1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
41 #include "space-info.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
55 BTRFS_HEADER_FLAG_RELOC |\
56 BTRFS_SUPER_FLAG_ERROR |\
57 BTRFS_SUPER_FLAG_SEEDING |\
58 BTRFS_SUPER_FLAG_METADUMP |\
59 BTRFS_SUPER_FLAG_METADUMP_V2)
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
62 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
64 static void btrfs_free_csum_hash(struct btrfs_fs_info
*fs_info
)
66 if (fs_info
->csum_shash
)
67 crypto_free_shash(fs_info
->csum_shash
);
71 * Compute the csum of a btree block and store the result to provided buffer.
73 static void csum_tree_block(struct extent_buffer
*buf
, u8
*result
)
75 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
78 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
82 shash
->tfm
= fs_info
->csum_shash
;
83 crypto_shash_init(shash
);
86 /* Pages are contiguous, handle them as a big one. */
88 first_page_part
= fs_info
->nodesize
;
91 kaddr
= folio_address(buf
->folios
[0]);
92 first_page_part
= min_t(u32
, PAGE_SIZE
, fs_info
->nodesize
);
93 num_pages
= num_extent_pages(buf
);
96 crypto_shash_update(shash
, kaddr
+ BTRFS_CSUM_SIZE
,
97 first_page_part
- BTRFS_CSUM_SIZE
);
100 * Multiple single-page folios case would reach here.
102 * nodesize <= PAGE_SIZE and large folio all handled by above
103 * crypto_shash_update() already.
105 for (i
= 1; i
< num_pages
&& INLINE_EXTENT_BUFFER_PAGES
> 1; i
++) {
106 kaddr
= folio_address(buf
->folios
[i
]);
107 crypto_shash_update(shash
, kaddr
, PAGE_SIZE
);
109 memset(result
, 0, BTRFS_CSUM_SIZE
);
110 crypto_shash_final(shash
, result
);
114 * we can't consider a given block up to date unless the transid of the
115 * block matches the transid in the parent node's pointer. This is how we
116 * detect blocks that either didn't get written at all or got written
117 * in the wrong place.
119 int btrfs_buffer_uptodate(struct extent_buffer
*eb
, u64 parent_transid
, int atomic
)
121 if (!extent_buffer_uptodate(eb
))
124 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
130 if (!extent_buffer_uptodate(eb
) ||
131 btrfs_header_generation(eb
) != parent_transid
) {
132 btrfs_err_rl(eb
->fs_info
,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb
->start
, eb
->read_mirror
,
135 parent_transid
, btrfs_header_generation(eb
));
136 clear_extent_buffer_uptodate(eb
);
142 static bool btrfs_supported_super_csum(u16 csum_type
)
145 case BTRFS_CSUM_TYPE_CRC32
:
146 case BTRFS_CSUM_TYPE_XXHASH
:
147 case BTRFS_CSUM_TYPE_SHA256
:
148 case BTRFS_CSUM_TYPE_BLAKE2
:
156 * Return 0 if the superblock checksum type matches the checksum value of that
157 * algorithm. Pass the raw disk superblock data.
159 int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
160 const struct btrfs_super_block
*disk_sb
)
162 char result
[BTRFS_CSUM_SIZE
];
163 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
165 shash
->tfm
= fs_info
->csum_shash
;
168 * The super_block structure does not span the whole
169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 * filled with zeros and is included in the checksum.
172 crypto_shash_digest(shash
, (const u8
*)disk_sb
+ BTRFS_CSUM_SIZE
,
173 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
, result
);
175 if (memcmp(disk_sb
->csum
, result
, fs_info
->csum_size
))
181 static int btrfs_repair_eb_io_failure(const struct extent_buffer
*eb
,
184 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
185 int num_folios
= num_extent_folios(eb
);
188 if (sb_rdonly(fs_info
->sb
))
191 for (int i
= 0; i
< num_folios
; i
++) {
192 struct folio
*folio
= eb
->folios
[i
];
193 u64 start
= max_t(u64
, eb
->start
, folio_pos(folio
));
194 u64 end
= min_t(u64
, eb
->start
+ eb
->len
,
195 folio_pos(folio
) + eb
->folio_size
);
196 u32 len
= end
- start
;
198 ret
= btrfs_repair_io_failure(fs_info
, 0, start
, len
,
199 start
, folio
, offset_in_folio(folio
, start
),
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
212 * @check: expected tree parentness check, see the comments of the
213 * structure for details.
215 int btrfs_read_extent_buffer(struct extent_buffer
*eb
,
216 const struct btrfs_tree_parent_check
*check
)
218 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
223 int failed_mirror
= 0;
228 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
229 ret
= read_extent_buffer_pages(eb
, WAIT_COMPLETE
, mirror_num
, check
);
233 num_copies
= btrfs_num_copies(fs_info
,
238 if (!failed_mirror
) {
240 failed_mirror
= eb
->read_mirror
;
244 if (mirror_num
== failed_mirror
)
247 if (mirror_num
> num_copies
)
251 if (failed
&& !ret
&& failed_mirror
)
252 btrfs_repair_eb_io_failure(eb
, failed_mirror
);
258 * Checksum a dirty tree block before IO.
260 blk_status_t
btree_csum_one_bio(struct btrfs_bio
*bbio
)
262 struct extent_buffer
*eb
= bbio
->private;
263 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
264 u64 found_start
= btrfs_header_bytenr(eb
);
266 u8 result
[BTRFS_CSUM_SIZE
];
269 /* Btree blocks are always contiguous on disk. */
270 if (WARN_ON_ONCE(bbio
->file_offset
!= eb
->start
))
271 return BLK_STS_IOERR
;
272 if (WARN_ON_ONCE(bbio
->bio
.bi_iter
.bi_size
!= eb
->len
))
273 return BLK_STS_IOERR
;
276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 * checksum it but zero-out its content. This is done to preserve
278 * ordering of I/O without unnecessarily writing out data.
280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT
, &eb
->bflags
)) {
281 memzero_extent_buffer(eb
, 0, eb
->len
);
285 if (WARN_ON_ONCE(found_start
!= eb
->start
))
286 return BLK_STS_IOERR
;
287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info
, eb
->folios
[0],
288 eb
->start
, eb
->len
)))
289 return BLK_STS_IOERR
;
291 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fs_devices
->metadata_uuid
,
292 offsetof(struct btrfs_header
, fsid
),
293 BTRFS_FSID_SIZE
) == 0);
294 csum_tree_block(eb
, result
);
296 if (btrfs_header_level(eb
))
297 ret
= btrfs_check_node(eb
);
299 ret
= btrfs_check_leaf(eb
);
305 * Also check the generation, the eb reached here must be newer than
306 * last committed. Or something seriously wrong happened.
308 last_trans
= btrfs_get_last_trans_committed(fs_info
);
309 if (unlikely(btrfs_header_generation(eb
) <= last_trans
)) {
312 "block=%llu bad generation, have %llu expect > %llu",
313 eb
->start
, btrfs_header_generation(eb
), last_trans
);
316 write_extent_buffer(eb
, result
, 0, fs_info
->csum_size
);
320 btrfs_print_tree(eb
, 0);
321 btrfs_err(fs_info
, "block=%llu write time tree block corruption detected",
324 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 * a transaction in case there's a bad log tree extent buffer, we just
326 * fallback to a transaction commit. Still we want to know when there is
327 * a bad log tree extent buffer, as that may signal a bug somewhere.
329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
) ||
330 btrfs_header_owner(eb
) == BTRFS_TREE_LOG_OBJECTID
);
331 return errno_to_blk_status(ret
);
334 static bool check_tree_block_fsid(struct extent_buffer
*eb
)
336 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
337 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
, *seed_devs
;
338 u8 fsid
[BTRFS_FSID_SIZE
];
340 read_extent_buffer(eb
, fsid
, offsetof(struct btrfs_header
, fsid
),
344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 * This is then overwritten by metadata_uuid if it is present in the
346 * device_list_add(). The same true for a seed device as well. So use of
347 * fs_devices::metadata_uuid is appropriate here.
349 if (memcmp(fsid
, fs_info
->fs_devices
->metadata_uuid
, BTRFS_FSID_SIZE
) == 0)
352 list_for_each_entry(seed_devs
, &fs_devices
->seed_list
, seed_list
)
353 if (!memcmp(fsid
, seed_devs
->fsid
, BTRFS_FSID_SIZE
))
359 /* Do basic extent buffer checks at read time */
360 int btrfs_validate_extent_buffer(struct extent_buffer
*eb
,
361 const struct btrfs_tree_parent_check
*check
)
363 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
365 const u32 csum_size
= fs_info
->csum_size
;
367 u8 result
[BTRFS_CSUM_SIZE
];
368 const u8
*header_csum
;
370 const bool ignore_csum
= btrfs_test_opt(fs_info
, IGNOREMETACSUMS
);
374 found_start
= btrfs_header_bytenr(eb
);
375 if (found_start
!= eb
->start
) {
376 btrfs_err_rl(fs_info
,
377 "bad tree block start, mirror %u want %llu have %llu",
378 eb
->read_mirror
, eb
->start
, found_start
);
382 if (check_tree_block_fsid(eb
)) {
383 btrfs_err_rl(fs_info
, "bad fsid on logical %llu mirror %u",
384 eb
->start
, eb
->read_mirror
);
388 found_level
= btrfs_header_level(eb
);
389 if (found_level
>= BTRFS_MAX_LEVEL
) {
391 "bad tree block level, mirror %u level %d on logical %llu",
392 eb
->read_mirror
, btrfs_header_level(eb
), eb
->start
);
397 csum_tree_block(eb
, result
);
398 header_csum
= folio_address(eb
->folios
[0]) +
399 get_eb_offset_in_folio(eb
, offsetof(struct btrfs_header
, csum
));
401 if (memcmp(result
, header_csum
, csum_size
) != 0) {
402 btrfs_warn_rl(fs_info
,
403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT
" found " CSUM_FMT
" level %d%s",
404 eb
->start
, eb
->read_mirror
,
405 CSUM_FMT_VALUE(csum_size
, header_csum
),
406 CSUM_FMT_VALUE(csum_size
, result
),
407 btrfs_header_level(eb
),
408 ignore_csum
? ", ignored" : "");
415 if (found_level
!= check
->level
) {
417 "level verify failed on logical %llu mirror %u wanted %u found %u",
418 eb
->start
, eb
->read_mirror
, check
->level
, found_level
);
422 if (unlikely(check
->transid
&&
423 btrfs_header_generation(eb
) != check
->transid
)) {
424 btrfs_err_rl(eb
->fs_info
,
425 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
426 eb
->start
, eb
->read_mirror
, check
->transid
,
427 btrfs_header_generation(eb
));
431 if (check
->has_first_key
) {
432 const struct btrfs_key
*expect_key
= &check
->first_key
;
433 struct btrfs_key found_key
;
436 btrfs_node_key_to_cpu(eb
, &found_key
, 0);
438 btrfs_item_key_to_cpu(eb
, &found_key
, 0);
439 if (unlikely(btrfs_comp_cpu_keys(expect_key
, &found_key
))) {
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442 eb
->start
, check
->transid
,
443 expect_key
->objectid
,
444 expect_key
->type
, expect_key
->offset
,
445 found_key
.objectid
, found_key
.type
,
451 if (check
->owner_root
) {
452 ret
= btrfs_check_eb_owner(eb
, check
->owner_root
);
458 * If this is a leaf block and it is corrupt, set the corrupt bit so
459 * that we don't try and read the other copies of this block, just
462 if (found_level
== 0 && btrfs_check_leaf(eb
)) {
463 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
467 if (found_level
> 0 && btrfs_check_node(eb
))
472 "read time tree block corruption detected on logical %llu mirror %u",
473 eb
->start
, eb
->read_mirror
);
478 #ifdef CONFIG_MIGRATION
479 static int btree_migrate_folio(struct address_space
*mapping
,
480 struct folio
*dst
, struct folio
*src
, enum migrate_mode mode
)
483 * we can't safely write a btree page from here,
484 * we haven't done the locking hook
486 if (folio_test_dirty(src
))
489 * Buffers may be managed in a filesystem specific way.
490 * We must have no buffers or drop them.
492 if (folio_get_private(src
) &&
493 !filemap_release_folio(src
, GFP_KERNEL
))
495 return migrate_folio(mapping
, dst
, src
, mode
);
498 #define btree_migrate_folio NULL
501 static int btree_writepages(struct address_space
*mapping
,
502 struct writeback_control
*wbc
)
506 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
507 struct btrfs_fs_info
*fs_info
;
509 if (wbc
->for_kupdate
)
512 fs_info
= inode_to_fs_info(mapping
->host
);
513 /* this is a bit racy, but that's ok */
514 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
515 BTRFS_DIRTY_METADATA_THRESH
,
516 fs_info
->dirty_metadata_batch
);
520 return btree_write_cache_pages(mapping
, wbc
);
523 static bool btree_release_folio(struct folio
*folio
, gfp_t gfp_flags
)
525 if (folio_test_writeback(folio
) || folio_test_dirty(folio
))
528 return try_release_extent_buffer(folio
);
531 static void btree_invalidate_folio(struct folio
*folio
, size_t offset
,
534 struct extent_io_tree
*tree
;
536 tree
= &folio_to_inode(folio
)->io_tree
;
537 extent_invalidate_folio(tree
, folio
, offset
);
538 btree_release_folio(folio
, GFP_NOFS
);
539 if (folio_get_private(folio
)) {
540 btrfs_warn(folio_to_fs_info(folio
),
541 "folio private not zero on folio %llu",
542 (unsigned long long)folio_pos(folio
));
543 folio_detach_private(folio
);
548 static bool btree_dirty_folio(struct address_space
*mapping
,
551 struct btrfs_fs_info
*fs_info
= inode_to_fs_info(mapping
->host
);
552 struct btrfs_subpage_info
*spi
= fs_info
->subpage_info
;
553 struct btrfs_subpage
*subpage
;
554 struct extent_buffer
*eb
;
556 u64 page_start
= folio_pos(folio
);
558 if (fs_info
->sectorsize
== PAGE_SIZE
) {
559 eb
= folio_get_private(folio
);
561 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
562 BUG_ON(!atomic_read(&eb
->refs
));
563 btrfs_assert_tree_write_locked(eb
);
564 return filemap_dirty_folio(mapping
, folio
);
568 subpage
= folio_get_private(folio
);
570 for (cur_bit
= spi
->dirty_offset
;
571 cur_bit
< spi
->dirty_offset
+ spi
->bitmap_nr_bits
;
576 spin_lock_irqsave(&subpage
->lock
, flags
);
577 if (!test_bit(cur_bit
, subpage
->bitmaps
)) {
578 spin_unlock_irqrestore(&subpage
->lock
, flags
);
581 spin_unlock_irqrestore(&subpage
->lock
, flags
);
582 cur
= page_start
+ cur_bit
* fs_info
->sectorsize
;
584 eb
= find_extent_buffer(fs_info
, cur
);
586 ASSERT(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
587 ASSERT(atomic_read(&eb
->refs
));
588 btrfs_assert_tree_write_locked(eb
);
589 free_extent_buffer(eb
);
591 cur_bit
+= (fs_info
->nodesize
>> fs_info
->sectorsize_bits
) - 1;
593 return filemap_dirty_folio(mapping
, folio
);
596 #define btree_dirty_folio filemap_dirty_folio
599 static const struct address_space_operations btree_aops
= {
600 .writepages
= btree_writepages
,
601 .release_folio
= btree_release_folio
,
602 .invalidate_folio
= btree_invalidate_folio
,
603 .migrate_folio
= btree_migrate_folio
,
604 .dirty_folio
= btree_dirty_folio
,
607 struct extent_buffer
*btrfs_find_create_tree_block(
608 struct btrfs_fs_info
*fs_info
,
609 u64 bytenr
, u64 owner_root
,
612 if (btrfs_is_testing(fs_info
))
613 return alloc_test_extent_buffer(fs_info
, bytenr
);
614 return alloc_extent_buffer(fs_info
, bytenr
, owner_root
, level
);
618 * Read tree block at logical address @bytenr and do variant basic but critical
621 * @check: expected tree parentness check, see comments of the
622 * structure for details.
