
4150 wait_for_alloc
= true;
4151 force
= CHUNK_ALLOC_NO_FORCE
;
4152 spin_unlock(&space_info
->lock
);
4153 mutex_lock(&fs_info
->chunk_mutex
);
4154 mutex_unlock(&fs_info
->chunk_mutex
);
4156 /* Proceed with allocation */
4157 space_info
->chunk_alloc
= 1;
4158 wait_for_alloc
= false;
4159 spin_unlock(&space_info
->lock
);
4163 } while (wait_for_alloc
);
4165 mutex_lock(&fs_info
->chunk_mutex
);
4166 trans
->allocating_chunk
= true;
4169 * If we have mixed data/metadata chunks we want to make sure we keep
4170 * allocating mixed chunks instead of individual chunks.
4172 if (btrfs_mixed_space_info(space_info
))
4173 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4176 * if we're doing a data chunk, go ahead and make sure that
4177 * we keep a reasonable number of metadata chunks allocated in the
4180 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4181 fs_info
->data_chunk_allocations
++;
4182 if (!(fs_info
->data_chunk_allocations
%
4183 fs_info
->metadata_ratio
))
4184 force_metadata_allocation(fs_info
);
4187 ret_bg
= do_chunk_alloc(trans
, flags
);
4188 trans
->allocating_chunk
= false;
4190 if (IS_ERR(ret_bg
)) {
4191 ret
= PTR_ERR(ret_bg
);
4192 } else if (from_extent_allocation
&& (flags
& BTRFS_BLOCK_GROUP_DATA
)) {
4194 * New block group is likely to be used soon. Try to activate
4195 * it now. Failure is OK for now.
4197 btrfs_zone_activate(ret_bg
);
4201 btrfs_put_block_group(ret_bg
);
4203 spin_lock(&space_info
->lock
);
4206 space_info
->full
= 1;
4211 space_info
->max_extent_size
= 0;
4214 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4216 space_info
->chunk_alloc
= 0;
4217 spin_unlock(&space_info
->lock
);
4218 mutex_unlock(&fs_info
->chunk_mutex
);
4223 static u64
get_profile_num_devs(const struct btrfs_fs_info
*fs_info
, u64 type
)
4227 num_dev
= btrfs_raid_array
[btrfs_bg_flags_to_raid_index(type
)].devs_max
;
4229 num_dev
= fs_info
->fs_devices
->rw_devices
;
4234 static void reserve_chunk_space(struct btrfs_trans_handle
*trans
,
4238 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4239 struct btrfs_space_info
*info
;
4244 * Needed because we can end up allocating a system chunk and for an
4245 * atomic and race free space reservation in the chunk block reserve.
4247 lockdep_assert_held(&fs_info
->chunk_mutex
);
4249 info
= btrfs_find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4250 spin_lock(&info
->lock
);
4251 left
= info
->total_bytes
- btrfs_space_info_used(info
, true);
4252 spin_unlock(&info
->lock
);
4254 if (left
< bytes
&& btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
4255 btrfs_info(fs_info
, "left=%llu, need=%llu, flags=%llu",
4257 btrfs_dump_space_info(fs_info
, info
, 0, 0);
4261 u64 flags
= btrfs_system_alloc_profile(fs_info
);
4262 struct btrfs_block_group
*bg
;
4265 * Ignore failure to create system chunk. We might end up not
4266 * needing it, as we might not need to COW all nodes/leafs from
4267 * the paths we visit in the chunk tree (they were already COWed
4268 * or created in the current transaction for example).
4270 bg
= btrfs_create_chunk(trans
, flags
);
4275 * We have a new chunk. We also need to activate it for
4278 ret
= btrfs_zoned_activate_one_bg(fs_info
, info
, true);
4283 * If we fail to add the chunk item here, we end up
4284 * trying again at phase 2 of chunk allocation, at
4285 * btrfs_create_pending_block_groups(). So ignore
4286 * any error here. An ENOSPC here could happen, due to
4287 * the cases described at do_chunk_alloc() - the system
4288 * block group we just created was just turned into RO
4289 * mode by a scrub for example, or a running discard
4290 * temporarily removed its free space entries, etc.
