Linux 6.13-rc4
[linux.git] / fs / btrfs / compression.c
blob0c4d486c3048da65f7d39dc535332a8f70e68aef
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <linux/shrinker.h>
24 #include <crypto/hash.h>
25 #include "misc.h"
26 #include "ctree.h"
27 #include "fs.h"
28 #include "btrfs_inode.h"
29 #include "bio.h"
30 #include "ordered-data.h"
31 #include "compression.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "subpage.h"
35 #include "messages.h"
36 #include "super.h"
38 static struct bio_set btrfs_compressed_bioset;
40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
42 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
44 switch (type) {
45 case BTRFS_COMPRESS_ZLIB:
46 case BTRFS_COMPRESS_LZO:
47 case BTRFS_COMPRESS_ZSTD:
48 case BTRFS_COMPRESS_NONE:
49 return btrfs_compress_types[type];
50 default:
51 break;
54 return NULL;
57 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
59 return container_of(bbio, struct compressed_bio, bbio);
62 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
63 u64 start, blk_opf_t op,
64 btrfs_bio_end_io_t end_io)
66 struct btrfs_bio *bbio;
68 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
69 GFP_NOFS, &btrfs_compressed_bioset));
70 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
71 bbio->inode = inode;
72 bbio->file_offset = start;
73 return to_compressed_bio(bbio);
76 bool btrfs_compress_is_valid_type(const char *str, size_t len)
78 int i;
80 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
81 size_t comp_len = strlen(btrfs_compress_types[i]);
83 if (len < comp_len)
84 continue;
86 if (!strncmp(btrfs_compress_types[i], str, comp_len))
87 return true;
89 return false;
92 static int compression_compress_pages(int type, struct list_head *ws,
93 struct address_space *mapping, u64 start,
94 struct folio **folios, unsigned long *out_folios,
95 unsigned long *total_in, unsigned long *total_out)
97 switch (type) {
98 case BTRFS_COMPRESS_ZLIB:
99 return zlib_compress_folios(ws, mapping, start, folios,
100 out_folios, total_in, total_out);
101 case BTRFS_COMPRESS_LZO:
102 return lzo_compress_folios(ws, mapping, start, folios,
103 out_folios, total_in, total_out);
104 case BTRFS_COMPRESS_ZSTD:
105 return zstd_compress_folios(ws, mapping, start, folios,
106 out_folios, total_in, total_out);
107 case BTRFS_COMPRESS_NONE:
108 default:
110 * This can happen when compression races with remount setting
111 * it to 'no compress', while caller doesn't call
112 * inode_need_compress() to check if we really need to
113 * compress.
115 * Not a big deal, just need to inform caller that we
116 * haven't allocated any pages yet.
118 *out_folios = 0;
119 return -E2BIG;
123 static int compression_decompress_bio(struct list_head *ws,
124 struct compressed_bio *cb)
126 switch (cb->compress_type) {
127 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
128 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
129 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
130 case BTRFS_COMPRESS_NONE:
131 default:
133 * This can't happen, the type is validated several times
134 * before we get here.
136 BUG();
140 static int compression_decompress(int type, struct list_head *ws,
141 const u8 *data_in, struct folio *dest_folio,
142 unsigned long dest_pgoff, size_t srclen, size_t destlen)
144 switch (type) {
145 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio,
146 dest_pgoff, srclen, destlen);
147 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_folio,
148 dest_pgoff, srclen, destlen);
149 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio,
150 dest_pgoff, srclen, destlen);
151 case BTRFS_COMPRESS_NONE:
152 default:
154 * This can't happen, the type is validated several times
155 * before we get here.
157 BUG();
161 static void btrfs_free_compressed_folios(struct compressed_bio *cb)
163 for (unsigned int i = 0; i < cb->nr_folios; i++)
164 btrfs_free_compr_folio(cb->compressed_folios[i]);
165 kfree(cb->compressed_folios);
168 static int btrfs_decompress_bio(struct compressed_bio *cb);
171 * Global cache of last unused pages for compression/decompression.
173 static struct btrfs_compr_pool {
174 struct shrinker *shrinker;
175 spinlock_t lock;
176 struct list_head list;
177 int count;
178 int thresh;
179 } compr_pool;
181 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
183 int ret;
186 * We must not read the values more than once if 'ret' gets expanded in
187 * the return statement so we don't accidentally return a negative
188 * number, even if the first condition finds it positive.