624 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
625 struct btrfs_tree_parent_check
*check
)
627 struct extent_buffer
*buf
= NULL
;
632 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
, check
->owner_root
,
637 ret
= btrfs_read_extent_buffer(buf
, check
);
639 free_extent_buffer_stale(buf
);
646 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
649 bool dummy
= btrfs_is_testing(fs_info
);
651 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
652 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
653 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
654 root
->fs_info
= fs_info
;
655 root
->root_key
.objectid
= objectid
;
657 root
->commit_root
= NULL
;
659 RB_CLEAR_NODE(&root
->rb_node
);
661 btrfs_set_root_last_trans(root
, 0);
662 root
->free_objectid
= 0;
663 root
->nr_delalloc_inodes
= 0;
664 root
->nr_ordered_extents
= 0;
665 xa_init(&root
->inodes
);
666 xa_init(&root
->delayed_nodes
);
668 btrfs_init_root_block_rsv(root
);
670 INIT_LIST_HEAD(&root
->dirty_list
);
671 INIT_LIST_HEAD(&root
->root_list
);
672 INIT_LIST_HEAD(&root
->delalloc_inodes
);
673 INIT_LIST_HEAD(&root
->delalloc_root
);
674 INIT_LIST_HEAD(&root
->ordered_extents
);
675 INIT_LIST_HEAD(&root
->ordered_root
);
676 INIT_LIST_HEAD(&root
->reloc_dirty_list
);
677 spin_lock_init(&root
->delalloc_lock
);
678 spin_lock_init(&root
->ordered_extent_lock
);
679 spin_lock_init(&root
->accounting_lock
);
680 spin_lock_init(&root
->qgroup_meta_rsv_lock
);
681 mutex_init(&root
->objectid_mutex
);
682 mutex_init(&root
->log_mutex
);
683 mutex_init(&root
->ordered_extent_mutex
);
684 mutex_init(&root
->delalloc_mutex
);
685 init_waitqueue_head(&root
->qgroup_flush_wait
);
686 init_waitqueue_head(&root
->log_writer_wait
);
687 init_waitqueue_head(&root
->log_commit_wait
[0]);
688 init_waitqueue_head(&root
->log_commit_wait
[1]);
689 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
690 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
691 atomic_set(&root
->log_commit
[0], 0);
692 atomic_set(&root
->log_commit
[1], 0);
693 atomic_set(&root
->log_writers
, 0);
694 atomic_set(&root
->log_batch
, 0);
695 refcount_set(&root
->refs
, 1);
696 atomic_set(&root
->snapshot_force_cow
, 0);
697 atomic_set(&root
->nr_swapfiles
, 0);
698 btrfs_set_root_log_transid(root
, 0);
699 root
->log_transid_committed
= -1;
700 btrfs_set_root_last_log_commit(root
, 0);
703 extent_io_tree_init(fs_info
, &root
->dirty_log_pages
,
704 IO_TREE_ROOT_DIRTY_LOG_PAGES
);
705 extent_io_tree_init(fs_info
, &root
->log_csum_range
,
706 IO_TREE_LOG_CSUM_RANGE
);
709 spin_lock_init(&root
->root_item_lock
);
710 btrfs_qgroup_init_swapped_blocks(&root
->swapped_blocks
);
711 #ifdef CONFIG_BTRFS_DEBUG
712 INIT_LIST_HEAD(&root
->leak_list
);
713 spin_lock(&fs_info
->fs_roots_radix_lock
);
714 list_add_tail(&root
->leak_list
, &fs_info
->allocated_roots
);
715 spin_unlock(&fs_info
->fs_roots_radix_lock
);
719 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
720 u64 objectid
, gfp_t flags
)
722 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
724 __setup_root(root
, fs_info
, objectid
);
728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
729 /* Should only be used by the testing infrastructure */
730 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
732 struct btrfs_root
*root
;
735 return ERR_PTR(-EINVAL
);
737 root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
, GFP_KERNEL
);
739 return ERR_PTR(-ENOMEM
);
741 /* We don't use the stripesize in selftest, set it as sectorsize */
742 root
->alloc_bytenr
= 0;
748 static int global_root_cmp(struct rb_node
*a_node
, const struct rb_node
*b_node
)
750 const struct btrfs_root
*a
= rb_entry(a_node
, struct btrfs_root
, rb_node
);
751 const struct btrfs_root
*b
= rb_entry(b_node
, struct btrfs_root
, rb_node
);
753 return btrfs_comp_cpu_keys(&a
->root_key
, &b
->root_key
);
756 static int global_root_key_cmp(const void *k
, const struct rb_node
*node
)
758 const struct btrfs_key
*key
= k
;
759 const struct btrfs_root
*root
= rb_entry(node
, struct btrfs_root
, rb_node
);
761 return btrfs_comp_cpu_keys(key
, &root
->root_key
);
764 int btrfs_global_root_insert(struct btrfs_root
*root
)
766 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
770 write_lock(&fs_info
->global_root_lock
);
771 tmp
= rb_find_add(&root
->rb_node
, &fs_info
->global_root_tree
, global_root_cmp
);
772 write_unlock(&fs_info
->global_root_lock
);
776 btrfs_warn(fs_info
, "global root %llu %llu already exists",
777 btrfs_root_id(root
), root
->root_key
.offset
);
782 void btrfs_global_root_delete(struct btrfs_root
*root
)
784 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
786 write_lock(&fs_info
->global_root_lock
);
787 rb_erase(&root
->rb_node
, &fs_info
->global_root_tree
);
788 write_unlock(&fs_info
->global_root_lock
);
791 struct btrfs_root
*btrfs_global_root(struct btrfs_fs_info
*fs_info
,
792 struct btrfs_key
*key
)
794 struct rb_node
*node
;
795 struct btrfs_root
*root
= NULL
;
797 read_lock(&fs_info
->global_root_lock
);
798 node
= rb_find(key
, &fs_info
->global_root_tree
, global_root_key_cmp
);
800 root
= container_of(node
, struct btrfs_root
, rb_node
);
801 read_unlock(&fs_info
->global_root_lock
);
806 static u64
btrfs_global_root_id(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
808 struct btrfs_block_group
*block_group
;
811 if (!btrfs_fs_incompat(fs_info
, EXTENT_TREE_V2
))
815 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
817 block_group
= btrfs_lookup_first_block_group(fs_info
, bytenr
);
821 ret
= block_group
->global_root_id
;
822 btrfs_put_block_group(block_group
);
827 struct btrfs_root
*btrfs_csum_root(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
829 struct btrfs_key key
= {
830 .objectid
= BTRFS_CSUM_TREE_OBJECTID
,
831 .type
= BTRFS_ROOT_ITEM_KEY
,
832 .offset
= btrfs_global_root_id(fs_info
, bytenr
),
835 return btrfs_global_root(fs_info
, &key
);
838 struct btrfs_root
*btrfs_extent_root(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
840 struct btrfs_key key
= {
841 .objectid
= BTRFS_EXTENT_TREE_OBJECTID
,
842 .type
= BTRFS_ROOT_ITEM_KEY
,
843 .offset
= btrfs_global_root_id(fs_info
, bytenr
),
846 return btrfs_global_root(fs_info
, &key
);
849 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
852 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
853 struct extent_buffer
*leaf
;
854 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
855 struct btrfs_root
*root
;
856 struct btrfs_key key
;
857 unsigned int nofs_flag
;
861 * We're holding a transaction handle, so use a NOFS memory allocation
862 * context to avoid deadlock if reclaim happens.
864 nofs_flag
= memalloc_nofs_save();
865 root
= btrfs_alloc_root(fs_info
, objectid
, GFP_KERNEL
);
866 memalloc_nofs_restore(nofs_flag
);
868 return ERR_PTR(-ENOMEM
);
870 root
->root_key
.objectid
= objectid
;
871 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
872 root
->root_key
.offset
= 0;
874 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0,
875 0, BTRFS_NESTING_NORMAL
);
883 btrfs_mark_buffer_dirty(trans
, leaf
);
885 root
->commit_root
= btrfs_root_node(root
);
886 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
888 btrfs_set_root_flags(&root
->root_item
, 0);
889 btrfs_set_root_limit(&root
->root_item
, 0);
890 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
891 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
892 btrfs_set_root_level(&root
->root_item
, 0);
893 btrfs_set_root_refs(&root
->root_item
, 1);
894 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
895 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
896 btrfs_set_root_dirid(&root
->root_item
, 0);
897 if (is_fstree(objectid
))
898 generate_random_guid(root
->root_item
.uuid
);
900 export_guid(root
->root_item
.uuid
, &guid_null
);
901 btrfs_set_root_drop_level(&root
->root_item
, 0);
903 btrfs_tree_unlock(leaf
);
905 key
.objectid
= objectid
;
906 key
.type
= BTRFS_ROOT_ITEM_KEY
;
908 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
915 btrfs_put_root(root
);
920 static struct btrfs_root
*alloc_log_tree(struct btrfs_fs_info
*fs_info
)
922 struct btrfs_root
*root
;
924 root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
, GFP_NOFS
);
926 return ERR_PTR(-ENOMEM
);
928 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
929 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
930 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
935 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle
*trans
,
936 struct btrfs_root
*root
)
938 struct extent_buffer
*leaf
;
941 * DON'T set SHAREABLE bit for log trees.
943 * Log trees are not exposed to user space thus can't be snapshotted,
944 * and they go away before a real commit is actually done.
946 * They do store pointers to file data extents, and those reference
947 * counts still get updated (along with back refs to the log tree).
950 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
951 NULL
, 0, 0, 0, 0, BTRFS_NESTING_NORMAL
);
953 return PTR_ERR(leaf
);
957 btrfs_mark_buffer_dirty(trans
, root
->node
);
958 btrfs_tree_unlock(root
->node
);
963 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
964 struct btrfs_fs_info
*fs_info
)
966 struct btrfs_root
*log_root
;
968 log_root
= alloc_log_tree(fs_info
);
969 if (IS_ERR(log_root
))
970 return PTR_ERR(log_root
);
972 if (!btrfs_is_zoned(fs_info
)) {
973 int ret
= btrfs_alloc_log_tree_node(trans
, log_root
);
976 btrfs_put_root(log_root
);
981 WARN_ON(fs_info
->log_root_tree
);
982 fs_info
->log_root_tree
= log_root
;
986 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
987 struct btrfs_root
*root
)
989 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
990 struct btrfs_root
*log_root
;
991 struct btrfs_inode_item
*inode_item
;
994 log_root
= alloc_log_tree(fs_info
);
995 if (IS_ERR(log_root
))
996 return PTR_ERR(log_root
);
998 ret
= btrfs_alloc_log_tree_node(trans
, log_root
);
1000 btrfs_put_root(log_root
);
1004 btrfs_set_root_last_trans(log_root
, trans
->transid
);
1005 log_root
->root_key
.offset
= btrfs_root_id(root
);
1007 inode_item
= &log_root
->root_item
.inode
;
1008 btrfs_set_stack_inode_generation(inode_item
, 1);
1009 btrfs_set_stack_inode_size(inode_item
, 3);
1010 btrfs_set_stack_inode_nlink(inode_item
, 1);
1011 btrfs_set_stack_inode_nbytes(inode_item
,
1013 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1015 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1017 WARN_ON(root
->log_root
);
1018 root
->log_root
= log_root
;
1019 btrfs_set_root_log_transid(root
, 0);
1020 root
->log_transid_committed
= -1;
1021 btrfs_set_root_last_log_commit(root
, 0);
1025 static struct btrfs_root
*read_tree_root_path(struct btrfs_root
*tree_root
,
1026 struct btrfs_path
*path
,
1027 const struct btrfs_key
*key
)
1029 struct btrfs_root
*root
;
1030 struct btrfs_tree_parent_check check
= { 0 };
1031 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1036 root
= btrfs_alloc_root(fs_info
, key
->objectid
, GFP_NOFS
);
1038 return ERR_PTR(-ENOMEM
);
1040 ret
= btrfs_find_root(tree_root
, key
, path
,
1041 &root
->root_item
, &root
->root_key
);
1048 generation
= btrfs_root_generation(&root
->root_item
);
1049 level
= btrfs_root_level(&root
->root_item
);
1050 check
.level
= level
;
1051 check
.transid
= generation
;
1052 check
.owner_root
= key
->objectid
;
1053 root
->node
= read_tree_block(fs_info
, btrfs_root_bytenr(&root
->root_item
),
1055 if (IS_ERR(root
->node
)) {
1056 ret
= PTR_ERR(root
->node
);
1060 if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1066 * For real fs, and not log/reloc trees, root owner must
1067 * match its root node owner
1069 if (!btrfs_is_testing(fs_info
) &&
1070 btrfs_root_id(root
) != BTRFS_TREE_LOG_OBJECTID
&&
1071 btrfs_root_id(root
) != BTRFS_TREE_RELOC_OBJECTID
&&
1072 btrfs_root_id(root
) != btrfs_header_owner(root
->node
)) {
1074 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1075 btrfs_root_id(root
), root
->node
->start
,
1076 btrfs_header_owner(root
->node
),
1077 btrfs_root_id(root
));
1081 root
->commit_root
= btrfs_root_node(root
);
1084 btrfs_put_root(root
);
1085 return ERR_PTR(ret
);
1088 struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1089 const struct btrfs_key
*key
)
1091 struct btrfs_root
*root
;
1092 struct btrfs_path
*path
;
1094 path
= btrfs_alloc_path();
1096 return ERR_PTR(-ENOMEM
);
1097 root
= read_tree_root_path(tree_root
, path
, key
);
1098 btrfs_free_path(path
);
1104 * Initialize subvolume root in-memory structure
1106 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1108 static int btrfs_init_fs_root(struct btrfs_root
*root
, dev_t anon_dev
)
1112 btrfs_drew_lock_init(&root
->snapshot_lock
);
1114 if (btrfs_root_id(root
) != BTRFS_TREE_LOG_OBJECTID
&&
1115 !btrfs_is_data_reloc_root(root
) &&
1116 is_fstree(btrfs_root_id(root
))) {
1117 set_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
);
1118 btrfs_check_and_init_root_item(&root
->root_item
);
1122 * Don't assign anonymous block device to roots that are not exposed to
1123 * userspace, the id pool is limited to 1M
1125 if (is_fstree(btrfs_root_id(root
)) &&
1126 btrfs_root_refs(&root
->root_item
) > 0) {
1128 ret
= get_anon_bdev(&root
->anon_dev
);
1132 root
->anon_dev
= anon_dev
;
1136 mutex_lock(&root
->objectid_mutex
);
1137 ret
= btrfs_init_root_free_objectid(root
);
1139 mutex_unlock(&root
->objectid_mutex
);
1143 ASSERT(root
->free_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1145 mutex_unlock(&root
->objectid_mutex
);
1149 /* The caller is responsible to call btrfs_free_fs_root */
1153 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1156 struct btrfs_root
*root
;
1158 spin_lock(&fs_info
->fs_roots_radix_lock
);
1159 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1160 (unsigned long)root_id
);
1161 root
= btrfs_grab_root(root
);
1162 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1166 static struct btrfs_root
*btrfs_get_global_root(struct btrfs_fs_info
*fs_info
,
1169 struct btrfs_key key
= {
1170 .objectid
= objectid
,
1171 .type
= BTRFS_ROOT_ITEM_KEY
,
1176 case BTRFS_ROOT_TREE_OBJECTID
:
1177 return btrfs_grab_root(fs_info
->tree_root
);
1178 case BTRFS_EXTENT_TREE_OBJECTID
:
1179 return btrfs_grab_root(btrfs_global_root(fs_info
, &key
));
1180 case BTRFS_CHUNK_TREE_OBJECTID
:
1181 return btrfs_grab_root(fs_info
->chunk_root
);
1182 case BTRFS_DEV_TREE_OBJECTID
:
1183 return btrfs_grab_root(fs_info
->dev_root
);
1184 case BTRFS_CSUM_TREE_OBJECTID
:
1185 return btrfs_grab_root(btrfs_global_root(fs_info
, &key
));
1186 case BTRFS_QUOTA_TREE_OBJECTID
:
1187 return btrfs_grab_root(fs_info
->quota_root
);
1188 case BTRFS_UUID_TREE_OBJECTID
:
1189 return btrfs_grab_root(fs_info
->uuid_root
);
1190 case BTRFS_BLOCK_GROUP_TREE_OBJECTID
:
1191 return btrfs_grab_root(fs_info
->block_group_root
);
1192 case BTRFS_FREE_SPACE_TREE_OBJECTID
:
1193 return btrfs_grab_root(btrfs_global_root(fs_info
, &key
));
1194 case BTRFS_RAID_STRIPE_TREE_OBJECTID
:
1195 return btrfs_grab_root(fs_info
->stripe_root
);
1201 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1202 struct btrfs_root
*root
)
1206 ret
= radix_tree_preload(GFP_NOFS
);
1210 spin_lock(&fs_info
->fs_roots_radix_lock
);
1211 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1212 (unsigned long)btrfs_root_id(root
),
1215 btrfs_grab_root(root
);
1216 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1218 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1219 radix_tree_preload_end();
1224 void btrfs_check_leaked_roots(const struct btrfs_fs_info
*fs_info
)
1226 #ifdef CONFIG_BTRFS_DEBUG
1227 struct btrfs_root
*root
;
1229 while (!list_empty(&fs_info
->allocated_roots
)) {
1230 char buf
[BTRFS_ROOT_NAME_BUF_LEN
];
1232 root
= list_first_entry(&fs_info
->allocated_roots
,
1233 struct btrfs_root
, leak_list
);
1234 btrfs_err(fs_info
, "leaked root %s refcount %d",
1235 btrfs_root_name(&root
->root_key
, buf
),
1236 refcount_read(&root
->refs
));
1238 while (refcount_read(&root
->refs
) > 1)
1239 btrfs_put_root(root
);
1240 btrfs_put_root(root
);
1245 static void free_global_roots(struct btrfs_fs_info
*fs_info
)
1247 struct btrfs_root
*root
;
1248 struct rb_node
*node
;
1250 while ((node
= rb_first_postorder(&fs_info
->global_root_tree
)) != NULL
) {
1251 root
= rb_entry(node
, struct btrfs_root
, rb_node
);
1252 rb_erase(&root
->rb_node
, &fs_info
->global_root_tree
);
1253 btrfs_put_root(root
);
1257 void btrfs_free_fs_info(struct btrfs_fs_info
*fs_info
)
1259 struct percpu_counter
*em_counter
= &fs_info
->evictable_extent_maps
;
1261 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
1262 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
1263 percpu_counter_destroy(&fs_info
->ordered_bytes
);
1264 if (percpu_counter_initialized(em_counter
))
1265 ASSERT(percpu_counter_sum_positive(em_counter
) == 0);
1266 percpu_counter_destroy(em_counter
);
1267 percpu_counter_destroy(&fs_info
->dev_replace
.bio_counter
);
1268 btrfs_free_csum_hash(fs_info
);
1269 btrfs_free_stripe_hash_table(fs_info
);
1270 btrfs_free_ref_cache(fs_info
);
1271 kfree(fs_info
->balance_ctl
);
1272 kfree(fs_info
->delayed_root
);
1273 free_global_roots(fs_info
);
1274 btrfs_put_root(fs_info
->tree_root
);
1275 btrfs_put_root(fs_info
->chunk_root
);
1276 btrfs_put_root(fs_info
->dev_root
);
1277 btrfs_put_root(fs_info
->quota_root
);
1278 btrfs_put_root(fs_info
->uuid_root
);
1279 btrfs_put_root(fs_info
->fs_root
);
1280 btrfs_put_root(fs_info
->data_reloc_root
);
1281 btrfs_put_root(fs_info
->block_group_root
);
1282 btrfs_put_root(fs_info
->stripe_root
);
1283 btrfs_check_leaked_roots(fs_info
);
1284 btrfs_extent_buffer_leak_debug_check(fs_info
);
1285 kfree(fs_info
->super_copy
);
1286 kfree(fs_info
->super_for_commit
);
1292 * Get an in-memory reference of a root structure.