4292 btrfs_chunk_alloc_add_chunk_item(trans
, bg
);
4297 ret
= btrfs_block_rsv_add(fs_info
,
4298 &fs_info
->chunk_block_rsv
,
4299 bytes
, BTRFS_RESERVE_NO_FLUSH
);
4301 trans
->chunk_bytes_reserved
+= bytes
;
4306 * Reserve space in the system space for allocating or removing a chunk.
4307 * The caller must be holding fs_info->chunk_mutex.
4309 void check_system_chunk(struct btrfs_trans_handle
*trans
, u64 type
)
4311 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4312 const u64 num_devs
= get_profile_num_devs(fs_info
, type
);
4315 /* num_devs device items to update and 1 chunk item to add or remove. */
4316 bytes
= btrfs_calc_metadata_size(fs_info
, num_devs
) +
4317 btrfs_calc_insert_metadata_size(fs_info
, 1);
4319 reserve_chunk_space(trans
, bytes
, type
);
4323 * Reserve space in the system space, if needed, for doing a modification to the
4326 * @trans: A transaction handle.
4327 * @is_item_insertion: Indicate if the modification is for inserting a new item
4328 * in the chunk btree or if it's for the deletion or update
4329 * of an existing item.
4331 * This is used in a context where we need to update the chunk btree outside
4332 * block group allocation and removal, to avoid a deadlock with a concurrent
4333 * task that is allocating a metadata or data block group and therefore needs to
4334 * update the chunk btree while holding the chunk mutex. After the update to the
4335 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4338 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle
*trans
,
4339 bool is_item_insertion
)
4341 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4344 if (is_item_insertion
)
4345 bytes
= btrfs_calc_insert_metadata_size(fs_info
, 1);
4347 bytes
= btrfs_calc_metadata_size(fs_info
, 1);
4349 mutex_lock(&fs_info
->chunk_mutex
);
4350 reserve_chunk_space(trans
, bytes
, BTRFS_BLOCK_GROUP_SYSTEM
);
4351 mutex_unlock(&fs_info
->chunk_mutex
);
4354 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
4356 struct btrfs_block_group
*block_group
;
4358 block_group
= btrfs_lookup_first_block_group(info
, 0);
4359 while (block_group
) {
4360 btrfs_wait_block_group_cache_done(block_group
);
4361 spin_lock(&block_group
->lock
);
4362 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF
,
4363 &block_group
->runtime_flags
)) {
4364 struct btrfs_inode
*inode
= block_group
->inode
;
4366 block_group
->inode
= NULL
;
4367 spin_unlock(&block_group
->lock
);
4369 ASSERT(block_group
->io_ctl
.inode
== NULL
);
4370 iput(&inode
->vfs_inode
);
4372 spin_unlock(&block_group
->lock
);
4374 block_group
= btrfs_next_block_group(block_group
);
4379 * Must be called only after stopping all workers, since we could have block
4380 * group caching kthreads running, and therefore they could race with us if we
4381 * freed the block groups before stopping them.