190 ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
192 return ret > 0 ? ret : 0;
195 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
197 struct list_head remove;
198 struct list_head *tmp, *next;
199 int freed;
201 if (compr_pool.count == 0)
202 return SHRINK_STOP;
204 INIT_LIST_HEAD(&remove);
206 /* For now, just simply drain the whole list. */
207 spin_lock(&compr_pool.lock);
208 list_splice_init(&compr_pool.list, &remove);
209 freed = compr_pool.count;
210 compr_pool.count = 0;
211 spin_unlock(&compr_pool.lock);
213 list_for_each_safe(tmp, next, &remove) {
214 struct page *page = list_entry(tmp, struct page, lru);
216 ASSERT(page_ref_count(page) == 1);
217 put_page(page);
220 return freed;
224 * Common wrappers for page allocation from compression wrappers
226 struct folio *btrfs_alloc_compr_folio(void)
228 struct folio *folio = NULL;
230 spin_lock(&compr_pool.lock);
231 if (compr_pool.count > 0) {
232 folio = list_first_entry(&compr_pool.list, struct folio, lru);
233 list_del_init(&folio->lru);
234 compr_pool.count--;
236 spin_unlock(&compr_pool.lock);
238 if (folio)
239 return folio;
241 return folio_alloc(GFP_NOFS, 0);
244 void btrfs_free_compr_folio(struct folio *folio)
246 bool do_free = false;
248 spin_lock(&compr_pool.lock);
249 if (compr_pool.count > compr_pool.thresh) {
250 do_free = true;
251 } else {
252 list_add(&folio->lru, &compr_pool.list);
253 compr_pool.count++;
255 spin_unlock(&compr_pool.lock);
257 if (!do_free)
258 return;
260 ASSERT(folio_ref_count(folio) == 1);
261 folio_put(folio);
264 static void end_bbio_compressed_read(struct btrfs_bio *bbio)
266 struct compressed_bio *cb = to_compressed_bio(bbio);
267 blk_status_t status = bbio->bio.bi_status;
269 if (!status)
270 status = errno_to_blk_status(btrfs_decompress_bio(cb));
272 btrfs_free_compressed_folios(cb);
273 btrfs_bio_end_io(cb->orig_bbio, status);
274 bio_put(&bbio->bio);
278 * Clear the writeback bits on all of the file
279 * pages for a compressed write
281 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
283 struct inode *inode = &cb->bbio.inode->vfs_inode;
284 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
285 unsigned long index = cb->start >> PAGE_SHIFT;
286 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
287 struct folio_batch fbatch;
288 const int error = blk_status_to_errno(cb->bbio.bio.bi_status);
289 int i;
290 int ret;
292 if (error)
293 mapping_set_error(inode->i_mapping, error);
295 folio_batch_init(&fbatch);
296 while (index <= end_index) {
297 ret = filemap_get_folios(inode->i_mapping, &index, end_index,
298 &fbatch);
300 if (ret == 0)
301 return;
303 for (i = 0; i < ret; i++) {
304 struct folio *folio = fbatch.folios[i];
306 btrfs_folio_clamp_clear_writeback(fs_info, folio,
307 cb->start, cb->len);
309 folio_batch_release(&fbatch);
311 /* the inode may be gone now */
314 static void btrfs_finish_compressed_write_work(struct work_struct *work)
316 struct compressed_bio *cb =
317 container_of(work, struct compressed_bio, write_end_work);
319 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
320 cb->bbio.bio.bi_status == BLK_STS_OK);
322 if (cb->writeback)
323 end_compressed_writeback(cb);
324 /* Note, our inode could be gone now */
326 btrfs_free_compressed_folios(cb);
327 bio_put(&cb->bbio.bio);
331 * Do the cleanup once all the compressed pages hit the disk. This will clear
332 * writeback on the file pages and free the compressed pages.
334 * This also calls the writeback end hooks for the file pages so that metadata
335 * and checksums can be updated in the file.
337 static void end_bbio_compressed_write(struct btrfs_bio *bbio)
339 struct compressed_bio *cb = to_compressed_bio(bbio);
340 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
342 queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
345 static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb)
347 struct bio *bio = &cb->bbio.bio;
348 u32 offset = 0;
350 while (offset < cb->compressed_len) {
351 int ret;
352 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
354 /* Maximum compressed extent is smaller than bio size limit. */
355 ret = bio_add_folio(bio, cb->compressed_folios[offset >> PAGE_SHIFT],
356 len, 0);
357 ASSERT(ret);
358 offset += len;
363 * worker function to build and submit bios for previously compressed pages.
364 * The corresponding pages in the inode should be marked for writeback
365 * and the compressed pages should have a reference on them for dropping
366 * when the IO is complete.
368 * This also checksums the file bytes and gets things ready for
369 * the end io hooks.
371 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
372 struct folio **compressed_folios,
373 unsigned int nr_folios,
374 blk_opf_t write_flags,
375 bool writeback)
377 struct btrfs_inode *inode = ordered->inode;
378 struct btrfs_fs_info *fs_info = inode->root->fs_info;
379 struct compressed_bio *cb;
381 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
382 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
384 cb = alloc_compressed_bio(inode, ordered->file_offset,
385 REQ_OP_WRITE | write_flags,
386 end_bbio_compressed_write);
387 cb->start = ordered->file_offset;
388 cb->len = ordered->num_bytes;
389 cb->compressed_folios = compressed_folios;
390 cb->compressed_len = ordered->disk_num_bytes;
391 cb->writeback = writeback;
392 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
393 cb->nr_folios = nr_folios;
394 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
395 cb->bbio.ordered = ordered;
396 btrfs_add_compressed_bio_folios(cb);
398 btrfs_submit_bbio(&cb->bbio, 0);
402 * Add extra pages in the same compressed file extent so that we don't need to
403 * re-read the same extent again and again.
405 * NOTE: this won't work well for subpage, as for subpage read, we lock the
406 * full page then submit bio for each compressed/regular extents.
408 * This means, if we have several sectors in the same page points to the same
409 * on-disk compressed data, we will re-read the same extent many times and
410 * this function can only help for the next page.