1294 * For essential trees like root/extent tree, we grab it from fs_info directly.
1295 * For subvolume trees, we check the cached filesystem roots first. If not
1296 * found, then read it from disk and add it to cached fs roots.
1298 * Caller should release the root by calling btrfs_put_root() after the usage.
1300 * NOTE: Reloc and log trees can't be read by this function as they share the
1301 * same root objectid.
1303 * @objectid: root id
1304 * @anon_dev: preallocated anonymous block device number for new roots,
1305 * pass NULL for a new allocation.
1306 * @check_ref: whether to check root item references, If true, return -ENOENT
1309 static struct btrfs_root
*btrfs_get_root_ref(struct btrfs_fs_info
*fs_info
,
1310 u64 objectid
, dev_t
*anon_dev
,
1313 struct btrfs_root
*root
;
1314 struct btrfs_path
*path
;
1315 struct btrfs_key key
;
1318 root
= btrfs_get_global_root(fs_info
, objectid
);
1323 * If we're called for non-subvolume trees, and above function didn't
1324 * find one, do not try to read it from disk.
1326 * This is namely for free-space-tree and quota tree, which can change
1327 * at runtime and should only be grabbed from fs_info.
1329 if (!is_fstree(objectid
) && objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
)
1330 return ERR_PTR(-ENOENT
);
1332 root
= btrfs_lookup_fs_root(fs_info
, objectid
);
1335 * Some other caller may have read out the newly inserted
1336 * subvolume already (for things like backref walk etc). Not
1337 * that common but still possible. In that case, we just need
1338 * to free the anon_dev.
1340 if (unlikely(anon_dev
&& *anon_dev
)) {
1341 free_anon_bdev(*anon_dev
);
1345 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1346 btrfs_put_root(root
);
1347 return ERR_PTR(-ENOENT
);
1352 key
.objectid
= objectid
;
1353 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1354 key
.offset
= (u64
)-1;
1355 root
= btrfs_read_tree_root(fs_info
->tree_root
, &key
);
1359 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1364 ret
= btrfs_init_fs_root(root
, anon_dev
? *anon_dev
: 0);
1368 path
= btrfs_alloc_path();
1373 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1374 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1375 key
.offset
= objectid
;
1377 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1378 btrfs_free_path(path
);
1382 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1384 ret
= btrfs_insert_fs_root(fs_info
, root
);
1386 if (ret
== -EEXIST
) {
1387 btrfs_put_root(root
);
1395 * If our caller provided us an anonymous device, then it's his
1396 * responsibility to free it in case we fail. So we have to set our
1397 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1398 * and once again by our caller.
1400 if (anon_dev
&& *anon_dev
)
1402 btrfs_put_root(root
);
1403 return ERR_PTR(ret
);
1407 * Get in-memory reference of a root structure
1409 * @objectid: tree objectid
1410 * @check_ref: if set, verify that the tree exists and the item has at least
1413 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1414 u64 objectid
, bool check_ref
)
1416 return btrfs_get_root_ref(fs_info
, objectid
, NULL
, check_ref
);
1420 * Get in-memory reference of a root structure, created as new, optionally pass
1421 * the anonymous block device id
1423 * @objectid: tree objectid
1424 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1425 * parameter value if not NULL
1427 struct btrfs_root
*btrfs_get_new_fs_root(struct btrfs_fs_info
*fs_info
,
1428 u64 objectid
, dev_t
*anon_dev
)
1430 return btrfs_get_root_ref(fs_info
, objectid
, anon_dev
, true);
1434 * Return a root for the given objectid.
1436 * @fs_info: the fs_info
1437 * @objectid: the objectid we need to lookup
1439 * This is exclusively used for backref walking, and exists specifically because
1440 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1441 * creation time, which means we may have to read the tree_root in order to look
1442 * up a fs root that is not in memory. If the root is not in memory we will
1443 * read the tree root commit root and look up the fs root from there. This is a
1444 * temporary root, it will not be inserted into the radix tree as it doesn't
1445 * have the most uptodate information, it'll simply be discarded once the
1446 * backref code is finished using the root.
1448 struct btrfs_root
*btrfs_get_fs_root_commit_root(struct btrfs_fs_info
*fs_info
,
1449 struct btrfs_path
*path
,
1452 struct btrfs_root
*root
;
1453 struct btrfs_key key
;
1455 ASSERT(path
->search_commit_root
&& path
->skip_locking
);
1458 * This can return -ENOENT if we ask for a root that doesn't exist, but
1459 * since this is called via the backref walking code we won't be looking
1460 * up a root that doesn't exist, unless there's corruption. So if root
1461 * != NULL just return it.
1463 root
= btrfs_get_global_root(fs_info
, objectid
);
1467 root
= btrfs_lookup_fs_root(fs_info
, objectid
);
1471 key
.objectid
= objectid
;
1472 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1473 key
.offset
= (u64
)-1;
1474 root
= read_tree_root_path(fs_info
->tree_root
, path
, &key
);
1475 btrfs_release_path(path
);
1480 static int cleaner_kthread(void *arg
)
1482 struct btrfs_fs_info
*fs_info
= arg
;
1488 set_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1490 /* Make the cleaner go to sleep early. */
1491 if (btrfs_need_cleaner_sleep(fs_info
))
1495 * Do not do anything if we might cause open_ctree() to block
1496 * before we have finished mounting the filesystem.
1498 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1501 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1505 * Avoid the problem that we change the status of the fs
1506 * during the above check and trylock.
1508 if (btrfs_need_cleaner_sleep(fs_info
)) {
1509 mutex_unlock(&fs_info
->cleaner_mutex
);
1513 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED
, &fs_info
->flags
))
1514 btrfs_sysfs_feature_update(fs_info
);
1516 btrfs_run_delayed_iputs(fs_info
);
1518 again
= btrfs_clean_one_deleted_snapshot(fs_info
);
1519 mutex_unlock(&fs_info
->cleaner_mutex
);
1522 * The defragger has dealt with the R/O remount and umount,
1523 * needn't do anything special here.
1525 btrfs_run_defrag_inodes(fs_info
);
1528 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1529 * with relocation (btrfs_relocate_chunk) and relocation
1530 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1531 * after acquiring fs_info->reclaim_bgs_lock. So we
1532 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1533 * unused block groups.
1535 btrfs_delete_unused_bgs(fs_info
);
1538 * Reclaim block groups in the reclaim_bgs list after we deleted
1539 * all unused block_groups. This possibly gives us some more free
1542 btrfs_reclaim_bgs(fs_info
);
1544 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1545 if (kthread_should_park())
1547 if (kthread_should_stop())
1550 set_current_state(TASK_INTERRUPTIBLE
);
1552 __set_current_state(TASK_RUNNING
);
1557 static int transaction_kthread(void *arg
)
1559 struct btrfs_root
*root
= arg
;
1560 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1561 struct btrfs_trans_handle
*trans
;
1562 struct btrfs_transaction
*cur
;
1565 unsigned long delay
;
1569 cannot_commit
= false;
1570 delay
= msecs_to_jiffies(fs_info
->commit_interval
* 1000);
1571 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1573 spin_lock(&fs_info
->trans_lock
);
1574 cur
= fs_info
->running_transaction
;
1576 spin_unlock(&fs_info
->trans_lock
);
1580 delta
= ktime_get_seconds() - cur
->start_time
;
1581 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS
, &fs_info
->flags
) &&
1582 cur
->state
< TRANS_STATE_COMMIT_PREP
&&
1583 delta
< fs_info
->commit_interval
) {
1584 spin_unlock(&fs_info
->trans_lock
);
1585 delay
-= msecs_to_jiffies((delta
- 1) * 1000);
1587 msecs_to_jiffies(fs_info
->commit_interval
* 1000));
1590 transid
= cur
->transid
;
1591 spin_unlock(&fs_info
->trans_lock
);
1593 /* If the file system is aborted, this will always fail. */
1594 trans
= btrfs_attach_transaction(root
);
1595 if (IS_ERR(trans
)) {
1596 if (PTR_ERR(trans
) != -ENOENT
)
1597 cannot_commit
= true;
1600 if (transid
== trans
->transid
) {
1601 btrfs_commit_transaction(trans
);
1603 btrfs_end_transaction(trans
);
1606 wake_up_process(fs_info
->cleaner_kthread
);
1607 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1609 if (BTRFS_FS_ERROR(fs_info
))
1610 btrfs_cleanup_transaction(fs_info
);
1611 if (!kthread_should_stop() &&
1612 (!btrfs_transaction_blocked(fs_info
) ||
1614 schedule_timeout_interruptible(delay
);
1615 } while (!kthread_should_stop());
1620 * This will find the highest generation in the array of root backups. The
1621 * index of the highest array is returned, or -EINVAL if we can't find
1624 * We check to make sure the array is valid by comparing the
1625 * generation of the latest root in the array with the generation
1626 * in the super block. If they don't match we pitch it.
1628 static int find_newest_super_backup(struct btrfs_fs_info
*info
)
1630 const u64 newest_gen
= btrfs_super_generation(info
->super_copy
);
1632 struct btrfs_root_backup
*root_backup
;
1635 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1636 root_backup
= info
->super_copy
->super_roots
+ i
;
1637 cur
= btrfs_backup_tree_root_gen(root_backup
);
1638 if (cur
== newest_gen
)
1646 * copy all the root pointers into the super backup array.
1647 * this will bump the backup pointer by one when it is
1650 static void backup_super_roots(struct btrfs_fs_info
*info
)
1652 const int next_backup
= info
->backup_root_index
;
1653 struct btrfs_root_backup
*root_backup
;
1655 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1658 * make sure all of our padding and empty slots get zero filled
1659 * regardless of which ones we use today
1661 memset(root_backup
, 0, sizeof(*root_backup
));
1663 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1665 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1666 btrfs_set_backup_tree_root_gen(root_backup
,
1667 btrfs_header_generation(info
->tree_root
->node
));
1669 btrfs_set_backup_tree_root_level(root_backup
,
1670 btrfs_header_level(info
->tree_root
->node
));
1672 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1673 btrfs_set_backup_chunk_root_gen(root_backup
,
1674 btrfs_header_generation(info
->chunk_root
->node
));
1675 btrfs_set_backup_chunk_root_level(root_backup
,
1676 btrfs_header_level(info
->chunk_root
->node
));
1678 if (!btrfs_fs_compat_ro(info
, BLOCK_GROUP_TREE
)) {
1679 struct btrfs_root
*extent_root
= btrfs_extent_root(info
, 0);
1680 struct btrfs_root
*csum_root
= btrfs_csum_root(info
, 0);
1682 btrfs_set_backup_extent_root(root_backup
,
1683 extent_root
->node
->start
);
1684 btrfs_set_backup_extent_root_gen(root_backup
,
1685 btrfs_header_generation(extent_root
->node
));
1686 btrfs_set_backup_extent_root_level(root_backup
,
1687 btrfs_header_level(extent_root
->node
));
1689 btrfs_set_backup_csum_root(root_backup
, csum_root
->node
->start
);
1690 btrfs_set_backup_csum_root_gen(root_backup
,
1691 btrfs_header_generation(csum_root
->node
));
1692 btrfs_set_backup_csum_root_level(root_backup
,
1693 btrfs_header_level(csum_root
->node
));
1697 * we might commit during log recovery, which happens before we set
1698 * the fs_root. Make sure it is valid before we fill it in.
1700 if (info
->fs_root
&& info
->fs_root
->node
) {
1701 btrfs_set_backup_fs_root(root_backup
,
1702 info
->fs_root
->node
->start
);
1703 btrfs_set_backup_fs_root_gen(root_backup
,
1704 btrfs_header_generation(info
->fs_root
->node
));
1705 btrfs_set_backup_fs_root_level(root_backup
,
1706 btrfs_header_level(info
->fs_root
->node
));
1709 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1710 btrfs_set_backup_dev_root_gen(root_backup
,
1711 btrfs_header_generation(info
->dev_root
->node
));
1712 btrfs_set_backup_dev_root_level(root_backup
,
1713 btrfs_header_level(info
->dev_root
->node
));
1715 btrfs_set_backup_total_bytes(root_backup
,
1716 btrfs_super_total_bytes(info
->super_copy
));
1717 btrfs_set_backup_bytes_used(root_backup
,
1718 btrfs_super_bytes_used(info
->super_copy
));
1719 btrfs_set_backup_num_devices(root_backup
,
1720 btrfs_super_num_devices(info
->super_copy
));
1723 * if we don't copy this out to the super_copy, it won't get remembered
1724 * for the next commit
1726 memcpy(&info
->super_copy
->super_roots
,
1727 &info
->super_for_commit
->super_roots
,
1728 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1732 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1733 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1735 * @fs_info: filesystem whose backup roots need to be read
1736 * @priority: priority of backup root required
1738 * Returns backup root index on success and -EINVAL otherwise.
1740 static int read_backup_root(struct btrfs_fs_info
*fs_info
, u8 priority
)
1742 int backup_index
= find_newest_super_backup(fs_info
);
1743 struct btrfs_super_block
*super
= fs_info
->super_copy
;
1744 struct btrfs_root_backup
*root_backup
;
1746 if (priority
< BTRFS_NUM_BACKUP_ROOTS
&& backup_index
>= 0) {
1748 return backup_index
;
1750 backup_index
= backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- priority
;
1751 backup_index
%= BTRFS_NUM_BACKUP_ROOTS
;
1756 root_backup
= super
->super_roots
+ backup_index
;
1758 btrfs_set_super_generation(super
,
1759 btrfs_backup_tree_root_gen(root_backup
));
1760 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1761 btrfs_set_super_root_level(super
,
1762 btrfs_backup_tree_root_level(root_backup
));
1763 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1766 * Fixme: the total bytes and num_devices need to match or we should
1769 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1770 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1772 return backup_index
;
1775 /* helper to cleanup workers */
1776 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1778 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
1779 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
1780 btrfs_destroy_workqueue(fs_info
->workers
);
1781 if (fs_info
->endio_workers
)
1782 destroy_workqueue(fs_info
->endio_workers
);
1783 if (fs_info
->rmw_workers
)
1784 destroy_workqueue(fs_info
->rmw_workers
);
1785 if (fs_info
->compressed_write_workers
)
1786 destroy_workqueue(fs_info
->compressed_write_workers
);
1787 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
1788 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
1789 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
1790 btrfs_destroy_workqueue(fs_info
->caching_workers
);
1791 btrfs_destroy_workqueue(fs_info
->flush_workers
);
1792 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
1793 if (fs_info
->discard_ctl
.discard_workers
)
1794 destroy_workqueue(fs_info
->discard_ctl
.discard_workers
);
1796 * Now that all other work queues are destroyed, we can safely destroy
1797 * the queues used for metadata I/O, since tasks from those other work
1798 * queues can do metadata I/O operations.