4383 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
4385 struct btrfs_block_group
*block_group
;
4386 struct btrfs_space_info
*space_info
;
4387 struct btrfs_caching_control
*caching_ctl
;
4390 if (btrfs_is_zoned(info
)) {
4391 if (info
->active_meta_bg
) {
4392 btrfs_put_block_group(info
->active_meta_bg
);
4393 info
->active_meta_bg
= NULL
;
4395 if (info
->active_system_bg
) {
4396 btrfs_put_block_group(info
->active_system_bg
);
4397 info
->active_system_bg
= NULL
;
4401 write_lock(&info
->block_group_cache_lock
);
4402 while (!list_empty(&info
->caching_block_groups
)) {
4403 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
4404 struct btrfs_caching_control
, list
);
4405 list_del(&caching_ctl
->list
);
4406 btrfs_put_caching_control(caching_ctl
);
4408 write_unlock(&info
->block_group_cache_lock
);
4410 spin_lock(&info
->unused_bgs_lock
);
4411 while (!list_empty(&info
->unused_bgs
)) {
4412 block_group
= list_first_entry(&info
->unused_bgs
,
4413 struct btrfs_block_group
,
4415 list_del_init(&block_group
->bg_list
);
4416 btrfs_put_block_group(block_group
);
4419 while (!list_empty(&info
->reclaim_bgs
)) {
4420 block_group
= list_first_entry(&info
->reclaim_bgs
,
4421 struct btrfs_block_group
,
4423 list_del_init(&block_group
->bg_list
);
4424 btrfs_put_block_group(block_group
);
4426 spin_unlock(&info
->unused_bgs_lock
);
4428 spin_lock(&info
->zone_active_bgs_lock
);
4429 while (!list_empty(&info
->zone_active_bgs
)) {
4430 block_group
= list_first_entry(&info
->zone_active_bgs
,
4431 struct btrfs_block_group
,
4433 list_del_init(&block_group
->active_bg_list
);
4434 btrfs_put_block_group(block_group
);
4436 spin_unlock(&info
->zone_active_bgs_lock
);
4438 write_lock(&info
->block_group_cache_lock
);
4439 while ((n
= rb_last(&info
->block_group_cache_tree
.rb_root
)) != NULL
) {
4440 block_group
= rb_entry(n
, struct btrfs_block_group
,
4442 rb_erase_cached(&block_group
->cache_node
,
4443 &info
->block_group_cache_tree
);
4444 RB_CLEAR_NODE(&block_group
->cache_node
);
4445 write_unlock(&info
->block_group_cache_lock
);
4447 down_write(&block_group
->space_info
->groups_sem
);
4448 list_del(&block_group
->list
);
4449 up_write(&block_group
->space_info
->groups_sem
);
4452 * We haven't cached this block group, which means we could
4453 * possibly have excluded extents on this block group.
4455 if (block_group
->cached
== BTRFS_CACHE_NO
||
4456 block_group
->cached
== BTRFS_CACHE_ERROR
)
4457 btrfs_free_excluded_extents(block_group
);
4459 btrfs_remove_free_space_cache(block_group
);
4460 ASSERT(block_group
->cached
!= BTRFS_CACHE_STARTED
);
4461 ASSERT(list_empty(&block_group
->dirty_list
));
4462 ASSERT(list_empty(&block_group
->io_list
));
4463 ASSERT(list_empty(&block_group
->bg_list
));
4464 ASSERT(refcount_read(&block_group
->refs
) == 1);
4465 ASSERT(block_group
->swap_extents
== 0);
4466 btrfs_put_block_group(block_group
);
4468 write_lock(&info
->block_group_cache_lock
);
4470 write_unlock(&info
->block_group_cache_lock
);
4472 btrfs_release_global_block_rsv(info
);
4474 while (!list_empty(&info
->space_info
)) {
4475 space_info
= list_entry(info
->space_info
.next
,
4476 struct btrfs_space_info
,
4480 * Do not hide this behind enospc_debug, this is actually
4481 * important and indicates a real bug if this happens.