412 static noinline int add_ra_bio_pages(struct inode *inode,
413 u64 compressed_end,
414 struct compressed_bio *cb,
415 int *memstall, unsigned long *pflags)
417 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
418 unsigned long end_index;
419 struct bio *orig_bio = &cb->orig_bbio->bio;
420 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
421 u64 isize = i_size_read(inode);
422 int ret;
423 struct folio *folio;
424 struct extent_map *em;
425 struct address_space *mapping = inode->i_mapping;
426 struct extent_map_tree *em_tree;
427 struct extent_io_tree *tree;
428 int sectors_missed = 0;
430 em_tree = &BTRFS_I(inode)->extent_tree;
431 tree = &BTRFS_I(inode)->io_tree;
433 if (isize == 0)
434 return 0;
437 * For current subpage support, we only support 64K page size,
438 * which means maximum compressed extent size (128K) is just 2x page
439 * size.
440 * This makes readahead less effective, so here disable readahead for
441 * subpage for now, until full compressed write is supported.
443 if (fs_info->sectorsize < PAGE_SIZE)
444 return 0;
446 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
448 while (cur < compressed_end) {
449 u64 page_end;
450 u64 pg_index = cur >> PAGE_SHIFT;
451 u32 add_size;
453 if (pg_index > end_index)
454 break;
456 folio = filemap_get_folio(mapping, pg_index);
457 if (!IS_ERR(folio)) {
458 u64 folio_sz = folio_size(folio);
459 u64 offset = offset_in_folio(folio, cur);
461 folio_put(folio);
462 sectors_missed += (folio_sz - offset) >>
463 fs_info->sectorsize_bits;
465 /* Beyond threshold, no need to continue */
466 if (sectors_missed > 4)
467 break;
470 * Jump to next page start as we already have page for
471 * current offset.
473 cur += (folio_sz - offset);
474 continue;
477 folio = filemap_alloc_folio(mapping_gfp_constraint(mapping,
478 ~__GFP_FS), 0);
479 if (!folio)
480 break;
482 if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) {
483 /* There is already a page, skip to page end */
484 cur += folio_size(folio);
485 folio_put(folio);
486 continue;
489 if (!*memstall && folio_test_workingset(folio)) {
490 psi_memstall_enter(pflags);
491 *memstall = 1;
494 ret = set_folio_extent_mapped(folio);
495 if (ret < 0) {
496 folio_unlock(folio);
497 folio_put(folio);
498 break;
501 page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1;
502 lock_extent(tree, cur, page_end, NULL);
503 read_lock(&em_tree->lock);
504 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
505 read_unlock(&em_tree->lock);
508 * At this point, we have a locked page in the page cache for
509 * these bytes in the file. But, we have to make sure they map
510 * to this compressed extent on disk.
512 if (!em || cur < em->start ||
513 (cur + fs_info->sectorsize > extent_map_end(em)) ||
514 (extent_map_block_start(em) >> SECTOR_SHIFT) !=
515 orig_bio->bi_iter.bi_sector) {
516 free_extent_map(em);
517 unlock_extent(tree, cur, page_end, NULL);
518 folio_unlock(folio);
519 folio_put(folio);
520 break;
522 add_size = min(em->start + em->len, page_end + 1) - cur;
523 free_extent_map(em);
524 unlock_extent(tree, cur, page_end, NULL);
526 if (folio->index == end_index) {
527 size_t zero_offset = offset_in_folio(folio, isize);
529 if (zero_offset) {
530 int zeros;
531 zeros = folio_size(folio) - zero_offset;
532 folio_zero_range(folio, zero_offset, zeros);
536 if (!bio_add_folio(orig_bio, folio, add_size,
537 offset_in_folio(folio, cur))) {
538 folio_unlock(folio);
539 folio_put(folio);
540 break;
543 * If it's subpage, we also need to increase its
544 * subpage::readers number, as at endio we will decrease
545 * subpage::readers and to unlock the page.
547 if (fs_info->sectorsize < PAGE_SIZE)
548 btrfs_folio_set_lock(fs_info, folio, cur, add_size);
549 folio_put(folio);
550 cur += add_size;
552 return 0;
556 * for a compressed read, the bio we get passed has all the inode pages
557 * in it. We don't actually do IO on those pages but allocate new ones
558 * to hold the compressed pages on disk.
560 * bio->bi_iter.bi_sector points to the compressed extent on disk
561 * bio->bi_io_vec points to all of the inode pages
563 * After the compressed pages are read, we copy the bytes into the
564 * bio we were passed and then call the bio end_io calls
566 void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
568 struct btrfs_inode *inode = bbio->inode;
569 struct btrfs_fs_info *fs_info = inode->root->fs_info;
570 struct extent_map_tree *em_tree = &inode->extent_tree;
571 struct compressed_bio *cb;
572 unsigned int compressed_len;
573 u64 file_offset = bbio->file_offset;
574 u64 em_len;
575 u64 em_start;
576 struct extent_map *em;
577 unsigned long pflags;
578 int memstall = 0;
579 blk_status_t ret;
580 int ret2;
582 /* we need the actual starting offset of this extent in the file */
583 read_lock(&em_tree->lock);
584 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
585 read_unlock(&em_tree->lock);
586 if (!em) {
587 ret = BLK_STS_IOERR;
588 goto out;
591 ASSERT(extent_map_is_compressed(em));
592 compressed_len = em->disk_num_bytes;
594 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
595 end_bbio_compressed_read);
597 cb->start = em->start - em->offset;
598 em_len = em->len;
599 em_start = em->start;
601 cb->len = bbio->bio.bi_iter.bi_size;
602 cb->compressed_len = compressed_len;
603 cb->compress_type = extent_map_compression(em);
604 cb->orig_bbio = bbio;
606 free_extent_map(em);
608 cb->nr_folios = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
609 cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct page *), GFP_NOFS);
610 if (!cb->compressed_folios) {
611 ret = BLK_STS_RESOURCE;
612 goto out_free_bio;
615 ret2 = btrfs_alloc_folio_array(cb->nr_folios, cb->compressed_folios);
616 if (ret2) {
617 ret = BLK_STS_RESOURCE;
618 goto out_free_compressed_pages;
621 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
622 &pflags);
624 /* include any pages we added in add_ra-bio_pages */
625 cb->len = bbio->bio.bi_iter.bi_size;
626 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
627 btrfs_add_compressed_bio_folios(cb);
629 if (memstall)
630 psi_memstall_leave(&pflags);
632 btrfs_submit_bbio(&cb->bbio, 0);
633 return;
635 out_free_compressed_pages:
636 kfree(cb->compressed_folios);
637 out_free_bio:
638 bio_put(&cb->bbio.bio);
639 out:
640 btrfs_bio_end_io(bbio, ret);
644 * Heuristic uses systematic sampling to collect data from the input data
645 * range, the logic can be tuned by the following constants:
647 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
648 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
650 #define SAMPLING_READ_SIZE (16)
651 #define SAMPLING_INTERVAL (256)
654 * For statistical analysis of the input data we consider bytes that form a
655 * Galois Field of 256 objects. Each object has an attribute count, ie. how
656 * many times the object appeared in the sample.