1800 if (fs_info
->endio_meta_workers
)
1801 destroy_workqueue(fs_info
->endio_meta_workers
);
1804 static void free_root_extent_buffers(struct btrfs_root
*root
)
1807 free_extent_buffer(root
->node
);
1808 free_extent_buffer(root
->commit_root
);
1810 root
->commit_root
= NULL
;
1814 static void free_global_root_pointers(struct btrfs_fs_info
*fs_info
)
1816 struct btrfs_root
*root
, *tmp
;
1818 rbtree_postorder_for_each_entry_safe(root
, tmp
,
1819 &fs_info
->global_root_tree
,
1821 free_root_extent_buffers(root
);
1824 /* helper to cleanup tree roots */
1825 static void free_root_pointers(struct btrfs_fs_info
*info
, bool free_chunk_root
)
1827 free_root_extent_buffers(info
->tree_root
);
1829 free_global_root_pointers(info
);
1830 free_root_extent_buffers(info
->dev_root
);
1831 free_root_extent_buffers(info
->quota_root
);
1832 free_root_extent_buffers(info
->uuid_root
);
1833 free_root_extent_buffers(info
->fs_root
);
1834 free_root_extent_buffers(info
->data_reloc_root
);
1835 free_root_extent_buffers(info
->block_group_root
);
1836 free_root_extent_buffers(info
->stripe_root
);
1837 if (free_chunk_root
)
1838 free_root_extent_buffers(info
->chunk_root
);
1841 void btrfs_put_root(struct btrfs_root
*root
)
1846 if (refcount_dec_and_test(&root
->refs
)) {
1847 if (WARN_ON(!xa_empty(&root
->inodes
)))
1848 xa_destroy(&root
->inodes
);
1849 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
));
1851 free_anon_bdev(root
->anon_dev
);
1852 free_root_extent_buffers(root
);
1853 #ifdef CONFIG_BTRFS_DEBUG
1854 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
1855 list_del_init(&root
->leak_list
);
1856 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
1862 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
1865 struct btrfs_root
*gang
[8];
1868 while (!list_empty(&fs_info
->dead_roots
)) {
1869 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
1870 struct btrfs_root
, root_list
);
1871 list_del(&gang
[0]->root_list
);
1873 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
))
1874 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
1875 btrfs_put_root(gang
[0]);
1879 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
1884 for (i
= 0; i
< ret
; i
++)
1885 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
1889 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
1891 mutex_init(&fs_info
->scrub_lock
);
1892 atomic_set(&fs_info
->scrubs_running
, 0);
1893 atomic_set(&fs_info
->scrub_pause_req
, 0);
1894 atomic_set(&fs_info
->scrubs_paused
, 0);
1895 atomic_set(&fs_info
->scrub_cancel_req
, 0);
1896 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
1897 refcount_set(&fs_info
->scrub_workers_refcnt
, 0);
1900 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
1902 spin_lock_init(&fs_info
->balance_lock
);
1903 mutex_init(&fs_info
->balance_mutex
);
1904 atomic_set(&fs_info
->balance_pause_req
, 0);
1905 atomic_set(&fs_info
->balance_cancel_req
, 0);
1906 fs_info
->balance_ctl
= NULL
;
1907 init_waitqueue_head(&fs_info
->balance_wait_q
);
1908 atomic_set(&fs_info
->reloc_cancel_req
, 0);
1911 static int btrfs_init_btree_inode(struct super_block
*sb
)
1913 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1914 unsigned long hash
= btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID
,
1915 fs_info
->tree_root
);
1916 struct inode
*inode
;
1918 inode
= new_inode(sb
);
1922 btrfs_set_inode_number(BTRFS_I(inode
), BTRFS_BTREE_INODE_OBJECTID
);
1923 set_nlink(inode
, 1);
1925 * we set the i_size on the btree inode to the max possible int.
1926 * the real end of the address space is determined by all of
1927 * the devices in the system
1929 inode
->i_size
= OFFSET_MAX
;
1930 inode
->i_mapping
->a_ops
= &btree_aops
;
1931 mapping_set_gfp_mask(inode
->i_mapping
, GFP_NOFS
);
1933 extent_io_tree_init(fs_info
, &BTRFS_I(inode
)->io_tree
,
1934 IO_TREE_BTREE_INODE_IO
);
1935 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
1937 BTRFS_I(inode
)->root
= btrfs_grab_root(fs_info
->tree_root
);
1938 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
1939 __insert_inode_hash(inode
, hash
);
1940 fs_info
->btree_inode
= inode
;
1945 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
1947 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
1948 init_rwsem(&fs_info
->dev_replace
.rwsem
);
1949 init_waitqueue_head(&fs_info
->dev_replace
.replace_wait
);
1952 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
1954 spin_lock_init(&fs_info
->qgroup_lock
);
1955 mutex_init(&fs_info
->qgroup_ioctl_lock
);
1956 fs_info
->qgroup_tree
= RB_ROOT
;
1957 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
1958 fs_info
->qgroup_seq
= 1;
1959 fs_info
->qgroup_ulist
= NULL
;
1960 fs_info
->qgroup_rescan_running
= false;
1961 fs_info
->qgroup_drop_subtree_thres
= BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT
;
1962 mutex_init(&fs_info
->qgroup_rescan_lock
);
1965 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
)
1967 u32 max_active
= fs_info
->thread_pool_size
;
1968 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
1969 unsigned int ordered_flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
;
1972 btrfs_alloc_workqueue(fs_info
, "worker", flags
, max_active
, 16);
1974 fs_info
->delalloc_workers
=
1975 btrfs_alloc_workqueue(fs_info
, "delalloc",
1976 flags
, max_active
, 2);
1978 fs_info
->flush_workers
=
1979 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
1980 flags
, max_active
, 0);
1982 fs_info
->caching_workers
=
1983 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
1985 fs_info
->fixup_workers
=
1986 btrfs_alloc_ordered_workqueue(fs_info
, "fixup", ordered_flags
);
1988 fs_info
->endio_workers
=
1989 alloc_workqueue("btrfs-endio", flags
, max_active
);
1990 fs_info
->endio_meta_workers
=
1991 alloc_workqueue("btrfs-endio-meta", flags
, max_active
);
1992 fs_info
->rmw_workers
= alloc_workqueue("btrfs-rmw", flags
, max_active
);
1993 fs_info
->endio_write_workers
=
1994 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
1996 fs_info
->compressed_write_workers
=
1997 alloc_workqueue("btrfs-compressed-write", flags
, max_active
);
1998 fs_info
->endio_freespace_worker
=
1999 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2001 fs_info
->delayed_workers
=
2002 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2004 fs_info
->qgroup_rescan_workers
=
2005 btrfs_alloc_ordered_workqueue(fs_info
, "qgroup-rescan",
2007 fs_info
->discard_ctl
.discard_workers
=
2008 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE
);
2010 if (!(fs_info
->workers
&&
2011 fs_info
->delalloc_workers
&& fs_info
->flush_workers
&&
2012 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2013 fs_info
->compressed_write_workers
&&
2014 fs_info
->endio_write_workers
&&
2015 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2016 fs_info
->caching_workers
&& fs_info
->fixup_workers
&&
2017 fs_info
->delayed_workers
&& fs_info
->qgroup_rescan_workers
&&
2018 fs_info
->discard_ctl
.discard_workers
)) {
2025 static int btrfs_init_csum_hash(struct btrfs_fs_info
*fs_info
, u16 csum_type
)
2027 struct crypto_shash
*csum_shash
;
2028 const char *csum_driver
= btrfs_super_csum_driver(csum_type
);
2030 csum_shash
= crypto_alloc_shash(csum_driver
, 0, 0);
2032 if (IS_ERR(csum_shash
)) {
2033 btrfs_err(fs_info
, "error allocating %s hash for checksum",
2035 return PTR_ERR(csum_shash
);
2038 fs_info
->csum_shash
= csum_shash
;
2041 * Check if the checksum implementation is a fast accelerated one.
2042 * As-is this is a bit of a hack and should be replaced once the csum
2043 * implementations provide that information themselves.
2045 switch (csum_type
) {
2046 case BTRFS_CSUM_TYPE_CRC32
:
2047 if (!strstr(crypto_shash_driver_name(csum_shash
), "generic"))
2048 set_bit(BTRFS_FS_CSUM_IMPL_FAST
, &fs_info
->flags
);
2050 case BTRFS_CSUM_TYPE_XXHASH
:
2051 set_bit(BTRFS_FS_CSUM_IMPL_FAST
, &fs_info
->flags
);
2057 btrfs_info(fs_info
, "using %s (%s) checksum algorithm",
2058 btrfs_super_csum_name(csum_type
),
2059 crypto_shash_driver_name(csum_shash
));
2063 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2064 struct btrfs_fs_devices
*fs_devices
)
2067 struct btrfs_tree_parent_check check
= { 0 };
2068 struct btrfs_root
*log_tree_root
;
2069 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2070 u64 bytenr
= btrfs_super_log_root(disk_super
);
2071 int level
= btrfs_super_log_root_level(disk_super
);
2073 if (fs_devices
->rw_devices
== 0) {
2074 btrfs_warn(fs_info
, "log replay required on RO media");
2078 log_tree_root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
,
2083 check
.level
= level
;
2084 check
.transid
= fs_info
->generation
+ 1;
2085 check
.owner_root
= BTRFS_TREE_LOG_OBJECTID
;
2086 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
, &check
);
2087 if (IS_ERR(log_tree_root
->node
)) {
2088 btrfs_warn(fs_info
, "failed to read log tree");
2089 ret
= PTR_ERR(log_tree_root
->node
);
2090 log_tree_root
->node
= NULL
;
2091 btrfs_put_root(log_tree_root
);
2094 if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2095 btrfs_err(fs_info
, "failed to read log tree");
2096 btrfs_put_root(log_tree_root
);
2100 /* returns with log_tree_root freed on success */
2101 ret
= btrfs_recover_log_trees(log_tree_root
);
2103 btrfs_handle_fs_error(fs_info
, ret
,
2104 "Failed to recover log tree");
2105 btrfs_put_root(log_tree_root
);
2109 if (sb_rdonly(fs_info
->sb
)) {
2110 ret
= btrfs_commit_super(fs_info
);
2118 static int load_global_roots_objectid(struct btrfs_root
*tree_root
,
2119 struct btrfs_path
*path
, u64 objectid
,
2122 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
2123 struct btrfs_root
*root
;
2124 u64 max_global_id
= 0;
2126 struct btrfs_key key
= {
2127 .objectid
= objectid
,
2128 .type
= BTRFS_ROOT_ITEM_KEY
,
2133 /* If we have IGNOREDATACSUMS skip loading these roots. */
2134 if (objectid
== BTRFS_CSUM_TREE_OBJECTID
&&
2135 btrfs_test_opt(fs_info
, IGNOREDATACSUMS
)) {
2136 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS
, &fs_info
->fs_state
);
2141 ret
= btrfs_search_slot(NULL
, tree_root
, &key
, path
, 0, 0);
2145 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2146 ret
= btrfs_next_leaf(tree_root
, path
);
2155 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2156 if (key
.objectid
!= objectid
)
2158 btrfs_release_path(path
);
2161 * Just worry about this for extent tree, it'll be the same for
2164 if (objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
2165 max_global_id
= max(max_global_id
, key
.offset
);
2168 root
= read_tree_root_path(tree_root
, path
, &key
);
2170 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
))
2171 ret
= PTR_ERR(root
);
2174 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2175 ret
= btrfs_global_root_insert(root
);
2177 btrfs_put_root(root
);
2182 btrfs_release_path(path
);
2184 if (objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
2185 fs_info
->nr_global_roots
= max_global_id
+ 1;
2187 if (!found
|| ret
) {
2188 if (objectid
== BTRFS_CSUM_TREE_OBJECTID
)
2189 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS
, &fs_info
->fs_state
);
2191 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
))
2192 ret
= ret
? ret
: -ENOENT
;
2195 btrfs_err(fs_info
, "failed to load root %s", name
);
2200 static int load_global_roots(struct btrfs_root
*tree_root
)
2202 struct btrfs_path
*path
;
2205 path
= btrfs_alloc_path();
2209 ret
= load_global_roots_objectid(tree_root
, path
,
2210 BTRFS_EXTENT_TREE_OBJECTID
, "extent");
2213 ret
= load_global_roots_objectid(tree_root
, path
,
2214 BTRFS_CSUM_TREE_OBJECTID
, "csum");
2217 if (!btrfs_fs_compat_ro(tree_root
->fs_info
, FREE_SPACE_TREE
))
2219 ret
= load_global_roots_objectid(tree_root
, path
,
2220 BTRFS_FREE_SPACE_TREE_OBJECTID
,
2223 btrfs_free_path(path
);
2227 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2229 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2230 struct btrfs_root
*root
;
2231 struct btrfs_key location
;
2234 ASSERT(fs_info
->tree_root
);
2236 ret
= load_global_roots(tree_root
);
2240 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2241 location
.offset
= 0;
2243 if (btrfs_fs_compat_ro(fs_info
, BLOCK_GROUP_TREE
)) {
2244 location
.objectid
= BTRFS_BLOCK_GROUP_TREE_OBJECTID
;
2245 root
= btrfs_read_tree_root(tree_root
, &location
);
2247 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2248 ret
= PTR_ERR(root
);
2252 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2253 fs_info
->block_group_root
= root
;
2257 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2258 root
= btrfs_read_tree_root(tree_root
, &location
);
2260 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2261 ret
= PTR_ERR(root
);
2265 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2266 fs_info
->dev_root
= root
;
2268 /* Initialize fs_info for all devices in any case */
2269 ret
= btrfs_init_devices_late(fs_info
);
2274 * This tree can share blocks with some other fs tree during relocation
2275 * and we need a proper setup by btrfs_get_fs_root
2277 root
= btrfs_get_fs_root(tree_root
->fs_info
,
2278 BTRFS_DATA_RELOC_TREE_OBJECTID
, true);
2280 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2281 ret
= PTR_ERR(root
);
2285 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2286 fs_info
->data_reloc_root
= root
;
2289 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2290 root
= btrfs_read_tree_root(tree_root
, &location
);
2291 if (!IS_ERR(root
)) {
2292 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2293 fs_info
->quota_root
= root
;
2296 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2297 root
= btrfs_read_tree_root(tree_root
, &location
);
2299 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2300 ret
= PTR_ERR(root
);
2305 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2306 fs_info
->uuid_root
= root
;
2309 if (btrfs_fs_incompat(fs_info
, RAID_STRIPE_TREE
)) {
2310 location
.objectid
= BTRFS_RAID_STRIPE_TREE_OBJECTID
;
2311 root
= btrfs_read_tree_root(tree_root
, &location
);
2313 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2314 ret
= PTR_ERR(root
);
2318 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2319 fs_info
->stripe_root
= root
;
2325 btrfs_warn(fs_info
, "failed to read root (objectid=%llu): %d",
2326 location
.objectid
, ret
);
2331 * Real super block validation
2332 * NOTE: super csum type and incompat features will not be checked here.
2334 * @sb: super block to check
2335 * @mirror_num: the super block number to check its bytenr:
2336 * 0 the primary (1st) sb
2337 * 1, 2 2nd and 3rd backup copy
2338 * -1 skip bytenr check
2340 int btrfs_validate_super(const struct btrfs_fs_info
*fs_info
,
2341 const struct btrfs_super_block
*sb
, int mirror_num
)
2343 u64 nodesize
= btrfs_super_nodesize(sb
);
2344 u64 sectorsize
= btrfs_super_sectorsize(sb
);
2346 const bool ignore_flags
= btrfs_test_opt(fs_info
, IGNORESUPERFLAGS
);
2348 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
2349 btrfs_err(fs_info
, "no valid FS found");
2352 if ((btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
)) {
2353 if (!ignore_flags
) {
2355 "unrecognized or unsupported super flag 0x%llx",
2356 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
2360 "unrecognized or unsupported super flags: 0x%llx, ignored",
2361 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
2364 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2365 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
2366 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
2369 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2370 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
2371 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
2374 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2375 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
2376 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
2381 * Check sectorsize and nodesize first, other check will need it.
2382 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2384 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
2385 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2386 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
2391 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2393 * We can support 16K sectorsize with 64K page size without problem,
2394 * but such sectorsize/pagesize combination doesn't make much sense.
2395 * 4K will be our future standard, PAGE_SIZE is supported from the very
2398 if (sectorsize
> PAGE_SIZE
|| (sectorsize
!= SZ_4K
&& sectorsize
!= PAGE_SIZE
)) {
2400 "sectorsize %llu not yet supported for page size %lu",
2401 sectorsize
, PAGE_SIZE
);
2405 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
2406 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2407 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
2410 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
2411 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
2412 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
2416 /* Root alignment check */
2417 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
2418 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
2419 btrfs_super_root(sb
));
2422 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
2423 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
2424 btrfs_super_chunk_root(sb
));
2427 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
2428 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
2429 btrfs_super_log_root(sb
));
2433 if (!fs_info
->fs_devices
->temp_fsid
&&
2434 memcmp(fs_info
->fs_devices
->fsid
, sb
->fsid
, BTRFS_FSID_SIZE
) != 0) {
2436 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2437 sb
->fsid
, fs_info
->fs_devices
->fsid
);
2441 if (memcmp(fs_info
->fs_devices
->metadata_uuid
, btrfs_sb_fsid_ptr(sb
),
2442 BTRFS_FSID_SIZE
) != 0) {
2444 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2445 btrfs_sb_fsid_ptr(sb
), fs_info
->fs_devices
->metadata_uuid
);
2449 if (memcmp(fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
,
2450 BTRFS_FSID_SIZE
) != 0) {
2452 "dev_item UUID does not match metadata fsid: %pU != %pU",
2453 fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
);
2458 * Artificial requirement for block-group-tree to force newer features
2459 * (free-space-tree, no-holes) so the test matrix is smaller.