4483 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
4484 space_info
->bytes_may_use
> 0))
4485 btrfs_dump_space_info(info
, space_info
, 0, 0);
4488 * If there was a failure to cleanup a log tree, very likely due
4489 * to an IO failure on a writeback attempt of one or more of its
4490 * extent buffers, we could not do proper (and cheap) unaccounting
4491 * of their reserved space, so don't warn on bytes_reserved > 0 in
4494 if (!(space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) ||
4495 !BTRFS_FS_LOG_CLEANUP_ERROR(info
)) {
4496 if (WARN_ON(space_info
->bytes_reserved
> 0))
4497 btrfs_dump_space_info(info
, space_info
, 0, 0);
4500 WARN_ON(space_info
->reclaim_size
> 0);
4501 list_del(&space_info
->list
);
4502 btrfs_sysfs_remove_space_info(space_info
);
4507 void btrfs_freeze_block_group(struct btrfs_block_group
*cache
)
4509 atomic_inc(&cache
->frozen
);
4512 void btrfs_unfreeze_block_group(struct btrfs_block_group
*block_group
)
4514 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
4517 spin_lock(&block_group
->lock
);
4518 cleanup
= (atomic_dec_and_test(&block_group
->frozen
) &&
4519 test_bit(BLOCK_GROUP_FLAG_REMOVED
, &block_group
->runtime_flags
));
4520 spin_unlock(&block_group
->lock
);
4523 struct btrfs_chunk_map
*map
;
4525 map
= btrfs_find_chunk_map(fs_info
, block_group
->start
, 1);
4526 /* Logic error, can't happen. */
4529 btrfs_remove_chunk_map(fs_info
, map
);
4531 /* Once for our lookup reference. */
4532 btrfs_free_chunk_map(map
);
4535 * We may have left one free space entry and other possible
4536 * tasks trimming this block group have left 1 entry each one.
4539 btrfs_remove_free_space_cache(block_group
);
4543 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group
*bg
)
4547 spin_lock(&bg
->lock
);
4552 spin_unlock(&bg
->lock
);
4557 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group
*bg
, int amount
)
4559 spin_lock(&bg
->lock
);
4561 ASSERT(bg
->swap_extents
>= amount
);
4562 bg
->swap_extents
-= amount
;
4563 spin_unlock(&bg
->lock
);
4566 enum btrfs_block_group_size_class
btrfs_calc_block_group_size_class(u64 size
)
4568 if (size
<= SZ_128K
)
4569 return BTRFS_BG_SZ_SMALL
;
4571 return BTRFS_BG_SZ_MEDIUM
;
4572 return BTRFS_BG_SZ_LARGE
;
4576 * Handle a block group allocating an extent in a size class
4578 * @bg: The block group we allocated in.
4579 * @size_class: The size class of the allocation.
4580 * @force_wrong_size_class: Whether we are desperate enough to allow
4581 * mismatched size classes.
4583 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4584 * case of a race that leads to the wrong size class without
4585 * force_wrong_size_class set.
4587 * find_free_extent will skip block groups with a mismatched size class until
4588 * it really needs to avoid ENOSPC. In that case it will set
4589 * force_wrong_size_class. However, if a block group is newly allocated and
4590 * doesn't yet have a size class, then it is possible for two allocations of
4591 * different sizes to race and both try to use it. The loser is caught here and
4594 int btrfs_use_block_group_size_class(struct btrfs_block_group
*bg
,
4595 enum btrfs_block_group_size_class size_class
,
4596 bool force_wrong_size_class
)
4598 ASSERT(size_class
!= BTRFS_BG_SZ_NONE
);
4600 /* The new allocation is in the right size class, do nothing */
4601 if (bg
->size_class
== size_class
)
4604 * The new allocation is in a mismatched size class.
4605 * This means one of two things:
4607 * 1. Two tasks in find_free_extent for different size_classes raced
4608 * and hit the same empty block_group. Make the loser try again.
4609 * 2. A call to find_free_extent got desperate enough to set
4610 * 'force_wrong_slab'. Don't change the size_class, but allow the
4613 if (bg
->size_class
!= BTRFS_BG_SZ_NONE
) {
4614 if (force_wrong_size_class
)
4619 * The happy new block group case: the new allocation is the first
4620 * one in the block_group so we set size_class.
4622 bg
->size_class
= size_class
;
4627 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group
*bg
)
4629 if (btrfs_is_zoned(bg
->fs_info
))
4631 if (!btrfs_is_block_group_data_only(bg
))