658 #define BUCKET_SIZE (256)
661 * The size of the sample is based on a statistical sampling rule of thumb.
662 * The common way is to perform sampling tests as long as the number of
663 * elements in each cell is at least 5.
665 * Instead of 5, we choose 32 to obtain more accurate results.
666 * If the data contain the maximum number of symbols, which is 256, we obtain a
667 * sample size bound by 8192.
669 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
670 * from up to 512 locations.
672 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
673 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
675 struct bucket_item {
676 u32 count;
679 struct heuristic_ws {
680 /* Partial copy of input data */
681 u8 *sample;
682 u32 sample_size;
683 /* Buckets store counters for each byte value */
684 struct bucket_item *bucket;
685 /* Sorting buffer */
686 struct bucket_item *bucket_b;
687 struct list_head list;
690 static struct workspace_manager heuristic_wsm;
692 static void free_heuristic_ws(struct list_head *ws)
694 struct heuristic_ws *workspace;
696 workspace = list_entry(ws, struct heuristic_ws, list);
698 kvfree(workspace->sample);
699 kfree(workspace->bucket);
700 kfree(workspace->bucket_b);
701 kfree(workspace);
704 static struct list_head *alloc_heuristic_ws(void)
706 struct heuristic_ws *ws;
708 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
709 if (!ws)
710 return ERR_PTR(-ENOMEM);
712 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
713 if (!ws->sample)
714 goto fail;
716 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
717 if (!ws->bucket)
718 goto fail;
720 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
721 if (!ws->bucket_b)
722 goto fail;
724 INIT_LIST_HEAD(&ws->list);
725 return &ws->list;
726 fail:
727 free_heuristic_ws(&ws->list);
728 return ERR_PTR(-ENOMEM);
731 const struct btrfs_compress_op btrfs_heuristic_compress = {
732 .workspace_manager = &heuristic_wsm,
735 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
736 /* The heuristic is represented as compression type 0 */
737 &btrfs_heuristic_compress,
738 &btrfs_zlib_compress,
739 &btrfs_lzo_compress,
740 &btrfs_zstd_compress,
743 static struct list_head *alloc_workspace(int type, unsigned int level)
745 switch (type) {
746 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws();
747 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
748 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace();
749 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
750 default:
752 * This can't happen, the type is validated several times
753 * before we get here.
755 BUG();
759 static void free_workspace(int type, struct list_head *ws)
761 switch (type) {
762 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
763 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
764 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
765 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
766 default:
768 * This can't happen, the type is validated several times
769 * before we get here.
771 BUG();
775 static void btrfs_init_workspace_manager(int type)
777 struct workspace_manager *wsm;
778 struct list_head *workspace;
780 wsm = btrfs_compress_op[type]->workspace_manager;
781 INIT_LIST_HEAD(&wsm->idle_ws);
782 spin_lock_init(&wsm->ws_lock);
783 atomic_set(&wsm->total_ws, 0);
784 init_waitqueue_head(&wsm->ws_wait);
787 * Preallocate one workspace for each compression type so we can
788 * guarantee forward progress in the worst case
790 workspace = alloc_workspace(type, 0);
791 if (IS_ERR(workspace)) {
792 pr_warn(
793 "BTRFS: cannot preallocate compression workspace, will try later\n");
794 } else {
795 atomic_set(&wsm->total_ws, 1);
796 wsm->free_ws = 1;
797 list_add(workspace, &wsm->idle_ws);
801 static void btrfs_cleanup_workspace_manager(int type)
803 struct workspace_manager *wsman;
804 struct list_head *ws;
806 wsman = btrfs_compress_op[type]->workspace_manager;
807 while (!list_empty(&wsman->idle_ws)) {
808 ws = wsman->idle_ws.next;
809 list_del(ws);
810 free_workspace(type, ws);
811 atomic_dec(&wsman->total_ws);
816 * This finds an available workspace or allocates a new one.
817 * If it's not possible to allocate a new one, waits until there's one.
818 * Preallocation makes a forward progress guarantees and we do not return
819 * errors.