2461 if (btrfs_fs_compat_ro(fs_info
, BLOCK_GROUP_TREE
) &&
2462 (!btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
) ||
2463 !btrfs_fs_incompat(fs_info
, NO_HOLES
))) {
2465 "block-group-tree feature requires free-space-tree and no-holes");
2470 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2473 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
2474 btrfs_err(fs_info
, "bytes_used is too small %llu",
2475 btrfs_super_bytes_used(sb
));
2478 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
2479 btrfs_err(fs_info
, "invalid stripesize %u",
2480 btrfs_super_stripesize(sb
));
2483 if (btrfs_super_num_devices(sb
) > (1UL << 31))
2484 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
2485 btrfs_super_num_devices(sb
));
2486 if (btrfs_super_num_devices(sb
) == 0) {
2487 btrfs_err(fs_info
, "number of devices is 0");
2491 if (mirror_num
>= 0 &&
2492 btrfs_super_bytenr(sb
) != btrfs_sb_offset(mirror_num
)) {
2493 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
2494 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
2499 * Obvious sys_chunk_array corruptions, it must hold at least one key
2502 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
2503 btrfs_err(fs_info
, "system chunk array too big %u > %u",
2504 btrfs_super_sys_array_size(sb
),
2505 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
2508 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
2509 + sizeof(struct btrfs_chunk
)) {
2510 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
2511 btrfs_super_sys_array_size(sb
),
2512 sizeof(struct btrfs_disk_key
)
2513 + sizeof(struct btrfs_chunk
));
2518 * The generation is a global counter, we'll trust it more than the others
2519 * but it's still possible that it's the one that's wrong.
2521 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
2523 "suspicious: generation < chunk_root_generation: %llu < %llu",
2524 btrfs_super_generation(sb
),
2525 btrfs_super_chunk_root_generation(sb
));
2526 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
2527 && btrfs_super_cache_generation(sb
) != (u64
)-1)
2529 "suspicious: generation < cache_generation: %llu < %llu",
2530 btrfs_super_generation(sb
),
2531 btrfs_super_cache_generation(sb
));
2537 * Validation of super block at mount time.
2538 * Some checks already done early at mount time, like csum type and incompat
2539 * flags will be skipped.
2541 static int btrfs_validate_mount_super(struct btrfs_fs_info
*fs_info
)
2543 return btrfs_validate_super(fs_info
, fs_info
->super_copy
, 0);
2547 * Validation of super block at write time.
2548 * Some checks like bytenr check will be skipped as their values will be
2550 * Extra checks like csum type and incompat flags will be done here.
2552 static int btrfs_validate_write_super(struct btrfs_fs_info
*fs_info
,
2553 struct btrfs_super_block
*sb
)
2557 ret
= btrfs_validate_super(fs_info
, sb
, -1);
2560 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb
))) {
2562 btrfs_err(fs_info
, "invalid csum type, has %u want %u",
2563 btrfs_super_csum_type(sb
), BTRFS_CSUM_TYPE_CRC32
);
2566 if (btrfs_super_incompat_flags(sb
) & ~BTRFS_FEATURE_INCOMPAT_SUPP
) {
2569 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2570 btrfs_super_incompat_flags(sb
),
2571 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP
);
2577 "super block corruption detected before writing it to disk");
2581 static int load_super_root(struct btrfs_root
*root
, u64 bytenr
, u64 gen
, int level
)
2583 struct btrfs_tree_parent_check check
= {
2586 .owner_root
= btrfs_root_id(root
)
2590 root
->node
= read_tree_block(root
->fs_info
, bytenr
, &check
);
2591 if (IS_ERR(root
->node
)) {
2592 ret
= PTR_ERR(root
->node
);
2596 if (!extent_buffer_uptodate(root
->node
)) {
2597 free_extent_buffer(root
->node
);
2602 btrfs_set_root_node(&root
->root_item
, root
->node
);
2603 root
->commit_root
= btrfs_root_node(root
);
2604 btrfs_set_root_refs(&root
->root_item
, 1);
2608 static int load_important_roots(struct btrfs_fs_info
*fs_info
)
2610 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
2614 bytenr
= btrfs_super_root(sb
);
2615 gen
= btrfs_super_generation(sb
);
2616 level
= btrfs_super_root_level(sb
);
2617 ret
= load_super_root(fs_info
->tree_root
, bytenr
, gen
, level
);
2619 btrfs_warn(fs_info
, "couldn't read tree root");
2625 static int __cold
init_tree_roots(struct btrfs_fs_info
*fs_info
)
2627 int backup_index
= find_newest_super_backup(fs_info
);
2628 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
2629 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2630 bool handle_error
= false;
2634 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
2636 if (!IS_ERR(tree_root
->node
))
2637 free_extent_buffer(tree_root
->node
);
2638 tree_root
->node
= NULL
;
2640 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
2643 free_root_pointers(fs_info
, 0);
2646 * Don't use the log in recovery mode, it won't be
2649 btrfs_set_super_log_root(sb
, 0);
2651 btrfs_warn(fs_info
, "try to load backup roots slot %d", i
);
2652 ret
= read_backup_root(fs_info
, i
);
2658 ret
= load_important_roots(fs_info
);
2660 handle_error
= true;
2665 * No need to hold btrfs_root::objectid_mutex since the fs
2666 * hasn't been fully initialised and we are the only user
2668 ret
= btrfs_init_root_free_objectid(tree_root
);
2670 handle_error
= true;
2674 ASSERT(tree_root
->free_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2676 ret
= btrfs_read_roots(fs_info
);
2678 handle_error
= true;
2682 /* All successful */
2683 fs_info
->generation
= btrfs_header_generation(tree_root
->node
);
2684 btrfs_set_last_trans_committed(fs_info
, fs_info
->generation
);
2685 fs_info
->last_reloc_trans
= 0;
2687 /* Always begin writing backup roots after the one being used */
2688 if (backup_index
< 0) {
2689 fs_info
->backup_root_index
= 0;
2691 fs_info
->backup_root_index
= backup_index
+ 1;
2692 fs_info
->backup_root_index
%= BTRFS_NUM_BACKUP_ROOTS
;
2700 void btrfs_init_fs_info(struct btrfs_fs_info
*fs_info
)
2702 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2703 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2704 INIT_LIST_HEAD(&fs_info
->trans_list
);
2705 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2706 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2707 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2708 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2709 spin_lock_init(&fs_info
->delalloc_root_lock
);
2710 spin_lock_init(&fs_info
->trans_lock
);
2711 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2712 spin_lock_init(&fs_info
->delayed_iput_lock
);
2713 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2714 spin_lock_init(&fs_info
->super_lock
);
2715 spin_lock_init(&fs_info
->buffer_lock
);
2716 spin_lock_init(&fs_info
->unused_bgs_lock
);
2717 spin_lock_init(&fs_info
->treelog_bg_lock
);
2718 spin_lock_init(&fs_info
->zone_active_bgs_lock
);
2719 spin_lock_init(&fs_info
->relocation_bg_lock
);
2720 rwlock_init(&fs_info
->tree_mod_log_lock
);
2721 rwlock_init(&fs_info
->global_root_lock
);
2722 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2723 mutex_init(&fs_info
->reclaim_bgs_lock
);
2724 mutex_init(&fs_info
->reloc_mutex
);
2725 mutex_init(&fs_info
->delalloc_root_mutex
);
2726 mutex_init(&fs_info
->zoned_meta_io_lock
);
2727 mutex_init(&fs_info
->zoned_data_reloc_io_lock
);
2728 seqlock_init(&fs_info
->profiles_lock
);
2730 btrfs_lockdep_init_map(fs_info
, btrfs_trans_num_writers
);
2731 btrfs_lockdep_init_map(fs_info
, btrfs_trans_num_extwriters
);
2732 btrfs_lockdep_init_map(fs_info
, btrfs_trans_pending_ordered
);
2733 btrfs_lockdep_init_map(fs_info
, btrfs_ordered_extent
);
2734 btrfs_state_lockdep_init_map(fs_info
, btrfs_trans_commit_prep
,
2735 BTRFS_LOCKDEP_TRANS_COMMIT_PREP
);
2736 btrfs_state_lockdep_init_map(fs_info
, btrfs_trans_unblocked
,
2737 BTRFS_LOCKDEP_TRANS_UNBLOCKED
);
2738 btrfs_state_lockdep_init_map(fs_info
, btrfs_trans_super_committed
,
2739 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED
);
2740 btrfs_state_lockdep_init_map(fs_info
, btrfs_trans_completed
,
2741 BTRFS_LOCKDEP_TRANS_COMPLETED
);
2743 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2744 INIT_LIST_HEAD(&fs_info
->space_info
);
2745 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2746 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2747 INIT_LIST_HEAD(&fs_info
->reclaim_bgs
);
2748 INIT_LIST_HEAD(&fs_info
->zone_active_bgs
);
2749 #ifdef CONFIG_BTRFS_DEBUG
2750 INIT_LIST_HEAD(&fs_info
->allocated_roots
);
2751 INIT_LIST_HEAD(&fs_info
->allocated_ebs
);
2752 spin_lock_init(&fs_info
->eb_leak_lock
);
2754 fs_info
->mapping_tree
= RB_ROOT_CACHED
;
2755 rwlock_init(&fs_info
->mapping_tree_lock
);
2756 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2757 BTRFS_BLOCK_RSV_GLOBAL
);
2758 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2759 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2760 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2761 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2762 BTRFS_BLOCK_RSV_DELOPS
);
2763 btrfs_init_block_rsv(&fs_info
->delayed_refs_rsv
,
2764 BTRFS_BLOCK_RSV_DELREFS
);
2766 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2767 atomic_set(&fs_info
->defrag_running
, 0);
2768 atomic_set(&fs_info
->nr_delayed_iputs
, 0);
2769 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2770 fs_info
->global_root_tree
= RB_ROOT
;
2771 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2772 fs_info
->metadata_ratio
= 0;
2773 fs_info
->defrag_inodes
= RB_ROOT
;
2774 atomic64_set(&fs_info
->free_chunk_space
, 0);
2775 fs_info
->tree_mod_log
= RB_ROOT
;
2776 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2777 btrfs_init_ref_verify(fs_info
);
2779 fs_info
->thread_pool_size
= min_t(unsigned long,
2780 num_online_cpus() + 2, 8);
2782 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2783 spin_lock_init(&fs_info
->ordered_root_lock
);
2785 btrfs_init_scrub(fs_info
);
2786 btrfs_init_balance(fs_info
);
2787 btrfs_init_async_reclaim_work(fs_info
);
2788 btrfs_init_extent_map_shrinker_work(fs_info
);
2790 rwlock_init(&fs_info
->block_group_cache_lock
);
2791 fs_info
->block_group_cache_tree
= RB_ROOT_CACHED
;
2793 extent_io_tree_init(fs_info
, &fs_info
->excluded_extents
,
2794 IO_TREE_FS_EXCLUDED_EXTENTS
);
2796 mutex_init(&fs_info
->ordered_operations_mutex
);
2797 mutex_init(&fs_info
->tree_log_mutex
);
2798 mutex_init(&fs_info
->chunk_mutex
);
2799 mutex_init(&fs_info
->transaction_kthread_mutex
);
2800 mutex_init(&fs_info
->cleaner_mutex
);
2801 mutex_init(&fs_info
->ro_block_group_mutex
);
2802 init_rwsem(&fs_info
->commit_root_sem
);
2803 init_rwsem(&fs_info
->cleanup_work_sem
);
2804 init_rwsem(&fs_info
->subvol_sem
);
2805 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2807 btrfs_init_dev_replace_locks(fs_info
);
2808 btrfs_init_qgroup(fs_info
);
2809 btrfs_discard_init(fs_info
);
2811 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2812 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2814 init_waitqueue_head(&fs_info
->transaction_throttle
);
2815 init_waitqueue_head(&fs_info
->transaction_wait
);
2816 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2817 init_waitqueue_head(&fs_info
->async_submit_wait
);
2818 init_waitqueue_head(&fs_info
->delayed_iputs_wait
);
2820 /* Usable values until the real ones are cached from the superblock */
2821 fs_info
->nodesize
= 4096;
2822 fs_info
->sectorsize
= 4096;
2823 fs_info
->sectorsize_bits
= ilog2(4096);
2824 fs_info
->stripesize
= 4096;
2826 /* Default compress algorithm when user does -o compress */
2827 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2829 fs_info
->max_extent_size
= BTRFS_MAX_EXTENT_SIZE
;
2831 spin_lock_init(&fs_info
->swapfile_pins_lock
);
2832 fs_info
->swapfile_pins
= RB_ROOT
;
2834 fs_info
->bg_reclaim_threshold
= BTRFS_DEFAULT_RECLAIM_THRESH
;
2835 INIT_WORK(&fs_info
->reclaim_bgs_work
, btrfs_reclaim_bgs_work
);
2838 static int init_mount_fs_info(struct btrfs_fs_info
*fs_info
, struct super_block
*sb
)
2843 /* Temporary fixed values for block size until we read the superblock. */
2844 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2845 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2847 ret
= percpu_counter_init(&fs_info
->ordered_bytes
, 0, GFP_KERNEL
);
2851 ret
= percpu_counter_init(&fs_info
->evictable_extent_maps
, 0, GFP_KERNEL
);
2855 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2859 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2860 (1 + ilog2(nr_cpu_ids
));
2862 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2866 ret
= percpu_counter_init(&fs_info
->dev_replace
.bio_counter
, 0,
2871 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2873 if (!fs_info
->delayed_root
)
2875 btrfs_init_delayed_root(fs_info
->delayed_root
);
2878 set_bit(BTRFS_FS_STATE_RO
, &fs_info
->fs_state
);
2879 if (btrfs_test_opt(fs_info
, IGNOREMETACSUMS
))
2880 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS
, &fs_info
->fs_state
);
2882 return btrfs_alloc_stripe_hash_table(fs_info
);
2885 static int btrfs_uuid_rescan_kthread(void *data
)
2887 struct btrfs_fs_info
*fs_info
= data
;
2891 * 1st step is to iterate through the existing UUID tree and
2892 * to delete all entries that contain outdated data.
2893 * 2nd step is to add all missing entries to the UUID tree.
2895 ret
= btrfs_uuid_tree_iterate(fs_info
);
2898 btrfs_warn(fs_info
, "iterating uuid_tree failed %d",
2900 up(&fs_info
->uuid_tree_rescan_sem
);
2903 return btrfs_uuid_scan_kthread(data
);
2906 static int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
2908 struct task_struct
*task
;
2910 down(&fs_info
->uuid_tree_rescan_sem
);
2911 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
2913 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2914 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
2915 up(&fs_info
->uuid_tree_rescan_sem
);
2916 return PTR_ERR(task
);
2922 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2924 u64 root_objectid
= 0;
2925 struct btrfs_root
*gang
[8];
2931 spin_lock(&fs_info
->fs_roots_radix_lock
);
2932 found
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2933 (void **)gang
, root_objectid
,
2936 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2939 root_objectid
= btrfs_root_id(gang
[found
- 1]) + 1;
2941 for (int i
= 0; i
< found
; i
++) {
2942 /* Avoid to grab roots in dead_roots. */
2943 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
2947 /* Grab all the search result for later use. */
2948 gang
[i
] = btrfs_grab_root(gang
[i
]);
2950 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2952 for (int i
= 0; i
< found
; i
++) {
2955 root_objectid
= btrfs_root_id(gang
[i
]);
2957 * Continue to release the remaining roots after the first
2958 * error without cleanup and preserve the first error
2962 ret
= btrfs_orphan_cleanup(gang
[i
]);
2963 btrfs_put_root(gang
[i
]);
2974 * Mounting logic specific to read-write file systems. Shared by open_ctree
2975 * and btrfs_remount when remounting from read-only to read-write.
2977 int btrfs_start_pre_rw_mount(struct btrfs_fs_info
*fs_info
)
2980 const bool cache_opt
= btrfs_test_opt(fs_info
, SPACE_CACHE
);
2981 bool rebuild_free_space_tree
= false;
2983 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
2984 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2985 if (btrfs_fs_incompat(fs_info
, EXTENT_TREE_V2
))
2987 "'clear_cache' option is ignored with extent tree v2");
2989 rebuild_free_space_tree
= true;
2990 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
2991 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
2992 btrfs_warn(fs_info
, "free space tree is invalid");
2993 rebuild_free_space_tree
= true;
2996 if (rebuild_free_space_tree
) {
2997 btrfs_info(fs_info
, "rebuilding free space tree");
2998 ret
= btrfs_rebuild_free_space_tree(fs_info
);
3001 "failed to rebuild free space tree: %d", ret
);
3006 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3007 !btrfs_test_opt(fs_info
, FREE_SPACE_TREE
)) {
3008 btrfs_info(fs_info
, "disabling free space tree");
3009 ret
= btrfs_delete_free_space_tree(fs_info
);
3012 "failed to disable free space tree: %d", ret
);
3018 * btrfs_find_orphan_roots() is responsible for finding all the dead
3019 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3020 * them into the fs_info->fs_roots_radix tree. This must be done before
3021 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3022 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3023 * item before the root's tree is deleted - this means that if we unmount
3024 * or crash before the deletion completes, on the next mount we will not
3025 * delete what remains of the tree because the orphan item does not
3026 * exists anymore, which is what tells us we have a pending deletion.
3028 ret
= btrfs_find_orphan_roots(fs_info
);
3032 ret
= btrfs_cleanup_fs_roots(fs_info
);
3036 down_read(&fs_info
->cleanup_work_sem
);
3037 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3038 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3039 up_read(&fs_info
->cleanup_work_sem
);
3042 up_read(&fs_info
->cleanup_work_sem
);
3044 mutex_lock(&fs_info
->cleaner_mutex
);
3045 ret
= btrfs_recover_relocation(fs_info
);
3046 mutex_unlock(&fs_info
->cleaner_mutex
);
3048 btrfs_warn(fs_info
, "failed to recover relocation: %d", ret
);
3052 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3053 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3054 btrfs_info(fs_info
, "creating free space tree");
3055 ret
= btrfs_create_free_space_tree(fs_info
);
3058 "failed to create free space tree: %d", ret
);
3063 if (cache_opt
!= btrfs_free_space_cache_v1_active(fs_info
)) {
3064 ret
= btrfs_set_free_space_cache_v1_active(fs_info
, cache_opt
);
3069 ret
= btrfs_resume_balance_async(fs_info
);
3073 ret
= btrfs_resume_dev_replace_async(fs_info
);
3075 btrfs_warn(fs_info
, "failed to resume dev_replace");
3079 btrfs_qgroup_rescan_resume(fs_info
);
3081 if (!fs_info
->uuid_root
) {
3082 btrfs_info(fs_info
, "creating UUID tree");
3083 ret
= btrfs_create_uuid_tree(fs_info
);
3086 "failed to create the UUID tree %d", ret
);
3096 * Do various sanity and dependency checks of different features.
3098 * @is_rw_mount: If the mount is read-write.
3100 * This is the place for less strict checks (like for subpage or artificial
3101 * feature dependencies).
3103 * For strict checks or possible corruption detection, see
3104 * btrfs_validate_super().
3106 * This should be called after btrfs_parse_options(), as some mount options
3107 * (space cache related) can modify on-disk format like free space tree and
3108 * screw up certain feature dependencies.
3110 int btrfs_check_features(struct btrfs_fs_info
*fs_info
, bool is_rw_mount
)
3112 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
3113 u64 incompat
= btrfs_super_incompat_flags(disk_super
);
3114 const u64 compat_ro
= btrfs_super_compat_ro_flags(disk_super
);
3115 const u64 compat_ro_unsupp
= (compat_ro
& ~BTRFS_FEATURE_COMPAT_RO_SUPP
);
3117 if (incompat
& ~BTRFS_FEATURE_INCOMPAT_SUPP
) {
3119 "cannot mount because of unknown incompat features (0x%llx)",
3124 /* Runtime limitation for mixed block groups. */
3125 if ((incompat
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
3126 (fs_info
->sectorsize
!= fs_info
->nodesize
)) {
3128 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3129 fs_info
->nodesize
, fs_info
->sectorsize
);
3133 /* Mixed backref is an always-enabled feature. */
3134 incompat
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
3136 /* Set compression related flags just in case. */
3137 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
3138 incompat
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
3139 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
3140 incompat
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
3143 * An ancient flag, which should really be marked deprecated.
3144 * Such runtime limitation doesn't really need a incompat flag.
3146 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
)
3147 incompat
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
3149 if (compat_ro_unsupp
&& is_rw_mount
) {
3151 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3157 * We have unsupported RO compat features, although RO mounted, we
3158 * should not cause any metadata writes, including log replay.
3159 * Or we could screw up whatever the new feature requires.
3161 if (compat_ro_unsupp
&& btrfs_super_log_root(disk_super
) &&
3162 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3164 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3170 * Artificial limitations for block group tree, to force
3171 * block-group-tree to rely on no-holes and free-space-tree.
3173 if (btrfs_fs_compat_ro(fs_info
, BLOCK_GROUP_TREE
) &&
3174 (!btrfs_fs_incompat(fs_info
, NO_HOLES
) ||
3175 !btrfs_test_opt(fs_info
, FREE_SPACE_TREE
))) {
3177 "block-group-tree feature requires no-holes and free-space-tree features");
3182 * Subpage runtime limitation on v1 cache.
3184 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3185 * we're already defaulting to v2 cache, no need to bother v1 as it's
3186 * going to be deprecated anyway.
3188 if (fs_info
->sectorsize
< PAGE_SIZE
&& btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
3190 "v1 space cache is not supported for page size %lu with sectorsize %u",
3191 PAGE_SIZE
, fs_info
->sectorsize
);
3195 /* This can be called by remount, we need to protect the super block. */
3196 spin_lock(&fs_info
->super_lock
);
3197 btrfs_set_super_incompat_flags(disk_super
, incompat
);
3198 spin_unlock(&fs_info
->super_lock
);
3203 int __cold
open_ctree(struct super_block
*sb
, struct btrfs_fs_devices
*fs_devices
)
3210 struct btrfs_super_block
*disk_super
;
3211 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
3212 struct btrfs_root
*tree_root
;
3213 struct btrfs_root
*chunk_root
;
3217 ret
= init_mount_fs_info(fs_info
, sb
);
3221 /* These need to be init'ed before we start creating inodes and such. */
3222 tree_root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
,
3224 fs_info
->tree_root
= tree_root
;
3225 chunk_root
= btrfs_alloc_root(fs_info
, BTRFS_CHUNK_TREE_OBJECTID
,
3227 fs_info
->chunk_root
= chunk_root
;
3228 if (!tree_root
|| !chunk_root
) {
3233 ret
= btrfs_init_btree_inode(sb
);
3237 invalidate_bdev(fs_devices
->latest_dev
->bdev
);
3240 * Read super block and check the signature bytes only
3242 disk_super
= btrfs_read_dev_super(fs_devices
->latest_dev
->bdev
);
3243 if (IS_ERR(disk_super
)) {
3244 ret
= PTR_ERR(disk_super
);
3248 btrfs_info(fs_info
, "first mount of filesystem %pU", disk_super
->fsid
);
3250 * Verify the type first, if that or the checksum value are
3251 * corrupted, we'll find out
3253 csum_type
= btrfs_super_csum_type(disk_super
);
3254 if (!btrfs_supported_super_csum(csum_type
)) {
3255 btrfs_err(fs_info
, "unsupported checksum algorithm: %u",
3258 btrfs_release_disk_super(disk_super
);
3262 fs_info
->csum_size
= btrfs_super_csum_size(disk_super
);
3264 ret
= btrfs_init_csum_hash(fs_info
, csum_type
);
3266 btrfs_release_disk_super(disk_super
);
3271 * We want to check superblock checksum, the type is stored inside.
3272 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3274 if (btrfs_check_super_csum(fs_info
, disk_super
)) {
3275 btrfs_err(fs_info
, "superblock checksum mismatch");
3277 btrfs_release_disk_super(disk_super
);
3282 * super_copy is zeroed at allocation time and we never touch the
3283 * following bytes up to INFO_SIZE, the checksum is calculated from
3284 * the whole block of INFO_SIZE
3286 memcpy(fs_info
->super_copy
, disk_super
, sizeof(*fs_info
->super_copy
));
3287 btrfs_release_disk_super(disk_super
);
3289 disk_super
= fs_info
->super_copy
;
3291 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
3292 sizeof(*fs_info
->super_for_commit
));
3294 ret
= btrfs_validate_mount_super(fs_info
);
3296 btrfs_err(fs_info
, "superblock contains fatal errors");
3301 if (!btrfs_super_root(disk_super
)) {
3302 btrfs_err(fs_info
, "invalid superblock tree root bytenr");
3307 /* check FS state, whether FS is broken. */
3308 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
3309 WRITE_ONCE(fs_info
->fs_error
, -EUCLEAN
);
3311 /* Set up fs_info before parsing mount options */
3312 nodesize
= btrfs_super_nodesize(disk_super
);
3313 sectorsize
= btrfs_super_sectorsize(disk_super
);
3314 stripesize
= sectorsize
;
3315 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
3316 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
3318 fs_info
->nodesize
= nodesize
;
3319 fs_info
->sectorsize
= sectorsize
;
3320 fs_info
->sectorsize_bits
= ilog2(sectorsize
);
3321 fs_info
->sectors_per_page
= (PAGE_SIZE
>> fs_info
->sectorsize_bits
);
3322 fs_info
->csums_per_leaf
= BTRFS_MAX_ITEM_SIZE(fs_info
) / fs_info
->csum_size
;
3323 fs_info
->stripesize
= stripesize
;
3326 * Handle the space caching options appropriately now that we have the
3327 * super block loaded and validated.
3329 btrfs_set_free_space_cache_settings(fs_info
);
3331 if (!btrfs_check_options(fs_info
, &fs_info
->mount_opt
, sb
->s_flags
)) {
3336 ret
= btrfs_check_features(fs_info
, !sb_rdonly(sb
));
3341 * At this point our mount options are validated, if we set ->max_inline
3342 * to something non-standard make sure we truncate it to sectorsize.
3344 fs_info
->max_inline
= min_t(u64
, fs_info
->max_inline
, fs_info
->sectorsize
);
3346 if (sectorsize
< PAGE_SIZE
)
3348 "read-write for sector size %u with page size %lu is experimental",
3349 sectorsize
, PAGE_SIZE
);
3351 ret
= btrfs_init_workqueues(fs_info
);
3353 goto fail_sb_buffer
;
3355 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
3356 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
3358 /* Update the values for the current filesystem. */
3359 sb
->s_blocksize
= sectorsize
;
3360 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
3361 memcpy(&sb
->s_uuid
, fs_info
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3363 mutex_lock(&fs_info
->chunk_mutex
);
3364 ret
= btrfs_read_sys_array(fs_info
);
3365 mutex_unlock(&fs_info
->chunk_mutex
);
3367 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
3368 goto fail_sb_buffer
;
3371 generation
= btrfs_super_chunk_root_generation(disk_super
);
3372 level
= btrfs_super_chunk_root_level(disk_super
);
3373 ret
= load_super_root(chunk_root
, btrfs_super_chunk_root(disk_super
),
3376 btrfs_err(fs_info
, "failed to read chunk root");
3377 goto fail_tree_roots
;
3380 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
3381 offsetof(struct btrfs_header
, chunk_tree_uuid
),
3384 ret
= btrfs_read_chunk_tree(fs_info
);
3386 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
3387 goto fail_tree_roots
;
3391 * At this point we know all the devices that make this filesystem,
3392 * including the seed devices but we don't know yet if the replace
3393 * target is required. So free devices that are not part of this
3394 * filesystem but skip the replace target device which is checked
3395 * below in btrfs_init_dev_replace().
3397 btrfs_free_extra_devids(fs_devices
);
3398 if (!fs_devices
->latest_dev
->bdev
) {
3399 btrfs_err(fs_info
, "failed to read devices");
3401 goto fail_tree_roots
;
3404 ret
= init_tree_roots(fs_info
);
3406 goto fail_tree_roots
;
3409 * Get zone type information of zoned block devices. This will also
3410 * handle emulation of a zoned filesystem if a regular device has the
3411 * zoned incompat feature flag set.
3413 ret
= btrfs_get_dev_zone_info_all_devices(fs_info
);
3416 "zoned: failed to read device zone info: %d", ret
);
3417 goto fail_block_groups
;
3421 * If we have a uuid root and we're not being told to rescan we need to
3422 * check the generation here so we can set the
3423 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3424 * transaction during a balance or the log replay without updating the
3425 * uuid generation, and then if we crash we would rescan the uuid tree,
3426 * even though it was perfectly fine.
3428 if (fs_info
->uuid_root
&& !btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) &&
3429 fs_info
->generation
== btrfs_super_uuid_tree_generation(disk_super
))
3430 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3432 ret
= btrfs_verify_dev_extents(fs_info
);
3435 "failed to verify dev extents against chunks: %d",
3437 goto fail_block_groups
;
3439 ret
= btrfs_recover_balance(fs_info
);
3441 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3442 goto fail_block_groups
;
3445 ret
= btrfs_init_dev_stats(fs_info
);
3447 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3448 goto fail_block_groups
;
3451 ret
= btrfs_init_dev_replace(fs_info
);
3453 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3454 goto fail_block_groups
;
3457 ret
= btrfs_check_zoned_mode(fs_info
);
3459 btrfs_err(fs_info
, "failed to initialize zoned mode: %d",
3461 goto fail_block_groups
;
3464 ret
= btrfs_sysfs_add_fsid(fs_devices
);
3466 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3468 goto fail_block_groups
;
3471 ret
= btrfs_sysfs_add_mounted(fs_info
);
3473 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3474 goto fail_fsdev_sysfs
;
3477 ret
= btrfs_init_space_info(fs_info
);
3479 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3483 ret
= btrfs_read_block_groups(fs_info
);
3485 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3489 btrfs_free_zone_cache(fs_info
);
3491 btrfs_check_active_zone_reservation(fs_info
);
3493 if (!sb_rdonly(sb
) && fs_info
->fs_devices
->missing_devices
&&
3494 !btrfs_check_rw_degradable(fs_info
, NULL
)) {
3496 "writable mount is not allowed due to too many missing devices");
3501 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, fs_info
,
3503 if (IS_ERR(fs_info
->cleaner_kthread
)) {
3504 ret
= PTR_ERR(fs_info
->cleaner_kthread
);
3508 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3510 "btrfs-transaction");
3511 if (IS_ERR(fs_info
->transaction_kthread
)) {
3512 ret
= PTR_ERR(fs_info
->transaction_kthread
);
3516 ret
= btrfs_read_qgroup_config(fs_info
);
3518 goto fail_trans_kthread
;
3520 if (btrfs_build_ref_tree(fs_info
))
3521 btrfs_err(fs_info
, "couldn't build ref tree");
3523 /* do not make disk changes in broken FS or nologreplay is given */
3524 if (btrfs_super_log_root(disk_super
) != 0 &&
3525 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3526 btrfs_info(fs_info
, "start tree-log replay");
3527 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3532 fs_info
->fs_root
= btrfs_get_fs_root(fs_info
, BTRFS_FS_TREE_OBJECTID
, true);
3533 if (IS_ERR(fs_info
->fs_root
)) {
3534 ret
= PTR_ERR(fs_info
->fs_root
);
3535 btrfs_warn(fs_info
, "failed to read fs tree: %d", ret
);
3536 fs_info
->fs_root
= NULL
;
3543 ret
= btrfs_start_pre_rw_mount(fs_info
);
3545 close_ctree(fs_info
);
3548 btrfs_discard_resume(fs_info
);
3550 if (fs_info
->uuid_root
&&
3551 (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3552 fs_info
->generation
!= btrfs_super_uuid_tree_generation(disk_super
))) {
3553 btrfs_info(fs_info
, "checking UUID tree");
3554 ret
= btrfs_check_uuid_tree(fs_info
);
3557 "failed to check the UUID tree: %d", ret
);
3558 close_ctree(fs_info
);
3563 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3565 /* Kick the cleaner thread so it'll start deleting snapshots. */
3566 if (test_bit(BTRFS_FS_UNFINISHED_DROPS
, &fs_info
->flags
))
3567 wake_up_process(fs_info
->cleaner_kthread
);
3572 btrfs_free_qgroup_config(fs_info
);
3574 kthread_stop(fs_info
->transaction_kthread
);
3575 btrfs_cleanup_transaction(fs_info
);
3576 btrfs_free_fs_roots(fs_info
);
3578 kthread_stop(fs_info
->cleaner_kthread
);
3581 * make sure we're done with the btree inode before we stop our
3584 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3587 btrfs_sysfs_remove_mounted(fs_info
);
3590 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3593 btrfs_put_block_group_cache(fs_info
);
3596 if (fs_info
->data_reloc_root
)
3597 btrfs_drop_and_free_fs_root(fs_info
, fs_info
->data_reloc_root
);
3598 free_root_pointers(fs_info
, true);
3599 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3602 btrfs_stop_all_workers(fs_info
);
3603 btrfs_free_block_groups(fs_info
);
3605 btrfs_mapping_tree_free(fs_info
);
3607 iput(fs_info
->btree_inode
);
3609 btrfs_close_devices(fs_info
->fs_devices
);
3613 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3615 static void btrfs_end_super_write(struct bio
*bio
)
3617 struct btrfs_device
*device
= bio
->bi_private
;
3618 struct folio_iter fi
;
3620 bio_for_each_folio_all(fi
, bio
) {
3621 if (bio
->bi_status
) {
3622 btrfs_warn_rl_in_rcu(device
->fs_info
,
3623 "lost super block write due to IO error on %s (%d)",
3624 btrfs_dev_name(device
),
3625 blk_status_to_errno(bio
->bi_status
));
3626 btrfs_dev_stat_inc_and_print(device
,
3627 BTRFS_DEV_STAT_WRITE_ERRS
);
3628 /* Ensure failure if the primary sb fails. */
3629 if (bio
->bi_opf
& REQ_FUA
)
3630 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR
,
3631 &device
->sb_write_errors
);
3633 atomic_inc(&device
->sb_write_errors
);
3635 folio_unlock(fi
.folio
);
3636 folio_put(fi
.folio
);
3642 struct btrfs_super_block
*btrfs_read_dev_one_super(struct block_device
*bdev
,
3643 int copy_num
, bool drop_cache
)
3645 struct btrfs_super_block
*super
;
3647 u64 bytenr
, bytenr_orig
;
3648 struct address_space
*mapping
= bdev
->bd_mapping
;
3651 bytenr_orig
= btrfs_sb_offset(copy_num
);
3652 ret
= btrfs_sb_log_location_bdev(bdev
, copy_num
, READ
, &bytenr
);
3654 return ERR_PTR(-EINVAL
);
3656 return ERR_PTR(ret
);
3658 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= bdev_nr_bytes(bdev
))
3659 return ERR_PTR(-EINVAL
);
3662 /* This should only be called with the primary sb. */
3663 ASSERT(copy_num
== 0);
3666 * Drop the page of the primary superblock, so later read will
3667 * always read from the device.