821 struct list_head *btrfs_get_workspace(int type, unsigned int level)
823 struct workspace_manager *wsm;
824 struct list_head *workspace;
825 int cpus = num_online_cpus();
826 unsigned nofs_flag;
827 struct list_head *idle_ws;
828 spinlock_t *ws_lock;
829 atomic_t *total_ws;
830 wait_queue_head_t *ws_wait;
831 int *free_ws;
833 wsm = btrfs_compress_op[type]->workspace_manager;
834 idle_ws = &wsm->idle_ws;
835 ws_lock = &wsm->ws_lock;
836 total_ws = &wsm->total_ws;
837 ws_wait = &wsm->ws_wait;
838 free_ws = &wsm->free_ws;
840 again:
841 spin_lock(ws_lock);
842 if (!list_empty(idle_ws)) {
843 workspace = idle_ws->next;
844 list_del(workspace);
845 (*free_ws)--;
846 spin_unlock(ws_lock);
847 return workspace;
850 if (atomic_read(total_ws) > cpus) {
851 DEFINE_WAIT(wait);
853 spin_unlock(ws_lock);
854 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
855 if (atomic_read(total_ws) > cpus && !*free_ws)
856 schedule();
857 finish_wait(ws_wait, &wait);
858 goto again;
860 atomic_inc(total_ws);
861 spin_unlock(ws_lock);
864 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
865 * to turn it off here because we might get called from the restricted
866 * context of btrfs_compress_bio/btrfs_compress_pages
868 nofs_flag = memalloc_nofs_save();
869 workspace = alloc_workspace(type, level);
870 memalloc_nofs_restore(nofs_flag);
872 if (IS_ERR(workspace)) {
873 atomic_dec(total_ws);
874 wake_up(ws_wait);
877 * Do not return the error but go back to waiting. There's a
878 * workspace preallocated for each type and the compression
879 * time is bounded so we get to a workspace eventually. This
880 * makes our caller's life easier.
882 * To prevent silent and low-probability deadlocks (when the
883 * initial preallocation fails), check if there are any
884 * workspaces at all.
886 if (atomic_read(total_ws) == 0) {
887 static DEFINE_RATELIMIT_STATE(_rs,
888 /* once per minute */ 60 * HZ,
889 /* no burst */ 1);
891 if (__ratelimit(&_rs)) {
892 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
895 goto again;
897 return workspace;
900 static struct list_head *get_workspace(int type, int level)
902 switch (type) {
903 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
904 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
905 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
906 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
907 default:
909 * This can't happen, the type is validated several times
910 * before we get here.
912 BUG();
917 * put a workspace struct back on the list or free it if we have enough
918 * idle ones sitting around
920 void btrfs_put_workspace(int type, struct list_head *ws)
922 struct workspace_manager *wsm;
923 struct list_head *idle_ws;
924 spinlock_t *ws_lock;
925 atomic_t *total_ws;
926 wait_queue_head_t *ws_wait;
927 int *free_ws;
929 wsm = btrfs_compress_op[type]->workspace_manager;
930 idle_ws = &wsm->idle_ws;
931 ws_lock = &wsm->ws_lock;
932 total_ws = &wsm->total_ws;
933 ws_wait = &wsm->ws_wait;
934 free_ws = &wsm->free_ws;
936 spin_lock(ws_lock);
937 if (*free_ws <= num_online_cpus()) {
938 list_add(ws, idle_ws);
939 (*free_ws)++;
940 spin_unlock(ws_lock);
941 goto wake;
943 spin_unlock(ws_lock);
945 free_workspace(type, ws);
946 atomic_dec(total_ws);
947 wake:
948 cond_wake_up(ws_wait);
951 static void put_workspace(int type, struct list_head *ws)
953 switch (type) {
954 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
955 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
956 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
957 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
958 default:
960 * This can't happen, the type is validated several times
961 * before we get here.
963 BUG();
968 * Adjust @level according to the limits of the compression algorithm or
969 * fallback to default
971 static unsigned int btrfs_compress_set_level(int type, unsigned level)
973 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
975 if (level == 0)
976 level = ops->default_level;
977 else
978 level = min(level, ops->max_level);
980 return level;
983 /* Wrapper around find_get_page(), with extra error message. */
984 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start,
985 struct folio **in_folio_ret)
987 struct folio *in_folio;
990 * The compressed write path should have the folio locked already, thus
991 * we only need to grab one reference.
993 in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT);
994 if (IS_ERR(in_folio)) {
995 struct btrfs_inode *inode = BTRFS_I(mapping->host);
997 btrfs_crit(inode->root->fs_info,
998 "failed to get page cache, root %lld ino %llu file offset %llu",
999 btrfs_root_id(inode->root), btrfs_ino(inode), start);
1000 return -ENOENT;
1002 *in_folio_ret = in_folio;
1003 return 0;
1007 * Given an address space and start and length, compress the bytes into @pages
1008 * that are allocated on demand.
1010 * @type_level is encoded algorithm and level, where level 0 means whatever
1011 * default the algorithm chooses and is opaque here;
1012 * - compression algo are 0-3
1013 * - the level are bits 4-7
1015 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1016 * and returns number of actually allocated pages
1018 * @total_in is used to return the number of bytes actually read. It
1019 * may be smaller than the input length if we had to exit early because we
1020 * ran out of room in the pages array or because we cross the
1021 * max_out threshold.