3669 invalidate_inode_pages2_range(mapping
,
3670 bytenr
>> PAGE_SHIFT
,
3671 (bytenr
+ BTRFS_SUPER_INFO_SIZE
) >> PAGE_SHIFT
);
3674 page
= read_cache_page_gfp(mapping
, bytenr
>> PAGE_SHIFT
, GFP_NOFS
);
3676 return ERR_CAST(page
);
3678 super
= page_address(page
);
3679 if (btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3680 btrfs_release_disk_super(super
);
3681 return ERR_PTR(-ENODATA
);
3684 if (btrfs_super_bytenr(super
) != bytenr_orig
) {
3685 btrfs_release_disk_super(super
);
3686 return ERR_PTR(-EINVAL
);
3693 struct btrfs_super_block
*btrfs_read_dev_super(struct block_device
*bdev
)
3695 struct btrfs_super_block
*super
, *latest
= NULL
;
3699 /* we would like to check all the supers, but that would make
3700 * a btrfs mount succeed after a mkfs from a different FS.
3701 * So, we need to add a special mount option to scan for
3702 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3704 for (i
= 0; i
< 1; i
++) {
3705 super
= btrfs_read_dev_one_super(bdev
, i
, false);
3709 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3711 btrfs_release_disk_super(super
);
3714 transid
= btrfs_super_generation(super
);
3722 * Write superblock @sb to the @device. Do not wait for completion, all the
3723 * folios we use for writing are locked.
3725 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3726 * the expected device size at commit time. Note that max_mirrors must be
3727 * same for write and wait phases.
3729 * Return number of errors when folio is not found or submission fails.
3731 static int write_dev_supers(struct btrfs_device
*device
,
3732 struct btrfs_super_block
*sb
, int max_mirrors
)
3734 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
3735 struct address_space
*mapping
= device
->bdev
->bd_mapping
;
3736 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
3739 u64 bytenr
, bytenr_orig
;
3741 atomic_set(&device
->sb_write_errors
, 0);
3743 if (max_mirrors
== 0)
3744 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3746 shash
->tfm
= fs_info
->csum_shash
;
3748 for (i
= 0; i
< max_mirrors
; i
++) {
3749 struct folio
*folio
;
3751 struct btrfs_super_block
*disk_super
;
3754 bytenr_orig
= btrfs_sb_offset(i
);
3755 ret
= btrfs_sb_log_location(device
, i
, WRITE
, &bytenr
);
3756 if (ret
== -ENOENT
) {
3758 } else if (ret
< 0) {
3759 btrfs_err(device
->fs_info
,
3760 "couldn't get super block location for mirror %d",
3762 atomic_inc(&device
->sb_write_errors
);
3765 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3766 device
->commit_total_bytes
)
3769 btrfs_set_super_bytenr(sb
, bytenr_orig
);
3771 crypto_shash_digest(shash
, (const char *)sb
+ BTRFS_CSUM_SIZE
,
3772 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
,
3775 folio
= __filemap_get_folio(mapping
, bytenr
>> PAGE_SHIFT
,
3776 FGP_LOCK
| FGP_ACCESSED
| FGP_CREAT
,
3778 if (IS_ERR(folio
)) {
3779 btrfs_err(device
->fs_info
,
3780 "couldn't get super block page for bytenr %llu",
3782 atomic_inc(&device
->sb_write_errors
);
3785 ASSERT(folio_order(folio
) == 0);
3787 offset
= offset_in_folio(folio
, bytenr
);
3788 disk_super
= folio_address(folio
) + offset
;
3789 memcpy(disk_super
, sb
, BTRFS_SUPER_INFO_SIZE
);
3792 * Directly use bios here instead of relying on the page cache
3793 * to do I/O, so we don't lose the ability to do integrity
3796 bio
= bio_alloc(device
->bdev
, 1,
3797 REQ_OP_WRITE
| REQ_SYNC
| REQ_META
| REQ_PRIO
,
3799 bio
->bi_iter
.bi_sector
= bytenr
>> SECTOR_SHIFT
;
3800 bio
->bi_private
= device
;
3801 bio
->bi_end_io
= btrfs_end_super_write
;
3802 bio_add_folio_nofail(bio
, folio
, BTRFS_SUPER_INFO_SIZE
, offset
);
3805 * We FUA only the first super block. The others we allow to
3806 * go down lazy and there's a short window where the on-disk
3807 * copies might still contain the older version.
3809 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3810 bio
->bi_opf
|= REQ_FUA
;
3813 if (btrfs_advance_sb_log(device
, i
))
3814 atomic_inc(&device
->sb_write_errors
);
3816 return atomic_read(&device
->sb_write_errors
) < i
? 0 : -1;
3820 * Wait for write completion of superblocks done by write_dev_supers,
3821 * @max_mirrors same for write and wait phases.
3823 * Return -1 if primary super block write failed or when there were no super block
3824 * copies written. Otherwise 0.
3826 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3830 bool primary_failed
= false;
3834 if (max_mirrors
== 0)
3835 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3837 for (i
= 0; i
< max_mirrors
; i
++) {
3838 struct folio
*folio
;
3840 ret
= btrfs_sb_log_location(device
, i
, READ
, &bytenr
);
3841 if (ret
== -ENOENT
) {
3843 } else if (ret
< 0) {
3846 primary_failed
= true;
3849 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3850 device
->commit_total_bytes
)
3853 folio
= filemap_get_folio(device
->bdev
->bd_mapping
,
3854 bytenr
>> PAGE_SHIFT
);
3855 /* If the folio has been removed, then we know it completed. */
3858 ASSERT(folio_order(folio
) == 0);
3860 /* Folio will be unlocked once the write completes. */
3861 folio_wait_locked(folio
);
3865 errors
+= atomic_read(&device
->sb_write_errors
);
3866 if (errors
>= BTRFS_SUPER_PRIMARY_WRITE_ERROR
)
3867 primary_failed
= true;
3868 if (primary_failed
) {
3869 btrfs_err(device
->fs_info
, "error writing primary super block to device %llu",
3874 return errors
< i
? 0 : -1;
3878 * endio for the write_dev_flush, this will wake anyone waiting
3879 * for the barrier when it is done
3881 static void btrfs_end_empty_barrier(struct bio
*bio
)
3884 complete(bio
->bi_private
);
3888 * Submit a flush request to the device if it supports it. Error handling is
3889 * done in the waiting counterpart.
3891 static void write_dev_flush(struct btrfs_device
*device
)
3893 struct bio
*bio
= &device
->flush_bio
;
3895 device
->last_flush_error
= BLK_STS_OK
;
3897 bio_init(bio
, device
->bdev
, NULL
, 0,
3898 REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
);
3899 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3900 init_completion(&device
->flush_wait
);
3901 bio
->bi_private
= &device
->flush_wait
;
3903 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3907 * If the flush bio has been submitted by write_dev_flush, wait for it.
3908 * Return true for any error, and false otherwise.
3910 static bool wait_dev_flush(struct btrfs_device
*device
)
3912 struct bio
*bio
= &device
->flush_bio
;
3914 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3917 wait_for_completion_io(&device
->flush_wait
);
3919 if (bio
->bi_status
) {
3920 device
->last_flush_error
= bio
->bi_status
;
3921 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_FLUSH_ERRS
);
3929 * send an empty flush down to each device in parallel,
3930 * then wait for them
3932 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3934 struct list_head
*head
;
3935 struct btrfs_device
*dev
;
3936 int errors_wait
= 0;
3938 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3939 /* send down all the barriers */
3940 head
= &info
->fs_devices
->devices
;
3941 list_for_each_entry(dev
, head
, dev_list
) {
3942 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3946 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3947 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3950 write_dev_flush(dev
);
3953 /* wait for all the barriers */
3954 list_for_each_entry(dev
, head
, dev_list
) {
3955 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3961 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3962 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3965 if (wait_dev_flush(dev
))
3970 * Checks last_flush_error of disks in order to determine the device
3973 if (errors_wait
&& !btrfs_check_rw_degradable(info
, NULL
))
3979 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3982 int min_tolerated
= INT_MAX
;
3984 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3985 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3986 min_tolerated
= min_t(int, min_tolerated
,
3987 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3988 tolerated_failures
);
3990 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3991 if (raid_type
== BTRFS_RAID_SINGLE
)
3993 if (!(flags
& btrfs_raid_array
[raid_type
].bg_flag
))
3995 min_tolerated
= min_t(int, min_tolerated
,
3996 btrfs_raid_array
[raid_type
].
3997 tolerated_failures
);
4000 if (min_tolerated
== INT_MAX
) {
4001 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
4005 return min_tolerated
;
4008 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
4010 struct list_head
*head
;
4011 struct btrfs_device
*dev
;
4012 struct btrfs_super_block
*sb
;
4013 struct btrfs_dev_item
*dev_item
;
4017 int total_errors
= 0;
4020 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
4023 * max_mirrors == 0 indicates we're from commit_transaction,
4024 * not from fsync where the tree roots in fs_info have not
4025 * been consistent on disk.
4027 if (max_mirrors
== 0)
4028 backup_super_roots(fs_info
);
4030 sb
= fs_info
->super_for_commit
;
4031 dev_item
= &sb
->dev_item
;
4033 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4034 head
= &fs_info
->fs_devices
->devices
;
4035 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
4038 ret
= barrier_all_devices(fs_info
);
4041 &fs_info
->fs_devices
->device_list_mutex
);
4042 btrfs_handle_fs_error(fs_info
, ret
,
4043 "errors while submitting device barriers.");
4048 list_for_each_entry(dev
, head
, dev_list
) {
4053 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
4054 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
4057 btrfs_set_stack_device_generation(dev_item
, 0);
4058 btrfs_set_stack_device_type(dev_item
, dev
->type
);
4059 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
4060 btrfs_set_stack_device_total_bytes(dev_item
,
4061 dev
->commit_total_bytes
);
4062 btrfs_set_stack_device_bytes_used(dev_item
,
4063 dev
->commit_bytes_used
);
4064 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
4065 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
4066 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
4067 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
4068 memcpy(dev_item
->fsid
, dev
->fs_devices
->metadata_uuid
,
4071 flags
= btrfs_super_flags(sb
);
4072 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
4074 ret
= btrfs_validate_write_super(fs_info
, sb
);
4076 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4077 btrfs_handle_fs_error(fs_info
, -EUCLEAN
,
4078 "unexpected superblock corruption detected");
4082 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
4086 if (total_errors
> max_errors
) {
4087 btrfs_err(fs_info
, "%d errors while writing supers",
4089 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4091 /* FUA is masked off if unsupported and can't be the reason */
4092 btrfs_handle_fs_error(fs_info
, -EIO
,
4093 "%d errors while writing supers",
4099 list_for_each_entry(dev
, head
, dev_list
) {
4102 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
4103 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
4106 ret
= wait_dev_supers(dev
, max_mirrors
);
4110 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4111 if (total_errors
> max_errors
) {
4112 btrfs_handle_fs_error(fs_info
, -EIO
,
4113 "%d errors while writing supers",
4120 /* Drop a fs root from the radix tree and free it. */
4121 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
4122 struct btrfs_root
*root
)
4124 bool drop_ref
= false;
4126 spin_lock(&fs_info
->fs_roots_radix_lock
);
4127 radix_tree_delete(&fs_info
->fs_roots_radix
,
4128 (unsigned long)btrfs_root_id(root
));
4129 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
))
4131 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4133 if (BTRFS_FS_ERROR(fs_info
)) {
4134 ASSERT(root
->log_root
== NULL
);
4135 if (root
->reloc_root
) {
4136 btrfs_put_root(root
->reloc_root
);
4137 root
->reloc_root
= NULL
;
4142 btrfs_put_root(root
);
4145 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
4147 mutex_lock(&fs_info
->cleaner_mutex
);
4148 btrfs_run_delayed_iputs(fs_info
);
4149 mutex_unlock(&fs_info
->cleaner_mutex
);
4150 wake_up_process(fs_info
->cleaner_kthread
);
4152 /* wait until ongoing cleanup work done */
4153 down_write(&fs_info
->cleanup_work_sem
);
4154 up_write(&fs_info
->cleanup_work_sem
);
4156 return btrfs_commit_current_transaction(fs_info
->tree_root
);
4159 static void warn_about_uncommitted_trans(struct btrfs_fs_info
*fs_info
)
4161 struct btrfs_transaction
*trans
;
4162 struct btrfs_transaction
*tmp
;
4166 * This function is only called at the very end of close_ctree(),
4167 * thus no other running transaction, no need to take trans_lock.
4169 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
));
4170 list_for_each_entry_safe(trans
, tmp
, &fs_info
->trans_list
, list
) {
4171 struct extent_state
*cached
= NULL
;
4172 u64 dirty_bytes
= 0;
4178 while (find_first_extent_bit(&trans
->dirty_pages
, cur
,
4179 &found_start
, &found_end
, EXTENT_DIRTY
, &cached
)) {
4180 dirty_bytes
+= found_end
+ 1 - found_start
;
4181 cur
= found_end
+ 1;
4184 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4185 trans
->transid
, dirty_bytes
);
4186 btrfs_cleanup_one_transaction(trans
);
4188 if (trans
== fs_info
->running_transaction
)
4189 fs_info
->running_transaction
= NULL
;
4190 list_del_init(&trans
->list
);
4192 btrfs_put_transaction(trans
);
4193 trace_btrfs_transaction_commit(fs_info
);
4198 void __cold
close_ctree(struct btrfs_fs_info
*fs_info
)
4202 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
4205 * If we had UNFINISHED_DROPS we could still be processing them, so
4206 * clear that bit and wake up relocation so it can stop.
4207 * We must do this before stopping the block group reclaim task, because
4208 * at btrfs_relocate_block_group() we wait for this bit, and after the
4209 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4210 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4213 btrfs_wake_unfinished_drop(fs_info
);
4216 * We may have the reclaim task running and relocating a data block group,
4217 * in which case it may create delayed iputs. So stop it before we park
4218 * the cleaner kthread otherwise we can get new delayed iputs after
4219 * parking the cleaner, and that can make the async reclaim task to hang
4220 * if it's waiting for delayed iputs to complete, since the cleaner is
4221 * parked and can not run delayed iputs - this will make us hang when
4222 * trying to stop the async reclaim task.
4224 cancel_work_sync(&fs_info
->reclaim_bgs_work
);
4226 * We don't want the cleaner to start new transactions, add more delayed
4227 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4228 * because that frees the task_struct, and the transaction kthread might
4229 * still try to wake up the cleaner.
4231 kthread_park(fs_info
->cleaner_kthread
);
4233 /* wait for the qgroup rescan worker to stop */
4234 btrfs_qgroup_wait_for_completion(fs_info
, false);
4236 /* wait for the uuid_scan task to finish */
4237 down(&fs_info
->uuid_tree_rescan_sem
);
4238 /* avoid complains from lockdep et al., set sem back to initial state */
4239 up(&fs_info
->uuid_tree_rescan_sem
);
4241 /* pause restriper - we want to resume on mount */
4242 btrfs_pause_balance(fs_info
);
4244 btrfs_dev_replace_suspend_for_unmount(fs_info
);
4246 btrfs_scrub_cancel(fs_info
);
4248 /* wait for any defraggers to finish */
4249 wait_event(fs_info
->transaction_wait
,
4250 (atomic_read(&fs_info
->defrag_running
) == 0));
4252 /* clear out the rbtree of defraggable inodes */
4253 btrfs_cleanup_defrag_inodes(fs_info
);
4256 * Wait for any fixup workers to complete.
4257 * If we don't wait for them here and they are still running by the time
4258 * we call kthread_stop() against the cleaner kthread further below, we
4259 * get an use-after-free on the cleaner because the fixup worker adds an
4260 * inode to the list of delayed iputs and then attempts to wakeup the
4261 * cleaner kthread, which was already stopped and destroyed. We parked
4262 * already the cleaner, but below we run all pending delayed iputs.
4264 btrfs_flush_workqueue(fs_info
->fixup_workers
);
4266 * Similar case here, we have to wait for delalloc workers before we
4267 * proceed below and stop the cleaner kthread, otherwise we trigger a
4268 * use-after-tree on the cleaner kthread task_struct when a delalloc
4269 * worker running submit_compressed_extents() adds a delayed iput, which
4270 * does a wake up on the cleaner kthread, which was already freed below
4271 * when we call kthread_stop().
4273 btrfs_flush_workqueue(fs_info
->delalloc_workers
);
4276 * After we parked the cleaner kthread, ordered extents may have
4277 * completed and created new delayed iputs. If one of the async reclaim
4278 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4279 * can hang forever trying to stop it, because if a delayed iput is
4280 * added after it ran btrfs_run_delayed_iputs() and before it called
4281 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4282 * no one else to run iputs.
4284 * So wait for all ongoing ordered extents to complete and then run
4285 * delayed iputs. This works because once we reach this point no one
4286 * can either create new ordered extents nor create delayed iputs
4287 * through some other means.
4289 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4290 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4291 * but the delayed iput for the respective inode is made only when doing
4292 * the final btrfs_put_ordered_extent() (which must happen at
4293 * btrfs_finish_ordered_io() when we are unmounting).
4295 btrfs_flush_workqueue(fs_info
->endio_write_workers
);
4296 /* Ordered extents for free space inodes. */
4297 btrfs_flush_workqueue(fs_info
->endio_freespace_worker
);
4298 btrfs_run_delayed_iputs(fs_info
);
4300 cancel_work_sync(&fs_info
->async_reclaim_work
);
4301 cancel_work_sync(&fs_info
->async_data_reclaim_work
);
4302 cancel_work_sync(&fs_info
->preempt_reclaim_work
);
4303 cancel_work_sync(&fs_info
->em_shrinker_work
);
4305 /* Cancel or finish ongoing discard work */
4306 btrfs_discard_cleanup(fs_info
);
4308 if (!sb_rdonly(fs_info
->sb
)) {
4310 * The cleaner kthread is stopped, so do one final pass over
4311 * unused block groups.
4313 btrfs_delete_unused_bgs(fs_info
);
4316 * There might be existing delayed inode workers still running
4317 * and holding an empty delayed inode item. We must wait for
4318 * them to complete first because they can create a transaction.
4319 * This happens when someone calls btrfs_balance_delayed_items()
4320 * and then a transaction commit runs the same delayed nodes
4321 * before any delayed worker has done something with the nodes.
4322 * We must wait for any worker here and not at transaction
4323 * commit time since that could cause a deadlock.
4324 * This is a very rare case.
4326 btrfs_flush_workqueue(fs_info
->delayed_workers
);
4328 ret
= btrfs_commit_super(fs_info
);
4330 btrfs_err(fs_info
, "commit super ret %d", ret
);
4333 if (BTRFS_FS_ERROR(fs_info
))
4334 btrfs_error_commit_super(fs_info
);
4336 kthread_stop(fs_info
->transaction_kthread
);
4337 kthread_stop(fs_info
->cleaner_kthread
);
4339 ASSERT(list_empty(&fs_info
->delayed_iputs
));
4340 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
4342 if (btrfs_check_quota_leak(fs_info
)) {
4343 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
4344 btrfs_err(fs_info
, "qgroup reserved space leaked");
4347 btrfs_free_qgroup_config(fs_info
);
4348 ASSERT(list_empty(&fs_info
->delalloc_roots
));
4350 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
4351 btrfs_info(fs_info
, "at unmount delalloc count %lld",
4352 percpu_counter_sum(&fs_info
->delalloc_bytes
));
4355 if (percpu_counter_sum(&fs_info
->ordered_bytes
))
4356 btrfs_info(fs_info
, "at unmount dio bytes count %lld",
4357 percpu_counter_sum(&fs_info
->ordered_bytes
));
4359 btrfs_sysfs_remove_mounted(fs_info
);
4360 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
4362 btrfs_put_block_group_cache(fs_info
);
4365 * we must make sure there is not any read request to
4366 * submit after we stopping all workers.
4368 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
4369 btrfs_stop_all_workers(fs_info
);
4371 /* We shouldn't have any transaction open at this point */
4372 warn_about_uncommitted_trans(fs_info
);
4374 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
4375 free_root_pointers(fs_info
, true);
4376 btrfs_free_fs_roots(fs_info
);
4379 * We must free the block groups after dropping the fs_roots as we could
4380 * have had an IO error and have left over tree log blocks that aren't
4381 * cleaned up until the fs roots are freed. This makes the block group
4382 * accounting appear to be wrong because there's pending reserved bytes,
4383 * so make sure we do the block group cleanup afterwards.
4385 btrfs_free_block_groups(fs_info
);
4387 iput(fs_info
->btree_inode
);
4389 btrfs_mapping_tree_free(fs_info
);
4390 btrfs_close_devices(fs_info
->fs_devices
);
4393 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle
*trans
,
4394 struct extent_buffer
*buf
)
4396 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
4397 u64 transid
= btrfs_header_generation(buf
);
4399 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4401 * This is a fast path so only do this check if we have sanity tests
4402 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4403 * outside of the sanity tests.
4405 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &buf
->bflags
)))
4408 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4409 ASSERT(trans
->transid
== fs_info
->generation
);
4410 btrfs_assert_tree_write_locked(buf
);
4411 if (unlikely(transid
!= fs_info
->generation
)) {
4412 btrfs_abort_transaction(trans
, -EUCLEAN
);
4414 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4415 buf
->start
, transid
, fs_info
->generation
);
4417 set_extent_buffer_dirty(buf
);
4420 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4424 * looks as though older kernels can get into trouble with
4425 * this code, they end up stuck in balance_dirty_pages forever
4429 if (current
->flags
& PF_MEMALLOC
)
4433 btrfs_balance_delayed_items(fs_info
);
4435 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4436 BTRFS_DIRTY_METADATA_THRESH
,
4437 fs_info
->dirty_metadata_batch
);
4439 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4443 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4445 __btrfs_btree_balance_dirty(fs_info
, 1);
4448 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4450 __btrfs_btree_balance_dirty(fs_info
, 0);
4453 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4455 /* cleanup FS via transaction */
4456 btrfs_cleanup_transaction(fs_info
);
4458 mutex_lock(&fs_info
->cleaner_mutex
);
4459 btrfs_run_delayed_iputs(fs_info
);
4460 mutex_unlock(&fs_info
->cleaner_mutex
);
4462 down_write(&fs_info
->cleanup_work_sem
);
4463 up_write(&fs_info
->cleanup_work_sem
);
4466 static void btrfs_drop_all_logs(struct btrfs_fs_info
*fs_info
)
4468 struct btrfs_root
*gang
[8];
4469 u64 root_objectid
= 0;
4472 spin_lock(&fs_info
->fs_roots_radix_lock
);
4473 while ((ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
4474 (void **)gang
, root_objectid
,
4475 ARRAY_SIZE(gang
))) != 0) {
4478 for (i
= 0; i
< ret
; i
++)
4479 gang
[i
] = btrfs_grab_root(gang
[i
]);
4480 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4482 for (i
= 0; i
< ret
; i
++) {
4485 root_objectid
= btrfs_root_id(gang
[i
]);
4486 btrfs_free_log(NULL
, gang
[i
]);
4487 btrfs_put_root(gang
[i
]);
4490 spin_lock(&fs_info
->fs_roots_radix_lock
);
4492 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4493 btrfs_free_log_root_tree(NULL
, fs_info
);
4496 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4498 struct btrfs_ordered_extent
*ordered
;
4500 spin_lock(&root
->ordered_extent_lock
);
4502 * This will just short circuit the ordered completion stuff which will
4503 * make sure the ordered extent gets properly cleaned up.
4505 list_for_each_entry(ordered
, &root
->ordered_extents
,
4507 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4508 spin_unlock(&root
->ordered_extent_lock
);
4511 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4513 struct btrfs_root
*root
;
4516 spin_lock(&fs_info
->ordered_root_lock
);
4517 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4518 while (!list_empty(&splice
)) {
4519 root
= list_first_entry(&splice
, struct btrfs_root
,
4521 list_move_tail(&root
->ordered_root
,
4522 &fs_info
->ordered_roots
);
4524 spin_unlock(&fs_info
->ordered_root_lock
);
4525 btrfs_destroy_ordered_extents(root
);
4528 spin_lock(&fs_info
->ordered_root_lock
);
4530 spin_unlock(&fs_info
->ordered_root_lock
);
4533 * We need this here because if we've been flipped read-only we won't
4534 * get sync() from the umount, so we need to make sure any ordered
4535 * extents that haven't had their dirty pages IO start writeout yet
4536 * actually get run and error out properly.
4538 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, NULL
);
4541 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4543 struct btrfs_inode
*btrfs_inode
;
4546 spin_lock(&root
->delalloc_lock
);
4547 list_splice_init(&root
->delalloc_inodes
, &splice
);
4549 while (!list_empty(&splice
)) {
4550 struct inode
*inode
= NULL
;
4551 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4553 btrfs_del_delalloc_inode(btrfs_inode
);
4554 spin_unlock(&root
->delalloc_lock
);
4557 * Make sure we get a live inode and that it'll not disappear
4560 inode
= igrab(&btrfs_inode
->vfs_inode
);
4562 unsigned int nofs_flag
;
4564 nofs_flag
= memalloc_nofs_save();
4565 invalidate_inode_pages2(inode
->i_mapping
);
4566 memalloc_nofs_restore(nofs_flag
);
4569 spin_lock(&root
->delalloc_lock
);
4571 spin_unlock(&root
->delalloc_lock
);
4574 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4576 struct btrfs_root
*root
;
4579 spin_lock(&fs_info
->delalloc_root_lock
);
4580 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4581 while (!list_empty(&splice
)) {
4582 root
= list_first_entry(&splice
, struct btrfs_root
,
4584 root
= btrfs_grab_root(root
);
4586 spin_unlock(&fs_info
->delalloc_root_lock
);
4588 btrfs_destroy_delalloc_inodes(root
);
4589 btrfs_put_root(root
);
4591 spin_lock(&fs_info
->delalloc_root_lock
);
4593 spin_unlock(&fs_info
->delalloc_root_lock
);
4596 static void btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4597 struct extent_io_tree
*dirty_pages
,
4600 struct extent_buffer
*eb
;
4604 while (find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4606 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4607 while (start
<= end
) {
4608 eb
= find_extent_buffer(fs_info
, start
);
4609 start
+= fs_info
->nodesize
;
4613 btrfs_tree_lock(eb
);
4614 wait_on_extent_buffer_writeback(eb
);
4615 btrfs_clear_buffer_dirty(NULL
, eb
);
4616 btrfs_tree_unlock(eb
);
4618 free_extent_buffer_stale(eb
);
4623 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4624 struct extent_io_tree
*unpin
)
4630 struct extent_state
*cached_state
= NULL
;
4633 * The btrfs_finish_extent_commit() may get the same range as
4634 * ours between find_first_extent_bit and clear_extent_dirty.
4635 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4636 * the same extent range.
4638 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
4639 if (!find_first_extent_bit(unpin
, 0, &start
, &end
,
4640 EXTENT_DIRTY
, &cached_state
)) {
4641 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4645 clear_extent_dirty(unpin
, start
, end
, &cached_state
);
4646 free_extent_state(cached_state
);
4647 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4648 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4653 static void btrfs_cleanup_bg_io(struct btrfs_block_group
*cache
)
4655 struct inode
*inode
;
4657 inode
= cache
->io_ctl
.inode
;
4659 unsigned int nofs_flag
;
4661 nofs_flag
= memalloc_nofs_save();
4662 invalidate_inode_pages2(inode
->i_mapping
);
4663 memalloc_nofs_restore(nofs_flag
);
4665 BTRFS_I(inode
)->generation
= 0;
4666 cache
->io_ctl
.inode
= NULL
;
4669 ASSERT(cache
->io_ctl
.pages
== NULL
);
4670 btrfs_put_block_group(cache
);
4673 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4674 struct btrfs_fs_info
*fs_info
)
4676 struct btrfs_block_group
*cache
;
4678 spin_lock(&cur_trans
->dirty_bgs_lock
);
4679 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4680 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4681 struct btrfs_block_group
,
4684 if (!list_empty(&cache
->io_list
)) {
4685 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4686 list_del_init(&cache
->io_list
);
4687 btrfs_cleanup_bg_io(cache
);
4688 spin_lock(&cur_trans
->dirty_bgs_lock
);
4691 list_del_init(&cache
->dirty_list
);
4692 spin_lock(&cache
->lock
);
4693 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4694 spin_unlock(&cache
->lock
);
4696 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4697 btrfs_put_block_group(cache
);
4698 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info
);
4699 spin_lock(&cur_trans
->dirty_bgs_lock
);
4701 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4704 * Refer to the definition of io_bgs member for details why it's safe
4705 * to use it without any locking
4707 while (!list_empty(&cur_trans
->io_bgs
)) {
4708 cache
= list_first_entry(&cur_trans
->io_bgs
,
4709 struct btrfs_block_group
,
4712 list_del_init(&cache
->io_list
);
4713 spin_lock(&cache
->lock
);
4714 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4715 spin_unlock(&cache
->lock
);
4716 btrfs_cleanup_bg_io(cache
);
4720 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info
*fs_info
)
4722 struct btrfs_root
*gang
[8];
4726 spin_lock(&fs_info
->fs_roots_radix_lock
);
4728 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
4731 BTRFS_ROOT_TRANS_TAG
);
4734 for (i
= 0; i
< ret
; i
++) {
4735 struct btrfs_root
*root
= gang
[i
];
4737 btrfs_qgroup_free_meta_all_pertrans(root
);
4738 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
4739 (unsigned long)btrfs_root_id(root
),
4740 BTRFS_ROOT_TRANS_TAG
);
4743 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4746 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
)
4748 struct btrfs_fs_info
*fs_info
= cur_trans
->fs_info
;
4749 struct btrfs_device
*dev
, *tmp
;
4751 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4752 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4753 ASSERT(list_empty(&cur_trans
->io_bgs
));
4755 list_for_each_entry_safe(dev
, tmp
, &cur_trans
->dev_update_list
,
4757 list_del_init(&dev
->post_commit_list
);
4760 btrfs_destroy_delayed_refs(cur_trans
);
4762 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4763 wake_up(&fs_info
->transaction_blocked_wait
);
4765 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4766 wake_up(&fs_info
->transaction_wait
);
4768 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4770 btrfs_destroy_pinned_extent(fs_info
, &cur_trans
->pinned_extents
);
4772 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4773 wake_up(&cur_trans
->commit_wait
);
4776 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4778 struct btrfs_transaction
*t
;
4780 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4782 spin_lock(&fs_info
->trans_lock
);
4783 while (!list_empty(&fs_info
->trans_list
)) {
4784 t
= list_first_entry(&fs_info
->trans_list
,
4785 struct btrfs_transaction
, list
);
4786 if (t
->state
>= TRANS_STATE_COMMIT_PREP
) {
4787 refcount_inc(&t
->use_count
);
4788 spin_unlock(&fs_info
->trans_lock
);
4789 btrfs_wait_for_commit(fs_info
, t
->transid
);
4790 btrfs_put_transaction(t
);
4791 spin_lock(&fs_info
->trans_lock
);
4794 if (t
== fs_info
->running_transaction
) {
4795 t
->state
= TRANS_STATE_COMMIT_DOING
;
4796 spin_unlock(&fs_info
->trans_lock
);
4798 * We wait for 0 num_writers since we don't hold a trans
4799 * handle open currently for this transaction.
4801 wait_event(t
->writer_wait
,
4802 atomic_read(&t
->num_writers
) == 0);
4804 spin_unlock(&fs_info
->trans_lock
);
4806 btrfs_cleanup_one_transaction(t
);
4808 spin_lock(&fs_info
->trans_lock
);
4809 if (t
== fs_info
->running_transaction
)
4810 fs_info
->running_transaction
= NULL
;
4811 list_del_init(&t
->list
);
4812 spin_unlock(&fs_info
->trans_lock
);
4814 btrfs_put_transaction(t
);
4815 trace_btrfs_transaction_commit(fs_info
);
4816 spin_lock(&fs_info
->trans_lock
);
4818 spin_unlock(&fs_info
->trans_lock
);
4819 btrfs_destroy_all_ordered_extents(fs_info
);
4820 btrfs_destroy_delayed_inodes(fs_info
);
4821 btrfs_assert_delayed_root_empty(fs_info
);
4822 btrfs_destroy_all_delalloc_inodes(fs_info
);
4823 btrfs_drop_all_logs(fs_info
);
4824 btrfs_free_all_qgroup_pertrans(fs_info
);
4825 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4830 int btrfs_init_root_free_objectid(struct btrfs_root
*root
)
4832 struct btrfs_path
*path
;
4834 struct extent_buffer
*l
;
4835 struct btrfs_key search_key
;
4836 struct btrfs_key found_key
;
4839 path
= btrfs_alloc_path();
4843 search_key
.objectid
= BTRFS_LAST_FREE_OBJECTID
;
4844 search_key
.type
= -1;
4845 search_key
.offset
= (u64
)-1;
4846 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
4851 * Key with offset -1 found, there would have to exist a root
4852 * with such id, but this is out of valid range.
4857 if (path
->slots
[0] > 0) {
4858 slot
= path
->slots
[0] - 1;
4860 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
4861 root
->free_objectid
= max_t(u64
, found_key
.objectid
+ 1,
4862 BTRFS_FIRST_FREE_OBJECTID
);
4864 root
->free_objectid
= BTRFS_FIRST_FREE_OBJECTID
;
4868 btrfs_free_path(path
);
4872 int btrfs_get_free_objectid(struct btrfs_root
*root
, u64
*objectid
)
4875 mutex_lock(&root
->objectid_mutex
);
4877 if (unlikely(root
->free_objectid
>= BTRFS_LAST_FREE_OBJECTID
)) {
4878 btrfs_warn(root
->fs_info
,
4879 "the objectid of root %llu reaches its highest value",
4880 btrfs_root_id(root
));
4885 *objectid
= root
->free_objectid
++;
4888 mutex_unlock(&root
->objectid_mutex
);