1023 * @total_out is an in/out parameter, must be set to the input length and will
1024 * be also used to return the total number of compressed bytes
1026 int btrfs_compress_folios(unsigned int type_level, struct address_space *mapping,
1027 u64 start, struct folio **folios, unsigned long *out_folios,
1028 unsigned long *total_in, unsigned long *total_out)
1030 int type = btrfs_compress_type(type_level);
1031 int level = btrfs_compress_level(type_level);
1032 const unsigned long orig_len = *total_out;
1033 struct list_head *workspace;
1034 int ret;
1036 level = btrfs_compress_set_level(type, level);
1037 workspace = get_workspace(type, level);
1038 ret = compression_compress_pages(type, workspace, mapping, start, folios,
1039 out_folios, total_in, total_out);
1040 /* The total read-in bytes should be no larger than the input. */
1041 ASSERT(*total_in <= orig_len);
1042 put_workspace(type, workspace);
1043 return ret;
1046 static int btrfs_decompress_bio(struct compressed_bio *cb)
1048 struct list_head *workspace;
1049 int ret;
1050 int type = cb->compress_type;
1052 workspace = get_workspace(type, 0);
1053 ret = compression_decompress_bio(workspace, cb);
1054 put_workspace(type, workspace);
1056 if (!ret)
1057 zero_fill_bio(&cb->orig_bbio->bio);
1058 return ret;
1062 * a less complex decompression routine. Our compressed data fits in a
1063 * single page, and we want to read a single page out of it.
1064 * start_byte tells us the offset into the compressed data we're interested in
1066 int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio,
1067 unsigned long dest_pgoff, size_t srclen, size_t destlen)
1069 struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio);
1070 struct list_head *workspace;
1071 const u32 sectorsize = fs_info->sectorsize;
1072 int ret;
1075 * The full destination page range should not exceed the page size.
1076 * And the @destlen should not exceed sectorsize, as this is only called for
1077 * inline file extents, which should not exceed sectorsize.
1079 ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
1081 workspace = get_workspace(type, 0);
1082 ret = compression_decompress(type, workspace, data_in, dest_folio,
1083 dest_pgoff, srclen, destlen);
1084 put_workspace(type, workspace);
1086 return ret;
1089 int __init btrfs_init_compress(void)
1091 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1092 offsetof(struct compressed_bio, bbio.bio),
1093 BIOSET_NEED_BVECS))
1094 return -ENOMEM;
1096 compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1097 if (!compr_pool.shrinker)
1098 return -ENOMEM;
1100 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1101 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1102 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1103 zstd_init_workspace_manager();
1105 spin_lock_init(&compr_pool.lock);
1106 INIT_LIST_HEAD(&compr_pool.list);
1107 compr_pool.count = 0;
1108 /* 128K / 4K = 32, for 8 threads is 256 pages. */
1109 compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1110 compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1111 compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1112 compr_pool.shrinker->batch = 32;
1113 compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1114 shrinker_register(compr_pool.shrinker);
1116 return 0;
1119 void __cold btrfs_exit_compress(void)
1121 /* For now scan drains all pages and does not touch the parameters. */
1122 btrfs_compr_pool_scan(NULL, NULL);
1123 shrinker_free(compr_pool.shrinker);
1125 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1126 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1127 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1128 zstd_cleanup_workspace_manager();
1129 bioset_exit(&btrfs_compressed_bioset);
1133 * Copy decompressed data from working buffer to pages.
1135 * @buf: The decompressed data buffer
1136 * @buf_len: The decompressed data length
1137 * @decompressed: Number of bytes that are already decompressed inside the
1138 * compressed extent
1139 * @cb: The compressed extent descriptor
1140 * @orig_bio: The original bio that the caller wants to read for
1142 * An easier to understand graph is like below:
1144 * |<- orig_bio ->| |<- orig_bio->|
1145 * |<------- full decompressed extent ----->|
1146 * |<----------- @cb range ---->|
1147 * | |<-- @buf_len -->|
1148 * |<--- @decompressed --->|
1150 * Note that, @cb can be a subpage of the full decompressed extent, but
1151 * @cb->start always has the same as the orig_file_offset value of the full
1152 * decompressed extent.
1154 * When reading compressed extent, we have to read the full compressed extent,
1155 * while @orig_bio may only want part of the range.
1156 * Thus this function will ensure only data covered by @orig_bio will be copied
1157 * to.
1159 * Return 0 if we have copied all needed contents for @orig_bio.
1160 * Return >0 if we need continue decompress.
1162 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1163 struct compressed_bio *cb, u32 decompressed)
1165 struct bio *orig_bio = &cb->orig_bbio->bio;
1166 /* Offset inside the full decompressed extent */
1167 u32 cur_offset;
1169 cur_offset = decompressed;
1170 /* The main loop to do the copy */
1171 while (cur_offset < decompressed + buf_len) {
1172 struct bio_vec bvec;
1173 size_t copy_len;
1174 u32 copy_start;
1175 /* Offset inside the full decompressed extent */
1176 u32 bvec_offset;
1178 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1180 * cb->start may underflow, but subtracting that value can still
1181 * give us correct offset inside the full decompressed extent.
1183 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1185 /* Haven't reached the bvec range, exit */
1186 if (decompressed + buf_len <= bvec_offset)
1187 return 1;
1189 copy_start = max(cur_offset, bvec_offset);
1190 copy_len = min(bvec_offset + bvec.bv_len,
1191 decompressed + buf_len) - copy_start;
1192 ASSERT(copy_len);
1195 * Extra range check to ensure we didn't go beyond
1196 * @buf + @buf_len.
1198 ASSERT(copy_start - decompressed < buf_len);
1199 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1200 buf + copy_start - decompressed, copy_len);
1201 cur_offset += copy_len;
1203 bio_advance(orig_bio, copy_len);
1204 /* Finished the bio */
1205 if (!orig_bio->bi_iter.bi_size)
1206 return 0;
1208 return 1;
1212 * Shannon Entropy calculation
1214 * Pure byte distribution analysis fails to determine compressibility of data.
1215 * Try calculating entropy to estimate the average minimum number of bits
1216 * needed to encode the sampled data.
1218 * For convenience, return the percentage of needed bits, instead of amount of
1219 * bits directly.
1221 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1222 * and can be compressible with high probability
1224 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1226 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1228 #define ENTROPY_LVL_ACEPTABLE (65)
1229 #define ENTROPY_LVL_HIGH (80)
1232 * For increasead precision in shannon_entropy calculation,
1233 * let's do pow(n, M) to save more digits after comma:
1235 * - maximum int bit length is 64
1236 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1237 * - 13 * 4 = 52 < 64 -> M = 4
1239 * So use pow(n, 4).
1241 static inline u32 ilog2_w(u64 n)
1243 return ilog2(n * n * n * n);
1246 static u32 shannon_entropy(struct heuristic_ws *ws)
1248 const u32 entropy_max = 8 * ilog2_w(2);
1249 u32 entropy_sum = 0;
1250 u32 p, p_base, sz_base;
1251 u32 i;
1253 sz_base = ilog2_w(ws->sample_size);
1254 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1255 p = ws->bucket[i].count;
1256 p_base = ilog2_w(p);
1257 entropy_sum += p * (sz_base - p_base);
1260 entropy_sum /= ws->sample_size;
1261 return entropy_sum * 100 / entropy_max;
1264 #define RADIX_BASE 4U
1265 #define COUNTERS_SIZE (1U << RADIX_BASE)
1267 static u8 get4bits(u64 num, int shift) {
1268 u8 low4bits;
1270 num >>= shift;
1271 /* Reverse order */
1272 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1273 return low4bits;
1277 * Use 4 bits as radix base
1278 * Use 16 u32 counters for calculating new position in buf array
1280 * @array - array that will be sorted
1281 * @array_buf - buffer array to store sorting results
1282 * must be equal in size to @array
1283 * @num - array size
1285 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1286 int num)
1288 u64 max_num;
1289 u64 buf_num;
1290 u32 counters[COUNTERS_SIZE];
1291 u32 new_addr;
1292 u32 addr;
1293 int bitlen;
1294 int shift;
1295 int i;
1298 * Try avoid useless loop iterations for small numbers stored in big
1299 * counters. Example: 48 33 4 ... in 64bit array
1301 max_num = array[0].count;
1302 for (i = 1; i < num; i++) {
1303 buf_num = array[i].count;
1304 if (buf_num > max_num)
1305 max_num = buf_num;
1308 buf_num = ilog2(max_num);
1309 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1311 shift = 0;
1312 while (shift < bitlen) {
1313 memset(counters, 0, sizeof(counters));
1315 for (i = 0; i < num; i++) {
1316 buf_num = array[i].count;
1317 addr = get4bits(buf_num, shift);
1318 counters[addr]++;
1321 for (i = 1; i < COUNTERS_SIZE; i++)
1322 counters[i] += counters[i - 1];
1324 for (i = num - 1; i >= 0; i--) {
1325 buf_num = array[i].count;
1326 addr = get4bits(buf_num, shift);
1327 counters[addr]--;
1328 new_addr = counters[addr];
1329 array_buf[new_addr] = array[i];
1332 shift += RADIX_BASE;
1335 * Normal radix expects to move data from a temporary array, to
1336 * the main one. But that requires some CPU time. Avoid that
1337 * by doing another sort iteration to original array instead of
1338 * memcpy()
1340 memset(counters, 0, sizeof(counters));
1342 for (i = 0; i < num; i ++) {
1343 buf_num = array_buf[i].count;
1344 addr = get4bits(buf_num, shift);
1345 counters[addr]++;
1348 for (i = 1; i < COUNTERS_SIZE; i++)
1349 counters[i] += counters[i - 1];
1351 for (i = num - 1; i >= 0; i--) {
1352 buf_num = array_buf[i].count;
1353 addr = get4bits(buf_num, shift);
1354 counters[addr]--;
1355 new_addr = counters[addr];
1356 array[new_addr] = array_buf[i];
1359 shift += RADIX_BASE;
1364 * Size of the core byte set - how many bytes cover 90% of the sample
1366 * There are several types of structured binary data that use nearly all byte
1367 * values. The distribution can be uniform and counts in all buckets will be
1368 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1370 * Other possibility is normal (Gaussian) distribution, where the data could
1371 * be potentially compressible, but we have to take a few more steps to decide
1372 * how much.
1374 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1375 * compression algo can easy fix that
1376 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1377 * probability is not compressible
1379 #define BYTE_CORE_SET_LOW (64)
1380 #define BYTE_CORE_SET_HIGH (200)
1382 static int byte_core_set_size(struct heuristic_ws *ws)
1384 u32 i;
1385 u32 coreset_sum = 0;
1386 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1387 struct bucket_item *bucket = ws->bucket;
1389 /* Sort in reverse order */
1390 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1392 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1393 coreset_sum += bucket[i].count;
1395 if (coreset_sum > core_set_threshold)
1396 return i;
1398 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1399 coreset_sum += bucket[i].count;
1400 if (coreset_sum > core_set_threshold)
1401 break;
1404 return i;
1408 * Count byte values in buckets.
1409 * This heuristic can detect textual data (configs, xml, json, html, etc).
1410 * Because in most text-like data byte set is restricted to limited number of
1411 * possible characters, and that restriction in most cases makes data easy to
1412 * compress.
1414 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1415 * less - compressible
1416 * more - need additional analysis
1418 #define BYTE_SET_THRESHOLD (64)
1420 static u32 byte_set_size(const struct heuristic_ws *ws)
1422 u32 i;
1423 u32 byte_set_size = 0;
1425 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1426 if (ws->bucket[i].count > 0)
1427 byte_set_size++;
1431 * Continue collecting count of byte values in buckets. If the byte
1432 * set size is bigger then the threshold, it's pointless to continue,
1433 * the detection technique would fail for this type of data.
1435 for (; i < BUCKET_SIZE; i++) {
1436 if (ws->bucket[i].count > 0) {
1437 byte_set_size++;
1438 if (byte_set_size > BYTE_SET_THRESHOLD)
1439 return byte_set_size;
1443 return byte_set_size;
1446 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1448 const u32 half_of_sample = ws->sample_size / 2;
1449 const u8 *data = ws->sample;
1451 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1454 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1455 struct heuristic_ws *ws)
1457 struct page *page;
1458 u64 index, index_end;
1459 u32 i, curr_sample_pos;
1460 u8 *in_data;
1463 * Compression handles the input data by chunks of 128KiB
1464 * (defined by BTRFS_MAX_UNCOMPRESSED)
1466 * We do the same for the heuristic and loop over the whole range.
1468 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1469 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1471 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1472 end = start + BTRFS_MAX_UNCOMPRESSED;
1474 index = start >> PAGE_SHIFT;
1475 index_end = end >> PAGE_SHIFT;
1477 /* Don't miss unaligned end */
1478 if (!PAGE_ALIGNED(end))
1479 index_end++;
1481 curr_sample_pos = 0;
1482 while (index < index_end) {
1483 page = find_get_page(inode->i_mapping, index);
1484 in_data = kmap_local_page(page);
1485 /* Handle case where the start is not aligned to PAGE_SIZE */
1486 i = start % PAGE_SIZE;
1487 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1488 /* Don't sample any garbage from the last page */
1489 if (start > end - SAMPLING_READ_SIZE)
1490 break;
1491 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1492 SAMPLING_READ_SIZE);
1493 i += SAMPLING_INTERVAL;
1494 start += SAMPLING_INTERVAL;
1495 curr_sample_pos += SAMPLING_READ_SIZE;
1497 kunmap_local(in_data);
1498 put_page(page);
1500 index++;
1503 ws->sample_size = curr_sample_pos;
1507 * Compression heuristic.
1509 * The following types of analysis can be performed:
1510 * - detect mostly zero data
1511 * - detect data with low "byte set" size (text, etc)
1512 * - detect data with low/high "core byte" set
1514 * Return non-zero if the compression should be done, 0 otherwise.
1516 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end)
1518 struct list_head *ws_list = get_workspace(0, 0);
1519 struct heuristic_ws *ws;
1520 u32 i;
1521 u8 byte;
1522 int ret = 0;
1524 ws = list_entry(ws_list, struct heuristic_ws, list);
1526 heuristic_collect_sample(&inode->vfs_inode, start, end, ws);
1528 if (sample_repeated_patterns(ws)) {
1529 ret = 1;
1530 goto out;
1533 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1535 for (i = 0; i < ws->sample_size; i++) {
1536 byte = ws->sample[i];
1537 ws->bucket[byte].count++;
1540 i = byte_set_size(ws);
1541 if (i < BYTE_SET_THRESHOLD) {
1542 ret = 2;
1543 goto out;
1546 i = byte_core_set_size(ws);
1547 if (i <= BYTE_CORE_SET_LOW) {
1548 ret = 3;
1549 goto out;
1552 if (i >= BYTE_CORE_SET_HIGH) {
1553 ret = 0;
1554 goto out;
1557 i = shannon_entropy(ws);
1558 if (i <= ENTROPY_LVL_ACEPTABLE) {
1559 ret = 4;
1560 goto out;
1564 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1565 * needed to give green light to compression.
1567 * For now just assume that compression at that level is not worth the
1568 * resources because:
1570 * 1. it is possible to defrag the data later
1572 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1573 * values, every bucket has counter at level ~54. The heuristic would
1574 * be confused. This can happen when data have some internal repeated
1575 * patterns like "abbacbbc...". This can be detected by analyzing
1576 * pairs of bytes, which is too costly.
1578 if (i < ENTROPY_LVL_HIGH) {
1579 ret = 5;
1580 goto out;
1581 } else {
1582 ret = 0;
1583 goto out;
1586 out:
1587 put_workspace(0, ws_list);
1588 return ret;
1592 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1593 * level, unrecognized string will set the default level
1595 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1597 unsigned int level = 0;
1598 int ret;
1600 if (!type)
1601 return 0;
1603 if (str[0] == ':') {
1604 ret = kstrtouint(str + 1, 10, &level);
1605 if (ret)
1606 level = 0;
1609 level = btrfs_compress_set_level(type, level);
1611 return level;